Reassociate.cpp revision 285830
1296417Sdim//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
2283627Sdim//
3283627Sdim//                     The LLVM Compiler Infrastructure
4283627Sdim//
5283627Sdim// This file is distributed under the University of Illinois Open Source
6283627Sdim// License. See LICENSE.TXT for details.
7283627Sdim//
8283627Sdim//===----------------------------------------------------------------------===//
9283627Sdim//
10283627Sdim// This pass reassociates commutative expressions in an order that is designed
11283627Sdim// to promote better constant propagation, GCSE, LICM, PRE, etc.
12283627Sdim//
13283627Sdim// For example: 4 + (x + 5) -> x + (4 + 5)
14283627Sdim//
15283627Sdim// In the implementation of this algorithm, constants are assigned rank = 0,
16283627Sdim// function arguments are rank = 1, and other values are assigned ranks
17283627Sdim// corresponding to the reverse post order traversal of current function
18283627Sdim// (starting at 2), which effectively gives values in deep loops higher rank
19283627Sdim// than values not in loops.
20283627Sdim//
21283627Sdim//===----------------------------------------------------------------------===//
22283627Sdim
23296417Sdim#define DEBUG_TYPE "reassociate"
24283627Sdim#include "llvm/Transforms/Scalar.h"
25283627Sdim#include "llvm/ADT/DenseMap.h"
26283627Sdim#include "llvm/ADT/PostOrderIterator.h"
27283627Sdim#include "llvm/ADT/STLExtras.h"
28283627Sdim#include "llvm/ADT/SetVector.h"
29283627Sdim#include "llvm/ADT/Statistic.h"
30283627Sdim#include "llvm/Assembly/Writer.h"
31284734Sdim#include "llvm/IR/Constants.h"
32296417Sdim#include "llvm/IR/DerivedTypes.h"
33283627Sdim#include "llvm/IR/Function.h"
34285181Sdim#include "llvm/IR/IRBuilder.h"
35283627Sdim#include "llvm/IR/Instructions.h"
36283627Sdim#include "llvm/IR/IntrinsicInst.h"
37283627Sdim#include "llvm/Pass.h"
38283627Sdim#include "llvm/Support/CFG.h"
39285181Sdim#include "llvm/Support/Debug.h"
40283627Sdim#include "llvm/Support/ValueHandle.h"
41283627Sdim#include "llvm/Support/raw_ostream.h"
42283627Sdim#include "llvm/Transforms/Utils/Local.h"
43283627Sdim#include <algorithm>
44283627Sdimusing namespace llvm;
45283627Sdim
46283627SdimSTATISTIC(NumChanged, "Number of insts reassociated");
47285181SdimSTATISTIC(NumAnnihil, "Number of expr tree annihilated");
48283627SdimSTATISTIC(NumFactor , "Number of multiplies factored");
49283627Sdim
50283627Sdimnamespace {
51283627Sdim  struct ValueEntry {
52283627Sdim    unsigned Rank;
53283627Sdim    Value *Op;
54283627Sdim    ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
55283627Sdim  };
56285181Sdim  inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
57283627Sdim    return LHS.Rank > RHS.Rank;   // Sort so that highest rank goes to start.
58283627Sdim  }
59283627Sdim}
60283627Sdim
61285181Sdim#ifndef NDEBUG
62283627Sdim/// PrintOps - Print out the expression identified in the Ops list.
63283627Sdim///
64283627Sdimstatic void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
65283627Sdim  Module *M = I->getParent()->getParent()->getParent();
66283627Sdim  dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
67283627Sdim       << *Ops[0].Op->getType() << '\t';
68283627Sdim  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
69285181Sdim    dbgs() << "[ ";
70283627Sdim    WriteAsOperand(dbgs(), Ops[i].Op, false, M);
71283627Sdim    dbgs() << ", #" << Ops[i].Rank << "] ";
72283627Sdim  }
73283627Sdim}
74283627Sdim#endif
75283627Sdim
76283627Sdimnamespace {
77283627Sdim  /// \brief Utility class representing a base and exponent pair which form one
78285181Sdim  /// factor of some product.
79283627Sdim  struct Factor {
80283627Sdim    Value *Base;
81283627Sdim    unsigned Power;
82283627Sdim
83283627Sdim    Factor(Value *Base, unsigned Power) : Base(Base), Power(Power) {}
84283627Sdim
85283627Sdim    /// \brief Sort factors by their Base.
86285181Sdim    struct BaseSorter {
87283627Sdim      bool operator()(const Factor &LHS, const Factor &RHS) {
88283627Sdim        return LHS.Base < RHS.Base;
89283627Sdim      }
90283627Sdim    };
91283627Sdim
92283627Sdim    /// \brief Compare factors for equal bases.
93283627Sdim    struct BaseEqual {
94283627Sdim      bool operator()(const Factor &LHS, const Factor &RHS) {
95285181Sdim        return LHS.Base == RHS.Base;
96283627Sdim      }
97283627Sdim    };
98283627Sdim
99283627Sdim    /// \brief Sort factors in descending order by their power.
100283627Sdim    struct PowerDescendingSorter {
101283627Sdim      bool operator()(const Factor &LHS, const Factor &RHS) {
102283627Sdim        return LHS.Power > RHS.Power;
103285181Sdim      }
104283627Sdim    };
105283627Sdim
106283627Sdim    /// \brief Compare factors for equal powers.
107283627Sdim    struct PowerEqual {
108283627Sdim      bool operator()(const Factor &LHS, const Factor &RHS) {
109283627Sdim        return LHS.Power == RHS.Power;
110283627Sdim      }
111283627Sdim    };
112285181Sdim  };
113283627Sdim
114283627Sdim  /// Utility class representing a non-constant Xor-operand. We classify
115283627Sdim  /// non-constant Xor-Operands into two categories:
116283627Sdim  ///  C1) The operand is in the form "X & C", where C is a constant and C != ~0
117283627Sdim  ///  C2)
118283627Sdim  ///    C2.1) The operand is in the form of "X | C", where C is a non-zero
119283627Sdim  ///          constant.
120285181Sdim  ///    C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this
121283627Sdim  ///          operand as "E | 0"
122283627Sdim  class XorOpnd {
123283627Sdim  public:
124283627Sdim    XorOpnd(Value *V);
125283627Sdim
126283627Sdim    bool isInvalid() const { return SymbolicPart == 0; }
127283627Sdim    bool isOrExpr() const { return isOr; }
128283627Sdim    Value *getValue() const { return OrigVal; }
129285181Sdim    Value *getSymbolicPart() const { return SymbolicPart; }
130283627Sdim    unsigned getSymbolicRank() const { return SymbolicRank; }
131283627Sdim    const APInt &getConstPart() const { return ConstPart; }
132283627Sdim
133283627Sdim    void Invalidate() { SymbolicPart = OrigVal = 0; }
134283627Sdim    void setSymbolicRank(unsigned R) { SymbolicRank = R; }
135283627Sdim
136283627Sdim    // Sort the XorOpnd-Pointer in ascending order of symbolic-value-rank.
137285181Sdim    // The purpose is twofold:
138283627Sdim    // 1) Cluster together the operands sharing the same symbolic-value.
139283627Sdim    // 2) Operand having smaller symbolic-value-rank is permuted earlier, which
140283627Sdim    //   could potentially shorten crital path, and expose more loop-invariants.
141283627Sdim    //   Note that values' rank are basically defined in RPO order (FIXME).
142283627Sdim    //   So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier
143283627Sdim    //   than Y which is defined earlier than Z. Permute "x | 1", "Y & 2",
144283627Sdim    //   "z" in the order of X-Y-Z is better than any other orders.
145283627Sdim    struct PtrSortFunctor {
146285181Sdim      bool operator()(XorOpnd * const &LHS, XorOpnd * const &RHS) {
147283627Sdim        return LHS->getSymbolicRank() < RHS->getSymbolicRank();
148283627Sdim      }
149283627Sdim    };
150283627Sdim  private:
151283627Sdim    Value *OrigVal;
152283627Sdim    Value *SymbolicPart;
153283627Sdim    APInt ConstPart;
154285181Sdim    unsigned SymbolicRank;
155283627Sdim    bool isOr;
156283627Sdim  };
157283627Sdim}
158283627Sdim
159283627Sdimnamespace {
160283627Sdim  class Reassociate : public FunctionPass {
161283627Sdim    DenseMap<BasicBlock*, unsigned> RankMap;
162283627Sdim    DenseMap<AssertingVH<Value>, unsigned> ValueRankMap;
163285181Sdim    SetVector<AssertingVH<Instruction> > RedoInsts;
164283627Sdim    bool MadeChange;
165283627Sdim  public:
166283627Sdim    static char ID; // Pass identification, replacement for typeid
167283627Sdim    Reassociate() : FunctionPass(ID) {
168283627Sdim      initializeReassociatePass(*PassRegistry::getPassRegistry());
169283627Sdim    }
170283627Sdim
171285181Sdim    bool runOnFunction(Function &F);
172283627Sdim
173283627Sdim    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
174283627Sdim      AU.setPreservesCFG();
175283627Sdim    }
176283627Sdim  private:
177283627Sdim    void BuildRankMap(Function &F);
178283627Sdim    unsigned getRank(Value *V);
179283627Sdim    void ReassociateExpression(BinaryOperator *I);
180285181Sdim    void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
181283627Sdim    Value *OptimizeExpression(BinaryOperator *I,
182283627Sdim                              SmallVectorImpl<ValueEntry> &Ops);
183283627Sdim    Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
184283627Sdim    Value *OptimizeXor(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
185283627Sdim    bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, APInt &ConstOpnd,
186283627Sdim                        Value *&Res);
187283627Sdim    bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2,
188285181Sdim                        APInt &ConstOpnd, Value *&Res);
189283627Sdim    bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
190283627Sdim                                SmallVectorImpl<Factor> &Factors);
191283627Sdim    Value *buildMinimalMultiplyDAG(IRBuilder<> &Builder,
192283627Sdim                                   SmallVectorImpl<Factor> &Factors);
193283627Sdim    Value *OptimizeMul(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
194283627Sdim    Value *RemoveFactorFromExpression(Value *V, Value *Factor);
195283627Sdim    void EraseInst(Instruction *I);
196283627Sdim    void OptimizeInst(Instruction *I);
197285181Sdim  };
198283627Sdim}
199283627Sdim
200283627SdimXorOpnd::XorOpnd(Value *V) {
201283627Sdim  assert(!isa<ConstantInt>(V) && "No ConstantInt");
202283627Sdim  OrigVal = V;
203283627Sdim  Instruction *I = dyn_cast<Instruction>(V);
204283627Sdim  SymbolicRank = 0;
205285181Sdim
206283627Sdim  if (I && (I->getOpcode() == Instruction::Or ||
207283627Sdim            I->getOpcode() == Instruction::And)) {
208283627Sdim    Value *V0 = I->getOperand(0);
209283627Sdim    Value *V1 = I->getOperand(1);
210283627Sdim    if (isa<ConstantInt>(V0))
211283627Sdim      std::swap(V0, V1);
212283627Sdim
213283627Sdim    if (ConstantInt *C = dyn_cast<ConstantInt>(V1)) {
214285181Sdim      ConstPart = C->getValue();
215283627Sdim      SymbolicPart = V0;
216283627Sdim      isOr = (I->getOpcode() == Instruction::Or);
217283627Sdim      return;
218283627Sdim    }
219283627Sdim  }
220283627Sdim
221283627Sdim  // view the operand as "V | 0"
222283627Sdim  SymbolicPart = V;
223285181Sdim  ConstPart = APInt::getNullValue(V->getType()->getIntegerBitWidth());
224283627Sdim  isOr = true;
225283627Sdim}
226283627Sdim
227283627Sdimchar Reassociate::ID = 0;
228283627SdimINITIALIZE_PASS(Reassociate, "reassociate",
229283627Sdim                "Reassociate expressions", false, false)
230283627Sdim
231283627Sdim// Public interface to the Reassociate pass
232285181SdimFunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
233283627Sdim
234283627Sdim/// isReassociableOp - Return true if V is an instruction of the specified
235283627Sdim/// opcode and if it only has one use.
236283627Sdimstatic BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
237283627Sdim  if (V->hasOneUse() && isa<Instruction>(V) &&
238283627Sdim      cast<Instruction>(V)->getOpcode() == Opcode)
239283627Sdim    return cast<BinaryOperator>(V);
240285181Sdim  return 0;
241283627Sdim}
242283627Sdim
243283627Sdimstatic bool isUnmovableInstruction(Instruction *I) {
244283627Sdim  switch (I->getOpcode()) {
245283627Sdim  case Instruction::PHI:
246283627Sdim  case Instruction::LandingPad:
247283627Sdim  case Instruction::Alloca:
248283627Sdim  case Instruction::Load:
249285181Sdim  case Instruction::Invoke:
250283627Sdim  case Instruction::UDiv:
251283627Sdim  case Instruction::SDiv:
252283627Sdim  case Instruction::FDiv:
253283627Sdim  case Instruction::URem:
254283627Sdim  case Instruction::SRem:
255283627Sdim  case Instruction::FRem:
256283627Sdim    return true;
257285181Sdim  case Instruction::Call:
258283627Sdim    return !isa<DbgInfoIntrinsic>(I);
259283627Sdim  default:
260283627Sdim    return false;
261283627Sdim  }
262283627Sdim}
263283627Sdim
264283627Sdimvoid Reassociate::BuildRankMap(Function &F) {
265283627Sdim  unsigned i = 2;
266285181Sdim
267283627Sdim  // Assign distinct ranks to function arguments
268283627Sdim  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
269283627Sdim    ValueRankMap[&*I] = ++i;
270283627Sdim
271283627Sdim  ReversePostOrderTraversal<Function*> RPOT(&F);
272283627Sdim  for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
273283627Sdim         E = RPOT.end(); I != E; ++I) {
274285181Sdim    BasicBlock *BB = *I;
275283627Sdim    unsigned BBRank = RankMap[BB] = ++i << 16;
276283627Sdim
277283627Sdim    // Walk the basic block, adding precomputed ranks for any instructions that
278283627Sdim    // we cannot move.  This ensures that the ranks for these instructions are
279283627Sdim    // all different in the block.
280283627Sdim    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
281283627Sdim      if (isUnmovableInstruction(I))
282283627Sdim        ValueRankMap[&*I] = ++BBRank;
283285181Sdim  }
284283627Sdim}
285283627Sdim
286283627Sdimunsigned Reassociate::getRank(Value *V) {
287283627Sdim  Instruction *I = dyn_cast<Instruction>(V);
288283627Sdim  if (I == 0) {
289283627Sdim    if (isa<Argument>(V)) return ValueRankMap[V];   // Function argument.
290283627Sdim    return 0;  // Otherwise it's a global or constant, rank 0.
291285181Sdim  }
292283627Sdim
293283627Sdim  if (unsigned Rank = ValueRankMap[I])
294283627Sdim    return Rank;    // Rank already known?
295283627Sdim
296283627Sdim  // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
297283627Sdim  // we can reassociate expressions for code motion!  Since we do not recurse
298283627Sdim  // for PHI nodes, we cannot have infinite recursion here, because there
299283627Sdim  // cannot be loops in the value graph that do not go through PHI nodes.
300285181Sdim  unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
301283627Sdim  for (unsigned i = 0, e = I->getNumOperands();
302283627Sdim       i != e && Rank != MaxRank; ++i)
303283627Sdim    Rank = std::max(Rank, getRank(I->getOperand(i)));
304283627Sdim
305283627Sdim  // If this is a not or neg instruction, do not count it for rank.  This
306283627Sdim  // assures us that X and ~X will have the same rank.
307283627Sdim  if (!I->getType()->isIntegerTy() ||
308285181Sdim      (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
309283627Sdim    ++Rank;
310283627Sdim
311283627Sdim  //DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = "
312283627Sdim  //     << Rank << "\n");
313283627Sdim
314283627Sdim  return ValueRankMap[I] = Rank;
315283627Sdim}
316283627Sdim
317285181Sdim/// LowerNegateToMultiply - Replace 0-X with X*-1.
318283627Sdim///
319283627Sdimstatic BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
320283627Sdim  Constant *Cst = Constant::getAllOnesValue(Neg->getType());
321283627Sdim
322283627Sdim  BinaryOperator *Res =
323283627Sdim    BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg);
324283627Sdim  Neg->setOperand(1, Constant::getNullValue(Neg->getType())); // Drop use of op.
325285181Sdim  Res->takeName(Neg);
326283627Sdim  Neg->replaceAllUsesWith(Res);
327283627Sdim  Res->setDebugLoc(Neg->getDebugLoc());
328283627Sdim  return Res;
329283627Sdim}
330283627Sdim
331283627Sdim/// CarmichaelShift - Returns k such that lambda(2^Bitwidth) = 2^k, where lambda
332283627Sdim/// is the Carmichael function. This means that x^(2^k) === 1 mod 2^Bitwidth for
333283627Sdim/// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
334285181Sdim/// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
335283627Sdim/// even x in Bitwidth-bit arithmetic.
336283627Sdimstatic unsigned CarmichaelShift(unsigned Bitwidth) {
337283627Sdim  if (Bitwidth < 3)
338283627Sdim    return Bitwidth - 1;
339283627Sdim  return Bitwidth - 2;
340283627Sdim}
341283627Sdim
342285181Sdim/// IncorporateWeight - Add the extra weight 'RHS' to the existing weight 'LHS',
343283627Sdim/// reducing the combined weight using any special properties of the operation.
344283627Sdim/// The existing weight LHS represents the computation X op X op ... op X where
345283627Sdim/// X occurs LHS times.  The combined weight represents  X op X op ... op X with
346283627Sdim/// X occurring LHS + RHS times.  If op is "Xor" for example then the combined
347283627Sdim/// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
348283627Sdim/// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
349283627Sdimstatic void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
350283627Sdim  // If we were working with infinite precision arithmetic then the combined
351296417Sdim  // weight would be LHS + RHS.  But we are using finite precision arithmetic,
352296417Sdim  // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
353296417Sdim  // for nilpotent operations and addition, but not for idempotent operations
354296417Sdim  // and multiplication), so it is important to correctly reduce the combined
355296417Sdim  // weight back into range if wrapping would be wrong.
356296417Sdim
357296417Sdim  // If RHS is zero then the weight didn't change.
358296417Sdim  if (RHS.isMinValue())
359296417Sdim    return;
360296417Sdim  // If LHS is zero then the combined weight is RHS.
361296417Sdim  if (LHS.isMinValue()) {
362296417Sdim    LHS = RHS;
363296417Sdim    return;
364296417Sdim  }
365296417Sdim  // From this point on we know that neither LHS nor RHS is zero.
366296417Sdim
367296417Sdim  if (Instruction::isIdempotent(Opcode)) {
368296417Sdim    // Idempotent means X op X === X, so any non-zero weight is equivalent to a
369296417Sdim    // weight of 1.  Keeping weights at zero or one also means that wrapping is
370296417Sdim    // not a problem.
371296417Sdim    assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
372296417Sdim    return; // Return a weight of 1.
373296417Sdim  }
374296417Sdim  if (Instruction::isNilpotent(Opcode)) {
375296417Sdim    // Nilpotent means X op X === 0, so reduce weights modulo 2.
376296417Sdim    assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
377296417Sdim    LHS = 0; // 1 + 1 === 0 modulo 2.
378296417Sdim    return;
379296417Sdim  }
380296417Sdim  if (Opcode == Instruction::Add) {
381296417Sdim    // TODO: Reduce the weight by exploiting nsw/nuw?
382296417Sdim    LHS += RHS;
383296417Sdim    return;
384296417Sdim  }
385296417Sdim
386296417Sdim  assert(Opcode == Instruction::Mul && "Unknown associative operation!");
387296417Sdim  unsigned Bitwidth = LHS.getBitWidth();
388296417Sdim  // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
389296417Sdim  // can be replaced with W-CM.  That's because x^W=x^(W-CM) for every Bitwidth
390296417Sdim  // bit number x, since either x is odd in which case x^CM = 1, or x is even in
391296417Sdim  // which case both x^W and x^(W - CM) are zero.  By subtracting off multiples
392296417Sdim  // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
393296417Sdim  // which by a happy accident means that they can always be represented using
394296417Sdim  // Bitwidth bits.
395296417Sdim  // TODO: Reduce the weight by exploiting nsw/nuw?  (Could do much better than
396296417Sdim  // the Carmichael number).
397296417Sdim  if (Bitwidth > 3) {
398296417Sdim    /// CM - The value of Carmichael's lambda function.
399296417Sdim    APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
400296417Sdim    // Any weight W >= Threshold can be replaced with W - CM.
401296417Sdim    APInt Threshold = CM + Bitwidth;
402296417Sdim    assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!");
403296417Sdim    // For Bitwidth 4 or more the following sum does not overflow.
404296417Sdim    LHS += RHS;
405296417Sdim    while (LHS.uge(Threshold))
406296417Sdim      LHS -= CM;
407296417Sdim  } else {
408296417Sdim    // To avoid problems with overflow do everything the same as above but using
409296417Sdim    // a larger type.
410296417Sdim    unsigned CM = 1U << CarmichaelShift(Bitwidth);
411296417Sdim    unsigned Threshold = CM + Bitwidth;
412296417Sdim    assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&
413296417Sdim           "Weights not reduced!");
414296417Sdim    unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
415296417Sdim    while (Total >= Threshold)
416296417Sdim      Total -= CM;
417296417Sdim    LHS = Total;
418296417Sdim  }
419296417Sdim}
420296417Sdim
421296417Sdimtypedef std::pair<Value*, APInt> RepeatedValue;
422296417Sdim
423296417Sdim/// LinearizeExprTree - Given an associative binary expression, return the leaf
424296417Sdim/// nodes in Ops along with their weights (how many times the leaf occurs).  The
425296417Sdim/// original expression is the same as
426296417Sdim///   (Ops[0].first op Ops[0].first op ... Ops[0].first)  <- Ops[0].second times
427296417Sdim/// op
428296417Sdim///   (Ops[1].first op Ops[1].first op ... Ops[1].first)  <- Ops[1].second times
429296417Sdim/// op
430296417Sdim///   ...
431296417Sdim/// op
432296417Sdim///   (Ops[N].first op Ops[N].first op ... Ops[N].first)  <- Ops[N].second times
433296417Sdim///
434296417Sdim/// Note that the values Ops[0].first, ..., Ops[N].first are all distinct.
435296417Sdim///
436296417Sdim/// This routine may modify the function, in which case it returns 'true'.  The
437296417Sdim/// changes it makes may well be destructive, changing the value computed by 'I'
438296417Sdim/// to something completely different.  Thus if the routine returns 'true' then
439296417Sdim/// you MUST either replace I with a new expression computed from the Ops array,
440296417Sdim/// or use RewriteExprTree to put the values back in.
441296417Sdim///
442296417Sdim/// A leaf node is either not a binary operation of the same kind as the root
443296417Sdim/// node 'I' (i.e. is not a binary operator at all, or is, but with a different
444296417Sdim/// opcode), or is the same kind of binary operator but has a use which either
445296417Sdim/// does not belong to the expression, or does belong to the expression but is
446296417Sdim/// a leaf node.  Every leaf node has at least one use that is a non-leaf node
447296417Sdim/// of the expression, while for non-leaf nodes (except for the root 'I') every
448296417Sdim/// use is a non-leaf node of the expression.
449296417Sdim///
450296417Sdim/// For example:
451296417Sdim///           expression graph        node names
452296417Sdim///
453296417Sdim///                     +        |        I
454296417Sdim///                    / \       |
455296417Sdim///                   +   +      |      A,  B
456296417Sdim///                  / \ / \     |
457296417Sdim///                 *   +   *    |    C,  D,  E
458296417Sdim///                / \ / \ / \   |
459296417Sdim///                   +   *      |      F,  G
460296417Sdim///
461296417Sdim/// The leaf nodes are C, E, F and G.  The Ops array will contain (maybe not in
462296417Sdim/// that order) (C, 1), (E, 1), (F, 2), (G, 2).
463296417Sdim///
464296417Sdim/// The expression is maximal: if some instruction is a binary operator of the
465296417Sdim/// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
466296417Sdim/// then the instruction also belongs to the expression, is not a leaf node of
467296417Sdim/// it, and its operands also belong to the expression (but may be leaf nodes).
468296417Sdim///
469296417Sdim/// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
470296417Sdim/// order to ensure that every non-root node in the expression has *exactly one*
471296417Sdim/// use by a non-leaf node of the expression.  This destruction means that the
472296417Sdim/// caller MUST either replace 'I' with a new expression or use something like
473296417Sdim/// RewriteExprTree to put the values back in if the routine indicates that it
474296417Sdim/// made a change by returning 'true'.
475296417Sdim///
476296417Sdim/// In the above example either the right operand of A or the left operand of B
477296417Sdim/// will be replaced by undef.  If it is B's operand then this gives:
478296417Sdim///
479296417Sdim///                     +        |        I
480296417Sdim///                    / \       |
481296417Sdim///                   +   +      |      A,  B - operand of B replaced with undef
482296417Sdim///                  / \   \     |
483296417Sdim///                 *   +   *    |    C,  D,  E
484296417Sdim///                / \ / \ / \   |
485296417Sdim///                   +   *      |      F,  G
486296417Sdim///
487296417Sdim/// Note that such undef operands can only be reached by passing through 'I'.
488296417Sdim/// For example, if you visit operands recursively starting from a leaf node
489296417Sdim/// then you will never see such an undef operand unless you get back to 'I',
490296417Sdim/// which requires passing through a phi node.
491296417Sdim///
492296417Sdim/// Note that this routine may also mutate binary operators of the wrong type
493296417Sdim/// that have all uses inside the expression (i.e. only used by non-leaf nodes
494296417Sdim/// of the expression) if it can turn them into binary operators of the right
495296417Sdim/// type and thus make the expression bigger.
496296417Sdim
497296417Sdimstatic bool LinearizeExprTree(BinaryOperator *I,
498296417Sdim                              SmallVectorImpl<RepeatedValue> &Ops) {
499296417Sdim  DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
500296417Sdim  unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
501296417Sdim  unsigned Opcode = I->getOpcode();
502296417Sdim  assert(Instruction::isAssociative(Opcode) &&
503296417Sdim         Instruction::isCommutative(Opcode) &&
504296417Sdim         "Expected an associative and commutative operation!");
505296417Sdim
506296417Sdim  // Visit all operands of the expression, keeping track of their weight (the
507296417Sdim  // number of paths from the expression root to the operand, or if you like
508296417Sdim  // the number of times that operand occurs in the linearized expression).
509296417Sdim  // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
510296417Sdim  // while A has weight two.
511296417Sdim
512296417Sdim  // Worklist of non-leaf nodes (their operands are in the expression too) along
513296417Sdim  // with their weights, representing a certain number of paths to the operator.
514296417Sdim  // If an operator occurs in the worklist multiple times then we found multiple
515296417Sdim  // ways to get to it.
516296417Sdim  SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight)
517296417Sdim  Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
518296417Sdim  bool MadeChange = false;
519296417Sdim
520296417Sdim  // Leaves of the expression are values that either aren't the right kind of
521296417Sdim  // operation (eg: a constant, or a multiply in an add tree), or are, but have
522296417Sdim  // some uses that are not inside the expression.  For example, in I = X + X,
523296417Sdim  // X = A + B, the value X has two uses (by I) that are in the expression.  If
524296417Sdim  // X has any other uses, for example in a return instruction, then we consider
525296417Sdim  // X to be a leaf, and won't analyze it further.  When we first visit a value,
526296417Sdim  // if it has more than one use then at first we conservatively consider it to
527296417Sdim  // be a leaf.  Later, as the expression is explored, we may discover some more
528296417Sdim  // uses of the value from inside the expression.  If all uses turn out to be
529296417Sdim  // from within the expression (and the value is a binary operator of the right
530296417Sdim  // kind) then the value is no longer considered to be a leaf, and its operands
531296417Sdim  // are explored.
532296417Sdim
533296417Sdim  // Leaves - Keeps track of the set of putative leaves as well as the number of
534296417Sdim  // paths to each leaf seen so far.
535296417Sdim  typedef DenseMap<Value*, APInt> LeafMap;
536296417Sdim  LeafMap Leaves; // Leaf -> Total weight so far.
537296417Sdim  SmallVector<Value*, 8> LeafOrder; // Ensure deterministic leaf output order.
538296417Sdim
539296417Sdim#ifndef NDEBUG
540296417Sdim  SmallPtrSet<Value*, 8> Visited; // For sanity checking the iteration scheme.
541296417Sdim#endif
542296417Sdim  while (!Worklist.empty()) {
543296417Sdim    std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val();
544296417Sdim    I = P.first; // We examine the operands of this binary operator.
545296417Sdim
546296417Sdim    for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands.
547296417Sdim      Value *Op = I->getOperand(OpIdx);
548296417Sdim      APInt Weight = P.second; // Number of paths to this operand.
549296417Sdim      DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
550296417Sdim      assert(!Op->use_empty() && "No uses, so how did we get to it?!");
551296417Sdim
552296417Sdim      // If this is a binary operation of the right kind with only one use then
553296417Sdim      // add its operands to the expression.
554296417Sdim      if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
555296417Sdim        assert(Visited.insert(Op) && "Not first visit!");
556296417Sdim        DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
557296417Sdim        Worklist.push_back(std::make_pair(BO, Weight));
558296417Sdim        continue;
559296417Sdim      }
560296417Sdim
561296417Sdim      // Appears to be a leaf.  Is the operand already in the set of leaves?
562296417Sdim      LeafMap::iterator It = Leaves.find(Op);
563296417Sdim      if (It == Leaves.end()) {
564296417Sdim        // Not in the leaf map.  Must be the first time we saw this operand.
565296417Sdim        assert(Visited.insert(Op) && "Not first visit!");
566296417Sdim        if (!Op->hasOneUse()) {
567296417Sdim          // This value has uses not accounted for by the expression, so it is
568296417Sdim          // not safe to modify.  Mark it as being a leaf.
569296417Sdim          DEBUG(dbgs() << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
570296417Sdim          LeafOrder.push_back(Op);
571296417Sdim          Leaves[Op] = Weight;
572296417Sdim          continue;
573296417Sdim        }
574296417Sdim        // No uses outside the expression, try morphing it.
575296417Sdim      } else if (It != Leaves.end()) {
576296417Sdim        // Already in the leaf map.
577296417Sdim        assert(Visited.count(Op) && "In leaf map but not visited!");
578296417Sdim
579296417Sdim        // Update the number of paths to the leaf.
580296417Sdim        IncorporateWeight(It->second, Weight, Opcode);
581296417Sdim
582296417Sdim#if 0   // TODO: Re-enable once PR13021 is fixed.
583296417Sdim        // The leaf already has one use from inside the expression.  As we want
584296417Sdim        // exactly one such use, drop this new use of the leaf.
585296417Sdim        assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
586296417Sdim        I->setOperand(OpIdx, UndefValue::get(I->getType()));
587296417Sdim        MadeChange = true;
588296417Sdim
589296417Sdim        // If the leaf is a binary operation of the right kind and we now see
590296417Sdim        // that its multiple original uses were in fact all by nodes belonging
591296417Sdim        // to the expression, then no longer consider it to be a leaf and add
592296417Sdim        // its operands to the expression.
593296417Sdim        if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
594296417Sdim          DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n");
595296417Sdim          Worklist.push_back(std::make_pair(BO, It->second));
596296417Sdim          Leaves.erase(It);
597296417Sdim          continue;
598296417Sdim        }
599296417Sdim#endif
600296417Sdim
601296417Sdim        // If we still have uses that are not accounted for by the expression
602296417Sdim        // then it is not safe to modify the value.
603296417Sdim        if (!Op->hasOneUse())
604296417Sdim          continue;
605296417Sdim
606296417Sdim        // No uses outside the expression, try morphing it.
607296417Sdim        Weight = It->second;
608296417Sdim        Leaves.erase(It); // Since the value may be morphed below.
609296417Sdim      }
610296417Sdim
611296417Sdim      // At this point we have a value which, first of all, is not a binary
612296417Sdim      // expression of the right kind, and secondly, is only used inside the
613296417Sdim      // expression.  This means that it can safely be modified.  See if we
614296417Sdim      // can usefully morph it into an expression of the right kind.
615296417Sdim      assert((!isa<Instruction>(Op) ||
616296417Sdim              cast<Instruction>(Op)->getOpcode() != Opcode) &&
617296417Sdim             "Should have been handled above!");
618296417Sdim      assert(Op->hasOneUse() && "Has uses outside the expression tree!");
619296417Sdim
620296417Sdim      // If this is a multiply expression, turn any internal negations into
621296417Sdim      // multiplies by -1 so they can be reassociated.
622296417Sdim      BinaryOperator *BO = dyn_cast<BinaryOperator>(Op);
623296417Sdim      if (Opcode == Instruction::Mul && BO && BinaryOperator::isNeg(BO)) {
624296417Sdim        DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
625296417Sdim        BO = LowerNegateToMultiply(BO);
626296417Sdim        DEBUG(dbgs() << *BO << 'n');
627296417Sdim        Worklist.push_back(std::make_pair(BO, Weight));
628296417Sdim        MadeChange = true;
629296417Sdim        continue;
630296417Sdim      }
631296417Sdim
632296417Sdim      // Failed to morph into an expression of the right type.  This really is
633296417Sdim      // a leaf.
634296417Sdim      DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
635296417Sdim      assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
636296417Sdim      LeafOrder.push_back(Op);
637296417Sdim      Leaves[Op] = Weight;
638296417Sdim    }
639296417Sdim  }
640296417Sdim
641296417Sdim  // The leaves, repeated according to their weights, represent the linearized
642296417Sdim  // form of the expression.
643296417Sdim  for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) {
644296417Sdim    Value *V = LeafOrder[i];
645296417Sdim    LeafMap::iterator It = Leaves.find(V);
646296417Sdim    if (It == Leaves.end())
647296417Sdim      // Node initially thought to be a leaf wasn't.
648296417Sdim      continue;
649296417Sdim    assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
650296417Sdim    APInt Weight = It->second;
651296417Sdim    if (Weight.isMinValue())
652296417Sdim      // Leaf already output or weight reduction eliminated it.
653296417Sdim      continue;
654296417Sdim    // Ensure the leaf is only output once.
655296417Sdim    It->second = 0;
656296417Sdim    Ops.push_back(std::make_pair(V, Weight));
657296417Sdim  }
658296417Sdim
659296417Sdim  // For nilpotent operations or addition there may be no operands, for example
660296417Sdim  // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
661296417Sdim  // in both cases the weight reduces to 0 causing the value to be skipped.
662296417Sdim  if (Ops.empty()) {
663296417Sdim    Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
664296417Sdim    assert(Identity && "Associative operation without identity!");
665296417Sdim    Ops.push_back(std::make_pair(Identity, APInt(Bitwidth, 1)));
666296417Sdim  }
667296417Sdim
668296417Sdim  return MadeChange;
669296417Sdim}
670296417Sdim
671296417Sdim// RewriteExprTree - Now that the operands for this expression tree are
672296417Sdim// linearized and optimized, emit them in-order.
673296417Sdimvoid Reassociate::RewriteExprTree(BinaryOperator *I,
674296417Sdim                                  SmallVectorImpl<ValueEntry> &Ops) {
675296417Sdim  assert(Ops.size() > 1 && "Single values should be used directly!");
676296417Sdim
677296417Sdim  // Since our optimizations should never increase the number of operations, the
678296417Sdim  // new expression can usually be written reusing the existing binary operators
679296417Sdim  // from the original expression tree, without creating any new instructions,
680296417Sdim  // though the rewritten expression may have a completely different topology.
681296417Sdim  // We take care to not change anything if the new expression will be the same
682296417Sdim  // as the original.  If more than trivial changes (like commuting operands)
683296417Sdim  // were made then we are obliged to clear out any optional subclass data like
684296417Sdim  // nsw flags.
685296417Sdim
686296417Sdim  /// NodesToRewrite - Nodes from the original expression available for writing
687296417Sdim  /// the new expression into.
688296417Sdim  SmallVector<BinaryOperator*, 8> NodesToRewrite;
689296417Sdim  unsigned Opcode = I->getOpcode();
690296417Sdim  BinaryOperator *Op = I;
691296417Sdim
692296417Sdim  /// NotRewritable - The operands being written will be the leaves of the new
693296417Sdim  /// expression and must not be used as inner nodes (via NodesToRewrite) by
694296417Sdim  /// mistake.  Inner nodes are always reassociable, and usually leaves are not
695296417Sdim  /// (if they were they would have been incorporated into the expression and so
696296417Sdim  /// would not be leaves), so most of the time there is no danger of this.  But
697296417Sdim  /// in rare cases a leaf may become reassociable if an optimization kills uses
698296417Sdim  /// of it, or it may momentarily become reassociable during rewriting (below)
699296417Sdim  /// due it being removed as an operand of one of its uses.  Ensure that misuse
700296417Sdim  /// of leaf nodes as inner nodes cannot occur by remembering all of the future
701296417Sdim  /// leaves and refusing to reuse any of them as inner nodes.
702296417Sdim  SmallPtrSet<Value*, 8> NotRewritable;
703296417Sdim  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
704296417Sdim    NotRewritable.insert(Ops[i].Op);
705296417Sdim
706296417Sdim  // ExpressionChanged - Non-null if the rewritten expression differs from the
707296417Sdim  // original in some non-trivial way, requiring the clearing of optional flags.
708296417Sdim  // Flags are cleared from the operator in ExpressionChanged up to I inclusive.
709296417Sdim  BinaryOperator *ExpressionChanged = 0;
710296417Sdim  for (unsigned i = 0; ; ++i) {
711296417Sdim    // The last operation (which comes earliest in the IR) is special as both
712296417Sdim    // operands will come from Ops, rather than just one with the other being
713296417Sdim    // a subexpression.
714296417Sdim    if (i+2 == Ops.size()) {
715296417Sdim      Value *NewLHS = Ops[i].Op;
716296417Sdim      Value *NewRHS = Ops[i+1].Op;
717296417Sdim      Value *OldLHS = Op->getOperand(0);
718296417Sdim      Value *OldRHS = Op->getOperand(1);
719296417Sdim
720296417Sdim      if (NewLHS == OldLHS && NewRHS == OldRHS)
721296417Sdim        // Nothing changed, leave it alone.
722296417Sdim        break;
723296417Sdim
724296417Sdim      if (NewLHS == OldRHS && NewRHS == OldLHS) {
725296417Sdim        // The order of the operands was reversed.  Swap them.
726296417Sdim        DEBUG(dbgs() << "RA: " << *Op << '\n');
727296417Sdim        Op->swapOperands();
728296417Sdim        DEBUG(dbgs() << "TO: " << *Op << '\n');
729296417Sdim        MadeChange = true;
730296417Sdim        ++NumChanged;
731296417Sdim        break;
732296417Sdim      }
733296417Sdim
734296417Sdim      // The new operation differs non-trivially from the original. Overwrite
735296417Sdim      // the old operands with the new ones.
736296417Sdim      DEBUG(dbgs() << "RA: " << *Op << '\n');
737296417Sdim      if (NewLHS != OldLHS) {
738296417Sdim        BinaryOperator *BO = isReassociableOp(OldLHS, Opcode);
739296417Sdim        if (BO && !NotRewritable.count(BO))
740296417Sdim          NodesToRewrite.push_back(BO);
741296417Sdim        Op->setOperand(0, NewLHS);
742296417Sdim      }
743296417Sdim      if (NewRHS != OldRHS) {
744296417Sdim        BinaryOperator *BO = isReassociableOp(OldRHS, Opcode);
745296417Sdim        if (BO && !NotRewritable.count(BO))
746296417Sdim          NodesToRewrite.push_back(BO);
747296417Sdim        Op->setOperand(1, NewRHS);
748296417Sdim      }
749296417Sdim      DEBUG(dbgs() << "TO: " << *Op << '\n');
750296417Sdim
751296417Sdim      ExpressionChanged = Op;
752296417Sdim      MadeChange = true;
753296417Sdim      ++NumChanged;
754296417Sdim
755296417Sdim      break;
756296417Sdim    }
757296417Sdim
758296417Sdim    // Not the last operation.  The left-hand side will be a sub-expression
759296417Sdim    // while the right-hand side will be the current element of Ops.
760296417Sdim    Value *NewRHS = Ops[i].Op;
761296417Sdim    if (NewRHS != Op->getOperand(1)) {
762296417Sdim      DEBUG(dbgs() << "RA: " << *Op << '\n');
763296417Sdim      if (NewRHS == Op->getOperand(0)) {
764296417Sdim        // The new right-hand side was already present as the left operand.  If
765296417Sdim        // we are lucky then swapping the operands will sort out both of them.
766296417Sdim        Op->swapOperands();
767296417Sdim      } else {
768296417Sdim        // Overwrite with the new right-hand side.
769296417Sdim        BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode);
770296417Sdim        if (BO && !NotRewritable.count(BO))
771296417Sdim          NodesToRewrite.push_back(BO);
772296417Sdim        Op->setOperand(1, NewRHS);
773296417Sdim        ExpressionChanged = Op;
774296417Sdim      }
775296417Sdim      DEBUG(dbgs() << "TO: " << *Op << '\n');
776296417Sdim      MadeChange = true;
777296417Sdim      ++NumChanged;
778296417Sdim    }
779296417Sdim
780296417Sdim    // Now deal with the left-hand side.  If this is already an operation node
781296417Sdim    // from the original expression then just rewrite the rest of the expression
782296417Sdim    // into it.
783296417Sdim    BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode);
784296417Sdim    if (BO && !NotRewritable.count(BO)) {
785296417Sdim      Op = BO;
786296417Sdim      continue;
787296417Sdim    }
788296417Sdim
789296417Sdim    // Otherwise, grab a spare node from the original expression and use that as
790296417Sdim    // the left-hand side.  If there are no nodes left then the optimizers made
791296417Sdim    // an expression with more nodes than the original!  This usually means that
792296417Sdim    // they did something stupid but it might mean that the problem was just too
793296417Sdim    // hard (finding the mimimal number of multiplications needed to realize a
794296417Sdim    // multiplication expression is NP-complete).  Whatever the reason, smart or
795296417Sdim    // stupid, create a new node if there are none left.
796296417Sdim    BinaryOperator *NewOp;
797296417Sdim    if (NodesToRewrite.empty()) {
798296417Sdim      Constant *Undef = UndefValue::get(I->getType());
799296417Sdim      NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode),
800296417Sdim                                     Undef, Undef, "", I);
801296417Sdim    } else {
802296417Sdim      NewOp = NodesToRewrite.pop_back_val();
803296417Sdim    }
804296417Sdim
805296417Sdim    DEBUG(dbgs() << "RA: " << *Op << '\n');
806296417Sdim    Op->setOperand(0, NewOp);
807296417Sdim    DEBUG(dbgs() << "TO: " << *Op << '\n');
808296417Sdim    ExpressionChanged = Op;
809296417Sdim    MadeChange = true;
810296417Sdim    ++NumChanged;
811296417Sdim    Op = NewOp;
812296417Sdim  }
813296417Sdim
814296417Sdim  // If the expression changed non-trivially then clear out all subclass data
815296417Sdim  // starting from the operator specified in ExpressionChanged, and compactify
816296417Sdim  // the operators to just before the expression root to guarantee that the
817296417Sdim  // expression tree is dominated by all of Ops.
818296417Sdim  if (ExpressionChanged)
819296417Sdim    do {
820296417Sdim      ExpressionChanged->clearSubclassOptionalData();
821296417Sdim      if (ExpressionChanged == I)
822296417Sdim        break;
823296417Sdim      ExpressionChanged->moveBefore(I);
824296417Sdim      ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->use_begin());
825296417Sdim    } while (1);
826296417Sdim
827296417Sdim  // Throw away any left over nodes from the original expression.
828296417Sdim  for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
829296417Sdim    RedoInsts.insert(NodesToRewrite[i]);
830296417Sdim}
831296417Sdim
832296417Sdim/// NegateValue - Insert instructions before the instruction pointed to by BI,
833296417Sdim/// that computes the negative version of the value specified.  The negative
834296417Sdim/// version of the value is returned, and BI is left pointing at the instruction
835296417Sdim/// that should be processed next by the reassociation pass.
836296417Sdimstatic Value *NegateValue(Value *V, Instruction *BI) {
837296417Sdim  if (Constant *C = dyn_cast<Constant>(V))
838296417Sdim    return ConstantExpr::getNeg(C);
839296417Sdim
840296417Sdim  // We are trying to expose opportunity for reassociation.  One of the things
841296417Sdim  // that we want to do to achieve this is to push a negation as deep into an
842296417Sdim  // expression chain as possible, to expose the add instructions.  In practice,
843296417Sdim  // this means that we turn this:
844296417Sdim  //   X = -(A+12+C+D)   into    X = -A + -12 + -C + -D = -12 + -A + -C + -D
845296417Sdim  // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
846296417Sdim  // the constants.  We assume that instcombine will clean up the mess later if
847296417Sdim  // we introduce tons of unnecessary negation instructions.
848296417Sdim  //
849296417Sdim  if (BinaryOperator *I = isReassociableOp(V, Instruction::Add)) {
850296417Sdim    // Push the negates through the add.
851296417Sdim    I->setOperand(0, NegateValue(I->getOperand(0), BI));
852296417Sdim    I->setOperand(1, NegateValue(I->getOperand(1), BI));
853296417Sdim
854296417Sdim    // We must move the add instruction here, because the neg instructions do
855296417Sdim    // not dominate the old add instruction in general.  By moving it, we are
856296417Sdim    // assured that the neg instructions we just inserted dominate the
857296417Sdim    // instruction we are about to insert after them.
858296417Sdim    //
859296417Sdim    I->moveBefore(BI);
860296417Sdim    I->setName(I->getName()+".neg");
861296417Sdim    return I;
862296417Sdim  }
863296417Sdim
864296417Sdim  // Okay, we need to materialize a negated version of V with an instruction.
865296417Sdim  // Scan the use lists of V to see if we have one already.
866296417Sdim  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
867296417Sdim    User *U = *UI;
868296417Sdim    if (!BinaryOperator::isNeg(U)) continue;
869296417Sdim
870296417Sdim    // We found one!  Now we have to make sure that the definition dominates
871296417Sdim    // this use.  We do this by moving it to the entry block (if it is a
872296417Sdim    // non-instruction value) or right after the definition.  These negates will
873296417Sdim    // be zapped by reassociate later, so we don't need much finesse here.
874296417Sdim    BinaryOperator *TheNeg = cast<BinaryOperator>(U);
875296417Sdim
876296417Sdim    // Verify that the negate is in this function, V might be a constant expr.
877296417Sdim    if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
878296417Sdim      continue;
879296417Sdim
880296417Sdim    BasicBlock::iterator InsertPt;
881296417Sdim    if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
882296417Sdim      if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
883296417Sdim        InsertPt = II->getNormalDest()->begin();
884296417Sdim      } else {
885296417Sdim        InsertPt = InstInput;
886296417Sdim        ++InsertPt;
887296417Sdim      }
888296417Sdim      while (isa<PHINode>(InsertPt)) ++InsertPt;
889296417Sdim    } else {
890296417Sdim      InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
891296417Sdim    }
892296417Sdim    TheNeg->moveBefore(InsertPt);
893296417Sdim    return TheNeg;
894296417Sdim  }
895296417Sdim
896296417Sdim  // Insert a 'neg' instruction that subtracts the value from zero to get the
897296417Sdim  // negation.
898296417Sdim  return BinaryOperator::CreateNeg(V, V->getName() + ".neg", BI);
899296417Sdim}
900296417Sdim
901296417Sdim/// ShouldBreakUpSubtract - Return true if we should break up this subtract of
902296417Sdim/// X-Y into (X + -Y).
903296417Sdimstatic bool ShouldBreakUpSubtract(Instruction *Sub) {
904296417Sdim  // If this is a negation, we can't split it up!
905296417Sdim  if (BinaryOperator::isNeg(Sub))
906296417Sdim    return false;
907296417Sdim
908296417Sdim  // Don't bother to break this up unless either the LHS is an associable add or
909296417Sdim  // subtract or if this is only used by one.
910296417Sdim  if (isReassociableOp(Sub->getOperand(0), Instruction::Add) ||
911296417Sdim      isReassociableOp(Sub->getOperand(0), Instruction::Sub))
912296417Sdim    return true;
913296417Sdim  if (isReassociableOp(Sub->getOperand(1), Instruction::Add) ||
914296417Sdim      isReassociableOp(Sub->getOperand(1), Instruction::Sub))
915296417Sdim    return true;
916296417Sdim  if (Sub->hasOneUse() &&
917296417Sdim      (isReassociableOp(Sub->use_back(), Instruction::Add) ||
918296417Sdim       isReassociableOp(Sub->use_back(), Instruction::Sub)))
919296417Sdim    return true;
920296417Sdim
921296417Sdim  return false;
922296417Sdim}
923296417Sdim
924296417Sdim/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
925296417Sdim/// only used by an add, transform this into (X+(0-Y)) to promote better
926296417Sdim/// reassociation.
927296417Sdimstatic BinaryOperator *BreakUpSubtract(Instruction *Sub) {
928296417Sdim  // Convert a subtract into an add and a neg instruction. This allows sub
929296417Sdim  // instructions to be commuted with other add instructions.
930296417Sdim  //
931296417Sdim  // Calculate the negative value of Operand 1 of the sub instruction,
932296417Sdim  // and set it as the RHS of the add instruction we just made.
933296417Sdim  //
934296417Sdim  Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
935296417Sdim  BinaryOperator *New =
936296417Sdim    BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub);
937296417Sdim  Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
938296417Sdim  Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
939296417Sdim  New->takeName(Sub);
940296417Sdim
941296417Sdim  // Everyone now refers to the add instruction.
942296417Sdim  Sub->replaceAllUsesWith(New);
943296417Sdim  New->setDebugLoc(Sub->getDebugLoc());
944296417Sdim
945296417Sdim  DEBUG(dbgs() << "Negated: " << *New << '\n');
946296417Sdim  return New;
947296417Sdim}
948296417Sdim
949296417Sdim/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
950296417Sdim/// by one, change this into a multiply by a constant to assist with further
951285181Sdim/// reassociation.
952284734Sdimstatic BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
953283627Sdim  Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
954  MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
955
956  BinaryOperator *Mul =
957    BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
958  Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op.
959  Mul->takeName(Shl);
960  Shl->replaceAllUsesWith(Mul);
961  Mul->setDebugLoc(Shl->getDebugLoc());
962  return Mul;
963}
964
965/// FindInOperandList - Scan backwards and forwards among values with the same
966/// rank as element i to see if X exists.  If X does not exist, return i.  This
967/// is useful when scanning for 'x' when we see '-x' because they both get the
968/// same rank.
969static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i,
970                                  Value *X) {
971  unsigned XRank = Ops[i].Rank;
972  unsigned e = Ops.size();
973  for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
974    if (Ops[j].Op == X)
975      return j;
976  // Scan backwards.
977  for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
978    if (Ops[j].Op == X)
979      return j;
980  return i;
981}
982
983/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
984/// and returning the result.  Insert the tree before I.
985static Value *EmitAddTreeOfValues(Instruction *I,
986                                  SmallVectorImpl<WeakVH> &Ops){
987  if (Ops.size() == 1) return Ops.back();
988
989  Value *V1 = Ops.back();
990  Ops.pop_back();
991  Value *V2 = EmitAddTreeOfValues(I, Ops);
992  return BinaryOperator::CreateAdd(V2, V1, "tmp", I);
993}
994
995/// RemoveFactorFromExpression - If V is an expression tree that is a
996/// multiplication sequence, and if this sequence contains a multiply by Factor,
997/// remove Factor from the tree and return the new tree.
998Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
999  BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
1000  if (!BO) return 0;
1001
1002  SmallVector<RepeatedValue, 8> Tree;
1003  MadeChange |= LinearizeExprTree(BO, Tree);
1004  SmallVector<ValueEntry, 8> Factors;
1005  Factors.reserve(Tree.size());
1006  for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
1007    RepeatedValue E = Tree[i];
1008    Factors.append(E.second.getZExtValue(),
1009                   ValueEntry(getRank(E.first), E.first));
1010  }
1011
1012  bool FoundFactor = false;
1013  bool NeedsNegate = false;
1014  for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1015    if (Factors[i].Op == Factor) {
1016      FoundFactor = true;
1017      Factors.erase(Factors.begin()+i);
1018      break;
1019    }
1020
1021    // If this is a negative version of this factor, remove it.
1022    if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor))
1023      if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
1024        if (FC1->getValue() == -FC2->getValue()) {
1025          FoundFactor = NeedsNegate = true;
1026          Factors.erase(Factors.begin()+i);
1027          break;
1028        }
1029  }
1030
1031  if (!FoundFactor) {
1032    // Make sure to restore the operands to the expression tree.
1033    RewriteExprTree(BO, Factors);
1034    return 0;
1035  }
1036
1037  BasicBlock::iterator InsertPt = BO; ++InsertPt;
1038
1039  // If this was just a single multiply, remove the multiply and return the only
1040  // remaining operand.
1041  if (Factors.size() == 1) {
1042    RedoInsts.insert(BO);
1043    V = Factors[0].Op;
1044  } else {
1045    RewriteExprTree(BO, Factors);
1046    V = BO;
1047  }
1048
1049  if (NeedsNegate)
1050    V = BinaryOperator::CreateNeg(V, "neg", InsertPt);
1051
1052  return V;
1053}
1054
1055/// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
1056/// add its operands as factors, otherwise add V to the list of factors.
1057///
1058/// Ops is the top-level list of add operands we're trying to factor.
1059static void FindSingleUseMultiplyFactors(Value *V,
1060                                         SmallVectorImpl<Value*> &Factors,
1061                                       const SmallVectorImpl<ValueEntry> &Ops) {
1062  BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
1063  if (!BO) {
1064    Factors.push_back(V);
1065    return;
1066  }
1067
1068  // Otherwise, add the LHS and RHS to the list of factors.
1069  FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops);
1070  FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops);
1071}
1072
1073/// OptimizeAndOrXor - Optimize a series of operands to an 'and', 'or', or 'xor'
1074/// instruction.  This optimizes based on identities.  If it can be reduced to
1075/// a single Value, it is returned, otherwise the Ops list is mutated as
1076/// necessary.
1077static Value *OptimizeAndOrXor(unsigned Opcode,
1078                               SmallVectorImpl<ValueEntry> &Ops) {
1079  // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
1080  // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
1081  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1082    // First, check for X and ~X in the operand list.
1083    assert(i < Ops.size());
1084    if (BinaryOperator::isNot(Ops[i].Op)) {    // Cannot occur for ^.
1085      Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
1086      unsigned FoundX = FindInOperandList(Ops, i, X);
1087      if (FoundX != i) {
1088        if (Opcode == Instruction::And)   // ...&X&~X = 0
1089          return Constant::getNullValue(X->getType());
1090
1091        if (Opcode == Instruction::Or)    // ...|X|~X = -1
1092          return Constant::getAllOnesValue(X->getType());
1093      }
1094    }
1095
1096    // Next, check for duplicate pairs of values, which we assume are next to
1097    // each other, due to our sorting criteria.
1098    assert(i < Ops.size());
1099    if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
1100      if (Opcode == Instruction::And || Opcode == Instruction::Or) {
1101        // Drop duplicate values for And and Or.
1102        Ops.erase(Ops.begin()+i);
1103        --i; --e;
1104        ++NumAnnihil;
1105        continue;
1106      }
1107
1108      // Drop pairs of values for Xor.
1109      assert(Opcode == Instruction::Xor);
1110      if (e == 2)
1111        return Constant::getNullValue(Ops[0].Op->getType());
1112
1113      // Y ^ X^X -> Y
1114      Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1115      i -= 1; e -= 2;
1116      ++NumAnnihil;
1117    }
1118  }
1119  return 0;
1120}
1121
1122/// Helper funciton of CombineXorOpnd(). It creates a bitwise-and
1123/// instruction with the given two operands, and return the resulting
1124/// instruction. There are two special cases: 1) if the constant operand is 0,
1125/// it will return NULL. 2) if the constant is ~0, the symbolic operand will
1126/// be returned.
1127static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd,
1128                             const APInt &ConstOpnd) {
1129  if (ConstOpnd != 0) {
1130    if (!ConstOpnd.isAllOnesValue()) {
1131      LLVMContext &Ctx = Opnd->getType()->getContext();
1132      Instruction *I;
1133      I = BinaryOperator::CreateAnd(Opnd, ConstantInt::get(Ctx, ConstOpnd),
1134                                    "and.ra", InsertBefore);
1135      I->setDebugLoc(InsertBefore->getDebugLoc());
1136      return I;
1137    }
1138    return Opnd;
1139  }
1140  return 0;
1141}
1142
1143// Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd"
1144// into "R ^ C", where C would be 0, and R is a symbolic value.
1145//
1146// If it was successful, true is returned, and the "R" and "C" is returned
1147// via "Res" and "ConstOpnd", respectively; otherwise, false is returned,
1148// and both "Res" and "ConstOpnd" remain unchanged.
1149//
1150bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1151                                 APInt &ConstOpnd, Value *&Res) {
1152  // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2
1153  //                       = ((x | c1) ^ c1) ^ (c1 ^ c2)
1154  //                       = (x & ~c1) ^ (c1 ^ c2)
1155  // It is useful only when c1 == c2.
1156  if (Opnd1->isOrExpr() && Opnd1->getConstPart() != 0) {
1157    if (!Opnd1->getValue()->hasOneUse())
1158      return false;
1159
1160    const APInt &C1 = Opnd1->getConstPart();
1161    if (C1 != ConstOpnd)
1162      return false;
1163
1164    Value *X = Opnd1->getSymbolicPart();
1165    Res = createAndInstr(I, X, ~C1);
1166    // ConstOpnd was C2, now C1 ^ C2.
1167    ConstOpnd ^= C1;
1168
1169    if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1170      RedoInsts.insert(T);
1171    return true;
1172  }
1173  return false;
1174}
1175
1176
1177// Helper function of OptimizeXor(). It tries to simplify
1178// "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a
1179// symbolic value.
1180//
1181// If it was successful, true is returned, and the "R" and "C" is returned
1182// via "Res" and "ConstOpnd", respectively (If the entire expression is
1183// evaluated to a constant, the Res is set to NULL); otherwise, false is
1184// returned, and both "Res" and "ConstOpnd" remain unchanged.
1185bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2,
1186                                 APInt &ConstOpnd, Value *&Res) {
1187  Value *X = Opnd1->getSymbolicPart();
1188  if (X != Opnd2->getSymbolicPart())
1189    return false;
1190
1191  // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.)
1192  int DeadInstNum = 1;
1193  if (Opnd1->getValue()->hasOneUse())
1194    DeadInstNum++;
1195  if (Opnd2->getValue()->hasOneUse())
1196    DeadInstNum++;
1197
1198  // Xor-Rule 2:
1199  //  (x | c1) ^ (x & c2)
1200  //   = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1
1201  //   = (x & ~c1) ^ (x & c2) ^ c1               // Xor-Rule 1
1202  //   = (x & c3) ^ c1, where c3 = ~c1 ^ c2      // Xor-rule 3
1203  //
1204  if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) {
1205    if (Opnd2->isOrExpr())
1206      std::swap(Opnd1, Opnd2);
1207
1208    const APInt &C1 = Opnd1->getConstPart();
1209    const APInt &C2 = Opnd2->getConstPart();
1210    APInt C3((~C1) ^ C2);
1211
1212    // Do not increase code size!
1213    if (C3 != 0 && !C3.isAllOnesValue()) {
1214      int NewInstNum = ConstOpnd != 0 ? 1 : 2;
1215      if (NewInstNum > DeadInstNum)
1216        return false;
1217    }
1218
1219    Res = createAndInstr(I, X, C3);
1220    ConstOpnd ^= C1;
1221
1222  } else if (Opnd1->isOrExpr()) {
1223    // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2
1224    //
1225    const APInt &C1 = Opnd1->getConstPart();
1226    const APInt &C2 = Opnd2->getConstPart();
1227    APInt C3 = C1 ^ C2;
1228
1229    // Do not increase code size
1230    if (C3 != 0 && !C3.isAllOnesValue()) {
1231      int NewInstNum = ConstOpnd != 0 ? 1 : 2;
1232      if (NewInstNum > DeadInstNum)
1233        return false;
1234    }
1235
1236    Res = createAndInstr(I, X, C3);
1237    ConstOpnd ^= C3;
1238  } else {
1239    // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2))
1240    //
1241    const APInt &C1 = Opnd1->getConstPart();
1242    const APInt &C2 = Opnd2->getConstPart();
1243    APInt C3 = C1 ^ C2;
1244    Res = createAndInstr(I, X, C3);
1245  }
1246
1247  // Put the original operands in the Redo list; hope they will be deleted
1248  // as dead code.
1249  if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1250    RedoInsts.insert(T);
1251  if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue()))
1252    RedoInsts.insert(T);
1253
1254  return true;
1255}
1256
1257/// Optimize a series of operands to an 'xor' instruction. If it can be reduced
1258/// to a single Value, it is returned, otherwise the Ops list is mutated as
1259/// necessary.
1260Value *Reassociate::OptimizeXor(Instruction *I,
1261                                SmallVectorImpl<ValueEntry> &Ops) {
1262  if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops))
1263    return V;
1264
1265  if (Ops.size() == 1)
1266    return 0;
1267
1268  SmallVector<XorOpnd, 8> Opnds;
1269  SmallVector<XorOpnd*, 8> OpndPtrs;
1270  Type *Ty = Ops[0].Op->getType();
1271  APInt ConstOpnd(Ty->getIntegerBitWidth(), 0);
1272
1273  // Step 1: Convert ValueEntry to XorOpnd
1274  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1275    Value *V = Ops[i].Op;
1276    if (!isa<ConstantInt>(V)) {
1277      XorOpnd O(V);
1278      O.setSymbolicRank(getRank(O.getSymbolicPart()));
1279      Opnds.push_back(O);
1280    } else
1281      ConstOpnd ^= cast<ConstantInt>(V)->getValue();
1282  }
1283
1284  // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds".
1285  //  It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate
1286  //  the "OpndPtrs" as well. For the similar reason, do not fuse this loop
1287  //  with the previous loop --- the iterator of the "Opnds" may be invalidated
1288  //  when new elements are added to the vector.
1289  for (unsigned i = 0, e = Opnds.size(); i != e; ++i)
1290    OpndPtrs.push_back(&Opnds[i]);
1291
1292  // Step 2: Sort the Xor-Operands in a way such that the operands containing
1293  //  the same symbolic value cluster together. For instance, the input operand
1294  //  sequence ("x | 123", "y & 456", "x & 789") will be sorted into:
1295  //  ("x | 123", "x & 789", "y & 456").
1296  std::sort(OpndPtrs.begin(), OpndPtrs.end(), XorOpnd::PtrSortFunctor());
1297
1298  // Step 3: Combine adjacent operands
1299  XorOpnd *PrevOpnd = 0;
1300  bool Changed = false;
1301  for (unsigned i = 0, e = Opnds.size(); i < e; i++) {
1302    XorOpnd *CurrOpnd = OpndPtrs[i];
1303    // The combined value
1304    Value *CV;
1305
1306    // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd"
1307    if (ConstOpnd != 0 && CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) {
1308      Changed = true;
1309      if (CV)
1310        *CurrOpnd = XorOpnd(CV);
1311      else {
1312        CurrOpnd->Invalidate();
1313        continue;
1314      }
1315    }
1316
1317    if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) {
1318      PrevOpnd = CurrOpnd;
1319      continue;
1320    }
1321
1322    // step 3.2: When previous and current operands share the same symbolic
1323    //  value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd"
1324    //
1325    if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) {
1326      // Remove previous operand
1327      PrevOpnd->Invalidate();
1328      if (CV) {
1329        *CurrOpnd = XorOpnd(CV);
1330        PrevOpnd = CurrOpnd;
1331      } else {
1332        CurrOpnd->Invalidate();
1333        PrevOpnd = 0;
1334      }
1335      Changed = true;
1336    }
1337  }
1338
1339  // Step 4: Reassemble the Ops
1340  if (Changed) {
1341    Ops.clear();
1342    for (unsigned int i = 0, e = Opnds.size(); i < e; i++) {
1343      XorOpnd &O = Opnds[i];
1344      if (O.isInvalid())
1345        continue;
1346      ValueEntry VE(getRank(O.getValue()), O.getValue());
1347      Ops.push_back(VE);
1348    }
1349    if (ConstOpnd != 0) {
1350      Value *C = ConstantInt::get(Ty->getContext(), ConstOpnd);
1351      ValueEntry VE(getRank(C), C);
1352      Ops.push_back(VE);
1353    }
1354    int Sz = Ops.size();
1355    if (Sz == 1)
1356      return Ops.back().Op;
1357    else if (Sz == 0) {
1358      assert(ConstOpnd == 0);
1359      return ConstantInt::get(Ty->getContext(), ConstOpnd);
1360    }
1361  }
1362
1363  return 0;
1364}
1365
1366/// OptimizeAdd - Optimize a series of operands to an 'add' instruction.  This
1367/// optimizes based on identities.  If it can be reduced to a single Value, it
1368/// is returned, otherwise the Ops list is mutated as necessary.
1369Value *Reassociate::OptimizeAdd(Instruction *I,
1370                                SmallVectorImpl<ValueEntry> &Ops) {
1371  // Scan the operand lists looking for X and -X pairs.  If we find any, we
1372  // can simplify the expression. X+-X == 0.  While we're at it, scan for any
1373  // duplicates.  We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
1374  //
1375  // TODO: We could handle "X + ~X" -> "-1" if we wanted, since "-X = ~X+1".
1376  //
1377  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1378    Value *TheOp = Ops[i].Op;
1379    // Check to see if we've seen this operand before.  If so, we factor all
1380    // instances of the operand together.  Due to our sorting criteria, we know
1381    // that these need to be next to each other in the vector.
1382    if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
1383      // Rescan the list, remove all instances of this operand from the expr.
1384      unsigned NumFound = 0;
1385      do {
1386        Ops.erase(Ops.begin()+i);
1387        ++NumFound;
1388      } while (i != Ops.size() && Ops[i].Op == TheOp);
1389
1390      DEBUG(errs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
1391      ++NumFactor;
1392
1393      // Insert a new multiply.
1394      Value *Mul = ConstantInt::get(cast<IntegerType>(I->getType()), NumFound);
1395      Mul = BinaryOperator::CreateMul(TheOp, Mul, "factor", I);
1396
1397      // Now that we have inserted a multiply, optimize it. This allows us to
1398      // handle cases that require multiple factoring steps, such as this:
1399      // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
1400      RedoInsts.insert(cast<Instruction>(Mul));
1401
1402      // If every add operand was a duplicate, return the multiply.
1403      if (Ops.empty())
1404        return Mul;
1405
1406      // Otherwise, we had some input that didn't have the dupe, such as
1407      // "A + A + B" -> "A*2 + B".  Add the new multiply to the list of
1408      // things being added by this operation.
1409      Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
1410
1411      --i;
1412      e = Ops.size();
1413      continue;
1414    }
1415
1416    // Check for X and -X in the operand list.
1417    if (!BinaryOperator::isNeg(TheOp))
1418      continue;
1419
1420    Value *X = BinaryOperator::getNegArgument(TheOp);
1421    unsigned FoundX = FindInOperandList(Ops, i, X);
1422    if (FoundX == i)
1423      continue;
1424
1425    // Remove X and -X from the operand list.
1426    if (Ops.size() == 2)
1427      return Constant::getNullValue(X->getType());
1428
1429    Ops.erase(Ops.begin()+i);
1430    if (i < FoundX)
1431      --FoundX;
1432    else
1433      --i;   // Need to back up an extra one.
1434    Ops.erase(Ops.begin()+FoundX);
1435    ++NumAnnihil;
1436    --i;     // Revisit element.
1437    e -= 2;  // Removed two elements.
1438  }
1439
1440  // Scan the operand list, checking to see if there are any common factors
1441  // between operands.  Consider something like A*A+A*B*C+D.  We would like to
1442  // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
1443  // To efficiently find this, we count the number of times a factor occurs
1444  // for any ADD operands that are MULs.
1445  DenseMap<Value*, unsigned> FactorOccurrences;
1446
1447  // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
1448  // where they are actually the same multiply.
1449  unsigned MaxOcc = 0;
1450  Value *MaxOccVal = 0;
1451  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1452    BinaryOperator *BOp = isReassociableOp(Ops[i].Op, Instruction::Mul);
1453    if (!BOp)
1454      continue;
1455
1456    // Compute all of the factors of this added value.
1457    SmallVector<Value*, 8> Factors;
1458    FindSingleUseMultiplyFactors(BOp, Factors, Ops);
1459    assert(Factors.size() > 1 && "Bad linearize!");
1460
1461    // Add one to FactorOccurrences for each unique factor in this op.
1462    SmallPtrSet<Value*, 8> Duplicates;
1463    for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1464      Value *Factor = Factors[i];
1465      if (!Duplicates.insert(Factor)) continue;
1466
1467      unsigned Occ = ++FactorOccurrences[Factor];
1468      if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
1469
1470      // If Factor is a negative constant, add the negated value as a factor
1471      // because we can percolate the negate out.  Watch for minint, which
1472      // cannot be positivified.
1473      if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor))
1474        if (CI->isNegative() && !CI->isMinValue(true)) {
1475          Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
1476          assert(!Duplicates.count(Factor) &&
1477                 "Shouldn't have two constant factors, missed a canonicalize");
1478
1479          unsigned Occ = ++FactorOccurrences[Factor];
1480          if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
1481        }
1482    }
1483  }
1484
1485  // If any factor occurred more than one time, we can pull it out.
1486  if (MaxOcc > 1) {
1487    DEBUG(errs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
1488    ++NumFactor;
1489
1490    // Create a new instruction that uses the MaxOccVal twice.  If we don't do
1491    // this, we could otherwise run into situations where removing a factor
1492    // from an expression will drop a use of maxocc, and this can cause
1493    // RemoveFactorFromExpression on successive values to behave differently.
1494    Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal);
1495    SmallVector<WeakVH, 4> NewMulOps;
1496    for (unsigned i = 0; i != Ops.size(); ++i) {
1497      // Only try to remove factors from expressions we're allowed to.
1498      BinaryOperator *BOp = isReassociableOp(Ops[i].Op, Instruction::Mul);
1499      if (!BOp)
1500        continue;
1501
1502      if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
1503        // The factorized operand may occur several times.  Convert them all in
1504        // one fell swoop.
1505        for (unsigned j = Ops.size(); j != i;) {
1506          --j;
1507          if (Ops[j].Op == Ops[i].Op) {
1508            NewMulOps.push_back(V);
1509            Ops.erase(Ops.begin()+j);
1510          }
1511        }
1512        --i;
1513      }
1514    }
1515
1516    // No need for extra uses anymore.
1517    delete DummyInst;
1518
1519    unsigned NumAddedValues = NewMulOps.size();
1520    Value *V = EmitAddTreeOfValues(I, NewMulOps);
1521
1522    // Now that we have inserted the add tree, optimize it. This allows us to
1523    // handle cases that require multiple factoring steps, such as this:
1524    // A*A*B + A*A*C   -->   A*(A*B+A*C)   -->   A*(A*(B+C))
1525    assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
1526    (void)NumAddedValues;
1527    if (Instruction *VI = dyn_cast<Instruction>(V))
1528      RedoInsts.insert(VI);
1529
1530    // Create the multiply.
1531    Instruction *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I);
1532
1533    // Rerun associate on the multiply in case the inner expression turned into
1534    // a multiply.  We want to make sure that we keep things in canonical form.
1535    RedoInsts.insert(V2);
1536
1537    // If every add operand included the factor (e.g. "A*B + A*C"), then the
1538    // entire result expression is just the multiply "A*(B+C)".
1539    if (Ops.empty())
1540      return V2;
1541
1542    // Otherwise, we had some input that didn't have the factor, such as
1543    // "A*B + A*C + D" -> "A*(B+C) + D".  Add the new multiply to the list of
1544    // things being added by this operation.
1545    Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
1546  }
1547
1548  return 0;
1549}
1550
1551namespace {
1552  /// \brief Predicate tests whether a ValueEntry's op is in a map.
1553  struct IsValueInMap {
1554    const DenseMap<Value *, unsigned> &Map;
1555
1556    IsValueInMap(const DenseMap<Value *, unsigned> &Map) : Map(Map) {}
1557
1558    bool operator()(const ValueEntry &Entry) {
1559      return Map.find(Entry.Op) != Map.end();
1560    }
1561  };
1562}
1563
1564/// \brief Build up a vector of value/power pairs factoring a product.
1565///
1566/// Given a series of multiplication operands, build a vector of factors and
1567/// the powers each is raised to when forming the final product. Sort them in
1568/// the order of descending power.
1569///
1570///      (x*x)          -> [(x, 2)]
1571///     ((x*x)*x)       -> [(x, 3)]
1572///   ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
1573///
1574/// \returns Whether any factors have a power greater than one.
1575bool Reassociate::collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
1576                                         SmallVectorImpl<Factor> &Factors) {
1577  // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
1578  // Compute the sum of powers of simplifiable factors.
1579  unsigned FactorPowerSum = 0;
1580  for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
1581    Value *Op = Ops[Idx-1].Op;
1582
1583    // Count the number of occurrences of this value.
1584    unsigned Count = 1;
1585    for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
1586      ++Count;
1587    // Track for simplification all factors which occur 2 or more times.
1588    if (Count > 1)
1589      FactorPowerSum += Count;
1590  }
1591
1592  // We can only simplify factors if the sum of the powers of our simplifiable
1593  // factors is 4 or higher. When that is the case, we will *always* have
1594  // a simplification. This is an important invariant to prevent cyclicly
1595  // trying to simplify already minimal formations.
1596  if (FactorPowerSum < 4)
1597    return false;
1598
1599  // Now gather the simplifiable factors, removing them from Ops.
1600  FactorPowerSum = 0;
1601  for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
1602    Value *Op = Ops[Idx-1].Op;
1603
1604    // Count the number of occurrences of this value.
1605    unsigned Count = 1;
1606    for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
1607      ++Count;
1608    if (Count == 1)
1609      continue;
1610    // Move an even number of occurrences to Factors.
1611    Count &= ~1U;
1612    Idx -= Count;
1613    FactorPowerSum += Count;
1614    Factors.push_back(Factor(Op, Count));
1615    Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
1616  }
1617
1618  // None of the adjustments above should have reduced the sum of factor powers
1619  // below our mininum of '4'.
1620  assert(FactorPowerSum >= 4);
1621
1622  std::sort(Factors.begin(), Factors.end(), Factor::PowerDescendingSorter());
1623  return true;
1624}
1625
1626/// \brief Build a tree of multiplies, computing the product of Ops.
1627static Value *buildMultiplyTree(IRBuilder<> &Builder,
1628                                SmallVectorImpl<Value*> &Ops) {
1629  if (Ops.size() == 1)
1630    return Ops.back();
1631
1632  Value *LHS = Ops.pop_back_val();
1633  do {
1634    LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
1635  } while (!Ops.empty());
1636
1637  return LHS;
1638}
1639
1640/// \brief Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
1641///
1642/// Given a vector of values raised to various powers, where no two values are
1643/// equal and the powers are sorted in decreasing order, compute the minimal
1644/// DAG of multiplies to compute the final product, and return that product
1645/// value.
1646Value *Reassociate::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
1647                                            SmallVectorImpl<Factor> &Factors) {
1648  assert(Factors[0].Power);
1649  SmallVector<Value *, 4> OuterProduct;
1650  for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
1651       Idx < Size && Factors[Idx].Power > 0; ++Idx) {
1652    if (Factors[Idx].Power != Factors[LastIdx].Power) {
1653      LastIdx = Idx;
1654      continue;
1655    }
1656
1657    // We want to multiply across all the factors with the same power so that
1658    // we can raise them to that power as a single entity. Build a mini tree
1659    // for that.
1660    SmallVector<Value *, 4> InnerProduct;
1661    InnerProduct.push_back(Factors[LastIdx].Base);
1662    do {
1663      InnerProduct.push_back(Factors[Idx].Base);
1664      ++Idx;
1665    } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
1666
1667    // Reset the base value of the first factor to the new expression tree.
1668    // We'll remove all the factors with the same power in a second pass.
1669    Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
1670    if (Instruction *MI = dyn_cast<Instruction>(M))
1671      RedoInsts.insert(MI);
1672
1673    LastIdx = Idx;
1674  }
1675  // Unique factors with equal powers -- we've folded them into the first one's
1676  // base.
1677  Factors.erase(std::unique(Factors.begin(), Factors.end(),
1678                            Factor::PowerEqual()),
1679                Factors.end());
1680
1681  // Iteratively collect the base of each factor with an add power into the
1682  // outer product, and halve each power in preparation for squaring the
1683  // expression.
1684  for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
1685    if (Factors[Idx].Power & 1)
1686      OuterProduct.push_back(Factors[Idx].Base);
1687    Factors[Idx].Power >>= 1;
1688  }
1689  if (Factors[0].Power) {
1690    Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
1691    OuterProduct.push_back(SquareRoot);
1692    OuterProduct.push_back(SquareRoot);
1693  }
1694  if (OuterProduct.size() == 1)
1695    return OuterProduct.front();
1696
1697  Value *V = buildMultiplyTree(Builder, OuterProduct);
1698  return V;
1699}
1700
1701Value *Reassociate::OptimizeMul(BinaryOperator *I,
1702                                SmallVectorImpl<ValueEntry> &Ops) {
1703  // We can only optimize the multiplies when there is a chain of more than
1704  // three, such that a balanced tree might require fewer total multiplies.
1705  if (Ops.size() < 4)
1706    return 0;
1707
1708  // Try to turn linear trees of multiplies without other uses of the
1709  // intermediate stages into minimal multiply DAGs with perfect sub-expression
1710  // re-use.
1711  SmallVector<Factor, 4> Factors;
1712  if (!collectMultiplyFactors(Ops, Factors))
1713    return 0; // All distinct factors, so nothing left for us to do.
1714
1715  IRBuilder<> Builder(I);
1716  Value *V = buildMinimalMultiplyDAG(Builder, Factors);
1717  if (Ops.empty())
1718    return V;
1719
1720  ValueEntry NewEntry = ValueEntry(getRank(V), V);
1721  Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry);
1722  return 0;
1723}
1724
1725Value *Reassociate::OptimizeExpression(BinaryOperator *I,
1726                                       SmallVectorImpl<ValueEntry> &Ops) {
1727  // Now that we have the linearized expression tree, try to optimize it.
1728  // Start by folding any constants that we found.
1729  Constant *Cst = 0;
1730  unsigned Opcode = I->getOpcode();
1731  while (!Ops.empty() && isa<Constant>(Ops.back().Op)) {
1732    Constant *C = cast<Constant>(Ops.pop_back_val().Op);
1733    Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C;
1734  }
1735  // If there was nothing but constants then we are done.
1736  if (Ops.empty())
1737    return Cst;
1738
1739  // Put the combined constant back at the end of the operand list, except if
1740  // there is no point.  For example, an add of 0 gets dropped here, while a
1741  // multiplication by zero turns the whole expression into zero.
1742  if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) {
1743    if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType()))
1744      return Cst;
1745    Ops.push_back(ValueEntry(0, Cst));
1746  }
1747
1748  if (Ops.size() == 1) return Ops[0].Op;
1749
1750  // Handle destructive annihilation due to identities between elements in the
1751  // argument list here.
1752  unsigned NumOps = Ops.size();
1753  switch (Opcode) {
1754  default: break;
1755  case Instruction::And:
1756  case Instruction::Or:
1757    if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
1758      return Result;
1759    break;
1760
1761  case Instruction::Xor:
1762    if (Value *Result = OptimizeXor(I, Ops))
1763      return Result;
1764    break;
1765
1766  case Instruction::Add:
1767    if (Value *Result = OptimizeAdd(I, Ops))
1768      return Result;
1769    break;
1770
1771  case Instruction::Mul:
1772    if (Value *Result = OptimizeMul(I, Ops))
1773      return Result;
1774    break;
1775  }
1776
1777  if (Ops.size() != NumOps)
1778    return OptimizeExpression(I, Ops);
1779  return 0;
1780}
1781
1782/// EraseInst - Zap the given instruction, adding interesting operands to the
1783/// work list.
1784void Reassociate::EraseInst(Instruction *I) {
1785  assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
1786  SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
1787  // Erase the dead instruction.
1788  ValueRankMap.erase(I);
1789  RedoInsts.remove(I);
1790  I->eraseFromParent();
1791  // Optimize its operands.
1792  SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
1793  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1794    if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
1795      // If this is a node in an expression tree, climb to the expression root
1796      // and add that since that's where optimization actually happens.
1797      unsigned Opcode = Op->getOpcode();
1798      while (Op->hasOneUse() && Op->use_back()->getOpcode() == Opcode &&
1799             Visited.insert(Op))
1800        Op = Op->use_back();
1801      RedoInsts.insert(Op);
1802    }
1803}
1804
1805/// OptimizeInst - Inspect and optimize the given instruction. Note that erasing
1806/// instructions is not allowed.
1807void Reassociate::OptimizeInst(Instruction *I) {
1808  // Only consider operations that we understand.
1809  if (!isa<BinaryOperator>(I))
1810    return;
1811
1812  if (I->getOpcode() == Instruction::Shl &&
1813      isa<ConstantInt>(I->getOperand(1)))
1814    // If an operand of this shift is a reassociable multiply, or if the shift
1815    // is used by a reassociable multiply or add, turn into a multiply.
1816    if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
1817        (I->hasOneUse() &&
1818         (isReassociableOp(I->use_back(), Instruction::Mul) ||
1819          isReassociableOp(I->use_back(), Instruction::Add)))) {
1820      Instruction *NI = ConvertShiftToMul(I);
1821      RedoInsts.insert(I);
1822      MadeChange = true;
1823      I = NI;
1824    }
1825
1826  // Floating point binary operators are not associative, but we can still
1827  // commute (some) of them, to canonicalize the order of their operands.
1828  // This can potentially expose more CSE opportunities, and makes writing
1829  // other transformations simpler.
1830  if ((I->getType()->isFloatingPointTy() || I->getType()->isVectorTy())) {
1831    // FAdd and FMul can be commuted.
1832    if (I->getOpcode() != Instruction::FMul &&
1833        I->getOpcode() != Instruction::FAdd)
1834      return;
1835
1836    Value *LHS = I->getOperand(0);
1837    Value *RHS = I->getOperand(1);
1838    unsigned LHSRank = getRank(LHS);
1839    unsigned RHSRank = getRank(RHS);
1840
1841    // Sort the operands by rank.
1842    if (RHSRank < LHSRank) {
1843      I->setOperand(0, RHS);
1844      I->setOperand(1, LHS);
1845    }
1846
1847    return;
1848  }
1849
1850  // Do not reassociate boolean (i1) expressions.  We want to preserve the
1851  // original order of evaluation for short-circuited comparisons that
1852  // SimplifyCFG has folded to AND/OR expressions.  If the expression
1853  // is not further optimized, it is likely to be transformed back to a
1854  // short-circuited form for code gen, and the source order may have been
1855  // optimized for the most likely conditions.
1856  if (I->getType()->isIntegerTy(1))
1857    return;
1858
1859  // If this is a subtract instruction which is not already in negate form,
1860  // see if we can convert it to X+-Y.
1861  if (I->getOpcode() == Instruction::Sub) {
1862    if (ShouldBreakUpSubtract(I)) {
1863      Instruction *NI = BreakUpSubtract(I);
1864      RedoInsts.insert(I);
1865      MadeChange = true;
1866      I = NI;
1867    } else if (BinaryOperator::isNeg(I)) {
1868      // Otherwise, this is a negation.  See if the operand is a multiply tree
1869      // and if this is not an inner node of a multiply tree.
1870      if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
1871          (!I->hasOneUse() ||
1872           !isReassociableOp(I->use_back(), Instruction::Mul))) {
1873        Instruction *NI = LowerNegateToMultiply(I);
1874        RedoInsts.insert(I);
1875        MadeChange = true;
1876        I = NI;
1877      }
1878    }
1879  }
1880
1881  // If this instruction is an associative binary operator, process it.
1882  if (!I->isAssociative()) return;
1883  BinaryOperator *BO = cast<BinaryOperator>(I);
1884
1885  // If this is an interior node of a reassociable tree, ignore it until we
1886  // get to the root of the tree, to avoid N^2 analysis.
1887  unsigned Opcode = BO->getOpcode();
1888  if (BO->hasOneUse() && BO->use_back()->getOpcode() == Opcode)
1889    return;
1890
1891  // If this is an add tree that is used by a sub instruction, ignore it
1892  // until we process the subtract.
1893  if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
1894      cast<Instruction>(BO->use_back())->getOpcode() == Instruction::Sub)
1895    return;
1896
1897  ReassociateExpression(BO);
1898}
1899
1900void Reassociate::ReassociateExpression(BinaryOperator *I) {
1901
1902  // First, walk the expression tree, linearizing the tree, collecting the
1903  // operand information.
1904  SmallVector<RepeatedValue, 8> Tree;
1905  MadeChange |= LinearizeExprTree(I, Tree);
1906  SmallVector<ValueEntry, 8> Ops;
1907  Ops.reserve(Tree.size());
1908  for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
1909    RepeatedValue E = Tree[i];
1910    Ops.append(E.second.getZExtValue(),
1911               ValueEntry(getRank(E.first), E.first));
1912  }
1913
1914  DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
1915
1916  // Now that we have linearized the tree to a list and have gathered all of
1917  // the operands and their ranks, sort the operands by their rank.  Use a
1918  // stable_sort so that values with equal ranks will have their relative
1919  // positions maintained (and so the compiler is deterministic).  Note that
1920  // this sorts so that the highest ranking values end up at the beginning of
1921  // the vector.
1922  std::stable_sort(Ops.begin(), Ops.end());
1923
1924  // OptimizeExpression - Now that we have the expression tree in a convenient
1925  // sorted form, optimize it globally if possible.
1926  if (Value *V = OptimizeExpression(I, Ops)) {
1927    if (V == I)
1928      // Self-referential expression in unreachable code.
1929      return;
1930    // This expression tree simplified to something that isn't a tree,
1931    // eliminate it.
1932    DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
1933    I->replaceAllUsesWith(V);
1934    if (Instruction *VI = dyn_cast<Instruction>(V))
1935      VI->setDebugLoc(I->getDebugLoc());
1936    RedoInsts.insert(I);
1937    ++NumAnnihil;
1938    return;
1939  }
1940
1941  // We want to sink immediates as deeply as possible except in the case where
1942  // this is a multiply tree used only by an add, and the immediate is a -1.
1943  // In this case we reassociate to put the negation on the outside so that we
1944  // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
1945  if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
1946      cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
1947      isa<ConstantInt>(Ops.back().Op) &&
1948      cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
1949    ValueEntry Tmp = Ops.pop_back_val();
1950    Ops.insert(Ops.begin(), Tmp);
1951  }
1952
1953  DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
1954
1955  if (Ops.size() == 1) {
1956    if (Ops[0].Op == I)
1957      // Self-referential expression in unreachable code.
1958      return;
1959
1960    // This expression tree simplified to something that isn't a tree,
1961    // eliminate it.
1962    I->replaceAllUsesWith(Ops[0].Op);
1963    if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
1964      OI->setDebugLoc(I->getDebugLoc());
1965    RedoInsts.insert(I);
1966    return;
1967  }
1968
1969  // Now that we ordered and optimized the expressions, splat them back into
1970  // the expression tree, removing any unneeded nodes.
1971  RewriteExprTree(I, Ops);
1972}
1973
1974bool Reassociate::runOnFunction(Function &F) {
1975  // Calculate the rank map for F
1976  BuildRankMap(F);
1977
1978  MadeChange = false;
1979  for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
1980    // Optimize every instruction in the basic block.
1981    for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE; )
1982      if (isInstructionTriviallyDead(II)) {
1983        EraseInst(II++);
1984      } else {
1985        OptimizeInst(II);
1986        assert(II->getParent() == BI && "Moved to a different block!");
1987        ++II;
1988      }
1989
1990    // If this produced extra instructions to optimize, handle them now.
1991    while (!RedoInsts.empty()) {
1992      Instruction *I = RedoInsts.pop_back_val();
1993      if (isInstructionTriviallyDead(I))
1994        EraseInst(I);
1995      else
1996        OptimizeInst(I);
1997    }
1998  }
1999
2000  // We are done with the rank map.
2001  RankMap.clear();
2002  ValueRankMap.clear();
2003
2004  return MadeChange;
2005}
2006