ASTContext.cpp revision 199482
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/DeclCXX.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/DeclTemplate.h"
18#include "clang/AST/TypeLoc.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExternalASTSource.h"
21#include "clang/AST/RecordLayout.h"
22#include "clang/Basic/Builtins.h"
23#include "clang/Basic/SourceManager.h"
24#include "clang/Basic/TargetInfo.h"
25#include "llvm/ADT/SmallString.h"
26#include "llvm/ADT/StringExtras.h"
27#include "llvm/Support/MathExtras.h"
28#include "llvm/Support/raw_ostream.h"
29#include "RecordLayoutBuilder.h"
30
31using namespace clang;
32
33enum FloatingRank {
34  FloatRank, DoubleRank, LongDoubleRank
35};
36
37ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM,
38                       const TargetInfo &t,
39                       IdentifierTable &idents, SelectorTable &sels,
40                       Builtin::Context &builtins,
41                       bool FreeMem, unsigned size_reserve) :
42  GlobalNestedNameSpecifier(0), CFConstantStringTypeDecl(0),
43  ObjCFastEnumerationStateTypeDecl(0), FILEDecl(0), jmp_bufDecl(0),
44  sigjmp_bufDecl(0), BlockDescriptorType(0), BlockDescriptorExtendedType(0),
45  SourceMgr(SM), LangOpts(LOpts),
46  LoadedExternalComments(false), FreeMemory(FreeMem), Target(t),
47  Idents(idents), Selectors(sels),
48  BuiltinInfo(builtins), ExternalSource(0), PrintingPolicy(LOpts) {
49  ObjCIdRedefinitionType = QualType();
50  ObjCClassRedefinitionType = QualType();
51  if (size_reserve > 0) Types.reserve(size_reserve);
52  TUDecl = TranslationUnitDecl::Create(*this);
53  InitBuiltinTypes();
54}
55
56ASTContext::~ASTContext() {
57  // Deallocate all the types.
58  while (!Types.empty()) {
59    Types.back()->Destroy(*this);
60    Types.pop_back();
61  }
62
63  {
64    llvm::FoldingSet<ExtQuals>::iterator
65      I = ExtQualNodes.begin(), E = ExtQualNodes.end();
66    while (I != E)
67      Deallocate(&*I++);
68  }
69
70  {
71    llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
72      I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end();
73    while (I != E) {
74      ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
75      delete R;
76    }
77  }
78
79  {
80    llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*>::iterator
81      I = ObjCLayouts.begin(), E = ObjCLayouts.end();
82    while (I != E) {
83      ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
84      delete R;
85    }
86  }
87
88  // Destroy nested-name-specifiers.
89  for (llvm::FoldingSet<NestedNameSpecifier>::iterator
90         NNS = NestedNameSpecifiers.begin(),
91         NNSEnd = NestedNameSpecifiers.end();
92       NNS != NNSEnd;
93       /* Increment in loop */)
94    (*NNS++).Destroy(*this);
95
96  if (GlobalNestedNameSpecifier)
97    GlobalNestedNameSpecifier->Destroy(*this);
98
99  TUDecl->Destroy(*this);
100}
101
102void
103ASTContext::setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source) {
104  ExternalSource.reset(Source.take());
105}
106
107void ASTContext::PrintStats() const {
108  fprintf(stderr, "*** AST Context Stats:\n");
109  fprintf(stderr, "  %d types total.\n", (int)Types.size());
110
111  unsigned counts[] = {
112#define TYPE(Name, Parent) 0,
113#define ABSTRACT_TYPE(Name, Parent)
114#include "clang/AST/TypeNodes.def"
115    0 // Extra
116  };
117
118  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
119    Type *T = Types[i];
120    counts[(unsigned)T->getTypeClass()]++;
121  }
122
123  unsigned Idx = 0;
124  unsigned TotalBytes = 0;
125#define TYPE(Name, Parent)                                              \
126  if (counts[Idx])                                                      \
127    fprintf(stderr, "    %d %s types\n", (int)counts[Idx], #Name);      \
128  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
129  ++Idx;
130#define ABSTRACT_TYPE(Name, Parent)
131#include "clang/AST/TypeNodes.def"
132
133  fprintf(stderr, "Total bytes = %d\n", int(TotalBytes));
134
135  if (ExternalSource.get()) {
136    fprintf(stderr, "\n");
137    ExternalSource->PrintStats();
138  }
139}
140
141
142void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
143  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
144  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
145  Types.push_back(Ty);
146}
147
148void ASTContext::InitBuiltinTypes() {
149  assert(VoidTy.isNull() && "Context reinitialized?");
150
151  // C99 6.2.5p19.
152  InitBuiltinType(VoidTy,              BuiltinType::Void);
153
154  // C99 6.2.5p2.
155  InitBuiltinType(BoolTy,              BuiltinType::Bool);
156  // C99 6.2.5p3.
157  if (LangOpts.CharIsSigned)
158    InitBuiltinType(CharTy,            BuiltinType::Char_S);
159  else
160    InitBuiltinType(CharTy,            BuiltinType::Char_U);
161  // C99 6.2.5p4.
162  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
163  InitBuiltinType(ShortTy,             BuiltinType::Short);
164  InitBuiltinType(IntTy,               BuiltinType::Int);
165  InitBuiltinType(LongTy,              BuiltinType::Long);
166  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
167
168  // C99 6.2.5p6.
169  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
170  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
171  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
172  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
173  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
174
175  // C99 6.2.5p10.
176  InitBuiltinType(FloatTy,             BuiltinType::Float);
177  InitBuiltinType(DoubleTy,            BuiltinType::Double);
178  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
179
180  // GNU extension, 128-bit integers.
181  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
182  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
183
184  if (LangOpts.CPlusPlus) // C++ 3.9.1p5
185    InitBuiltinType(WCharTy,           BuiltinType::WChar);
186  else // C99
187    WCharTy = getFromTargetType(Target.getWCharType());
188
189  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
190    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
191  else // C99
192    Char16Ty = getFromTargetType(Target.getChar16Type());
193
194  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
195    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
196  else // C99
197    Char32Ty = getFromTargetType(Target.getChar32Type());
198
199  // Placeholder type for functions.
200  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
201
202  // Placeholder type for type-dependent expressions whose type is
203  // completely unknown. No code should ever check a type against
204  // DependentTy and users should never see it; however, it is here to
205  // help diagnose failures to properly check for type-dependent
206  // expressions.
207  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
208
209  // Placeholder type for C++0x auto declarations whose real type has
210  // not yet been deduced.
211  InitBuiltinType(UndeducedAutoTy, BuiltinType::UndeducedAuto);
212
213  // C99 6.2.5p11.
214  FloatComplexTy      = getComplexType(FloatTy);
215  DoubleComplexTy     = getComplexType(DoubleTy);
216  LongDoubleComplexTy = getComplexType(LongDoubleTy);
217
218  BuiltinVaListType = QualType();
219
220  // "Builtin" typedefs set by Sema::ActOnTranslationUnitScope().
221  ObjCIdTypedefType = QualType();
222  ObjCClassTypedefType = QualType();
223
224  // Builtin types for 'id' and 'Class'.
225  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
226  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
227
228  ObjCConstantStringType = QualType();
229
230  // void * type
231  VoidPtrTy = getPointerType(VoidTy);
232
233  // nullptr type (C++0x 2.14.7)
234  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
235}
236
237MemberSpecializationInfo *
238ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
239  assert(Var->isStaticDataMember() && "Not a static data member");
240  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
241    = InstantiatedFromStaticDataMember.find(Var);
242  if (Pos == InstantiatedFromStaticDataMember.end())
243    return 0;
244
245  return Pos->second;
246}
247
248void
249ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
250                                                TemplateSpecializationKind TSK) {
251  assert(Inst->isStaticDataMember() && "Not a static data member");
252  assert(Tmpl->isStaticDataMember() && "Not a static data member");
253  assert(!InstantiatedFromStaticDataMember[Inst] &&
254         "Already noted what static data member was instantiated from");
255  InstantiatedFromStaticDataMember[Inst]
256    = new (*this) MemberSpecializationInfo(Tmpl, TSK);
257}
258
259NamedDecl *
260ASTContext::getInstantiatedFromUnresolvedUsingDecl(UsingDecl *UUD) {
261  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
262    = InstantiatedFromUnresolvedUsingDecl.find(UUD);
263  if (Pos == InstantiatedFromUnresolvedUsingDecl.end())
264    return 0;
265
266  return Pos->second;
267}
268
269void
270ASTContext::setInstantiatedFromUnresolvedUsingDecl(UsingDecl *UD,
271                                                   NamedDecl *UUD) {
272  assert((isa<UnresolvedUsingValueDecl>(UUD) ||
273          isa<UnresolvedUsingTypenameDecl>(UUD)) &&
274         "original declaration is not an unresolved using decl");
275  assert(!InstantiatedFromUnresolvedUsingDecl[UD] &&
276         "Already noted what using decl what instantiated from");
277  InstantiatedFromUnresolvedUsingDecl[UD] = UUD;
278}
279
280FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
281  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
282    = InstantiatedFromUnnamedFieldDecl.find(Field);
283  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
284    return 0;
285
286  return Pos->second;
287}
288
289void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
290                                                     FieldDecl *Tmpl) {
291  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
292  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
293  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
294         "Already noted what unnamed field was instantiated from");
295
296  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
297}
298
299namespace {
300  class BeforeInTranslationUnit
301    : std::binary_function<SourceRange, SourceRange, bool> {
302    SourceManager *SourceMgr;
303
304  public:
305    explicit BeforeInTranslationUnit(SourceManager *SM) : SourceMgr(SM) { }
306
307    bool operator()(SourceRange X, SourceRange Y) {
308      return SourceMgr->isBeforeInTranslationUnit(X.getBegin(), Y.getBegin());
309    }
310  };
311}
312
313/// \brief Determine whether the given comment is a Doxygen-style comment.
314///
315/// \param Start the start of the comment text.
316///
317/// \param End the end of the comment text.
318///
319/// \param Member whether we want to check whether this is a member comment
320/// (which requires a < after the Doxygen-comment delimiter). Otherwise,
321/// we only return true when we find a non-member comment.
322static bool
323isDoxygenComment(SourceManager &SourceMgr, SourceRange Comment,
324                 bool Member = false) {
325  const char *BufferStart
326    = SourceMgr.getBufferData(SourceMgr.getFileID(Comment.getBegin())).first;
327  const char *Start = BufferStart + SourceMgr.getFileOffset(Comment.getBegin());
328  const char* End = BufferStart + SourceMgr.getFileOffset(Comment.getEnd());
329
330  if (End - Start < 4)
331    return false;
332
333  assert(Start[0] == '/' && "Not a comment?");
334  if (Start[1] == '*' && !(Start[2] == '!' || Start[2] == '*'))
335    return false;
336  if (Start[1] == '/' && !(Start[2] == '!' || Start[2] == '/'))
337    return false;
338
339  return (Start[3] == '<') == Member;
340}
341
342/// \brief Retrieve the comment associated with the given declaration, if
343/// it has one.
344const char *ASTContext::getCommentForDecl(const Decl *D) {
345  if (!D)
346    return 0;
347
348  // Check whether we have cached a comment string for this declaration
349  // already.
350  llvm::DenseMap<const Decl *, std::string>::iterator Pos
351    = DeclComments.find(D);
352  if (Pos != DeclComments.end())
353    return Pos->second.c_str();
354
355  // If we have an external AST source and have not yet loaded comments from
356  // that source, do so now.
357  if (ExternalSource && !LoadedExternalComments) {
358    std::vector<SourceRange> LoadedComments;
359    ExternalSource->ReadComments(LoadedComments);
360
361    if (!LoadedComments.empty())
362      Comments.insert(Comments.begin(), LoadedComments.begin(),
363                      LoadedComments.end());
364
365    LoadedExternalComments = true;
366  }
367
368  // If there are no comments anywhere, we won't find anything.
369  if (Comments.empty())
370    return 0;
371
372  // If the declaration doesn't map directly to a location in a file, we
373  // can't find the comment.
374  SourceLocation DeclStartLoc = D->getLocStart();
375  if (DeclStartLoc.isInvalid() || !DeclStartLoc.isFileID())
376    return 0;
377
378  // Find the comment that occurs just before this declaration.
379  std::vector<SourceRange>::iterator LastComment
380    = std::lower_bound(Comments.begin(), Comments.end(),
381                       SourceRange(DeclStartLoc),
382                       BeforeInTranslationUnit(&SourceMgr));
383
384  // Decompose the location for the start of the declaration and find the
385  // beginning of the file buffer.
386  std::pair<FileID, unsigned> DeclStartDecomp
387    = SourceMgr.getDecomposedLoc(DeclStartLoc);
388  const char *FileBufferStart
389    = SourceMgr.getBufferData(DeclStartDecomp.first).first;
390
391  // First check whether we have a comment for a member.
392  if (LastComment != Comments.end() &&
393      !isa<TagDecl>(D) && !isa<NamespaceDecl>(D) &&
394      isDoxygenComment(SourceMgr, *LastComment, true)) {
395    std::pair<FileID, unsigned> LastCommentEndDecomp
396      = SourceMgr.getDecomposedLoc(LastComment->getEnd());
397    if (DeclStartDecomp.first == LastCommentEndDecomp.first &&
398        SourceMgr.getLineNumber(DeclStartDecomp.first, DeclStartDecomp.second)
399          == SourceMgr.getLineNumber(LastCommentEndDecomp.first,
400                                     LastCommentEndDecomp.second)) {
401      // The Doxygen member comment comes after the declaration starts and
402      // is on the same line and in the same file as the declaration. This
403      // is the comment we want.
404      std::string &Result = DeclComments[D];
405      Result.append(FileBufferStart +
406                      SourceMgr.getFileOffset(LastComment->getBegin()),
407                    FileBufferStart + LastCommentEndDecomp.second + 1);
408      return Result.c_str();
409    }
410  }
411
412  if (LastComment == Comments.begin())
413    return 0;
414  --LastComment;
415
416  // Decompose the end of the comment.
417  std::pair<FileID, unsigned> LastCommentEndDecomp
418    = SourceMgr.getDecomposedLoc(LastComment->getEnd());
419
420  // If the comment and the declaration aren't in the same file, then they
421  // aren't related.
422  if (DeclStartDecomp.first != LastCommentEndDecomp.first)
423    return 0;
424
425  // Check that we actually have a Doxygen comment.
426  if (!isDoxygenComment(SourceMgr, *LastComment))
427    return 0;
428
429  // Compute the starting line for the declaration and for the end of the
430  // comment (this is expensive).
431  unsigned DeclStartLine
432    = SourceMgr.getLineNumber(DeclStartDecomp.first, DeclStartDecomp.second);
433  unsigned CommentEndLine
434    = SourceMgr.getLineNumber(LastCommentEndDecomp.first,
435                              LastCommentEndDecomp.second);
436
437  // If the comment does not end on the line prior to the declaration, then
438  // the comment is not associated with the declaration at all.
439  if (CommentEndLine + 1 != DeclStartLine)
440    return 0;
441
442  // We have a comment, but there may be more comments on the previous lines.
443  // Keep looking so long as the comments are still Doxygen comments and are
444  // still adjacent.
445  unsigned ExpectedLine
446    = SourceMgr.getSpellingLineNumber(LastComment->getBegin()) - 1;
447  std::vector<SourceRange>::iterator FirstComment = LastComment;
448  while (FirstComment != Comments.begin()) {
449    // Look at the previous comment
450    --FirstComment;
451    std::pair<FileID, unsigned> Decomp
452      = SourceMgr.getDecomposedLoc(FirstComment->getEnd());
453
454    // If this previous comment is in a different file, we're done.
455    if (Decomp.first != DeclStartDecomp.first) {
456      ++FirstComment;
457      break;
458    }
459
460    // If this comment is not a Doxygen comment, we're done.
461    if (!isDoxygenComment(SourceMgr, *FirstComment)) {
462      ++FirstComment;
463      break;
464    }
465
466    // If the line number is not what we expected, we're done.
467    unsigned Line = SourceMgr.getLineNumber(Decomp.first, Decomp.second);
468    if (Line != ExpectedLine) {
469      ++FirstComment;
470      break;
471    }
472
473    // Set the next expected line number.
474    ExpectedLine
475      = SourceMgr.getSpellingLineNumber(FirstComment->getBegin()) - 1;
476  }
477
478  // The iterator range [FirstComment, LastComment] contains all of the
479  // BCPL comments that, together, are associated with this declaration.
480  // Form a single comment block string for this declaration that concatenates
481  // all of these comments.
482  std::string &Result = DeclComments[D];
483  while (FirstComment != LastComment) {
484    std::pair<FileID, unsigned> DecompStart
485      = SourceMgr.getDecomposedLoc(FirstComment->getBegin());
486    std::pair<FileID, unsigned> DecompEnd
487      = SourceMgr.getDecomposedLoc(FirstComment->getEnd());
488    Result.append(FileBufferStart + DecompStart.second,
489                  FileBufferStart + DecompEnd.second + 1);
490    ++FirstComment;
491  }
492
493  // Append the last comment line.
494  Result.append(FileBufferStart +
495                  SourceMgr.getFileOffset(LastComment->getBegin()),
496                FileBufferStart + LastCommentEndDecomp.second + 1);
497  return Result.c_str();
498}
499
500//===----------------------------------------------------------------------===//
501//                         Type Sizing and Analysis
502//===----------------------------------------------------------------------===//
503
504/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
505/// scalar floating point type.
506const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
507  const BuiltinType *BT = T->getAs<BuiltinType>();
508  assert(BT && "Not a floating point type!");
509  switch (BT->getKind()) {
510  default: assert(0 && "Not a floating point type!");
511  case BuiltinType::Float:      return Target.getFloatFormat();
512  case BuiltinType::Double:     return Target.getDoubleFormat();
513  case BuiltinType::LongDouble: return Target.getLongDoubleFormat();
514  }
515}
516
517/// getDeclAlignInBytes - Return a conservative estimate of the alignment of the
518/// specified decl.  Note that bitfields do not have a valid alignment, so
519/// this method will assert on them.
520unsigned ASTContext::getDeclAlignInBytes(const Decl *D) {
521  unsigned Align = Target.getCharWidth();
522
523  if (const AlignedAttr* AA = D->getAttr<AlignedAttr>())
524    Align = std::max(Align, AA->getAlignment());
525
526  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
527    QualType T = VD->getType();
528    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
529      unsigned AS = RT->getPointeeType().getAddressSpace();
530      Align = Target.getPointerAlign(AS);
531    } else if (!T->isIncompleteType() && !T->isFunctionType()) {
532      // Incomplete or function types default to 1.
533      while (isa<VariableArrayType>(T) || isa<IncompleteArrayType>(T))
534        T = cast<ArrayType>(T)->getElementType();
535
536      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
537    }
538  }
539
540  return Align / Target.getCharWidth();
541}
542
543/// getTypeSize - Return the size of the specified type, in bits.  This method
544/// does not work on incomplete types.
545///
546/// FIXME: Pointers into different addr spaces could have different sizes and
547/// alignment requirements: getPointerInfo should take an AddrSpace, this
548/// should take a QualType, &c.
549std::pair<uint64_t, unsigned>
550ASTContext::getTypeInfo(const Type *T) {
551  uint64_t Width=0;
552  unsigned Align=8;
553  switch (T->getTypeClass()) {
554#define TYPE(Class, Base)
555#define ABSTRACT_TYPE(Class, Base)
556#define NON_CANONICAL_TYPE(Class, Base)
557#define DEPENDENT_TYPE(Class, Base) case Type::Class:
558#include "clang/AST/TypeNodes.def"
559    assert(false && "Should not see dependent types");
560    break;
561
562  case Type::FunctionNoProto:
563  case Type::FunctionProto:
564    // GCC extension: alignof(function) = 32 bits
565    Width = 0;
566    Align = 32;
567    break;
568
569  case Type::IncompleteArray:
570  case Type::VariableArray:
571    Width = 0;
572    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
573    break;
574
575  case Type::ConstantArray: {
576    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
577
578    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
579    Width = EltInfo.first*CAT->getSize().getZExtValue();
580    Align = EltInfo.second;
581    break;
582  }
583  case Type::ExtVector:
584  case Type::Vector: {
585    const VectorType *VT = cast<VectorType>(T);
586    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
587    Width = EltInfo.first*VT->getNumElements();
588    Align = Width;
589    // If the alignment is not a power of 2, round up to the next power of 2.
590    // This happens for non-power-of-2 length vectors.
591    if (VT->getNumElements() & (VT->getNumElements()-1)) {
592      Align = llvm::NextPowerOf2(Align);
593      Width = llvm::RoundUpToAlignment(Width, Align);
594    }
595    break;
596  }
597
598  case Type::Builtin:
599    switch (cast<BuiltinType>(T)->getKind()) {
600    default: assert(0 && "Unknown builtin type!");
601    case BuiltinType::Void:
602      // GCC extension: alignof(void) = 8 bits.
603      Width = 0;
604      Align = 8;
605      break;
606
607    case BuiltinType::Bool:
608      Width = Target.getBoolWidth();
609      Align = Target.getBoolAlign();
610      break;
611    case BuiltinType::Char_S:
612    case BuiltinType::Char_U:
613    case BuiltinType::UChar:
614    case BuiltinType::SChar:
615      Width = Target.getCharWidth();
616      Align = Target.getCharAlign();
617      break;
618    case BuiltinType::WChar:
619      Width = Target.getWCharWidth();
620      Align = Target.getWCharAlign();
621      break;
622    case BuiltinType::Char16:
623      Width = Target.getChar16Width();
624      Align = Target.getChar16Align();
625      break;
626    case BuiltinType::Char32:
627      Width = Target.getChar32Width();
628      Align = Target.getChar32Align();
629      break;
630    case BuiltinType::UShort:
631    case BuiltinType::Short:
632      Width = Target.getShortWidth();
633      Align = Target.getShortAlign();
634      break;
635    case BuiltinType::UInt:
636    case BuiltinType::Int:
637      Width = Target.getIntWidth();
638      Align = Target.getIntAlign();
639      break;
640    case BuiltinType::ULong:
641    case BuiltinType::Long:
642      Width = Target.getLongWidth();
643      Align = Target.getLongAlign();
644      break;
645    case BuiltinType::ULongLong:
646    case BuiltinType::LongLong:
647      Width = Target.getLongLongWidth();
648      Align = Target.getLongLongAlign();
649      break;
650    case BuiltinType::Int128:
651    case BuiltinType::UInt128:
652      Width = 128;
653      Align = 128; // int128_t is 128-bit aligned on all targets.
654      break;
655    case BuiltinType::Float:
656      Width = Target.getFloatWidth();
657      Align = Target.getFloatAlign();
658      break;
659    case BuiltinType::Double:
660      Width = Target.getDoubleWidth();
661      Align = Target.getDoubleAlign();
662      break;
663    case BuiltinType::LongDouble:
664      Width = Target.getLongDoubleWidth();
665      Align = Target.getLongDoubleAlign();
666      break;
667    case BuiltinType::NullPtr:
668      Width = Target.getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
669      Align = Target.getPointerAlign(0); //   == sizeof(void*)
670      break;
671    }
672    break;
673  case Type::FixedWidthInt:
674    // FIXME: This isn't precisely correct; the width/alignment should depend
675    // on the available types for the target
676    Width = cast<FixedWidthIntType>(T)->getWidth();
677    Width = std::max(llvm::NextPowerOf2(Width - 1), (uint64_t)8);
678    Align = Width;
679    break;
680  case Type::ObjCObjectPointer:
681    Width = Target.getPointerWidth(0);
682    Align = Target.getPointerAlign(0);
683    break;
684  case Type::BlockPointer: {
685    unsigned AS = cast<BlockPointerType>(T)->getPointeeType().getAddressSpace();
686    Width = Target.getPointerWidth(AS);
687    Align = Target.getPointerAlign(AS);
688    break;
689  }
690  case Type::Pointer: {
691    unsigned AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
692    Width = Target.getPointerWidth(AS);
693    Align = Target.getPointerAlign(AS);
694    break;
695  }
696  case Type::LValueReference:
697  case Type::RValueReference:
698    // "When applied to a reference or a reference type, the result is the size
699    // of the referenced type." C++98 5.3.3p2: expr.sizeof.
700    // FIXME: This is wrong for struct layout: a reference in a struct has
701    // pointer size.
702    return getTypeInfo(cast<ReferenceType>(T)->getPointeeType());
703  case Type::MemberPointer: {
704    // FIXME: This is ABI dependent. We use the Itanium C++ ABI.
705    // http://www.codesourcery.com/public/cxx-abi/abi.html#member-pointers
706    // If we ever want to support other ABIs this needs to be abstracted.
707
708    QualType Pointee = cast<MemberPointerType>(T)->getPointeeType();
709    std::pair<uint64_t, unsigned> PtrDiffInfo =
710      getTypeInfo(getPointerDiffType());
711    Width = PtrDiffInfo.first;
712    if (Pointee->isFunctionType())
713      Width *= 2;
714    Align = PtrDiffInfo.second;
715    break;
716  }
717  case Type::Complex: {
718    // Complex types have the same alignment as their elements, but twice the
719    // size.
720    std::pair<uint64_t, unsigned> EltInfo =
721      getTypeInfo(cast<ComplexType>(T)->getElementType());
722    Width = EltInfo.first*2;
723    Align = EltInfo.second;
724    break;
725  }
726  case Type::ObjCInterface: {
727    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
728    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
729    Width = Layout.getSize();
730    Align = Layout.getAlignment();
731    break;
732  }
733  case Type::Record:
734  case Type::Enum: {
735    const TagType *TT = cast<TagType>(T);
736
737    if (TT->getDecl()->isInvalidDecl()) {
738      Width = 1;
739      Align = 1;
740      break;
741    }
742
743    if (const EnumType *ET = dyn_cast<EnumType>(TT))
744      return getTypeInfo(ET->getDecl()->getIntegerType());
745
746    const RecordType *RT = cast<RecordType>(TT);
747    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
748    Width = Layout.getSize();
749    Align = Layout.getAlignment();
750    break;
751  }
752
753  case Type::SubstTemplateTypeParm:
754    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
755                       getReplacementType().getTypePtr());
756
757  case Type::Elaborated:
758    return getTypeInfo(cast<ElaboratedType>(T)->getUnderlyingType()
759                         .getTypePtr());
760
761  case Type::Typedef: {
762    const TypedefDecl *Typedef = cast<TypedefType>(T)->getDecl();
763    if (const AlignedAttr *Aligned = Typedef->getAttr<AlignedAttr>()) {
764      Align = Aligned->getAlignment();
765      Width = getTypeSize(Typedef->getUnderlyingType().getTypePtr());
766    } else
767      return getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
768    break;
769  }
770
771  case Type::TypeOfExpr:
772    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
773                         .getTypePtr());
774
775  case Type::TypeOf:
776    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
777
778  case Type::Decltype:
779    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
780                        .getTypePtr());
781
782  case Type::QualifiedName:
783    return getTypeInfo(cast<QualifiedNameType>(T)->getNamedType().getTypePtr());
784
785  case Type::TemplateSpecialization:
786    assert(getCanonicalType(T) != T &&
787           "Cannot request the size of a dependent type");
788    // FIXME: this is likely to be wrong once we support template
789    // aliases, since a template alias could refer to a typedef that
790    // has an __aligned__ attribute on it.
791    return getTypeInfo(getCanonicalType(T));
792  }
793
794  assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
795  return std::make_pair(Width, Align);
796}
797
798/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
799/// type for the current target in bits.  This can be different than the ABI
800/// alignment in cases where it is beneficial for performance to overalign
801/// a data type.
802unsigned ASTContext::getPreferredTypeAlign(const Type *T) {
803  unsigned ABIAlign = getTypeAlign(T);
804
805  // Double and long long should be naturally aligned if possible.
806  if (const ComplexType* CT = T->getAs<ComplexType>())
807    T = CT->getElementType().getTypePtr();
808  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
809      T->isSpecificBuiltinType(BuiltinType::LongLong))
810    return std::max(ABIAlign, (unsigned)getTypeSize(T));
811
812  return ABIAlign;
813}
814
815static void CollectLocalObjCIvars(ASTContext *Ctx,
816                                  const ObjCInterfaceDecl *OI,
817                                  llvm::SmallVectorImpl<FieldDecl*> &Fields) {
818  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
819       E = OI->ivar_end(); I != E; ++I) {
820    ObjCIvarDecl *IVDecl = *I;
821    if (!IVDecl->isInvalidDecl())
822      Fields.push_back(cast<FieldDecl>(IVDecl));
823  }
824}
825
826void ASTContext::CollectObjCIvars(const ObjCInterfaceDecl *OI,
827                             llvm::SmallVectorImpl<FieldDecl*> &Fields) {
828  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
829    CollectObjCIvars(SuperClass, Fields);
830  CollectLocalObjCIvars(this, OI, Fields);
831}
832
833/// ShallowCollectObjCIvars -
834/// Collect all ivars, including those synthesized, in the current class.
835///
836void ASTContext::ShallowCollectObjCIvars(const ObjCInterfaceDecl *OI,
837                                 llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars,
838                                 bool CollectSynthesized) {
839  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
840         E = OI->ivar_end(); I != E; ++I) {
841     Ivars.push_back(*I);
842  }
843  if (CollectSynthesized)
844    CollectSynthesizedIvars(OI, Ivars);
845}
846
847void ASTContext::CollectProtocolSynthesizedIvars(const ObjCProtocolDecl *PD,
848                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
849  for (ObjCContainerDecl::prop_iterator I = PD->prop_begin(),
850       E = PD->prop_end(); I != E; ++I)
851    if (ObjCIvarDecl *Ivar = (*I)->getPropertyIvarDecl())
852      Ivars.push_back(Ivar);
853
854  // Also look into nested protocols.
855  for (ObjCProtocolDecl::protocol_iterator P = PD->protocol_begin(),
856       E = PD->protocol_end(); P != E; ++P)
857    CollectProtocolSynthesizedIvars(*P, Ivars);
858}
859
860/// CollectSynthesizedIvars -
861/// This routine collect synthesized ivars for the designated class.
862///
863void ASTContext::CollectSynthesizedIvars(const ObjCInterfaceDecl *OI,
864                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
865  for (ObjCInterfaceDecl::prop_iterator I = OI->prop_begin(),
866       E = OI->prop_end(); I != E; ++I) {
867    if (ObjCIvarDecl *Ivar = (*I)->getPropertyIvarDecl())
868      Ivars.push_back(Ivar);
869  }
870  // Also look into interface's protocol list for properties declared
871  // in the protocol and whose ivars are synthesized.
872  for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
873       PE = OI->protocol_end(); P != PE; ++P) {
874    ObjCProtocolDecl *PD = (*P);
875    CollectProtocolSynthesizedIvars(PD, Ivars);
876  }
877}
878
879/// CollectInheritedProtocols - Collect all protocols in current class and
880/// those inherited by it.
881void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
882                          llvm::SmallVectorImpl<ObjCProtocolDecl*> &Protocols) {
883  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
884    for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
885         PE = OI->protocol_end(); P != PE; ++P) {
886      ObjCProtocolDecl *Proto = (*P);
887      Protocols.push_back(Proto);
888      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
889           PE = Proto->protocol_end(); P != PE; ++P)
890        CollectInheritedProtocols(*P, Protocols);
891      }
892
893    // Categories of this Interface.
894    for (const ObjCCategoryDecl *CDeclChain = OI->getCategoryList();
895         CDeclChain; CDeclChain = CDeclChain->getNextClassCategory())
896      CollectInheritedProtocols(CDeclChain, Protocols);
897    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
898      while (SD) {
899        CollectInheritedProtocols(SD, Protocols);
900        SD = SD->getSuperClass();
901      }
902    return;
903  }
904  if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
905    for (ObjCInterfaceDecl::protocol_iterator P = OC->protocol_begin(),
906         PE = OC->protocol_end(); P != PE; ++P) {
907      ObjCProtocolDecl *Proto = (*P);
908      Protocols.push_back(Proto);
909      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
910           PE = Proto->protocol_end(); P != PE; ++P)
911        CollectInheritedProtocols(*P, Protocols);
912    }
913    return;
914  }
915  if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
916    for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
917         PE = OP->protocol_end(); P != PE; ++P) {
918      ObjCProtocolDecl *Proto = (*P);
919      Protocols.push_back(Proto);
920      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
921           PE = Proto->protocol_end(); P != PE; ++P)
922        CollectInheritedProtocols(*P, Protocols);
923    }
924    return;
925  }
926}
927
928unsigned ASTContext::CountProtocolSynthesizedIvars(const ObjCProtocolDecl *PD) {
929  unsigned count = 0;
930  for (ObjCContainerDecl::prop_iterator I = PD->prop_begin(),
931       E = PD->prop_end(); I != E; ++I)
932    if ((*I)->getPropertyIvarDecl())
933      ++count;
934
935  // Also look into nested protocols.
936  for (ObjCProtocolDecl::protocol_iterator P = PD->protocol_begin(),
937       E = PD->protocol_end(); P != E; ++P)
938    count += CountProtocolSynthesizedIvars(*P);
939  return count;
940}
941
942unsigned ASTContext::CountSynthesizedIvars(const ObjCInterfaceDecl *OI) {
943  unsigned count = 0;
944  for (ObjCInterfaceDecl::prop_iterator I = OI->prop_begin(),
945       E = OI->prop_end(); I != E; ++I) {
946    if ((*I)->getPropertyIvarDecl())
947      ++count;
948  }
949  // Also look into interface's protocol list for properties declared
950  // in the protocol and whose ivars are synthesized.
951  for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
952       PE = OI->protocol_end(); P != PE; ++P) {
953    ObjCProtocolDecl *PD = (*P);
954    count += CountProtocolSynthesizedIvars(PD);
955  }
956  return count;
957}
958
959/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
960ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
961  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
962    I = ObjCImpls.find(D);
963  if (I != ObjCImpls.end())
964    return cast<ObjCImplementationDecl>(I->second);
965  return 0;
966}
967/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
968ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
969  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
970    I = ObjCImpls.find(D);
971  if (I != ObjCImpls.end())
972    return cast<ObjCCategoryImplDecl>(I->second);
973  return 0;
974}
975
976/// \brief Set the implementation of ObjCInterfaceDecl.
977void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
978                           ObjCImplementationDecl *ImplD) {
979  assert(IFaceD && ImplD && "Passed null params");
980  ObjCImpls[IFaceD] = ImplD;
981}
982/// \brief Set the implementation of ObjCCategoryDecl.
983void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
984                           ObjCCategoryImplDecl *ImplD) {
985  assert(CatD && ImplD && "Passed null params");
986  ObjCImpls[CatD] = ImplD;
987}
988
989/// \brief Allocate an uninitialized DeclaratorInfo.
990///
991/// The caller should initialize the memory held by DeclaratorInfo using
992/// the TypeLoc wrappers.
993///
994/// \param T the type that will be the basis for type source info. This type
995/// should refer to how the declarator was written in source code, not to
996/// what type semantic analysis resolved the declarator to.
997DeclaratorInfo *ASTContext::CreateDeclaratorInfo(QualType T,
998                                                 unsigned DataSize) {
999  if (!DataSize)
1000    DataSize = TypeLoc::getFullDataSizeForType(T);
1001  else
1002    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1003           "incorrect data size provided to CreateDeclaratorInfo!");
1004
1005  DeclaratorInfo *DInfo =
1006    (DeclaratorInfo*)BumpAlloc.Allocate(sizeof(DeclaratorInfo) + DataSize, 8);
1007  new (DInfo) DeclaratorInfo(T);
1008  return DInfo;
1009}
1010
1011DeclaratorInfo *ASTContext::getTrivialDeclaratorInfo(QualType T,
1012                                                     SourceLocation L) {
1013  DeclaratorInfo *DI = CreateDeclaratorInfo(T);
1014  DI->getTypeLoc().initialize(L);
1015  return DI;
1016}
1017
1018/// getInterfaceLayoutImpl - Get or compute information about the
1019/// layout of the given interface.
1020///
1021/// \param Impl - If given, also include the layout of the interface's
1022/// implementation. This may differ by including synthesized ivars.
1023const ASTRecordLayout &
1024ASTContext::getObjCLayout(const ObjCInterfaceDecl *D,
1025                          const ObjCImplementationDecl *Impl) {
1026  assert(!D->isForwardDecl() && "Invalid interface decl!");
1027
1028  // Look up this layout, if already laid out, return what we have.
1029  ObjCContainerDecl *Key =
1030    Impl ? (ObjCContainerDecl*) Impl : (ObjCContainerDecl*) D;
1031  if (const ASTRecordLayout *Entry = ObjCLayouts[Key])
1032    return *Entry;
1033
1034  // Add in synthesized ivar count if laying out an implementation.
1035  if (Impl) {
1036    unsigned FieldCount = D->ivar_size();
1037    unsigned SynthCount = CountSynthesizedIvars(D);
1038    FieldCount += SynthCount;
1039    // If there aren't any sythesized ivars then reuse the interface
1040    // entry. Note we can't cache this because we simply free all
1041    // entries later; however we shouldn't look up implementations
1042    // frequently.
1043    if (SynthCount == 0)
1044      return getObjCLayout(D, 0);
1045  }
1046
1047  const ASTRecordLayout *NewEntry =
1048    ASTRecordLayoutBuilder::ComputeLayout(*this, D, Impl);
1049  ObjCLayouts[Key] = NewEntry;
1050
1051  return *NewEntry;
1052}
1053
1054const ASTRecordLayout &
1055ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) {
1056  return getObjCLayout(D, 0);
1057}
1058
1059const ASTRecordLayout &
1060ASTContext::getASTObjCImplementationLayout(const ObjCImplementationDecl *D) {
1061  return getObjCLayout(D->getClassInterface(), D);
1062}
1063
1064/// getASTRecordLayout - Get or compute information about the layout of the
1065/// specified record (struct/union/class), which indicates its size and field
1066/// position information.
1067const ASTRecordLayout &ASTContext::getASTRecordLayout(const RecordDecl *D) {
1068  D = D->getDefinition(*this);
1069  assert(D && "Cannot get layout of forward declarations!");
1070
1071  // Look up this layout, if already laid out, return what we have.
1072  // Note that we can't save a reference to the entry because this function
1073  // is recursive.
1074  const ASTRecordLayout *Entry = ASTRecordLayouts[D];
1075  if (Entry) return *Entry;
1076
1077  const ASTRecordLayout *NewEntry =
1078    ASTRecordLayoutBuilder::ComputeLayout(*this, D);
1079  ASTRecordLayouts[D] = NewEntry;
1080
1081  return *NewEntry;
1082}
1083
1084//===----------------------------------------------------------------------===//
1085//                   Type creation/memoization methods
1086//===----------------------------------------------------------------------===//
1087
1088QualType ASTContext::getExtQualType(const Type *TypeNode, Qualifiers Quals) {
1089  unsigned Fast = Quals.getFastQualifiers();
1090  Quals.removeFastQualifiers();
1091
1092  // Check if we've already instantiated this type.
1093  llvm::FoldingSetNodeID ID;
1094  ExtQuals::Profile(ID, TypeNode, Quals);
1095  void *InsertPos = 0;
1096  if (ExtQuals *EQ = ExtQualNodes.FindNodeOrInsertPos(ID, InsertPos)) {
1097    assert(EQ->getQualifiers() == Quals);
1098    QualType T = QualType(EQ, Fast);
1099    return T;
1100  }
1101
1102  ExtQuals *New = new (*this, TypeAlignment) ExtQuals(*this, TypeNode, Quals);
1103  ExtQualNodes.InsertNode(New, InsertPos);
1104  QualType T = QualType(New, Fast);
1105  return T;
1106}
1107
1108QualType ASTContext::getVolatileType(QualType T) {
1109  QualType CanT = getCanonicalType(T);
1110  if (CanT.isVolatileQualified()) return T;
1111
1112  QualifierCollector Quals;
1113  const Type *TypeNode = Quals.strip(T);
1114  Quals.addVolatile();
1115
1116  return getExtQualType(TypeNode, Quals);
1117}
1118
1119QualType ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) {
1120  QualType CanT = getCanonicalType(T);
1121  if (CanT.getAddressSpace() == AddressSpace)
1122    return T;
1123
1124  // If we are composing extended qualifiers together, merge together
1125  // into one ExtQuals node.
1126  QualifierCollector Quals;
1127  const Type *TypeNode = Quals.strip(T);
1128
1129  // If this type already has an address space specified, it cannot get
1130  // another one.
1131  assert(!Quals.hasAddressSpace() &&
1132         "Type cannot be in multiple addr spaces!");
1133  Quals.addAddressSpace(AddressSpace);
1134
1135  return getExtQualType(TypeNode, Quals);
1136}
1137
1138QualType ASTContext::getObjCGCQualType(QualType T,
1139                                       Qualifiers::GC GCAttr) {
1140  QualType CanT = getCanonicalType(T);
1141  if (CanT.getObjCGCAttr() == GCAttr)
1142    return T;
1143
1144  if (T->isPointerType()) {
1145    QualType Pointee = T->getAs<PointerType>()->getPointeeType();
1146    if (Pointee->isAnyPointerType()) {
1147      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1148      return getPointerType(ResultType);
1149    }
1150  }
1151
1152  // If we are composing extended qualifiers together, merge together
1153  // into one ExtQuals node.
1154  QualifierCollector Quals;
1155  const Type *TypeNode = Quals.strip(T);
1156
1157  // If this type already has an ObjCGC specified, it cannot get
1158  // another one.
1159  assert(!Quals.hasObjCGCAttr() &&
1160         "Type cannot have multiple ObjCGCs!");
1161  Quals.addObjCGCAttr(GCAttr);
1162
1163  return getExtQualType(TypeNode, Quals);
1164}
1165
1166QualType ASTContext::getNoReturnType(QualType T) {
1167  QualType ResultType;
1168  if (T->isPointerType()) {
1169    QualType Pointee = T->getAs<PointerType>()->getPointeeType();
1170    ResultType = getNoReturnType(Pointee);
1171    ResultType = getPointerType(ResultType);
1172  } else if (T->isBlockPointerType()) {
1173    QualType Pointee = T->getAs<BlockPointerType>()->getPointeeType();
1174    ResultType = getNoReturnType(Pointee);
1175    ResultType = getBlockPointerType(ResultType);
1176  } else {
1177    assert (T->isFunctionType()
1178            && "can't noreturn qualify non-pointer to function or block type");
1179
1180    if (const FunctionNoProtoType *FNPT = T->getAs<FunctionNoProtoType>()) {
1181      ResultType = getFunctionNoProtoType(FNPT->getResultType(), true);
1182    } else {
1183      const FunctionProtoType *F = T->getAs<FunctionProtoType>();
1184      ResultType
1185        = getFunctionType(F->getResultType(), F->arg_type_begin(),
1186                          F->getNumArgs(), F->isVariadic(), F->getTypeQuals(),
1187                          F->hasExceptionSpec(), F->hasAnyExceptionSpec(),
1188                          F->getNumExceptions(), F->exception_begin(), true);
1189    }
1190  }
1191
1192  return getQualifiedType(ResultType, T.getLocalQualifiers());
1193}
1194
1195/// getComplexType - Return the uniqued reference to the type for a complex
1196/// number with the specified element type.
1197QualType ASTContext::getComplexType(QualType T) {
1198  // Unique pointers, to guarantee there is only one pointer of a particular
1199  // structure.
1200  llvm::FoldingSetNodeID ID;
1201  ComplexType::Profile(ID, T);
1202
1203  void *InsertPos = 0;
1204  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1205    return QualType(CT, 0);
1206
1207  // If the pointee type isn't canonical, this won't be a canonical type either,
1208  // so fill in the canonical type field.
1209  QualType Canonical;
1210  if (!T.isCanonical()) {
1211    Canonical = getComplexType(getCanonicalType(T));
1212
1213    // Get the new insert position for the node we care about.
1214    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1215    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1216  }
1217  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
1218  Types.push_back(New);
1219  ComplexTypes.InsertNode(New, InsertPos);
1220  return QualType(New, 0);
1221}
1222
1223QualType ASTContext::getFixedWidthIntType(unsigned Width, bool Signed) {
1224  llvm::DenseMap<unsigned, FixedWidthIntType*> &Map = Signed ?
1225     SignedFixedWidthIntTypes : UnsignedFixedWidthIntTypes;
1226  FixedWidthIntType *&Entry = Map[Width];
1227  if (!Entry)
1228    Entry = new FixedWidthIntType(Width, Signed);
1229  return QualType(Entry, 0);
1230}
1231
1232/// getPointerType - Return the uniqued reference to the type for a pointer to
1233/// the specified type.
1234QualType ASTContext::getPointerType(QualType T) {
1235  // Unique pointers, to guarantee there is only one pointer of a particular
1236  // structure.
1237  llvm::FoldingSetNodeID ID;
1238  PointerType::Profile(ID, T);
1239
1240  void *InsertPos = 0;
1241  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1242    return QualType(PT, 0);
1243
1244  // If the pointee type isn't canonical, this won't be a canonical type either,
1245  // so fill in the canonical type field.
1246  QualType Canonical;
1247  if (!T.isCanonical()) {
1248    Canonical = getPointerType(getCanonicalType(T));
1249
1250    // Get the new insert position for the node we care about.
1251    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1252    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1253  }
1254  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
1255  Types.push_back(New);
1256  PointerTypes.InsertNode(New, InsertPos);
1257  return QualType(New, 0);
1258}
1259
1260/// getBlockPointerType - Return the uniqued reference to the type for
1261/// a pointer to the specified block.
1262QualType ASTContext::getBlockPointerType(QualType T) {
1263  assert(T->isFunctionType() && "block of function types only");
1264  // Unique pointers, to guarantee there is only one block of a particular
1265  // structure.
1266  llvm::FoldingSetNodeID ID;
1267  BlockPointerType::Profile(ID, T);
1268
1269  void *InsertPos = 0;
1270  if (BlockPointerType *PT =
1271        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1272    return QualType(PT, 0);
1273
1274  // If the block pointee type isn't canonical, this won't be a canonical
1275  // type either so fill in the canonical type field.
1276  QualType Canonical;
1277  if (!T.isCanonical()) {
1278    Canonical = getBlockPointerType(getCanonicalType(T));
1279
1280    // Get the new insert position for the node we care about.
1281    BlockPointerType *NewIP =
1282      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1283    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1284  }
1285  BlockPointerType *New
1286    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
1287  Types.push_back(New);
1288  BlockPointerTypes.InsertNode(New, InsertPos);
1289  return QualType(New, 0);
1290}
1291
1292/// getLValueReferenceType - Return the uniqued reference to the type for an
1293/// lvalue reference to the specified type.
1294QualType ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) {
1295  // Unique pointers, to guarantee there is only one pointer of a particular
1296  // structure.
1297  llvm::FoldingSetNodeID ID;
1298  ReferenceType::Profile(ID, T, SpelledAsLValue);
1299
1300  void *InsertPos = 0;
1301  if (LValueReferenceType *RT =
1302        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1303    return QualType(RT, 0);
1304
1305  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1306
1307  // If the referencee type isn't canonical, this won't be a canonical type
1308  // either, so fill in the canonical type field.
1309  QualType Canonical;
1310  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
1311    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1312    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
1313
1314    // Get the new insert position for the node we care about.
1315    LValueReferenceType *NewIP =
1316      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1317    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1318  }
1319
1320  LValueReferenceType *New
1321    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
1322                                                     SpelledAsLValue);
1323  Types.push_back(New);
1324  LValueReferenceTypes.InsertNode(New, InsertPos);
1325
1326  return QualType(New, 0);
1327}
1328
1329/// getRValueReferenceType - Return the uniqued reference to the type for an
1330/// rvalue reference to the specified type.
1331QualType ASTContext::getRValueReferenceType(QualType T) {
1332  // Unique pointers, to guarantee there is only one pointer of a particular
1333  // structure.
1334  llvm::FoldingSetNodeID ID;
1335  ReferenceType::Profile(ID, T, false);
1336
1337  void *InsertPos = 0;
1338  if (RValueReferenceType *RT =
1339        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1340    return QualType(RT, 0);
1341
1342  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1343
1344  // If the referencee type isn't canonical, this won't be a canonical type
1345  // either, so fill in the canonical type field.
1346  QualType Canonical;
1347  if (InnerRef || !T.isCanonical()) {
1348    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1349    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
1350
1351    // Get the new insert position for the node we care about.
1352    RValueReferenceType *NewIP =
1353      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1354    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1355  }
1356
1357  RValueReferenceType *New
1358    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
1359  Types.push_back(New);
1360  RValueReferenceTypes.InsertNode(New, InsertPos);
1361  return QualType(New, 0);
1362}
1363
1364/// getMemberPointerType - Return the uniqued reference to the type for a
1365/// member pointer to the specified type, in the specified class.
1366QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) {
1367  // Unique pointers, to guarantee there is only one pointer of a particular
1368  // structure.
1369  llvm::FoldingSetNodeID ID;
1370  MemberPointerType::Profile(ID, T, Cls);
1371
1372  void *InsertPos = 0;
1373  if (MemberPointerType *PT =
1374      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1375    return QualType(PT, 0);
1376
1377  // If the pointee or class type isn't canonical, this won't be a canonical
1378  // type either, so fill in the canonical type field.
1379  QualType Canonical;
1380  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
1381    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1382
1383    // Get the new insert position for the node we care about.
1384    MemberPointerType *NewIP =
1385      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1386    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1387  }
1388  MemberPointerType *New
1389    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
1390  Types.push_back(New);
1391  MemberPointerTypes.InsertNode(New, InsertPos);
1392  return QualType(New, 0);
1393}
1394
1395/// getConstantArrayType - Return the unique reference to the type for an
1396/// array of the specified element type.
1397QualType ASTContext::getConstantArrayType(QualType EltTy,
1398                                          const llvm::APInt &ArySizeIn,
1399                                          ArrayType::ArraySizeModifier ASM,
1400                                          unsigned EltTypeQuals) {
1401  assert((EltTy->isDependentType() ||
1402          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
1403         "Constant array of VLAs is illegal!");
1404
1405  // Convert the array size into a canonical width matching the pointer size for
1406  // the target.
1407  llvm::APInt ArySize(ArySizeIn);
1408  ArySize.zextOrTrunc(Target.getPointerWidth(EltTy.getAddressSpace()));
1409
1410  llvm::FoldingSetNodeID ID;
1411  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, EltTypeQuals);
1412
1413  void *InsertPos = 0;
1414  if (ConstantArrayType *ATP =
1415      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1416    return QualType(ATP, 0);
1417
1418  // If the element type isn't canonical, this won't be a canonical type either,
1419  // so fill in the canonical type field.
1420  QualType Canonical;
1421  if (!EltTy.isCanonical()) {
1422    Canonical = getConstantArrayType(getCanonicalType(EltTy), ArySize,
1423                                     ASM, EltTypeQuals);
1424    // Get the new insert position for the node we care about.
1425    ConstantArrayType *NewIP =
1426      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1427    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1428  }
1429
1430  ConstantArrayType *New = new(*this,TypeAlignment)
1431    ConstantArrayType(EltTy, Canonical, ArySize, ASM, EltTypeQuals);
1432  ConstantArrayTypes.InsertNode(New, InsertPos);
1433  Types.push_back(New);
1434  return QualType(New, 0);
1435}
1436
1437/// getVariableArrayType - Returns a non-unique reference to the type for a
1438/// variable array of the specified element type.
1439QualType ASTContext::getVariableArrayType(QualType EltTy,
1440                                          Expr *NumElts,
1441                                          ArrayType::ArraySizeModifier ASM,
1442                                          unsigned EltTypeQuals,
1443                                          SourceRange Brackets) {
1444  // Since we don't unique expressions, it isn't possible to unique VLA's
1445  // that have an expression provided for their size.
1446
1447  VariableArrayType *New = new(*this, TypeAlignment)
1448    VariableArrayType(EltTy, QualType(), NumElts, ASM, EltTypeQuals, Brackets);
1449
1450  VariableArrayTypes.push_back(New);
1451  Types.push_back(New);
1452  return QualType(New, 0);
1453}
1454
1455/// getDependentSizedArrayType - Returns a non-unique reference to
1456/// the type for a dependently-sized array of the specified element
1457/// type.
1458QualType ASTContext::getDependentSizedArrayType(QualType EltTy,
1459                                                Expr *NumElts,
1460                                                ArrayType::ArraySizeModifier ASM,
1461                                                unsigned EltTypeQuals,
1462                                                SourceRange Brackets) {
1463  assert((NumElts->isTypeDependent() || NumElts->isValueDependent()) &&
1464         "Size must be type- or value-dependent!");
1465
1466  llvm::FoldingSetNodeID ID;
1467  DependentSizedArrayType::Profile(ID, *this, getCanonicalType(EltTy), ASM,
1468                                   EltTypeQuals, NumElts);
1469
1470  void *InsertPos = 0;
1471  DependentSizedArrayType *Canon
1472    = DependentSizedArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1473  DependentSizedArrayType *New;
1474  if (Canon) {
1475    // We already have a canonical version of this array type; use it as
1476    // the canonical type for a newly-built type.
1477    New = new (*this, TypeAlignment)
1478      DependentSizedArrayType(*this, EltTy, QualType(Canon, 0),
1479                              NumElts, ASM, EltTypeQuals, Brackets);
1480  } else {
1481    QualType CanonEltTy = getCanonicalType(EltTy);
1482    if (CanonEltTy == EltTy) {
1483      New = new (*this, TypeAlignment)
1484        DependentSizedArrayType(*this, EltTy, QualType(),
1485                                NumElts, ASM, EltTypeQuals, Brackets);
1486      DependentSizedArrayTypes.InsertNode(New, InsertPos);
1487    } else {
1488      QualType Canon = getDependentSizedArrayType(CanonEltTy, NumElts,
1489                                                  ASM, EltTypeQuals,
1490                                                  SourceRange());
1491      New = new (*this, TypeAlignment)
1492        DependentSizedArrayType(*this, EltTy, Canon,
1493                                NumElts, ASM, EltTypeQuals, Brackets);
1494    }
1495  }
1496
1497  Types.push_back(New);
1498  return QualType(New, 0);
1499}
1500
1501QualType ASTContext::getIncompleteArrayType(QualType EltTy,
1502                                            ArrayType::ArraySizeModifier ASM,
1503                                            unsigned EltTypeQuals) {
1504  llvm::FoldingSetNodeID ID;
1505  IncompleteArrayType::Profile(ID, EltTy, ASM, EltTypeQuals);
1506
1507  void *InsertPos = 0;
1508  if (IncompleteArrayType *ATP =
1509       IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1510    return QualType(ATP, 0);
1511
1512  // If the element type isn't canonical, this won't be a canonical type
1513  // either, so fill in the canonical type field.
1514  QualType Canonical;
1515
1516  if (!EltTy.isCanonical()) {
1517    Canonical = getIncompleteArrayType(getCanonicalType(EltTy),
1518                                       ASM, EltTypeQuals);
1519
1520    // Get the new insert position for the node we care about.
1521    IncompleteArrayType *NewIP =
1522      IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1523    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1524  }
1525
1526  IncompleteArrayType *New = new (*this, TypeAlignment)
1527    IncompleteArrayType(EltTy, Canonical, ASM, EltTypeQuals);
1528
1529  IncompleteArrayTypes.InsertNode(New, InsertPos);
1530  Types.push_back(New);
1531  return QualType(New, 0);
1532}
1533
1534/// getVectorType - Return the unique reference to a vector type of
1535/// the specified element type and size. VectorType must be a built-in type.
1536QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts) {
1537  BuiltinType *baseType;
1538
1539  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1540  assert(baseType != 0 && "getVectorType(): Expecting a built-in type");
1541
1542  // Check if we've already instantiated a vector of this type.
1543  llvm::FoldingSetNodeID ID;
1544  VectorType::Profile(ID, vecType, NumElts, Type::Vector);
1545  void *InsertPos = 0;
1546  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1547    return QualType(VTP, 0);
1548
1549  // If the element type isn't canonical, this won't be a canonical type either,
1550  // so fill in the canonical type field.
1551  QualType Canonical;
1552  if (!vecType.isCanonical()) {
1553    Canonical = getVectorType(getCanonicalType(vecType), NumElts);
1554
1555    // Get the new insert position for the node we care about.
1556    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1557    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1558  }
1559  VectorType *New = new (*this, TypeAlignment)
1560    VectorType(vecType, NumElts, Canonical);
1561  VectorTypes.InsertNode(New, InsertPos);
1562  Types.push_back(New);
1563  return QualType(New, 0);
1564}
1565
1566/// getExtVectorType - Return the unique reference to an extended vector type of
1567/// the specified element type and size. VectorType must be a built-in type.
1568QualType ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) {
1569  BuiltinType *baseType;
1570
1571  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1572  assert(baseType != 0 && "getExtVectorType(): Expecting a built-in type");
1573
1574  // Check if we've already instantiated a vector of this type.
1575  llvm::FoldingSetNodeID ID;
1576  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector);
1577  void *InsertPos = 0;
1578  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1579    return QualType(VTP, 0);
1580
1581  // If the element type isn't canonical, this won't be a canonical type either,
1582  // so fill in the canonical type field.
1583  QualType Canonical;
1584  if (!vecType.isCanonical()) {
1585    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
1586
1587    // Get the new insert position for the node we care about.
1588    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1589    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1590  }
1591  ExtVectorType *New = new (*this, TypeAlignment)
1592    ExtVectorType(vecType, NumElts, Canonical);
1593  VectorTypes.InsertNode(New, InsertPos);
1594  Types.push_back(New);
1595  return QualType(New, 0);
1596}
1597
1598QualType ASTContext::getDependentSizedExtVectorType(QualType vecType,
1599                                                    Expr *SizeExpr,
1600                                                    SourceLocation AttrLoc) {
1601  llvm::FoldingSetNodeID ID;
1602  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
1603                                       SizeExpr);
1604
1605  void *InsertPos = 0;
1606  DependentSizedExtVectorType *Canon
1607    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1608  DependentSizedExtVectorType *New;
1609  if (Canon) {
1610    // We already have a canonical version of this array type; use it as
1611    // the canonical type for a newly-built type.
1612    New = new (*this, TypeAlignment)
1613      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
1614                                  SizeExpr, AttrLoc);
1615  } else {
1616    QualType CanonVecTy = getCanonicalType(vecType);
1617    if (CanonVecTy == vecType) {
1618      New = new (*this, TypeAlignment)
1619        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
1620                                    AttrLoc);
1621      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
1622    } else {
1623      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
1624                                                      SourceLocation());
1625      New = new (*this, TypeAlignment)
1626        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
1627    }
1628  }
1629
1630  Types.push_back(New);
1631  return QualType(New, 0);
1632}
1633
1634/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
1635///
1636QualType ASTContext::getFunctionNoProtoType(QualType ResultTy, bool NoReturn) {
1637  // Unique functions, to guarantee there is only one function of a particular
1638  // structure.
1639  llvm::FoldingSetNodeID ID;
1640  FunctionNoProtoType::Profile(ID, ResultTy, NoReturn);
1641
1642  void *InsertPos = 0;
1643  if (FunctionNoProtoType *FT =
1644        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1645    return QualType(FT, 0);
1646
1647  QualType Canonical;
1648  if (!ResultTy.isCanonical()) {
1649    Canonical = getFunctionNoProtoType(getCanonicalType(ResultTy), NoReturn);
1650
1651    // Get the new insert position for the node we care about.
1652    FunctionNoProtoType *NewIP =
1653      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1654    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1655  }
1656
1657  FunctionNoProtoType *New = new (*this, TypeAlignment)
1658    FunctionNoProtoType(ResultTy, Canonical, NoReturn);
1659  Types.push_back(New);
1660  FunctionNoProtoTypes.InsertNode(New, InsertPos);
1661  return QualType(New, 0);
1662}
1663
1664/// getFunctionType - Return a normal function type with a typed argument
1665/// list.  isVariadic indicates whether the argument list includes '...'.
1666QualType ASTContext::getFunctionType(QualType ResultTy,const QualType *ArgArray,
1667                                     unsigned NumArgs, bool isVariadic,
1668                                     unsigned TypeQuals, bool hasExceptionSpec,
1669                                     bool hasAnyExceptionSpec, unsigned NumExs,
1670                                     const QualType *ExArray, bool NoReturn) {
1671  // Unique functions, to guarantee there is only one function of a particular
1672  // structure.
1673  llvm::FoldingSetNodeID ID;
1674  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic,
1675                             TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1676                             NumExs, ExArray, NoReturn);
1677
1678  void *InsertPos = 0;
1679  if (FunctionProtoType *FTP =
1680        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1681    return QualType(FTP, 0);
1682
1683  // Determine whether the type being created is already canonical or not.
1684  bool isCanonical = !hasExceptionSpec && ResultTy.isCanonical();
1685  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
1686    if (!ArgArray[i].isCanonicalAsParam())
1687      isCanonical = false;
1688
1689  // If this type isn't canonical, get the canonical version of it.
1690  // The exception spec is not part of the canonical type.
1691  QualType Canonical;
1692  if (!isCanonical) {
1693    llvm::SmallVector<QualType, 16> CanonicalArgs;
1694    CanonicalArgs.reserve(NumArgs);
1695    for (unsigned i = 0; i != NumArgs; ++i)
1696      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
1697
1698    Canonical = getFunctionType(getCanonicalType(ResultTy),
1699                                CanonicalArgs.data(), NumArgs,
1700                                isVariadic, TypeQuals, false,
1701                                false, 0, 0, NoReturn);
1702
1703    // Get the new insert position for the node we care about.
1704    FunctionProtoType *NewIP =
1705      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1706    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1707  }
1708
1709  // FunctionProtoType objects are allocated with extra bytes after them
1710  // for two variable size arrays (for parameter and exception types) at the
1711  // end of them.
1712  FunctionProtoType *FTP =
1713    (FunctionProtoType*)Allocate(sizeof(FunctionProtoType) +
1714                                 NumArgs*sizeof(QualType) +
1715                                 NumExs*sizeof(QualType), TypeAlignment);
1716  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, isVariadic,
1717                              TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1718                              ExArray, NumExs, Canonical, NoReturn);
1719  Types.push_back(FTP);
1720  FunctionProtoTypes.InsertNode(FTP, InsertPos);
1721  return QualType(FTP, 0);
1722}
1723
1724/// getTypeDeclType - Return the unique reference to the type for the
1725/// specified type declaration.
1726QualType ASTContext::getTypeDeclType(TypeDecl *Decl, TypeDecl* PrevDecl) {
1727  assert(Decl && "Passed null for Decl param");
1728  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1729
1730  if (TypedefDecl *Typedef = dyn_cast<TypedefDecl>(Decl))
1731    return getTypedefType(Typedef);
1732  else if (isa<TemplateTypeParmDecl>(Decl)) {
1733    assert(false && "Template type parameter types are always available.");
1734  } else if (ObjCInterfaceDecl *ObjCInterface
1735               = dyn_cast<ObjCInterfaceDecl>(Decl))
1736    return getObjCInterfaceType(ObjCInterface);
1737
1738  if (RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
1739    if (PrevDecl)
1740      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1741    else
1742      Decl->TypeForDecl = new (*this, TypeAlignment) RecordType(Record);
1743  } else if (EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
1744    if (PrevDecl)
1745      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1746    else
1747      Decl->TypeForDecl = new (*this, TypeAlignment) EnumType(Enum);
1748  } else
1749    assert(false && "TypeDecl without a type?");
1750
1751  if (!PrevDecl) Types.push_back(Decl->TypeForDecl);
1752  return QualType(Decl->TypeForDecl, 0);
1753}
1754
1755/// getTypedefType - Return the unique reference to the type for the
1756/// specified typename decl.
1757QualType ASTContext::getTypedefType(TypedefDecl *Decl) {
1758  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1759
1760  QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
1761  Decl->TypeForDecl = new(*this, TypeAlignment)
1762    TypedefType(Type::Typedef, Decl, Canonical);
1763  Types.push_back(Decl->TypeForDecl);
1764  return QualType(Decl->TypeForDecl, 0);
1765}
1766
1767/// \brief Retrieve a substitution-result type.
1768QualType
1769ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
1770                                         QualType Replacement) {
1771  assert(Replacement.isCanonical()
1772         && "replacement types must always be canonical");
1773
1774  llvm::FoldingSetNodeID ID;
1775  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
1776  void *InsertPos = 0;
1777  SubstTemplateTypeParmType *SubstParm
1778    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1779
1780  if (!SubstParm) {
1781    SubstParm = new (*this, TypeAlignment)
1782      SubstTemplateTypeParmType(Parm, Replacement);
1783    Types.push_back(SubstParm);
1784    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
1785  }
1786
1787  return QualType(SubstParm, 0);
1788}
1789
1790/// \brief Retrieve the template type parameter type for a template
1791/// parameter or parameter pack with the given depth, index, and (optionally)
1792/// name.
1793QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
1794                                             bool ParameterPack,
1795                                             IdentifierInfo *Name) {
1796  llvm::FoldingSetNodeID ID;
1797  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, Name);
1798  void *InsertPos = 0;
1799  TemplateTypeParmType *TypeParm
1800    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1801
1802  if (TypeParm)
1803    return QualType(TypeParm, 0);
1804
1805  if (Name) {
1806    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
1807    TypeParm = new (*this, TypeAlignment)
1808      TemplateTypeParmType(Depth, Index, ParameterPack, Name, Canon);
1809  } else
1810    TypeParm = new (*this, TypeAlignment)
1811      TemplateTypeParmType(Depth, Index, ParameterPack);
1812
1813  Types.push_back(TypeParm);
1814  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
1815
1816  return QualType(TypeParm, 0);
1817}
1818
1819QualType
1820ASTContext::getTemplateSpecializationType(TemplateName Template,
1821                                          const TemplateArgumentLoc *Args,
1822                                          unsigned NumArgs,
1823                                          QualType Canon) {
1824  llvm::SmallVector<TemplateArgument, 4> ArgVec;
1825  ArgVec.reserve(NumArgs);
1826  for (unsigned i = 0; i != NumArgs; ++i)
1827    ArgVec.push_back(Args[i].getArgument());
1828
1829  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs, Canon);
1830}
1831
1832QualType
1833ASTContext::getTemplateSpecializationType(TemplateName Template,
1834                                          const TemplateArgument *Args,
1835                                          unsigned NumArgs,
1836                                          QualType Canon) {
1837  if (!Canon.isNull())
1838    Canon = getCanonicalType(Canon);
1839  else {
1840    // Build the canonical template specialization type.
1841    TemplateName CanonTemplate = getCanonicalTemplateName(Template);
1842    llvm::SmallVector<TemplateArgument, 4> CanonArgs;
1843    CanonArgs.reserve(NumArgs);
1844    for (unsigned I = 0; I != NumArgs; ++I)
1845      CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
1846
1847    // Determine whether this canonical template specialization type already
1848    // exists.
1849    llvm::FoldingSetNodeID ID;
1850    TemplateSpecializationType::Profile(ID, CanonTemplate,
1851                                        CanonArgs.data(), NumArgs, *this);
1852
1853    void *InsertPos = 0;
1854    TemplateSpecializationType *Spec
1855      = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
1856
1857    if (!Spec) {
1858      // Allocate a new canonical template specialization type.
1859      void *Mem = Allocate((sizeof(TemplateSpecializationType) +
1860                            sizeof(TemplateArgument) * NumArgs),
1861                           TypeAlignment);
1862      Spec = new (Mem) TemplateSpecializationType(*this, CanonTemplate,
1863                                                  CanonArgs.data(), NumArgs,
1864                                                  Canon);
1865      Types.push_back(Spec);
1866      TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
1867    }
1868
1869    if (Canon.isNull())
1870      Canon = QualType(Spec, 0);
1871    assert(Canon->isDependentType() &&
1872           "Non-dependent template-id type must have a canonical type");
1873  }
1874
1875  // Allocate the (non-canonical) template specialization type, but don't
1876  // try to unique it: these types typically have location information that
1877  // we don't unique and don't want to lose.
1878  void *Mem = Allocate((sizeof(TemplateSpecializationType) +
1879                        sizeof(TemplateArgument) * NumArgs),
1880                       TypeAlignment);
1881  TemplateSpecializationType *Spec
1882    = new (Mem) TemplateSpecializationType(*this, Template, Args, NumArgs,
1883                                           Canon);
1884
1885  Types.push_back(Spec);
1886  return QualType(Spec, 0);
1887}
1888
1889QualType
1890ASTContext::getQualifiedNameType(NestedNameSpecifier *NNS,
1891                                 QualType NamedType) {
1892  llvm::FoldingSetNodeID ID;
1893  QualifiedNameType::Profile(ID, NNS, NamedType);
1894
1895  void *InsertPos = 0;
1896  QualifiedNameType *T
1897    = QualifiedNameTypes.FindNodeOrInsertPos(ID, InsertPos);
1898  if (T)
1899    return QualType(T, 0);
1900
1901  T = new (*this) QualifiedNameType(NNS, NamedType,
1902                                    getCanonicalType(NamedType));
1903  Types.push_back(T);
1904  QualifiedNameTypes.InsertNode(T, InsertPos);
1905  return QualType(T, 0);
1906}
1907
1908QualType ASTContext::getTypenameType(NestedNameSpecifier *NNS,
1909                                     const IdentifierInfo *Name,
1910                                     QualType Canon) {
1911  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
1912
1913  if (Canon.isNull()) {
1914    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
1915    if (CanonNNS != NNS)
1916      Canon = getTypenameType(CanonNNS, Name);
1917  }
1918
1919  llvm::FoldingSetNodeID ID;
1920  TypenameType::Profile(ID, NNS, Name);
1921
1922  void *InsertPos = 0;
1923  TypenameType *T
1924    = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
1925  if (T)
1926    return QualType(T, 0);
1927
1928  T = new (*this) TypenameType(NNS, Name, Canon);
1929  Types.push_back(T);
1930  TypenameTypes.InsertNode(T, InsertPos);
1931  return QualType(T, 0);
1932}
1933
1934QualType
1935ASTContext::getTypenameType(NestedNameSpecifier *NNS,
1936                            const TemplateSpecializationType *TemplateId,
1937                            QualType Canon) {
1938  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
1939
1940  if (Canon.isNull()) {
1941    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
1942    QualType CanonType = getCanonicalType(QualType(TemplateId, 0));
1943    if (CanonNNS != NNS || CanonType != QualType(TemplateId, 0)) {
1944      const TemplateSpecializationType *CanonTemplateId
1945        = CanonType->getAs<TemplateSpecializationType>();
1946      assert(CanonTemplateId &&
1947             "Canonical type must also be a template specialization type");
1948      Canon = getTypenameType(CanonNNS, CanonTemplateId);
1949    }
1950  }
1951
1952  llvm::FoldingSetNodeID ID;
1953  TypenameType::Profile(ID, NNS, TemplateId);
1954
1955  void *InsertPos = 0;
1956  TypenameType *T
1957    = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
1958  if (T)
1959    return QualType(T, 0);
1960
1961  T = new (*this) TypenameType(NNS, TemplateId, Canon);
1962  Types.push_back(T);
1963  TypenameTypes.InsertNode(T, InsertPos);
1964  return QualType(T, 0);
1965}
1966
1967QualType
1968ASTContext::getElaboratedType(QualType UnderlyingType,
1969                              ElaboratedType::TagKind Tag) {
1970  llvm::FoldingSetNodeID ID;
1971  ElaboratedType::Profile(ID, UnderlyingType, Tag);
1972
1973  void *InsertPos = 0;
1974  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
1975  if (T)
1976    return QualType(T, 0);
1977
1978  QualType Canon = getCanonicalType(UnderlyingType);
1979
1980  T = new (*this) ElaboratedType(UnderlyingType, Tag, Canon);
1981  Types.push_back(T);
1982  ElaboratedTypes.InsertNode(T, InsertPos);
1983  return QualType(T, 0);
1984}
1985
1986/// CmpProtocolNames - Comparison predicate for sorting protocols
1987/// alphabetically.
1988static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
1989                            const ObjCProtocolDecl *RHS) {
1990  return LHS->getDeclName() < RHS->getDeclName();
1991}
1992
1993static bool areSortedAndUniqued(ObjCProtocolDecl **Protocols,
1994                                unsigned NumProtocols) {
1995  if (NumProtocols == 0) return true;
1996
1997  for (unsigned i = 1; i != NumProtocols; ++i)
1998    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]))
1999      return false;
2000  return true;
2001}
2002
2003static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
2004                                   unsigned &NumProtocols) {
2005  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
2006
2007  // Sort protocols, keyed by name.
2008  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
2009
2010  // Remove duplicates.
2011  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
2012  NumProtocols = ProtocolsEnd-Protocols;
2013}
2014
2015/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
2016/// the given interface decl and the conforming protocol list.
2017QualType ASTContext::getObjCObjectPointerType(QualType InterfaceT,
2018                                              ObjCProtocolDecl **Protocols,
2019                                              unsigned NumProtocols) {
2020  llvm::FoldingSetNodeID ID;
2021  ObjCObjectPointerType::Profile(ID, InterfaceT, Protocols, NumProtocols);
2022
2023  void *InsertPos = 0;
2024  if (ObjCObjectPointerType *QT =
2025              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2026    return QualType(QT, 0);
2027
2028  // Sort the protocol list alphabetically to canonicalize it.
2029  QualType Canonical;
2030  if (!InterfaceT.isCanonical() ||
2031      !areSortedAndUniqued(Protocols, NumProtocols)) {
2032    if (!areSortedAndUniqued(Protocols, NumProtocols)) {
2033      llvm::SmallVector<ObjCProtocolDecl*, 8> Sorted(NumProtocols);
2034      unsigned UniqueCount = NumProtocols;
2035
2036      std::copy(Protocols, Protocols + NumProtocols, Sorted.begin());
2037      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
2038
2039      Canonical = getObjCObjectPointerType(getCanonicalType(InterfaceT),
2040                                           &Sorted[0], UniqueCount);
2041    } else {
2042      Canonical = getObjCObjectPointerType(getCanonicalType(InterfaceT),
2043                                           Protocols, NumProtocols);
2044    }
2045
2046    // Regenerate InsertPos.
2047    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2048  }
2049
2050  // No Match;
2051  ObjCObjectPointerType *QType = new (*this, TypeAlignment)
2052    ObjCObjectPointerType(Canonical, InterfaceT, Protocols, NumProtocols);
2053
2054  Types.push_back(QType);
2055  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
2056  return QualType(QType, 0);
2057}
2058
2059/// getObjCInterfaceType - Return the unique reference to the type for the
2060/// specified ObjC interface decl. The list of protocols is optional.
2061QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
2062                       ObjCProtocolDecl **Protocols, unsigned NumProtocols) {
2063  llvm::FoldingSetNodeID ID;
2064  ObjCInterfaceType::Profile(ID, Decl, Protocols, NumProtocols);
2065
2066  void *InsertPos = 0;
2067  if (ObjCInterfaceType *QT =
2068      ObjCInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos))
2069    return QualType(QT, 0);
2070
2071  // Sort the protocol list alphabetically to canonicalize it.
2072  QualType Canonical;
2073  if (NumProtocols && !areSortedAndUniqued(Protocols, NumProtocols)) {
2074    llvm::SmallVector<ObjCProtocolDecl*, 8> Sorted(NumProtocols);
2075    std::copy(Protocols, Protocols + NumProtocols, Sorted.begin());
2076
2077    unsigned UniqueCount = NumProtocols;
2078    SortAndUniqueProtocols(&Sorted[0], UniqueCount);
2079
2080    Canonical = getObjCInterfaceType(Decl, &Sorted[0], UniqueCount);
2081
2082    ObjCInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos);
2083  }
2084
2085  ObjCInterfaceType *QType = new (*this, TypeAlignment)
2086    ObjCInterfaceType(Canonical, const_cast<ObjCInterfaceDecl*>(Decl),
2087                      Protocols, NumProtocols);
2088
2089  Types.push_back(QType);
2090  ObjCInterfaceTypes.InsertNode(QType, InsertPos);
2091  return QualType(QType, 0);
2092}
2093
2094/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
2095/// TypeOfExprType AST's (since expression's are never shared). For example,
2096/// multiple declarations that refer to "typeof(x)" all contain different
2097/// DeclRefExpr's. This doesn't effect the type checker, since it operates
2098/// on canonical type's (which are always unique).
2099QualType ASTContext::getTypeOfExprType(Expr *tofExpr) {
2100  TypeOfExprType *toe;
2101  if (tofExpr->isTypeDependent()) {
2102    llvm::FoldingSetNodeID ID;
2103    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
2104
2105    void *InsertPos = 0;
2106    DependentTypeOfExprType *Canon
2107      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
2108    if (Canon) {
2109      // We already have a "canonical" version of an identical, dependent
2110      // typeof(expr) type. Use that as our canonical type.
2111      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
2112                                          QualType((TypeOfExprType*)Canon, 0));
2113    }
2114    else {
2115      // Build a new, canonical typeof(expr) type.
2116      Canon
2117        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
2118      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
2119      toe = Canon;
2120    }
2121  } else {
2122    QualType Canonical = getCanonicalType(tofExpr->getType());
2123    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
2124  }
2125  Types.push_back(toe);
2126  return QualType(toe, 0);
2127}
2128
2129/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
2130/// TypeOfType AST's. The only motivation to unique these nodes would be
2131/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
2132/// an issue. This doesn't effect the type checker, since it operates
2133/// on canonical type's (which are always unique).
2134QualType ASTContext::getTypeOfType(QualType tofType) {
2135  QualType Canonical = getCanonicalType(tofType);
2136  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
2137  Types.push_back(tot);
2138  return QualType(tot, 0);
2139}
2140
2141/// getDecltypeForExpr - Given an expr, will return the decltype for that
2142/// expression, according to the rules in C++0x [dcl.type.simple]p4
2143static QualType getDecltypeForExpr(const Expr *e, ASTContext &Context) {
2144  if (e->isTypeDependent())
2145    return Context.DependentTy;
2146
2147  // If e is an id expression or a class member access, decltype(e) is defined
2148  // as the type of the entity named by e.
2149  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(e)) {
2150    if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
2151      return VD->getType();
2152  }
2153  if (const MemberExpr *ME = dyn_cast<MemberExpr>(e)) {
2154    if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
2155      return FD->getType();
2156  }
2157  // If e is a function call or an invocation of an overloaded operator,
2158  // (parentheses around e are ignored), decltype(e) is defined as the
2159  // return type of that function.
2160  if (const CallExpr *CE = dyn_cast<CallExpr>(e->IgnoreParens()))
2161    return CE->getCallReturnType();
2162
2163  QualType T = e->getType();
2164
2165  // Otherwise, where T is the type of e, if e is an lvalue, decltype(e) is
2166  // defined as T&, otherwise decltype(e) is defined as T.
2167  if (e->isLvalue(Context) == Expr::LV_Valid)
2168    T = Context.getLValueReferenceType(T);
2169
2170  return T;
2171}
2172
2173/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
2174/// DecltypeType AST's. The only motivation to unique these nodes would be
2175/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
2176/// an issue. This doesn't effect the type checker, since it operates
2177/// on canonical type's (which are always unique).
2178QualType ASTContext::getDecltypeType(Expr *e) {
2179  DecltypeType *dt;
2180  if (e->isTypeDependent()) {
2181    llvm::FoldingSetNodeID ID;
2182    DependentDecltypeType::Profile(ID, *this, e);
2183
2184    void *InsertPos = 0;
2185    DependentDecltypeType *Canon
2186      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
2187    if (Canon) {
2188      // We already have a "canonical" version of an equivalent, dependent
2189      // decltype type. Use that as our canonical type.
2190      dt = new (*this, TypeAlignment) DecltypeType(e, DependentTy,
2191                                       QualType((DecltypeType*)Canon, 0));
2192    }
2193    else {
2194      // Build a new, canonical typeof(expr) type.
2195      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
2196      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
2197      dt = Canon;
2198    }
2199  } else {
2200    QualType T = getDecltypeForExpr(e, *this);
2201    dt = new (*this, TypeAlignment) DecltypeType(e, T, getCanonicalType(T));
2202  }
2203  Types.push_back(dt);
2204  return QualType(dt, 0);
2205}
2206
2207/// getTagDeclType - Return the unique reference to the type for the
2208/// specified TagDecl (struct/union/class/enum) decl.
2209QualType ASTContext::getTagDeclType(const TagDecl *Decl) {
2210  assert (Decl);
2211  // FIXME: What is the design on getTagDeclType when it requires casting
2212  // away const?  mutable?
2213  return getTypeDeclType(const_cast<TagDecl*>(Decl));
2214}
2215
2216/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
2217/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
2218/// needs to agree with the definition in <stddef.h>.
2219QualType ASTContext::getSizeType() const {
2220  return getFromTargetType(Target.getSizeType());
2221}
2222
2223/// getSignedWCharType - Return the type of "signed wchar_t".
2224/// Used when in C++, as a GCC extension.
2225QualType ASTContext::getSignedWCharType() const {
2226  // FIXME: derive from "Target" ?
2227  return WCharTy;
2228}
2229
2230/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
2231/// Used when in C++, as a GCC extension.
2232QualType ASTContext::getUnsignedWCharType() const {
2233  // FIXME: derive from "Target" ?
2234  return UnsignedIntTy;
2235}
2236
2237/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
2238/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
2239QualType ASTContext::getPointerDiffType() const {
2240  return getFromTargetType(Target.getPtrDiffType(0));
2241}
2242
2243//===----------------------------------------------------------------------===//
2244//                              Type Operators
2245//===----------------------------------------------------------------------===//
2246
2247CanQualType ASTContext::getCanonicalParamType(QualType T) {
2248  // Push qualifiers into arrays, and then discard any remaining
2249  // qualifiers.
2250  T = getCanonicalType(T);
2251  const Type *Ty = T.getTypePtr();
2252
2253  QualType Result;
2254  if (isa<ArrayType>(Ty)) {
2255    Result = getArrayDecayedType(QualType(Ty,0));
2256  } else if (isa<FunctionType>(Ty)) {
2257    Result = getPointerType(QualType(Ty, 0));
2258  } else {
2259    Result = QualType(Ty, 0);
2260  }
2261
2262  return CanQualType::CreateUnsafe(Result);
2263}
2264
2265/// getCanonicalType - Return the canonical (structural) type corresponding to
2266/// the specified potentially non-canonical type.  The non-canonical version
2267/// of a type may have many "decorated" versions of types.  Decorators can
2268/// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
2269/// to be free of any of these, allowing two canonical types to be compared
2270/// for exact equality with a simple pointer comparison.
2271CanQualType ASTContext::getCanonicalType(QualType T) {
2272  QualifierCollector Quals;
2273  const Type *Ptr = Quals.strip(T);
2274  QualType CanType = Ptr->getCanonicalTypeInternal();
2275
2276  // The canonical internal type will be the canonical type *except*
2277  // that we push type qualifiers down through array types.
2278
2279  // If there are no new qualifiers to push down, stop here.
2280  if (!Quals.hasQualifiers())
2281    return CanQualType::CreateUnsafe(CanType);
2282
2283  // If the type qualifiers are on an array type, get the canonical
2284  // type of the array with the qualifiers applied to the element
2285  // type.
2286  ArrayType *AT = dyn_cast<ArrayType>(CanType);
2287  if (!AT)
2288    return CanQualType::CreateUnsafe(getQualifiedType(CanType, Quals));
2289
2290  // Get the canonical version of the element with the extra qualifiers on it.
2291  // This can recursively sink qualifiers through multiple levels of arrays.
2292  QualType NewEltTy = getQualifiedType(AT->getElementType(), Quals);
2293  NewEltTy = getCanonicalType(NewEltTy);
2294
2295  if (ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
2296    return CanQualType::CreateUnsafe(
2297             getConstantArrayType(NewEltTy, CAT->getSize(),
2298                                  CAT->getSizeModifier(),
2299                                  CAT->getIndexTypeCVRQualifiers()));
2300  if (IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT))
2301    return CanQualType::CreateUnsafe(
2302             getIncompleteArrayType(NewEltTy, IAT->getSizeModifier(),
2303                                    IAT->getIndexTypeCVRQualifiers()));
2304
2305  if (DependentSizedArrayType *DSAT = dyn_cast<DependentSizedArrayType>(AT))
2306    return CanQualType::CreateUnsafe(
2307             getDependentSizedArrayType(NewEltTy,
2308                                        DSAT->getSizeExpr() ?
2309                                          DSAT->getSizeExpr()->Retain() : 0,
2310                                        DSAT->getSizeModifier(),
2311                                        DSAT->getIndexTypeCVRQualifiers(),
2312                        DSAT->getBracketsRange())->getCanonicalTypeInternal());
2313
2314  VariableArrayType *VAT = cast<VariableArrayType>(AT);
2315  return CanQualType::CreateUnsafe(getVariableArrayType(NewEltTy,
2316                                                        VAT->getSizeExpr() ?
2317                                              VAT->getSizeExpr()->Retain() : 0,
2318                                                        VAT->getSizeModifier(),
2319                                              VAT->getIndexTypeCVRQualifiers(),
2320                                                     VAT->getBracketsRange()));
2321}
2322
2323TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) {
2324  // If this template name refers to a template, the canonical
2325  // template name merely stores the template itself.
2326  if (TemplateDecl *Template = Name.getAsTemplateDecl())
2327    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
2328
2329  // If this template name refers to a set of overloaded function templates,
2330  /// the canonical template name merely stores the set of function templates.
2331  if (OverloadedFunctionDecl *Ovl = Name.getAsOverloadedFunctionDecl()) {
2332    OverloadedFunctionDecl *CanonOvl = 0;
2333    for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
2334                                                FEnd = Ovl->function_end();
2335         F != FEnd; ++F) {
2336      Decl *Canon = F->get()->getCanonicalDecl();
2337      if (CanonOvl || Canon != F->get()) {
2338        if (!CanonOvl)
2339          CanonOvl = OverloadedFunctionDecl::Create(*this,
2340                                                    Ovl->getDeclContext(),
2341                                                    Ovl->getDeclName());
2342
2343        CanonOvl->addOverload(
2344                    AnyFunctionDecl::getFromNamedDecl(cast<NamedDecl>(Canon)));
2345      }
2346    }
2347
2348    return TemplateName(CanonOvl? CanonOvl : Ovl);
2349  }
2350
2351  DependentTemplateName *DTN = Name.getAsDependentTemplateName();
2352  assert(DTN && "Non-dependent template names must refer to template decls.");
2353  return DTN->CanonicalTemplateName;
2354}
2355
2356bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
2357  X = getCanonicalTemplateName(X);
2358  Y = getCanonicalTemplateName(Y);
2359  return X.getAsVoidPointer() == Y.getAsVoidPointer();
2360}
2361
2362TemplateArgument
2363ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) {
2364  switch (Arg.getKind()) {
2365    case TemplateArgument::Null:
2366      return Arg;
2367
2368    case TemplateArgument::Expression:
2369      return Arg;
2370
2371    case TemplateArgument::Declaration:
2372      return TemplateArgument(Arg.getAsDecl()->getCanonicalDecl());
2373
2374    case TemplateArgument::Template:
2375      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
2376
2377    case TemplateArgument::Integral:
2378      return TemplateArgument(*Arg.getAsIntegral(),
2379                              getCanonicalType(Arg.getIntegralType()));
2380
2381    case TemplateArgument::Type:
2382      return TemplateArgument(getCanonicalType(Arg.getAsType()));
2383
2384    case TemplateArgument::Pack: {
2385      // FIXME: Allocate in ASTContext
2386      TemplateArgument *CanonArgs = new TemplateArgument[Arg.pack_size()];
2387      unsigned Idx = 0;
2388      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
2389                                        AEnd = Arg.pack_end();
2390           A != AEnd; (void)++A, ++Idx)
2391        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
2392
2393      TemplateArgument Result;
2394      Result.setArgumentPack(CanonArgs, Arg.pack_size(), false);
2395      return Result;
2396    }
2397  }
2398
2399  // Silence GCC warning
2400  assert(false && "Unhandled template argument kind");
2401  return TemplateArgument();
2402}
2403
2404NestedNameSpecifier *
2405ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) {
2406  if (!NNS)
2407    return 0;
2408
2409  switch (NNS->getKind()) {
2410  case NestedNameSpecifier::Identifier:
2411    // Canonicalize the prefix but keep the identifier the same.
2412    return NestedNameSpecifier::Create(*this,
2413                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
2414                                       NNS->getAsIdentifier());
2415
2416  case NestedNameSpecifier::Namespace:
2417    // A namespace is canonical; build a nested-name-specifier with
2418    // this namespace and no prefix.
2419    return NestedNameSpecifier::Create(*this, 0, NNS->getAsNamespace());
2420
2421  case NestedNameSpecifier::TypeSpec:
2422  case NestedNameSpecifier::TypeSpecWithTemplate: {
2423    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
2424    return NestedNameSpecifier::Create(*this, 0,
2425                 NNS->getKind() == NestedNameSpecifier::TypeSpecWithTemplate,
2426                                       T.getTypePtr());
2427  }
2428
2429  case NestedNameSpecifier::Global:
2430    // The global specifier is canonical and unique.
2431    return NNS;
2432  }
2433
2434  // Required to silence a GCC warning
2435  return 0;
2436}
2437
2438
2439const ArrayType *ASTContext::getAsArrayType(QualType T) {
2440  // Handle the non-qualified case efficiently.
2441  if (!T.hasLocalQualifiers()) {
2442    // Handle the common positive case fast.
2443    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
2444      return AT;
2445  }
2446
2447  // Handle the common negative case fast.
2448  QualType CType = T->getCanonicalTypeInternal();
2449  if (!isa<ArrayType>(CType))
2450    return 0;
2451
2452  // Apply any qualifiers from the array type to the element type.  This
2453  // implements C99 6.7.3p8: "If the specification of an array type includes
2454  // any type qualifiers, the element type is so qualified, not the array type."
2455
2456  // If we get here, we either have type qualifiers on the type, or we have
2457  // sugar such as a typedef in the way.  If we have type qualifiers on the type
2458  // we must propagate them down into the element type.
2459
2460  QualifierCollector Qs;
2461  const Type *Ty = Qs.strip(T.getDesugaredType());
2462
2463  // If we have a simple case, just return now.
2464  const ArrayType *ATy = dyn_cast<ArrayType>(Ty);
2465  if (ATy == 0 || Qs.empty())
2466    return ATy;
2467
2468  // Otherwise, we have an array and we have qualifiers on it.  Push the
2469  // qualifiers into the array element type and return a new array type.
2470  // Get the canonical version of the element with the extra qualifiers on it.
2471  // This can recursively sink qualifiers through multiple levels of arrays.
2472  QualType NewEltTy = getQualifiedType(ATy->getElementType(), Qs);
2473
2474  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
2475    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
2476                                                CAT->getSizeModifier(),
2477                                           CAT->getIndexTypeCVRQualifiers()));
2478  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
2479    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
2480                                                  IAT->getSizeModifier(),
2481                                           IAT->getIndexTypeCVRQualifiers()));
2482
2483  if (const DependentSizedArrayType *DSAT
2484        = dyn_cast<DependentSizedArrayType>(ATy))
2485    return cast<ArrayType>(
2486                     getDependentSizedArrayType(NewEltTy,
2487                                                DSAT->getSizeExpr() ?
2488                                              DSAT->getSizeExpr()->Retain() : 0,
2489                                                DSAT->getSizeModifier(),
2490                                              DSAT->getIndexTypeCVRQualifiers(),
2491                                                DSAT->getBracketsRange()));
2492
2493  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
2494  return cast<ArrayType>(getVariableArrayType(NewEltTy,
2495                                              VAT->getSizeExpr() ?
2496                                              VAT->getSizeExpr()->Retain() : 0,
2497                                              VAT->getSizeModifier(),
2498                                              VAT->getIndexTypeCVRQualifiers(),
2499                                              VAT->getBracketsRange()));
2500}
2501
2502
2503/// getArrayDecayedType - Return the properly qualified result of decaying the
2504/// specified array type to a pointer.  This operation is non-trivial when
2505/// handling typedefs etc.  The canonical type of "T" must be an array type,
2506/// this returns a pointer to a properly qualified element of the array.
2507///
2508/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
2509QualType ASTContext::getArrayDecayedType(QualType Ty) {
2510  // Get the element type with 'getAsArrayType' so that we don't lose any
2511  // typedefs in the element type of the array.  This also handles propagation
2512  // of type qualifiers from the array type into the element type if present
2513  // (C99 6.7.3p8).
2514  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
2515  assert(PrettyArrayType && "Not an array type!");
2516
2517  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
2518
2519  // int x[restrict 4] ->  int *restrict
2520  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
2521}
2522
2523QualType ASTContext::getBaseElementType(QualType QT) {
2524  QualifierCollector Qs;
2525  while (true) {
2526    const Type *UT = Qs.strip(QT);
2527    if (const ArrayType *AT = getAsArrayType(QualType(UT,0))) {
2528      QT = AT->getElementType();
2529    } else {
2530      return Qs.apply(QT);
2531    }
2532  }
2533}
2534
2535QualType ASTContext::getBaseElementType(const ArrayType *AT) {
2536  QualType ElemTy = AT->getElementType();
2537
2538  if (const ArrayType *AT = getAsArrayType(ElemTy))
2539    return getBaseElementType(AT);
2540
2541  return ElemTy;
2542}
2543
2544/// getConstantArrayElementCount - Returns number of constant array elements.
2545uint64_t
2546ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
2547  uint64_t ElementCount = 1;
2548  do {
2549    ElementCount *= CA->getSize().getZExtValue();
2550    CA = dyn_cast<ConstantArrayType>(CA->getElementType());
2551  } while (CA);
2552  return ElementCount;
2553}
2554
2555/// getFloatingRank - Return a relative rank for floating point types.
2556/// This routine will assert if passed a built-in type that isn't a float.
2557static FloatingRank getFloatingRank(QualType T) {
2558  if (const ComplexType *CT = T->getAs<ComplexType>())
2559    return getFloatingRank(CT->getElementType());
2560
2561  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
2562  switch (T->getAs<BuiltinType>()->getKind()) {
2563  default: assert(0 && "getFloatingRank(): not a floating type");
2564  case BuiltinType::Float:      return FloatRank;
2565  case BuiltinType::Double:     return DoubleRank;
2566  case BuiltinType::LongDouble: return LongDoubleRank;
2567  }
2568}
2569
2570/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
2571/// point or a complex type (based on typeDomain/typeSize).
2572/// 'typeDomain' is a real floating point or complex type.
2573/// 'typeSize' is a real floating point or complex type.
2574QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
2575                                                       QualType Domain) const {
2576  FloatingRank EltRank = getFloatingRank(Size);
2577  if (Domain->isComplexType()) {
2578    switch (EltRank) {
2579    default: assert(0 && "getFloatingRank(): illegal value for rank");
2580    case FloatRank:      return FloatComplexTy;
2581    case DoubleRank:     return DoubleComplexTy;
2582    case LongDoubleRank: return LongDoubleComplexTy;
2583    }
2584  }
2585
2586  assert(Domain->isRealFloatingType() && "Unknown domain!");
2587  switch (EltRank) {
2588  default: assert(0 && "getFloatingRank(): illegal value for rank");
2589  case FloatRank:      return FloatTy;
2590  case DoubleRank:     return DoubleTy;
2591  case LongDoubleRank: return LongDoubleTy;
2592  }
2593}
2594
2595/// getFloatingTypeOrder - Compare the rank of the two specified floating
2596/// point types, ignoring the domain of the type (i.e. 'double' ==
2597/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
2598/// LHS < RHS, return -1.
2599int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) {
2600  FloatingRank LHSR = getFloatingRank(LHS);
2601  FloatingRank RHSR = getFloatingRank(RHS);
2602
2603  if (LHSR == RHSR)
2604    return 0;
2605  if (LHSR > RHSR)
2606    return 1;
2607  return -1;
2608}
2609
2610/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
2611/// routine will assert if passed a built-in type that isn't an integer or enum,
2612/// or if it is not canonicalized.
2613unsigned ASTContext::getIntegerRank(Type *T) {
2614  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
2615  if (EnumType* ET = dyn_cast<EnumType>(T))
2616    T = ET->getDecl()->getIntegerType().getTypePtr();
2617
2618  if (T->isSpecificBuiltinType(BuiltinType::WChar))
2619    T = getFromTargetType(Target.getWCharType()).getTypePtr();
2620
2621  if (T->isSpecificBuiltinType(BuiltinType::Char16))
2622    T = getFromTargetType(Target.getChar16Type()).getTypePtr();
2623
2624  if (T->isSpecificBuiltinType(BuiltinType::Char32))
2625    T = getFromTargetType(Target.getChar32Type()).getTypePtr();
2626
2627  // There are two things which impact the integer rank: the width, and
2628  // the ordering of builtins.  The builtin ordering is encoded in the
2629  // bottom three bits; the width is encoded in the bits above that.
2630  if (FixedWidthIntType* FWIT = dyn_cast<FixedWidthIntType>(T))
2631    return FWIT->getWidth() << 3;
2632
2633  switch (cast<BuiltinType>(T)->getKind()) {
2634  default: assert(0 && "getIntegerRank(): not a built-in integer");
2635  case BuiltinType::Bool:
2636    return 1 + (getIntWidth(BoolTy) << 3);
2637  case BuiltinType::Char_S:
2638  case BuiltinType::Char_U:
2639  case BuiltinType::SChar:
2640  case BuiltinType::UChar:
2641    return 2 + (getIntWidth(CharTy) << 3);
2642  case BuiltinType::Short:
2643  case BuiltinType::UShort:
2644    return 3 + (getIntWidth(ShortTy) << 3);
2645  case BuiltinType::Int:
2646  case BuiltinType::UInt:
2647    return 4 + (getIntWidth(IntTy) << 3);
2648  case BuiltinType::Long:
2649  case BuiltinType::ULong:
2650    return 5 + (getIntWidth(LongTy) << 3);
2651  case BuiltinType::LongLong:
2652  case BuiltinType::ULongLong:
2653    return 6 + (getIntWidth(LongLongTy) << 3);
2654  case BuiltinType::Int128:
2655  case BuiltinType::UInt128:
2656    return 7 + (getIntWidth(Int128Ty) << 3);
2657  }
2658}
2659
2660/// \brief Whether this is a promotable bitfield reference according
2661/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
2662///
2663/// \returns the type this bit-field will promote to, or NULL if no
2664/// promotion occurs.
2665QualType ASTContext::isPromotableBitField(Expr *E) {
2666  FieldDecl *Field = E->getBitField();
2667  if (!Field)
2668    return QualType();
2669
2670  QualType FT = Field->getType();
2671
2672  llvm::APSInt BitWidthAP = Field->getBitWidth()->EvaluateAsInt(*this);
2673  uint64_t BitWidth = BitWidthAP.getZExtValue();
2674  uint64_t IntSize = getTypeSize(IntTy);
2675  // GCC extension compatibility: if the bit-field size is less than or equal
2676  // to the size of int, it gets promoted no matter what its type is.
2677  // For instance, unsigned long bf : 4 gets promoted to signed int.
2678  if (BitWidth < IntSize)
2679    return IntTy;
2680
2681  if (BitWidth == IntSize)
2682    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
2683
2684  // Types bigger than int are not subject to promotions, and therefore act
2685  // like the base type.
2686  // FIXME: This doesn't quite match what gcc does, but what gcc does here
2687  // is ridiculous.
2688  return QualType();
2689}
2690
2691/// getPromotedIntegerType - Returns the type that Promotable will
2692/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
2693/// integer type.
2694QualType ASTContext::getPromotedIntegerType(QualType Promotable) {
2695  assert(!Promotable.isNull());
2696  assert(Promotable->isPromotableIntegerType());
2697  if (Promotable->isSignedIntegerType())
2698    return IntTy;
2699  uint64_t PromotableSize = getTypeSize(Promotable);
2700  uint64_t IntSize = getTypeSize(IntTy);
2701  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
2702  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
2703}
2704
2705/// getIntegerTypeOrder - Returns the highest ranked integer type:
2706/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
2707/// LHS < RHS, return -1.
2708int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) {
2709  Type *LHSC = getCanonicalType(LHS).getTypePtr();
2710  Type *RHSC = getCanonicalType(RHS).getTypePtr();
2711  if (LHSC == RHSC) return 0;
2712
2713  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
2714  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
2715
2716  unsigned LHSRank = getIntegerRank(LHSC);
2717  unsigned RHSRank = getIntegerRank(RHSC);
2718
2719  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
2720    if (LHSRank == RHSRank) return 0;
2721    return LHSRank > RHSRank ? 1 : -1;
2722  }
2723
2724  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
2725  if (LHSUnsigned) {
2726    // If the unsigned [LHS] type is larger, return it.
2727    if (LHSRank >= RHSRank)
2728      return 1;
2729
2730    // If the signed type can represent all values of the unsigned type, it
2731    // wins.  Because we are dealing with 2's complement and types that are
2732    // powers of two larger than each other, this is always safe.
2733    return -1;
2734  }
2735
2736  // If the unsigned [RHS] type is larger, return it.
2737  if (RHSRank >= LHSRank)
2738    return -1;
2739
2740  // If the signed type can represent all values of the unsigned type, it
2741  // wins.  Because we are dealing with 2's complement and types that are
2742  // powers of two larger than each other, this is always safe.
2743  return 1;
2744}
2745
2746static RecordDecl *
2747CreateRecordDecl(ASTContext &Ctx, RecordDecl::TagKind TK, DeclContext *DC,
2748                 SourceLocation L, IdentifierInfo *Id) {
2749  if (Ctx.getLangOptions().CPlusPlus)
2750    return CXXRecordDecl::Create(Ctx, TK, DC, L, Id);
2751  else
2752    return RecordDecl::Create(Ctx, TK, DC, L, Id);
2753}
2754
2755// getCFConstantStringType - Return the type used for constant CFStrings.
2756QualType ASTContext::getCFConstantStringType() {
2757  if (!CFConstantStringTypeDecl) {
2758    CFConstantStringTypeDecl =
2759      CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2760                       &Idents.get("NSConstantString"));
2761
2762    QualType FieldTypes[4];
2763
2764    // const int *isa;
2765    FieldTypes[0] = getPointerType(IntTy.withConst());
2766    // int flags;
2767    FieldTypes[1] = IntTy;
2768    // const char *str;
2769    FieldTypes[2] = getPointerType(CharTy.withConst());
2770    // long length;
2771    FieldTypes[3] = LongTy;
2772
2773    // Create fields
2774    for (unsigned i = 0; i < 4; ++i) {
2775      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
2776                                           SourceLocation(), 0,
2777                                           FieldTypes[i], /*DInfo=*/0,
2778                                           /*BitWidth=*/0,
2779                                           /*Mutable=*/false);
2780      CFConstantStringTypeDecl->addDecl(Field);
2781    }
2782
2783    CFConstantStringTypeDecl->completeDefinition(*this);
2784  }
2785
2786  return getTagDeclType(CFConstantStringTypeDecl);
2787}
2788
2789void ASTContext::setCFConstantStringType(QualType T) {
2790  const RecordType *Rec = T->getAs<RecordType>();
2791  assert(Rec && "Invalid CFConstantStringType");
2792  CFConstantStringTypeDecl = Rec->getDecl();
2793}
2794
2795QualType ASTContext::getObjCFastEnumerationStateType() {
2796  if (!ObjCFastEnumerationStateTypeDecl) {
2797    ObjCFastEnumerationStateTypeDecl =
2798      CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2799                       &Idents.get("__objcFastEnumerationState"));
2800
2801    QualType FieldTypes[] = {
2802      UnsignedLongTy,
2803      getPointerType(ObjCIdTypedefType),
2804      getPointerType(UnsignedLongTy),
2805      getConstantArrayType(UnsignedLongTy,
2806                           llvm::APInt(32, 5), ArrayType::Normal, 0)
2807    };
2808
2809    for (size_t i = 0; i < 4; ++i) {
2810      FieldDecl *Field = FieldDecl::Create(*this,
2811                                           ObjCFastEnumerationStateTypeDecl,
2812                                           SourceLocation(), 0,
2813                                           FieldTypes[i], /*DInfo=*/0,
2814                                           /*BitWidth=*/0,
2815                                           /*Mutable=*/false);
2816      ObjCFastEnumerationStateTypeDecl->addDecl(Field);
2817    }
2818
2819    ObjCFastEnumerationStateTypeDecl->completeDefinition(*this);
2820  }
2821
2822  return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
2823}
2824
2825QualType ASTContext::getBlockDescriptorType() {
2826  if (BlockDescriptorType)
2827    return getTagDeclType(BlockDescriptorType);
2828
2829  RecordDecl *T;
2830  // FIXME: Needs the FlagAppleBlock bit.
2831  T = CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2832                       &Idents.get("__block_descriptor"));
2833
2834  QualType FieldTypes[] = {
2835    UnsignedLongTy,
2836    UnsignedLongTy,
2837  };
2838
2839  const char *FieldNames[] = {
2840    "reserved",
2841    "Size"
2842  };
2843
2844  for (size_t i = 0; i < 2; ++i) {
2845    FieldDecl *Field = FieldDecl::Create(*this,
2846                                         T,
2847                                         SourceLocation(),
2848                                         &Idents.get(FieldNames[i]),
2849                                         FieldTypes[i], /*DInfo=*/0,
2850                                         /*BitWidth=*/0,
2851                                         /*Mutable=*/false);
2852    T->addDecl(Field);
2853  }
2854
2855  T->completeDefinition(*this);
2856
2857  BlockDescriptorType = T;
2858
2859  return getTagDeclType(BlockDescriptorType);
2860}
2861
2862void ASTContext::setBlockDescriptorType(QualType T) {
2863  const RecordType *Rec = T->getAs<RecordType>();
2864  assert(Rec && "Invalid BlockDescriptorType");
2865  BlockDescriptorType = Rec->getDecl();
2866}
2867
2868QualType ASTContext::getBlockDescriptorExtendedType() {
2869  if (BlockDescriptorExtendedType)
2870    return getTagDeclType(BlockDescriptorExtendedType);
2871
2872  RecordDecl *T;
2873  // FIXME: Needs the FlagAppleBlock bit.
2874  T = CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2875                       &Idents.get("__block_descriptor_withcopydispose"));
2876
2877  QualType FieldTypes[] = {
2878    UnsignedLongTy,
2879    UnsignedLongTy,
2880    getPointerType(VoidPtrTy),
2881    getPointerType(VoidPtrTy)
2882  };
2883
2884  const char *FieldNames[] = {
2885    "reserved",
2886    "Size",
2887    "CopyFuncPtr",
2888    "DestroyFuncPtr"
2889  };
2890
2891  for (size_t i = 0; i < 4; ++i) {
2892    FieldDecl *Field = FieldDecl::Create(*this,
2893                                         T,
2894                                         SourceLocation(),
2895                                         &Idents.get(FieldNames[i]),
2896                                         FieldTypes[i], /*DInfo=*/0,
2897                                         /*BitWidth=*/0,
2898                                         /*Mutable=*/false);
2899    T->addDecl(Field);
2900  }
2901
2902  T->completeDefinition(*this);
2903
2904  BlockDescriptorExtendedType = T;
2905
2906  return getTagDeclType(BlockDescriptorExtendedType);
2907}
2908
2909void ASTContext::setBlockDescriptorExtendedType(QualType T) {
2910  const RecordType *Rec = T->getAs<RecordType>();
2911  assert(Rec && "Invalid BlockDescriptorType");
2912  BlockDescriptorExtendedType = Rec->getDecl();
2913}
2914
2915bool ASTContext::BlockRequiresCopying(QualType Ty) {
2916  if (Ty->isBlockPointerType())
2917    return true;
2918  if (isObjCNSObjectType(Ty))
2919    return true;
2920  if (Ty->isObjCObjectPointerType())
2921    return true;
2922  return false;
2923}
2924
2925QualType ASTContext::BuildByRefType(const char *DeclName, QualType Ty) {
2926  //  type = struct __Block_byref_1_X {
2927  //    void *__isa;
2928  //    struct __Block_byref_1_X *__forwarding;
2929  //    unsigned int __flags;
2930  //    unsigned int __size;
2931  //    void *__copy_helper;		// as needed
2932  //    void *__destroy_help		// as needed
2933  //    int X;
2934  //  } *
2935
2936  bool HasCopyAndDispose = BlockRequiresCopying(Ty);
2937
2938  // FIXME: Move up
2939  static unsigned int UniqueBlockByRefTypeID = 0;
2940  llvm::SmallString<36> Name;
2941  llvm::raw_svector_ostream(Name) << "__Block_byref_" <<
2942                                  ++UniqueBlockByRefTypeID << '_' << DeclName;
2943  RecordDecl *T;
2944  T = CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2945                       &Idents.get(Name.str()));
2946  T->startDefinition();
2947  QualType Int32Ty = IntTy;
2948  assert(getIntWidth(IntTy) == 32 && "non-32bit int not supported");
2949  QualType FieldTypes[] = {
2950    getPointerType(VoidPtrTy),
2951    getPointerType(getTagDeclType(T)),
2952    Int32Ty,
2953    Int32Ty,
2954    getPointerType(VoidPtrTy),
2955    getPointerType(VoidPtrTy),
2956    Ty
2957  };
2958
2959  const char *FieldNames[] = {
2960    "__isa",
2961    "__forwarding",
2962    "__flags",
2963    "__size",
2964    "__copy_helper",
2965    "__destroy_helper",
2966    DeclName,
2967  };
2968
2969  for (size_t i = 0; i < 7; ++i) {
2970    if (!HasCopyAndDispose && i >=4 && i <= 5)
2971      continue;
2972    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
2973                                         &Idents.get(FieldNames[i]),
2974                                         FieldTypes[i], /*DInfo=*/0,
2975                                         /*BitWidth=*/0, /*Mutable=*/false);
2976    T->addDecl(Field);
2977  }
2978
2979  T->completeDefinition(*this);
2980
2981  return getPointerType(getTagDeclType(T));
2982}
2983
2984
2985QualType ASTContext::getBlockParmType(
2986  bool BlockHasCopyDispose,
2987  llvm::SmallVector<const Expr *, 8> &BlockDeclRefDecls) {
2988  // FIXME: Move up
2989  static unsigned int UniqueBlockParmTypeID = 0;
2990  llvm::SmallString<36> Name;
2991  llvm::raw_svector_ostream(Name) << "__block_literal_"
2992                                  << ++UniqueBlockParmTypeID;
2993  RecordDecl *T;
2994  T = CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2995                       &Idents.get(Name.str()));
2996  QualType FieldTypes[] = {
2997    getPointerType(VoidPtrTy),
2998    IntTy,
2999    IntTy,
3000    getPointerType(VoidPtrTy),
3001    (BlockHasCopyDispose ?
3002     getPointerType(getBlockDescriptorExtendedType()) :
3003     getPointerType(getBlockDescriptorType()))
3004  };
3005
3006  const char *FieldNames[] = {
3007    "__isa",
3008    "__flags",
3009    "__reserved",
3010    "__FuncPtr",
3011    "__descriptor"
3012  };
3013
3014  for (size_t i = 0; i < 5; ++i) {
3015    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3016                                         &Idents.get(FieldNames[i]),
3017                                         FieldTypes[i], /*DInfo=*/0,
3018                                         /*BitWidth=*/0, /*Mutable=*/false);
3019    T->addDecl(Field);
3020  }
3021
3022  for (size_t i = 0; i < BlockDeclRefDecls.size(); ++i) {
3023    const Expr *E = BlockDeclRefDecls[i];
3024    const BlockDeclRefExpr *BDRE = dyn_cast<BlockDeclRefExpr>(E);
3025    clang::IdentifierInfo *Name = 0;
3026    if (BDRE) {
3027      const ValueDecl *D = BDRE->getDecl();
3028      Name = &Idents.get(D->getName());
3029    }
3030    QualType FieldType = E->getType();
3031
3032    if (BDRE && BDRE->isByRef())
3033      FieldType = BuildByRefType(BDRE->getDecl()->getNameAsCString(),
3034                                 FieldType);
3035
3036    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3037                                         Name, FieldType, /*DInfo=*/0,
3038                                         /*BitWidth=*/0, /*Mutable=*/false);
3039    T->addDecl(Field);
3040  }
3041
3042  T->completeDefinition(*this);
3043
3044  return getPointerType(getTagDeclType(T));
3045}
3046
3047void ASTContext::setObjCFastEnumerationStateType(QualType T) {
3048  const RecordType *Rec = T->getAs<RecordType>();
3049  assert(Rec && "Invalid ObjCFAstEnumerationStateType");
3050  ObjCFastEnumerationStateTypeDecl = Rec->getDecl();
3051}
3052
3053// This returns true if a type has been typedefed to BOOL:
3054// typedef <type> BOOL;
3055static bool isTypeTypedefedAsBOOL(QualType T) {
3056  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
3057    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
3058      return II->isStr("BOOL");
3059
3060  return false;
3061}
3062
3063/// getObjCEncodingTypeSize returns size of type for objective-c encoding
3064/// purpose.
3065int ASTContext::getObjCEncodingTypeSize(QualType type) {
3066  uint64_t sz = getTypeSize(type);
3067
3068  // Make all integer and enum types at least as large as an int
3069  if (sz > 0 && type->isIntegralType())
3070    sz = std::max(sz, getTypeSize(IntTy));
3071  // Treat arrays as pointers, since that's how they're passed in.
3072  else if (type->isArrayType())
3073    sz = getTypeSize(VoidPtrTy);
3074  return sz / getTypeSize(CharTy);
3075}
3076
3077/// getObjCEncodingForBlockDecl - Return the encoded type for this method
3078/// declaration.
3079void ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr,
3080                                             std::string& S) {
3081  const BlockDecl *Decl = Expr->getBlockDecl();
3082  QualType BlockTy =
3083      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
3084  // Encode result type.
3085  getObjCEncodingForType(cast<FunctionType>(BlockTy)->getResultType(), S);
3086  // Compute size of all parameters.
3087  // Start with computing size of a pointer in number of bytes.
3088  // FIXME: There might(should) be a better way of doing this computation!
3089  SourceLocation Loc;
3090  int PtrSize = getTypeSize(VoidPtrTy) / getTypeSize(CharTy);
3091  int ParmOffset = PtrSize;
3092  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3093       E = Decl->param_end(); PI != E; ++PI) {
3094    QualType PType = (*PI)->getType();
3095    int sz = getObjCEncodingTypeSize(PType);
3096    assert (sz > 0 && "BlockExpr - Incomplete param type");
3097    ParmOffset += sz;
3098  }
3099  // Size of the argument frame
3100  S += llvm::utostr(ParmOffset);
3101  // Block pointer and offset.
3102  S += "@?0";
3103  ParmOffset = PtrSize;
3104
3105  // Argument types.
3106  ParmOffset = PtrSize;
3107  for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
3108       Decl->param_end(); PI != E; ++PI) {
3109    ParmVarDecl *PVDecl = *PI;
3110    QualType PType = PVDecl->getOriginalType();
3111    if (const ArrayType *AT =
3112          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3113      // Use array's original type only if it has known number of
3114      // elements.
3115      if (!isa<ConstantArrayType>(AT))
3116        PType = PVDecl->getType();
3117    } else if (PType->isFunctionType())
3118      PType = PVDecl->getType();
3119    getObjCEncodingForType(PType, S);
3120    S += llvm::utostr(ParmOffset);
3121    ParmOffset += getObjCEncodingTypeSize(PType);
3122  }
3123}
3124
3125/// getObjCEncodingForMethodDecl - Return the encoded type for this method
3126/// declaration.
3127void ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
3128                                              std::string& S) {
3129  // FIXME: This is not very efficient.
3130  // Encode type qualifer, 'in', 'inout', etc. for the return type.
3131  getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
3132  // Encode result type.
3133  getObjCEncodingForType(Decl->getResultType(), S);
3134  // Compute size of all parameters.
3135  // Start with computing size of a pointer in number of bytes.
3136  // FIXME: There might(should) be a better way of doing this computation!
3137  SourceLocation Loc;
3138  int PtrSize = getTypeSize(VoidPtrTy) / getTypeSize(CharTy);
3139  // The first two arguments (self and _cmd) are pointers; account for
3140  // their size.
3141  int ParmOffset = 2 * PtrSize;
3142  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3143       E = Decl->param_end(); PI != E; ++PI) {
3144    QualType PType = (*PI)->getType();
3145    int sz = getObjCEncodingTypeSize(PType);
3146    assert (sz > 0 && "getObjCEncodingForMethodDecl - Incomplete param type");
3147    ParmOffset += sz;
3148  }
3149  S += llvm::utostr(ParmOffset);
3150  S += "@0:";
3151  S += llvm::utostr(PtrSize);
3152
3153  // Argument types.
3154  ParmOffset = 2 * PtrSize;
3155  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3156       E = Decl->param_end(); PI != E; ++PI) {
3157    ParmVarDecl *PVDecl = *PI;
3158    QualType PType = PVDecl->getOriginalType();
3159    if (const ArrayType *AT =
3160          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3161      // Use array's original type only if it has known number of
3162      // elements.
3163      if (!isa<ConstantArrayType>(AT))
3164        PType = PVDecl->getType();
3165    } else if (PType->isFunctionType())
3166      PType = PVDecl->getType();
3167    // Process argument qualifiers for user supplied arguments; such as,
3168    // 'in', 'inout', etc.
3169    getObjCEncodingForTypeQualifier(PVDecl->getObjCDeclQualifier(), S);
3170    getObjCEncodingForType(PType, S);
3171    S += llvm::utostr(ParmOffset);
3172    ParmOffset += getObjCEncodingTypeSize(PType);
3173  }
3174}
3175
3176/// getObjCEncodingForPropertyDecl - Return the encoded type for this
3177/// property declaration. If non-NULL, Container must be either an
3178/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
3179/// NULL when getting encodings for protocol properties.
3180/// Property attributes are stored as a comma-delimited C string. The simple
3181/// attributes readonly and bycopy are encoded as single characters. The
3182/// parametrized attributes, getter=name, setter=name, and ivar=name, are
3183/// encoded as single characters, followed by an identifier. Property types
3184/// are also encoded as a parametrized attribute. The characters used to encode
3185/// these attributes are defined by the following enumeration:
3186/// @code
3187/// enum PropertyAttributes {
3188/// kPropertyReadOnly = 'R',   // property is read-only.
3189/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
3190/// kPropertyByref = '&',  // property is a reference to the value last assigned
3191/// kPropertyDynamic = 'D',    // property is dynamic
3192/// kPropertyGetter = 'G',     // followed by getter selector name
3193/// kPropertySetter = 'S',     // followed by setter selector name
3194/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
3195/// kPropertyType = 't'              // followed by old-style type encoding.
3196/// kPropertyWeak = 'W'              // 'weak' property
3197/// kPropertyStrong = 'P'            // property GC'able
3198/// kPropertyNonAtomic = 'N'         // property non-atomic
3199/// };
3200/// @endcode
3201void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
3202                                                const Decl *Container,
3203                                                std::string& S) {
3204  // Collect information from the property implementation decl(s).
3205  bool Dynamic = false;
3206  ObjCPropertyImplDecl *SynthesizePID = 0;
3207
3208  // FIXME: Duplicated code due to poor abstraction.
3209  if (Container) {
3210    if (const ObjCCategoryImplDecl *CID =
3211        dyn_cast<ObjCCategoryImplDecl>(Container)) {
3212      for (ObjCCategoryImplDecl::propimpl_iterator
3213             i = CID->propimpl_begin(), e = CID->propimpl_end();
3214           i != e; ++i) {
3215        ObjCPropertyImplDecl *PID = *i;
3216        if (PID->getPropertyDecl() == PD) {
3217          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
3218            Dynamic = true;
3219          } else {
3220            SynthesizePID = PID;
3221          }
3222        }
3223      }
3224    } else {
3225      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
3226      for (ObjCCategoryImplDecl::propimpl_iterator
3227             i = OID->propimpl_begin(), e = OID->propimpl_end();
3228           i != e; ++i) {
3229        ObjCPropertyImplDecl *PID = *i;
3230        if (PID->getPropertyDecl() == PD) {
3231          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
3232            Dynamic = true;
3233          } else {
3234            SynthesizePID = PID;
3235          }
3236        }
3237      }
3238    }
3239  }
3240
3241  // FIXME: This is not very efficient.
3242  S = "T";
3243
3244  // Encode result type.
3245  // GCC has some special rules regarding encoding of properties which
3246  // closely resembles encoding of ivars.
3247  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
3248                             true /* outermost type */,
3249                             true /* encoding for property */);
3250
3251  if (PD->isReadOnly()) {
3252    S += ",R";
3253  } else {
3254    switch (PD->getSetterKind()) {
3255    case ObjCPropertyDecl::Assign: break;
3256    case ObjCPropertyDecl::Copy:   S += ",C"; break;
3257    case ObjCPropertyDecl::Retain: S += ",&"; break;
3258    }
3259  }
3260
3261  // It really isn't clear at all what this means, since properties
3262  // are "dynamic by default".
3263  if (Dynamic)
3264    S += ",D";
3265
3266  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
3267    S += ",N";
3268
3269  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
3270    S += ",G";
3271    S += PD->getGetterName().getAsString();
3272  }
3273
3274  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
3275    S += ",S";
3276    S += PD->getSetterName().getAsString();
3277  }
3278
3279  if (SynthesizePID) {
3280    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
3281    S += ",V";
3282    S += OID->getNameAsString();
3283  }
3284
3285  // FIXME: OBJCGC: weak & strong
3286}
3287
3288/// getLegacyIntegralTypeEncoding -
3289/// Another legacy compatibility encoding: 32-bit longs are encoded as
3290/// 'l' or 'L' , but not always.  For typedefs, we need to use
3291/// 'i' or 'I' instead if encoding a struct field, or a pointer!
3292///
3293void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
3294  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
3295    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
3296      if (BT->getKind() == BuiltinType::ULong &&
3297          ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
3298        PointeeTy = UnsignedIntTy;
3299      else
3300        if (BT->getKind() == BuiltinType::Long &&
3301            ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
3302          PointeeTy = IntTy;
3303    }
3304  }
3305}
3306
3307void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
3308                                        const FieldDecl *Field) {
3309  // We follow the behavior of gcc, expanding structures which are
3310  // directly pointed to, and expanding embedded structures. Note that
3311  // these rules are sufficient to prevent recursive encoding of the
3312  // same type.
3313  getObjCEncodingForTypeImpl(T, S, true, true, Field,
3314                             true /* outermost type */);
3315}
3316
3317static void EncodeBitField(const ASTContext *Context, std::string& S,
3318                           const FieldDecl *FD) {
3319  const Expr *E = FD->getBitWidth();
3320  assert(E && "bitfield width not there - getObjCEncodingForTypeImpl");
3321  ASTContext *Ctx = const_cast<ASTContext*>(Context);
3322  unsigned N = E->EvaluateAsInt(*Ctx).getZExtValue();
3323  S += 'b';
3324  S += llvm::utostr(N);
3325}
3326
3327// FIXME: Use SmallString for accumulating string.
3328void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
3329                                            bool ExpandPointedToStructures,
3330                                            bool ExpandStructures,
3331                                            const FieldDecl *FD,
3332                                            bool OutermostType,
3333                                            bool EncodingProperty) {
3334  if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
3335    if (FD && FD->isBitField())
3336      return EncodeBitField(this, S, FD);
3337    char encoding;
3338    switch (BT->getKind()) {
3339    default: assert(0 && "Unhandled builtin type kind");
3340    case BuiltinType::Void:       encoding = 'v'; break;
3341    case BuiltinType::Bool:       encoding = 'B'; break;
3342    case BuiltinType::Char_U:
3343    case BuiltinType::UChar:      encoding = 'C'; break;
3344    case BuiltinType::UShort:     encoding = 'S'; break;
3345    case BuiltinType::UInt:       encoding = 'I'; break;
3346    case BuiltinType::ULong:
3347        encoding =
3348          (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'L' : 'Q';
3349        break;
3350    case BuiltinType::UInt128:    encoding = 'T'; break;
3351    case BuiltinType::ULongLong:  encoding = 'Q'; break;
3352    case BuiltinType::Char_S:
3353    case BuiltinType::SChar:      encoding = 'c'; break;
3354    case BuiltinType::Short:      encoding = 's'; break;
3355    case BuiltinType::Int:        encoding = 'i'; break;
3356    case BuiltinType::Long:
3357      encoding =
3358        (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'l' : 'q';
3359      break;
3360    case BuiltinType::LongLong:   encoding = 'q'; break;
3361    case BuiltinType::Int128:     encoding = 't'; break;
3362    case BuiltinType::Float:      encoding = 'f'; break;
3363    case BuiltinType::Double:     encoding = 'd'; break;
3364    case BuiltinType::LongDouble: encoding = 'd'; break;
3365    }
3366
3367    S += encoding;
3368    return;
3369  }
3370
3371  if (const ComplexType *CT = T->getAs<ComplexType>()) {
3372    S += 'j';
3373    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
3374                               false);
3375    return;
3376  }
3377
3378  if (const PointerType *PT = T->getAs<PointerType>()) {
3379    QualType PointeeTy = PT->getPointeeType();
3380    bool isReadOnly = false;
3381    // For historical/compatibility reasons, the read-only qualifier of the
3382    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
3383    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
3384    // Also, do not emit the 'r' for anything but the outermost type!
3385    if (isa<TypedefType>(T.getTypePtr())) {
3386      if (OutermostType && T.isConstQualified()) {
3387        isReadOnly = true;
3388        S += 'r';
3389      }
3390    } else if (OutermostType) {
3391      QualType P = PointeeTy;
3392      while (P->getAs<PointerType>())
3393        P = P->getAs<PointerType>()->getPointeeType();
3394      if (P.isConstQualified()) {
3395        isReadOnly = true;
3396        S += 'r';
3397      }
3398    }
3399    if (isReadOnly) {
3400      // Another legacy compatibility encoding. Some ObjC qualifier and type
3401      // combinations need to be rearranged.
3402      // Rewrite "in const" from "nr" to "rn"
3403      const char * s = S.c_str();
3404      int len = S.length();
3405      if (len >= 2 && s[len-2] == 'n' && s[len-1] == 'r') {
3406        std::string replace = "rn";
3407        S.replace(S.end()-2, S.end(), replace);
3408      }
3409    }
3410    if (isObjCSelType(PointeeTy)) {
3411      S += ':';
3412      return;
3413    }
3414
3415    if (PointeeTy->isCharType()) {
3416      // char pointer types should be encoded as '*' unless it is a
3417      // type that has been typedef'd to 'BOOL'.
3418      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
3419        S += '*';
3420        return;
3421      }
3422    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
3423      // GCC binary compat: Need to convert "struct objc_class *" to "#".
3424      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
3425        S += '#';
3426        return;
3427      }
3428      // GCC binary compat: Need to convert "struct objc_object *" to "@".
3429      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
3430        S += '@';
3431        return;
3432      }
3433      // fall through...
3434    }
3435    S += '^';
3436    getLegacyIntegralTypeEncoding(PointeeTy);
3437
3438    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
3439                               NULL);
3440    return;
3441  }
3442
3443  if (const ArrayType *AT =
3444      // Ignore type qualifiers etc.
3445        dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
3446    if (isa<IncompleteArrayType>(AT)) {
3447      // Incomplete arrays are encoded as a pointer to the array element.
3448      S += '^';
3449
3450      getObjCEncodingForTypeImpl(AT->getElementType(), S,
3451                                 false, ExpandStructures, FD);
3452    } else {
3453      S += '[';
3454
3455      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
3456        S += llvm::utostr(CAT->getSize().getZExtValue());
3457      else {
3458        //Variable length arrays are encoded as a regular array with 0 elements.
3459        assert(isa<VariableArrayType>(AT) && "Unknown array type!");
3460        S += '0';
3461      }
3462
3463      getObjCEncodingForTypeImpl(AT->getElementType(), S,
3464                                 false, ExpandStructures, FD);
3465      S += ']';
3466    }
3467    return;
3468  }
3469
3470  if (T->getAs<FunctionType>()) {
3471    S += '?';
3472    return;
3473  }
3474
3475  if (const RecordType *RTy = T->getAs<RecordType>()) {
3476    RecordDecl *RDecl = RTy->getDecl();
3477    S += RDecl->isUnion() ? '(' : '{';
3478    // Anonymous structures print as '?'
3479    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
3480      S += II->getName();
3481    } else {
3482      S += '?';
3483    }
3484    if (ExpandStructures) {
3485      S += '=';
3486      for (RecordDecl::field_iterator Field = RDecl->field_begin(),
3487                                   FieldEnd = RDecl->field_end();
3488           Field != FieldEnd; ++Field) {
3489        if (FD) {
3490          S += '"';
3491          S += Field->getNameAsString();
3492          S += '"';
3493        }
3494
3495        // Special case bit-fields.
3496        if (Field->isBitField()) {
3497          getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
3498                                     (*Field));
3499        } else {
3500          QualType qt = Field->getType();
3501          getLegacyIntegralTypeEncoding(qt);
3502          getObjCEncodingForTypeImpl(qt, S, false, true,
3503                                     FD);
3504        }
3505      }
3506    }
3507    S += RDecl->isUnion() ? ')' : '}';
3508    return;
3509  }
3510
3511  if (T->isEnumeralType()) {
3512    if (FD && FD->isBitField())
3513      EncodeBitField(this, S, FD);
3514    else
3515      S += 'i';
3516    return;
3517  }
3518
3519  if (T->isBlockPointerType()) {
3520    S += "@?"; // Unlike a pointer-to-function, which is "^?".
3521    return;
3522  }
3523
3524  if (const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>()) {
3525    // @encode(class_name)
3526    ObjCInterfaceDecl *OI = OIT->getDecl();
3527    S += '{';
3528    const IdentifierInfo *II = OI->getIdentifier();
3529    S += II->getName();
3530    S += '=';
3531    llvm::SmallVector<FieldDecl*, 32> RecFields;
3532    CollectObjCIvars(OI, RecFields);
3533    for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
3534      if (RecFields[i]->isBitField())
3535        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
3536                                   RecFields[i]);
3537      else
3538        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
3539                                   FD);
3540    }
3541    S += '}';
3542    return;
3543  }
3544
3545  if (const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>()) {
3546    if (OPT->isObjCIdType()) {
3547      S += '@';
3548      return;
3549    }
3550
3551    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
3552      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
3553      // Since this is a binary compatibility issue, need to consult with runtime
3554      // folks. Fortunately, this is a *very* obsure construct.
3555      S += '#';
3556      return;
3557    }
3558
3559    if (OPT->isObjCQualifiedIdType()) {
3560      getObjCEncodingForTypeImpl(getObjCIdType(), S,
3561                                 ExpandPointedToStructures,
3562                                 ExpandStructures, FD);
3563      if (FD || EncodingProperty) {
3564        // Note that we do extended encoding of protocol qualifer list
3565        // Only when doing ivar or property encoding.
3566        S += '"';
3567        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
3568             E = OPT->qual_end(); I != E; ++I) {
3569          S += '<';
3570          S += (*I)->getNameAsString();
3571          S += '>';
3572        }
3573        S += '"';
3574      }
3575      return;
3576    }
3577
3578    QualType PointeeTy = OPT->getPointeeType();
3579    if (!EncodingProperty &&
3580        isa<TypedefType>(PointeeTy.getTypePtr())) {
3581      // Another historical/compatibility reason.
3582      // We encode the underlying type which comes out as
3583      // {...};
3584      S += '^';
3585      getObjCEncodingForTypeImpl(PointeeTy, S,
3586                                 false, ExpandPointedToStructures,
3587                                 NULL);
3588      return;
3589    }
3590
3591    S += '@';
3592    if (OPT->getInterfaceDecl() && (FD || EncodingProperty)) {
3593      S += '"';
3594      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
3595      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
3596           E = OPT->qual_end(); I != E; ++I) {
3597        S += '<';
3598        S += (*I)->getNameAsString();
3599        S += '>';
3600      }
3601      S += '"';
3602    }
3603    return;
3604  }
3605
3606  assert(0 && "@encode for type not implemented!");
3607}
3608
3609void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
3610                                                 std::string& S) const {
3611  if (QT & Decl::OBJC_TQ_In)
3612    S += 'n';
3613  if (QT & Decl::OBJC_TQ_Inout)
3614    S += 'N';
3615  if (QT & Decl::OBJC_TQ_Out)
3616    S += 'o';
3617  if (QT & Decl::OBJC_TQ_Bycopy)
3618    S += 'O';
3619  if (QT & Decl::OBJC_TQ_Byref)
3620    S += 'R';
3621  if (QT & Decl::OBJC_TQ_Oneway)
3622    S += 'V';
3623}
3624
3625void ASTContext::setBuiltinVaListType(QualType T) {
3626  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
3627
3628  BuiltinVaListType = T;
3629}
3630
3631void ASTContext::setObjCIdType(QualType T) {
3632  ObjCIdTypedefType = T;
3633}
3634
3635void ASTContext::setObjCSelType(QualType T) {
3636  ObjCSelType = T;
3637
3638  const TypedefType *TT = T->getAs<TypedefType>();
3639  if (!TT)
3640    return;
3641  TypedefDecl *TD = TT->getDecl();
3642
3643  // typedef struct objc_selector *SEL;
3644  const PointerType *ptr = TD->getUnderlyingType()->getAs<PointerType>();
3645  if (!ptr)
3646    return;
3647  const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
3648  if (!rec)
3649    return;
3650  SelStructType = rec;
3651}
3652
3653void ASTContext::setObjCProtoType(QualType QT) {
3654  ObjCProtoType = QT;
3655}
3656
3657void ASTContext::setObjCClassType(QualType T) {
3658  ObjCClassTypedefType = T;
3659}
3660
3661void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
3662  assert(ObjCConstantStringType.isNull() &&
3663         "'NSConstantString' type already set!");
3664
3665  ObjCConstantStringType = getObjCInterfaceType(Decl);
3666}
3667
3668/// \brief Retrieve the template name that represents a qualified
3669/// template name such as \c std::vector.
3670TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
3671                                                  bool TemplateKeyword,
3672                                                  TemplateDecl *Template) {
3673  llvm::FoldingSetNodeID ID;
3674  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
3675
3676  void *InsertPos = 0;
3677  QualifiedTemplateName *QTN =
3678    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3679  if (!QTN) {
3680    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
3681    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
3682  }
3683
3684  return TemplateName(QTN);
3685}
3686
3687/// \brief Retrieve the template name that represents a qualified
3688/// template name such as \c std::vector.
3689TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
3690                                                  bool TemplateKeyword,
3691                                            OverloadedFunctionDecl *Template) {
3692  llvm::FoldingSetNodeID ID;
3693  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
3694
3695  void *InsertPos = 0;
3696  QualifiedTemplateName *QTN =
3697  QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3698  if (!QTN) {
3699    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
3700    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
3701  }
3702
3703  return TemplateName(QTN);
3704}
3705
3706/// \brief Retrieve the template name that represents a dependent
3707/// template name such as \c MetaFun::template apply.
3708TemplateName ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
3709                                                  const IdentifierInfo *Name) {
3710  assert((!NNS || NNS->isDependent()) &&
3711         "Nested name specifier must be dependent");
3712
3713  llvm::FoldingSetNodeID ID;
3714  DependentTemplateName::Profile(ID, NNS, Name);
3715
3716  void *InsertPos = 0;
3717  DependentTemplateName *QTN =
3718    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3719
3720  if (QTN)
3721    return TemplateName(QTN);
3722
3723  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3724  if (CanonNNS == NNS) {
3725    QTN = new (*this,4) DependentTemplateName(NNS, Name);
3726  } else {
3727    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
3728    QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
3729  }
3730
3731  DependentTemplateNames.InsertNode(QTN, InsertPos);
3732  return TemplateName(QTN);
3733}
3734
3735/// \brief Retrieve the template name that represents a dependent
3736/// template name such as \c MetaFun::template operator+.
3737TemplateName
3738ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
3739                                     OverloadedOperatorKind Operator) {
3740  assert((!NNS || NNS->isDependent()) &&
3741         "Nested name specifier must be dependent");
3742
3743  llvm::FoldingSetNodeID ID;
3744  DependentTemplateName::Profile(ID, NNS, Operator);
3745
3746  void *InsertPos = 0;
3747  DependentTemplateName *QTN =
3748  DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3749
3750  if (QTN)
3751    return TemplateName(QTN);
3752
3753  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3754  if (CanonNNS == NNS) {
3755    QTN = new (*this,4) DependentTemplateName(NNS, Operator);
3756  } else {
3757    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
3758    QTN = new (*this,4) DependentTemplateName(NNS, Operator, Canon);
3759  }
3760
3761  DependentTemplateNames.InsertNode(QTN, InsertPos);
3762  return TemplateName(QTN);
3763}
3764
3765/// getFromTargetType - Given one of the integer types provided by
3766/// TargetInfo, produce the corresponding type. The unsigned @p Type
3767/// is actually a value of type @c TargetInfo::IntType.
3768CanQualType ASTContext::getFromTargetType(unsigned Type) const {
3769  switch (Type) {
3770  case TargetInfo::NoInt: return CanQualType();
3771  case TargetInfo::SignedShort: return ShortTy;
3772  case TargetInfo::UnsignedShort: return UnsignedShortTy;
3773  case TargetInfo::SignedInt: return IntTy;
3774  case TargetInfo::UnsignedInt: return UnsignedIntTy;
3775  case TargetInfo::SignedLong: return LongTy;
3776  case TargetInfo::UnsignedLong: return UnsignedLongTy;
3777  case TargetInfo::SignedLongLong: return LongLongTy;
3778  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
3779  }
3780
3781  assert(false && "Unhandled TargetInfo::IntType value");
3782  return CanQualType();
3783}
3784
3785//===----------------------------------------------------------------------===//
3786//                        Type Predicates.
3787//===----------------------------------------------------------------------===//
3788
3789/// isObjCNSObjectType - Return true if this is an NSObject object using
3790/// NSObject attribute on a c-style pointer type.
3791/// FIXME - Make it work directly on types.
3792/// FIXME: Move to Type.
3793///
3794bool ASTContext::isObjCNSObjectType(QualType Ty) const {
3795  if (TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
3796    if (TypedefDecl *TD = TDT->getDecl())
3797      if (TD->getAttr<ObjCNSObjectAttr>())
3798        return true;
3799  }
3800  return false;
3801}
3802
3803/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
3804/// garbage collection attribute.
3805///
3806Qualifiers::GC ASTContext::getObjCGCAttrKind(const QualType &Ty) const {
3807  Qualifiers::GC GCAttrs = Qualifiers::GCNone;
3808  if (getLangOptions().ObjC1 &&
3809      getLangOptions().getGCMode() != LangOptions::NonGC) {
3810    GCAttrs = Ty.getObjCGCAttr();
3811    // Default behavious under objective-c's gc is for objective-c pointers
3812    // (or pointers to them) be treated as though they were declared
3813    // as __strong.
3814    if (GCAttrs == Qualifiers::GCNone) {
3815      if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
3816        GCAttrs = Qualifiers::Strong;
3817      else if (Ty->isPointerType())
3818        return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
3819    }
3820    // Non-pointers have none gc'able attribute regardless of the attribute
3821    // set on them.
3822    else if (!Ty->isAnyPointerType() && !Ty->isBlockPointerType())
3823      return Qualifiers::GCNone;
3824  }
3825  return GCAttrs;
3826}
3827
3828//===----------------------------------------------------------------------===//
3829//                        Type Compatibility Testing
3830//===----------------------------------------------------------------------===//
3831
3832/// areCompatVectorTypes - Return true if the two specified vector types are
3833/// compatible.
3834static bool areCompatVectorTypes(const VectorType *LHS,
3835                                 const VectorType *RHS) {
3836  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
3837  return LHS->getElementType() == RHS->getElementType() &&
3838         LHS->getNumElements() == RHS->getNumElements();
3839}
3840
3841//===----------------------------------------------------------------------===//
3842// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
3843//===----------------------------------------------------------------------===//
3844
3845/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
3846/// inheritance hierarchy of 'rProto'.
3847bool ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
3848                                                ObjCProtocolDecl *rProto) {
3849  if (lProto == rProto)
3850    return true;
3851  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
3852       E = rProto->protocol_end(); PI != E; ++PI)
3853    if (ProtocolCompatibleWithProtocol(lProto, *PI))
3854      return true;
3855  return false;
3856}
3857
3858/// QualifiedIdConformsQualifiedId - compare id<p,...> with id<p1,...>
3859/// return true if lhs's protocols conform to rhs's protocol; false
3860/// otherwise.
3861bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
3862  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
3863    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
3864  return false;
3865}
3866
3867/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
3868/// ObjCQualifiedIDType.
3869bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
3870                                                   bool compare) {
3871  // Allow id<P..> and an 'id' or void* type in all cases.
3872  if (lhs->isVoidPointerType() ||
3873      lhs->isObjCIdType() || lhs->isObjCClassType())
3874    return true;
3875  else if (rhs->isVoidPointerType() ||
3876           rhs->isObjCIdType() || rhs->isObjCClassType())
3877    return true;
3878
3879  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
3880    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
3881
3882    if (!rhsOPT) return false;
3883
3884    if (rhsOPT->qual_empty()) {
3885      // If the RHS is a unqualified interface pointer "NSString*",
3886      // make sure we check the class hierarchy.
3887      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
3888        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
3889             E = lhsQID->qual_end(); I != E; ++I) {
3890          // when comparing an id<P> on lhs with a static type on rhs,
3891          // see if static class implements all of id's protocols, directly or
3892          // through its super class and categories.
3893          if (!rhsID->ClassImplementsProtocol(*I, true))
3894            return false;
3895        }
3896      }
3897      // If there are no qualifiers and no interface, we have an 'id'.
3898      return true;
3899    }
3900    // Both the right and left sides have qualifiers.
3901    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
3902         E = lhsQID->qual_end(); I != E; ++I) {
3903      ObjCProtocolDecl *lhsProto = *I;
3904      bool match = false;
3905
3906      // when comparing an id<P> on lhs with a static type on rhs,
3907      // see if static class implements all of id's protocols, directly or
3908      // through its super class and categories.
3909      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
3910           E = rhsOPT->qual_end(); J != E; ++J) {
3911        ObjCProtocolDecl *rhsProto = *J;
3912        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
3913            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
3914          match = true;
3915          break;
3916        }
3917      }
3918      // If the RHS is a qualified interface pointer "NSString<P>*",
3919      // make sure we check the class hierarchy.
3920      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
3921        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
3922             E = lhsQID->qual_end(); I != E; ++I) {
3923          // when comparing an id<P> on lhs with a static type on rhs,
3924          // see if static class implements all of id's protocols, directly or
3925          // through its super class and categories.
3926          if (rhsID->ClassImplementsProtocol(*I, true)) {
3927            match = true;
3928            break;
3929          }
3930        }
3931      }
3932      if (!match)
3933        return false;
3934    }
3935
3936    return true;
3937  }
3938
3939  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
3940  assert(rhsQID && "One of the LHS/RHS should be id<x>");
3941
3942  if (const ObjCObjectPointerType *lhsOPT =
3943        lhs->getAsObjCInterfacePointerType()) {
3944    if (lhsOPT->qual_empty()) {
3945      bool match = false;
3946      if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
3947        for (ObjCObjectPointerType::qual_iterator I = rhsQID->qual_begin(),
3948             E = rhsQID->qual_end(); I != E; ++I) {
3949          // when comparing an id<P> on lhs with a static type on rhs,
3950          // see if static class implements all of id's protocols, directly or
3951          // through its super class and categories.
3952          if (lhsID->ClassImplementsProtocol(*I, true)) {
3953            match = true;
3954            break;
3955          }
3956        }
3957        if (!match)
3958          return false;
3959      }
3960      return true;
3961    }
3962    // Both the right and left sides have qualifiers.
3963    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
3964         E = lhsOPT->qual_end(); I != E; ++I) {
3965      ObjCProtocolDecl *lhsProto = *I;
3966      bool match = false;
3967
3968      // when comparing an id<P> on lhs with a static type on rhs,
3969      // see if static class implements all of id's protocols, directly or
3970      // through its super class and categories.
3971      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
3972           E = rhsQID->qual_end(); J != E; ++J) {
3973        ObjCProtocolDecl *rhsProto = *J;
3974        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
3975            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
3976          match = true;
3977          break;
3978        }
3979      }
3980      if (!match)
3981        return false;
3982    }
3983    return true;
3984  }
3985  return false;
3986}
3987
3988/// canAssignObjCInterfaces - Return true if the two interface types are
3989/// compatible for assignment from RHS to LHS.  This handles validation of any
3990/// protocol qualifiers on the LHS or RHS.
3991///
3992bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
3993                                         const ObjCObjectPointerType *RHSOPT) {
3994  // If either type represents the built-in 'id' or 'Class' types, return true.
3995  if (LHSOPT->isObjCBuiltinType() || RHSOPT->isObjCBuiltinType())
3996    return true;
3997
3998  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
3999    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
4000                                             QualType(RHSOPT,0),
4001                                             false);
4002
4003  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
4004  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
4005  if (LHS && RHS) // We have 2 user-defined types.
4006    return canAssignObjCInterfaces(LHS, RHS);
4007
4008  return false;
4009}
4010
4011/// getIntersectionOfProtocols - This routine finds the intersection of set
4012/// of protocols inherited from two distinct objective-c pointer objects.
4013/// It is used to build composite qualifier list of the composite type of
4014/// the conditional expression involving two objective-c pointer objects.
4015static
4016void getIntersectionOfProtocols(ASTContext &Context,
4017                                const ObjCObjectPointerType *LHSOPT,
4018                                const ObjCObjectPointerType *RHSOPT,
4019      llvm::SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
4020
4021  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
4022  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
4023
4024  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
4025  unsigned LHSNumProtocols = LHS->getNumProtocols();
4026  if (LHSNumProtocols > 0)
4027    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
4028  else {
4029    llvm::SmallVector<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
4030     Context.CollectInheritedProtocols(LHS->getDecl(), LHSInheritedProtocols);
4031    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
4032                                LHSInheritedProtocols.end());
4033  }
4034
4035  unsigned RHSNumProtocols = RHS->getNumProtocols();
4036  if (RHSNumProtocols > 0) {
4037    ObjCProtocolDecl **RHSProtocols = (ObjCProtocolDecl **)RHS->qual_begin();
4038    for (unsigned i = 0; i < RHSNumProtocols; ++i)
4039      if (InheritedProtocolSet.count(RHSProtocols[i]))
4040        IntersectionOfProtocols.push_back(RHSProtocols[i]);
4041  }
4042  else {
4043    llvm::SmallVector<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
4044    Context.CollectInheritedProtocols(RHS->getDecl(), RHSInheritedProtocols);
4045    // FIXME. This may cause duplication of protocols in the list, but should
4046    // be harmless.
4047    for (unsigned i = 0, len = RHSInheritedProtocols.size(); i < len; ++i)
4048      if (InheritedProtocolSet.count(RHSInheritedProtocols[i]))
4049        IntersectionOfProtocols.push_back(RHSInheritedProtocols[i]);
4050  }
4051}
4052
4053/// areCommonBaseCompatible - Returns common base class of the two classes if
4054/// one found. Note that this is O'2 algorithm. But it will be called as the
4055/// last type comparison in a ?-exp of ObjC pointer types before a
4056/// warning is issued. So, its invokation is extremely rare.
4057QualType ASTContext::areCommonBaseCompatible(
4058                                          const ObjCObjectPointerType *LHSOPT,
4059                                          const ObjCObjectPointerType *RHSOPT) {
4060  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
4061  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
4062  if (!LHS || !RHS)
4063    return QualType();
4064
4065  while (const ObjCInterfaceDecl *LHSIDecl = LHS->getDecl()->getSuperClass()) {
4066    QualType LHSTy = getObjCInterfaceType(LHSIDecl);
4067    LHS = LHSTy->getAs<ObjCInterfaceType>();
4068    if (canAssignObjCInterfaces(LHS, RHS)) {
4069      llvm::SmallVector<ObjCProtocolDecl *, 8> IntersectionOfProtocols;
4070      getIntersectionOfProtocols(*this,
4071                                 LHSOPT, RHSOPT, IntersectionOfProtocols);
4072      if (IntersectionOfProtocols.empty())
4073        LHSTy = getObjCObjectPointerType(LHSTy);
4074      else
4075        LHSTy = getObjCObjectPointerType(LHSTy, &IntersectionOfProtocols[0],
4076                                                IntersectionOfProtocols.size());
4077      return LHSTy;
4078    }
4079  }
4080
4081  return QualType();
4082}
4083
4084bool ASTContext::canAssignObjCInterfaces(const ObjCInterfaceType *LHS,
4085                                         const ObjCInterfaceType *RHS) {
4086  // Verify that the base decls are compatible: the RHS must be a subclass of
4087  // the LHS.
4088  if (!LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
4089    return false;
4090
4091  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
4092  // protocol qualified at all, then we are good.
4093  if (LHS->getNumProtocols() == 0)
4094    return true;
4095
4096  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't, then it
4097  // isn't a superset.
4098  if (RHS->getNumProtocols() == 0)
4099    return true;  // FIXME: should return false!
4100
4101  for (ObjCInterfaceType::qual_iterator LHSPI = LHS->qual_begin(),
4102                                        LHSPE = LHS->qual_end();
4103       LHSPI != LHSPE; LHSPI++) {
4104    bool RHSImplementsProtocol = false;
4105
4106    // If the RHS doesn't implement the protocol on the left, the types
4107    // are incompatible.
4108    for (ObjCInterfaceType::qual_iterator RHSPI = RHS->qual_begin(),
4109                                          RHSPE = RHS->qual_end();
4110         RHSPI != RHSPE; RHSPI++) {
4111      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
4112        RHSImplementsProtocol = true;
4113        break;
4114      }
4115    }
4116    // FIXME: For better diagnostics, consider passing back the protocol name.
4117    if (!RHSImplementsProtocol)
4118      return false;
4119  }
4120  // The RHS implements all protocols listed on the LHS.
4121  return true;
4122}
4123
4124bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
4125  // get the "pointed to" types
4126  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
4127  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
4128
4129  if (!LHSOPT || !RHSOPT)
4130    return false;
4131
4132  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
4133         canAssignObjCInterfaces(RHSOPT, LHSOPT);
4134}
4135
4136/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
4137/// both shall have the identically qualified version of a compatible type.
4138/// C99 6.2.7p1: Two types have compatible types if their types are the
4139/// same. See 6.7.[2,3,5] for additional rules.
4140bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS) {
4141  return !mergeTypes(LHS, RHS).isNull();
4142}
4143
4144QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs) {
4145  const FunctionType *lbase = lhs->getAs<FunctionType>();
4146  const FunctionType *rbase = rhs->getAs<FunctionType>();
4147  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
4148  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
4149  bool allLTypes = true;
4150  bool allRTypes = true;
4151
4152  // Check return type
4153  QualType retType = mergeTypes(lbase->getResultType(), rbase->getResultType());
4154  if (retType.isNull()) return QualType();
4155  if (getCanonicalType(retType) != getCanonicalType(lbase->getResultType()))
4156    allLTypes = false;
4157  if (getCanonicalType(retType) != getCanonicalType(rbase->getResultType()))
4158    allRTypes = false;
4159  // FIXME: double check this
4160  bool NoReturn = lbase->getNoReturnAttr() || rbase->getNoReturnAttr();
4161  if (NoReturn != lbase->getNoReturnAttr())
4162    allLTypes = false;
4163  if (NoReturn != rbase->getNoReturnAttr())
4164    allRTypes = false;
4165
4166  if (lproto && rproto) { // two C99 style function prototypes
4167    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
4168           "C++ shouldn't be here");
4169    unsigned lproto_nargs = lproto->getNumArgs();
4170    unsigned rproto_nargs = rproto->getNumArgs();
4171
4172    // Compatible functions must have the same number of arguments
4173    if (lproto_nargs != rproto_nargs)
4174      return QualType();
4175
4176    // Variadic and non-variadic functions aren't compatible
4177    if (lproto->isVariadic() != rproto->isVariadic())
4178      return QualType();
4179
4180    if (lproto->getTypeQuals() != rproto->getTypeQuals())
4181      return QualType();
4182
4183    // Check argument compatibility
4184    llvm::SmallVector<QualType, 10> types;
4185    for (unsigned i = 0; i < lproto_nargs; i++) {
4186      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
4187      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
4188      QualType argtype = mergeTypes(largtype, rargtype);
4189      if (argtype.isNull()) return QualType();
4190      types.push_back(argtype);
4191      if (getCanonicalType(argtype) != getCanonicalType(largtype))
4192        allLTypes = false;
4193      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
4194        allRTypes = false;
4195    }
4196    if (allLTypes) return lhs;
4197    if (allRTypes) return rhs;
4198    return getFunctionType(retType, types.begin(), types.size(),
4199                           lproto->isVariadic(), lproto->getTypeQuals(),
4200                           NoReturn);
4201  }
4202
4203  if (lproto) allRTypes = false;
4204  if (rproto) allLTypes = false;
4205
4206  const FunctionProtoType *proto = lproto ? lproto : rproto;
4207  if (proto) {
4208    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
4209    if (proto->isVariadic()) return QualType();
4210    // Check that the types are compatible with the types that
4211    // would result from default argument promotions (C99 6.7.5.3p15).
4212    // The only types actually affected are promotable integer
4213    // types and floats, which would be passed as a different
4214    // type depending on whether the prototype is visible.
4215    unsigned proto_nargs = proto->getNumArgs();
4216    for (unsigned i = 0; i < proto_nargs; ++i) {
4217      QualType argTy = proto->getArgType(i);
4218      if (argTy->isPromotableIntegerType() ||
4219          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
4220        return QualType();
4221    }
4222
4223    if (allLTypes) return lhs;
4224    if (allRTypes) return rhs;
4225    return getFunctionType(retType, proto->arg_type_begin(),
4226                           proto->getNumArgs(), proto->isVariadic(),
4227                           proto->getTypeQuals(), NoReturn);
4228  }
4229
4230  if (allLTypes) return lhs;
4231  if (allRTypes) return rhs;
4232  return getFunctionNoProtoType(retType, NoReturn);
4233}
4234
4235QualType ASTContext::mergeTypes(QualType LHS, QualType RHS) {
4236  // C++ [expr]: If an expression initially has the type "reference to T", the
4237  // type is adjusted to "T" prior to any further analysis, the expression
4238  // designates the object or function denoted by the reference, and the
4239  // expression is an lvalue unless the reference is an rvalue reference and
4240  // the expression is a function call (possibly inside parentheses).
4241  // FIXME: C++ shouldn't be going through here!  The rules are different
4242  // enough that they should be handled separately.
4243  // FIXME: Merging of lvalue and rvalue references is incorrect. C++ *really*
4244  // shouldn't be going through here!
4245  if (const ReferenceType *RT = LHS->getAs<ReferenceType>())
4246    LHS = RT->getPointeeType();
4247  if (const ReferenceType *RT = RHS->getAs<ReferenceType>())
4248    RHS = RT->getPointeeType();
4249
4250  QualType LHSCan = getCanonicalType(LHS),
4251           RHSCan = getCanonicalType(RHS);
4252
4253  // If two types are identical, they are compatible.
4254  if (LHSCan == RHSCan)
4255    return LHS;
4256
4257  // If the qualifiers are different, the types aren't compatible... mostly.
4258  Qualifiers LQuals = LHSCan.getLocalQualifiers();
4259  Qualifiers RQuals = RHSCan.getLocalQualifiers();
4260  if (LQuals != RQuals) {
4261    // If any of these qualifiers are different, we have a type
4262    // mismatch.
4263    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
4264        LQuals.getAddressSpace() != RQuals.getAddressSpace())
4265      return QualType();
4266
4267    // Exactly one GC qualifier difference is allowed: __strong is
4268    // okay if the other type has no GC qualifier but is an Objective
4269    // C object pointer (i.e. implicitly strong by default).  We fix
4270    // this by pretending that the unqualified type was actually
4271    // qualified __strong.
4272    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
4273    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
4274    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
4275
4276    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
4277      return QualType();
4278
4279    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
4280      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
4281    }
4282    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
4283      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
4284    }
4285    return QualType();
4286  }
4287
4288  // Okay, qualifiers are equal.
4289
4290  Type::TypeClass LHSClass = LHSCan->getTypeClass();
4291  Type::TypeClass RHSClass = RHSCan->getTypeClass();
4292
4293  // We want to consider the two function types to be the same for these
4294  // comparisons, just force one to the other.
4295  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
4296  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
4297
4298  // Same as above for arrays
4299  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
4300    LHSClass = Type::ConstantArray;
4301  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
4302    RHSClass = Type::ConstantArray;
4303
4304  // Canonicalize ExtVector -> Vector.
4305  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
4306  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
4307
4308  // If the canonical type classes don't match.
4309  if (LHSClass != RHSClass) {
4310    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
4311    // a signed integer type, or an unsigned integer type.
4312    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
4313      if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
4314        return RHS;
4315    }
4316    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
4317      if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
4318        return LHS;
4319    }
4320
4321    return QualType();
4322  }
4323
4324  // The canonical type classes match.
4325  switch (LHSClass) {
4326#define TYPE(Class, Base)
4327#define ABSTRACT_TYPE(Class, Base)
4328#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
4329#define DEPENDENT_TYPE(Class, Base) case Type::Class:
4330#include "clang/AST/TypeNodes.def"
4331    assert(false && "Non-canonical and dependent types shouldn't get here");
4332    return QualType();
4333
4334  case Type::LValueReference:
4335  case Type::RValueReference:
4336  case Type::MemberPointer:
4337    assert(false && "C++ should never be in mergeTypes");
4338    return QualType();
4339
4340  case Type::IncompleteArray:
4341  case Type::VariableArray:
4342  case Type::FunctionProto:
4343  case Type::ExtVector:
4344    assert(false && "Types are eliminated above");
4345    return QualType();
4346
4347  case Type::Pointer:
4348  {
4349    // Merge two pointer types, while trying to preserve typedef info
4350    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
4351    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
4352    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
4353    if (ResultType.isNull()) return QualType();
4354    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
4355      return LHS;
4356    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
4357      return RHS;
4358    return getPointerType(ResultType);
4359  }
4360  case Type::BlockPointer:
4361  {
4362    // Merge two block pointer types, while trying to preserve typedef info
4363    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
4364    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
4365    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
4366    if (ResultType.isNull()) return QualType();
4367    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
4368      return LHS;
4369    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
4370      return RHS;
4371    return getBlockPointerType(ResultType);
4372  }
4373  case Type::ConstantArray:
4374  {
4375    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
4376    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
4377    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
4378      return QualType();
4379
4380    QualType LHSElem = getAsArrayType(LHS)->getElementType();
4381    QualType RHSElem = getAsArrayType(RHS)->getElementType();
4382    QualType ResultType = mergeTypes(LHSElem, RHSElem);
4383    if (ResultType.isNull()) return QualType();
4384    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
4385      return LHS;
4386    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
4387      return RHS;
4388    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
4389                                          ArrayType::ArraySizeModifier(), 0);
4390    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
4391                                          ArrayType::ArraySizeModifier(), 0);
4392    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
4393    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
4394    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
4395      return LHS;
4396    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
4397      return RHS;
4398    if (LVAT) {
4399      // FIXME: This isn't correct! But tricky to implement because
4400      // the array's size has to be the size of LHS, but the type
4401      // has to be different.
4402      return LHS;
4403    }
4404    if (RVAT) {
4405      // FIXME: This isn't correct! But tricky to implement because
4406      // the array's size has to be the size of RHS, but the type
4407      // has to be different.
4408      return RHS;
4409    }
4410    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
4411    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
4412    return getIncompleteArrayType(ResultType,
4413                                  ArrayType::ArraySizeModifier(), 0);
4414  }
4415  case Type::FunctionNoProto:
4416    return mergeFunctionTypes(LHS, RHS);
4417  case Type::Record:
4418  case Type::Enum:
4419    return QualType();
4420  case Type::Builtin:
4421    // Only exactly equal builtin types are compatible, which is tested above.
4422    return QualType();
4423  case Type::Complex:
4424    // Distinct complex types are incompatible.
4425    return QualType();
4426  case Type::Vector:
4427    // FIXME: The merged type should be an ExtVector!
4428    if (areCompatVectorTypes(LHS->getAs<VectorType>(), RHS->getAs<VectorType>()))
4429      return LHS;
4430    return QualType();
4431  case Type::ObjCInterface: {
4432    // Check if the interfaces are assignment compatible.
4433    // FIXME: This should be type compatibility, e.g. whether
4434    // "LHS x; RHS x;" at global scope is legal.
4435    const ObjCInterfaceType* LHSIface = LHS->getAs<ObjCInterfaceType>();
4436    const ObjCInterfaceType* RHSIface = RHS->getAs<ObjCInterfaceType>();
4437    if (LHSIface && RHSIface &&
4438        canAssignObjCInterfaces(LHSIface, RHSIface))
4439      return LHS;
4440
4441    return QualType();
4442  }
4443  case Type::ObjCObjectPointer: {
4444    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
4445                                RHS->getAs<ObjCObjectPointerType>()))
4446      return LHS;
4447
4448    return QualType();
4449  }
4450  case Type::FixedWidthInt:
4451    // Distinct fixed-width integers are not compatible.
4452    return QualType();
4453  case Type::TemplateSpecialization:
4454    assert(false && "Dependent types have no size");
4455    break;
4456  }
4457
4458  return QualType();
4459}
4460
4461//===----------------------------------------------------------------------===//
4462//                         Integer Predicates
4463//===----------------------------------------------------------------------===//
4464
4465unsigned ASTContext::getIntWidth(QualType T) {
4466  if (T->isBooleanType())
4467    return 1;
4468  if (FixedWidthIntType *FWIT = dyn_cast<FixedWidthIntType>(T)) {
4469    return FWIT->getWidth();
4470  }
4471  // For builtin types, just use the standard type sizing method
4472  return (unsigned)getTypeSize(T);
4473}
4474
4475QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
4476  assert(T->isSignedIntegerType() && "Unexpected type");
4477
4478  // Turn <4 x signed int> -> <4 x unsigned int>
4479  if (const VectorType *VTy = T->getAs<VectorType>())
4480    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
4481                         VTy->getNumElements());
4482
4483  // For enums, we return the unsigned version of the base type.
4484  if (const EnumType *ETy = T->getAs<EnumType>())
4485    T = ETy->getDecl()->getIntegerType();
4486
4487  const BuiltinType *BTy = T->getAs<BuiltinType>();
4488  assert(BTy && "Unexpected signed integer type");
4489  switch (BTy->getKind()) {
4490  case BuiltinType::Char_S:
4491  case BuiltinType::SChar:
4492    return UnsignedCharTy;
4493  case BuiltinType::Short:
4494    return UnsignedShortTy;
4495  case BuiltinType::Int:
4496    return UnsignedIntTy;
4497  case BuiltinType::Long:
4498    return UnsignedLongTy;
4499  case BuiltinType::LongLong:
4500    return UnsignedLongLongTy;
4501  case BuiltinType::Int128:
4502    return UnsignedInt128Ty;
4503  default:
4504    assert(0 && "Unexpected signed integer type");
4505    return QualType();
4506  }
4507}
4508
4509ExternalASTSource::~ExternalASTSource() { }
4510
4511void ExternalASTSource::PrintStats() { }
4512
4513
4514//===----------------------------------------------------------------------===//
4515//                          Builtin Type Computation
4516//===----------------------------------------------------------------------===//
4517
4518/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
4519/// pointer over the consumed characters.  This returns the resultant type.
4520static QualType DecodeTypeFromStr(const char *&Str, ASTContext &Context,
4521                                  ASTContext::GetBuiltinTypeError &Error,
4522                                  bool AllowTypeModifiers = true) {
4523  // Modifiers.
4524  int HowLong = 0;
4525  bool Signed = false, Unsigned = false;
4526
4527  // Read the modifiers first.
4528  bool Done = false;
4529  while (!Done) {
4530    switch (*Str++) {
4531    default: Done = true; --Str; break;
4532    case 'S':
4533      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
4534      assert(!Signed && "Can't use 'S' modifier multiple times!");
4535      Signed = true;
4536      break;
4537    case 'U':
4538      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
4539      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
4540      Unsigned = true;
4541      break;
4542    case 'L':
4543      assert(HowLong <= 2 && "Can't have LLLL modifier");
4544      ++HowLong;
4545      break;
4546    }
4547  }
4548
4549  QualType Type;
4550
4551  // Read the base type.
4552  switch (*Str++) {
4553  default: assert(0 && "Unknown builtin type letter!");
4554  case 'v':
4555    assert(HowLong == 0 && !Signed && !Unsigned &&
4556           "Bad modifiers used with 'v'!");
4557    Type = Context.VoidTy;
4558    break;
4559  case 'f':
4560    assert(HowLong == 0 && !Signed && !Unsigned &&
4561           "Bad modifiers used with 'f'!");
4562    Type = Context.FloatTy;
4563    break;
4564  case 'd':
4565    assert(HowLong < 2 && !Signed && !Unsigned &&
4566           "Bad modifiers used with 'd'!");
4567    if (HowLong)
4568      Type = Context.LongDoubleTy;
4569    else
4570      Type = Context.DoubleTy;
4571    break;
4572  case 's':
4573    assert(HowLong == 0 && "Bad modifiers used with 's'!");
4574    if (Unsigned)
4575      Type = Context.UnsignedShortTy;
4576    else
4577      Type = Context.ShortTy;
4578    break;
4579  case 'i':
4580    if (HowLong == 3)
4581      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
4582    else if (HowLong == 2)
4583      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
4584    else if (HowLong == 1)
4585      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
4586    else
4587      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
4588    break;
4589  case 'c':
4590    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
4591    if (Signed)
4592      Type = Context.SignedCharTy;
4593    else if (Unsigned)
4594      Type = Context.UnsignedCharTy;
4595    else
4596      Type = Context.CharTy;
4597    break;
4598  case 'b': // boolean
4599    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
4600    Type = Context.BoolTy;
4601    break;
4602  case 'z':  // size_t.
4603    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
4604    Type = Context.getSizeType();
4605    break;
4606  case 'F':
4607    Type = Context.getCFConstantStringType();
4608    break;
4609  case 'a':
4610    Type = Context.getBuiltinVaListType();
4611    assert(!Type.isNull() && "builtin va list type not initialized!");
4612    break;
4613  case 'A':
4614    // This is a "reference" to a va_list; however, what exactly
4615    // this means depends on how va_list is defined. There are two
4616    // different kinds of va_list: ones passed by value, and ones
4617    // passed by reference.  An example of a by-value va_list is
4618    // x86, where va_list is a char*. An example of by-ref va_list
4619    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
4620    // we want this argument to be a char*&; for x86-64, we want
4621    // it to be a __va_list_tag*.
4622    Type = Context.getBuiltinVaListType();
4623    assert(!Type.isNull() && "builtin va list type not initialized!");
4624    if (Type->isArrayType()) {
4625      Type = Context.getArrayDecayedType(Type);
4626    } else {
4627      Type = Context.getLValueReferenceType(Type);
4628    }
4629    break;
4630  case 'V': {
4631    char *End;
4632    unsigned NumElements = strtoul(Str, &End, 10);
4633    assert(End != Str && "Missing vector size");
4634
4635    Str = End;
4636
4637    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, false);
4638    Type = Context.getVectorType(ElementType, NumElements);
4639    break;
4640  }
4641  case 'X': {
4642    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, false);
4643    Type = Context.getComplexType(ElementType);
4644    break;
4645  }
4646  case 'P':
4647    Type = Context.getFILEType();
4648    if (Type.isNull()) {
4649      Error = ASTContext::GE_Missing_stdio;
4650      return QualType();
4651    }
4652    break;
4653  case 'J':
4654    if (Signed)
4655      Type = Context.getsigjmp_bufType();
4656    else
4657      Type = Context.getjmp_bufType();
4658
4659    if (Type.isNull()) {
4660      Error = ASTContext::GE_Missing_setjmp;
4661      return QualType();
4662    }
4663    break;
4664  }
4665
4666  if (!AllowTypeModifiers)
4667    return Type;
4668
4669  Done = false;
4670  while (!Done) {
4671    switch (*Str++) {
4672      default: Done = true; --Str; break;
4673      case '*':
4674        Type = Context.getPointerType(Type);
4675        break;
4676      case '&':
4677        Type = Context.getLValueReferenceType(Type);
4678        break;
4679      // FIXME: There's no way to have a built-in with an rvalue ref arg.
4680      case 'C':
4681        Type = Type.withConst();
4682        break;
4683    }
4684  }
4685
4686  return Type;
4687}
4688
4689/// GetBuiltinType - Return the type for the specified builtin.
4690QualType ASTContext::GetBuiltinType(unsigned id,
4691                                    GetBuiltinTypeError &Error) {
4692  const char *TypeStr = BuiltinInfo.GetTypeString(id);
4693
4694  llvm::SmallVector<QualType, 8> ArgTypes;
4695
4696  Error = GE_None;
4697  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error);
4698  if (Error != GE_None)
4699    return QualType();
4700  while (TypeStr[0] && TypeStr[0] != '.') {
4701    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error);
4702    if (Error != GE_None)
4703      return QualType();
4704
4705    // Do array -> pointer decay.  The builtin should use the decayed type.
4706    if (Ty->isArrayType())
4707      Ty = getArrayDecayedType(Ty);
4708
4709    ArgTypes.push_back(Ty);
4710  }
4711
4712  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
4713         "'.' should only occur at end of builtin type list!");
4714
4715  // handle untyped/variadic arguments "T c99Style();" or "T cppStyle(...);".
4716  if (ArgTypes.size() == 0 && TypeStr[0] == '.')
4717    return getFunctionNoProtoType(ResType);
4718  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(),
4719                         TypeStr[0] == '.', 0);
4720}
4721
4722QualType
4723ASTContext::UsualArithmeticConversionsType(QualType lhs, QualType rhs) {
4724  // Perform the usual unary conversions. We do this early so that
4725  // integral promotions to "int" can allow us to exit early, in the
4726  // lhs == rhs check. Also, for conversion purposes, we ignore any
4727  // qualifiers.  For example, "const float" and "float" are
4728  // equivalent.
4729  if (lhs->isPromotableIntegerType())
4730    lhs = getPromotedIntegerType(lhs);
4731  else
4732    lhs = lhs.getUnqualifiedType();
4733  if (rhs->isPromotableIntegerType())
4734    rhs = getPromotedIntegerType(rhs);
4735  else
4736    rhs = rhs.getUnqualifiedType();
4737
4738  // If both types are identical, no conversion is needed.
4739  if (lhs == rhs)
4740    return lhs;
4741
4742  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
4743  // The caller can deal with this (e.g. pointer + int).
4744  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
4745    return lhs;
4746
4747  // At this point, we have two different arithmetic types.
4748
4749  // Handle complex types first (C99 6.3.1.8p1).
4750  if (lhs->isComplexType() || rhs->isComplexType()) {
4751    // if we have an integer operand, the result is the complex type.
4752    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
4753      // convert the rhs to the lhs complex type.
4754      return lhs;
4755    }
4756    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
4757      // convert the lhs to the rhs complex type.
4758      return rhs;
4759    }
4760    // This handles complex/complex, complex/float, or float/complex.
4761    // When both operands are complex, the shorter operand is converted to the
4762    // type of the longer, and that is the type of the result. This corresponds
4763    // to what is done when combining two real floating-point operands.
4764    // The fun begins when size promotion occur across type domains.
4765    // From H&S 6.3.4: When one operand is complex and the other is a real
4766    // floating-point type, the less precise type is converted, within it's
4767    // real or complex domain, to the precision of the other type. For example,
4768    // when combining a "long double" with a "double _Complex", the
4769    // "double _Complex" is promoted to "long double _Complex".
4770    int result = getFloatingTypeOrder(lhs, rhs);
4771
4772    if (result > 0) { // The left side is bigger, convert rhs.
4773      rhs = getFloatingTypeOfSizeWithinDomain(lhs, rhs);
4774    } else if (result < 0) { // The right side is bigger, convert lhs.
4775      lhs = getFloatingTypeOfSizeWithinDomain(rhs, lhs);
4776    }
4777    // At this point, lhs and rhs have the same rank/size. Now, make sure the
4778    // domains match. This is a requirement for our implementation, C99
4779    // does not require this promotion.
4780    if (lhs != rhs) { // Domains don't match, we have complex/float mix.
4781      if (lhs->isRealFloatingType()) { // handle "double, _Complex double".
4782        return rhs;
4783      } else { // handle "_Complex double, double".
4784        return lhs;
4785      }
4786    }
4787    return lhs; // The domain/size match exactly.
4788  }
4789  // Now handle "real" floating types (i.e. float, double, long double).
4790  if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
4791    // if we have an integer operand, the result is the real floating type.
4792    if (rhs->isIntegerType()) {
4793      // convert rhs to the lhs floating point type.
4794      return lhs;
4795    }
4796    if (rhs->isComplexIntegerType()) {
4797      // convert rhs to the complex floating point type.
4798      return getComplexType(lhs);
4799    }
4800    if (lhs->isIntegerType()) {
4801      // convert lhs to the rhs floating point type.
4802      return rhs;
4803    }
4804    if (lhs->isComplexIntegerType()) {
4805      // convert lhs to the complex floating point type.
4806      return getComplexType(rhs);
4807    }
4808    // We have two real floating types, float/complex combos were handled above.
4809    // Convert the smaller operand to the bigger result.
4810    int result = getFloatingTypeOrder(lhs, rhs);
4811    if (result > 0) // convert the rhs
4812      return lhs;
4813    assert(result < 0 && "illegal float comparison");
4814    return rhs;   // convert the lhs
4815  }
4816  if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) {
4817    // Handle GCC complex int extension.
4818    const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
4819    const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
4820
4821    if (lhsComplexInt && rhsComplexInt) {
4822      if (getIntegerTypeOrder(lhsComplexInt->getElementType(),
4823                              rhsComplexInt->getElementType()) >= 0)
4824        return lhs; // convert the rhs
4825      return rhs;
4826    } else if (lhsComplexInt && rhs->isIntegerType()) {
4827      // convert the rhs to the lhs complex type.
4828      return lhs;
4829    } else if (rhsComplexInt && lhs->isIntegerType()) {
4830      // convert the lhs to the rhs complex type.
4831      return rhs;
4832    }
4833  }
4834  // Finally, we have two differing integer types.
4835  // The rules for this case are in C99 6.3.1.8
4836  int compare = getIntegerTypeOrder(lhs, rhs);
4837  bool lhsSigned = lhs->isSignedIntegerType(),
4838       rhsSigned = rhs->isSignedIntegerType();
4839  QualType destType;
4840  if (lhsSigned == rhsSigned) {
4841    // Same signedness; use the higher-ranked type
4842    destType = compare >= 0 ? lhs : rhs;
4843  } else if (compare != (lhsSigned ? 1 : -1)) {
4844    // The unsigned type has greater than or equal rank to the
4845    // signed type, so use the unsigned type
4846    destType = lhsSigned ? rhs : lhs;
4847  } else if (getIntWidth(lhs) != getIntWidth(rhs)) {
4848    // The two types are different widths; if we are here, that
4849    // means the signed type is larger than the unsigned type, so
4850    // use the signed type.
4851    destType = lhsSigned ? lhs : rhs;
4852  } else {
4853    // The signed type is higher-ranked than the unsigned type,
4854    // but isn't actually any bigger (like unsigned int and long
4855    // on most 32-bit systems).  Use the unsigned type corresponding
4856    // to the signed type.
4857    destType = getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
4858  }
4859  return destType;
4860}
4861