Reassociate.cpp revision 249423
158551Skris//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
258551Skris//
3228060Sbapt//                     The LLVM Compiler Infrastructure
4228060Sbapt//
5228060Sbapt// This file is distributed under the University of Illinois Open Source
658551Skris// License. See LICENSE.TXT for details.
7228060Sbapt//
858551Skris//===----------------------------------------------------------------------===//
9228060Sbapt//
10228060Sbapt// This pass reassociates commutative expressions in an order that is designed
11228060Sbapt// to promote better constant propagation, GCSE, LICM, PRE, etc.
12228060Sbapt//
1358551Skris// For example: 4 + (x + 5) -> x + (4 + 5)
14228060Sbapt//
15228060Sbapt// In the implementation of this algorithm, constants are assigned rank = 0,
16228060Sbapt// function arguments are rank = 1, and other values are assigned ranks
17228060Sbapt// corresponding to the reverse post order traversal of current function
1858551Skris// (starting at 2), which effectively gives values in deep loops higher rank
19228060Sbapt// than values not in loops.
20228060Sbapt//
21228060Sbapt//===----------------------------------------------------------------------===//
22228060Sbapt
2358551Skris#define DEBUG_TYPE "reassociate"
24228060Sbapt#include "llvm/Transforms/Scalar.h"
25228060Sbapt#include "llvm/ADT/DenseMap.h"
26228060Sbapt#include "llvm/ADT/PostOrderIterator.h"
27228060Sbapt#include "llvm/ADT/STLExtras.h"
28228060Sbapt#include "llvm/ADT/SetVector.h"
29#include "llvm/ADT/Statistic.h"
30#include "llvm/Assembly/Writer.h"
31#include "llvm/IR/Constants.h"
32#include "llvm/IR/DerivedTypes.h"
33#include "llvm/IR/Function.h"
34#include "llvm/IR/IRBuilder.h"
35#include "llvm/IR/Instructions.h"
36#include "llvm/IR/IntrinsicInst.h"
37#include "llvm/Pass.h"
38#include "llvm/Support/CFG.h"
39#include "llvm/Support/Debug.h"
40#include "llvm/Support/ValueHandle.h"
41#include "llvm/Support/raw_ostream.h"
42#include "llvm/Transforms/Utils/Local.h"
43#include <algorithm>
44using namespace llvm;
45
46STATISTIC(NumChanged, "Number of insts reassociated");
47STATISTIC(NumAnnihil, "Number of expr tree annihilated");
48STATISTIC(NumFactor , "Number of multiplies factored");
49
50namespace {
51  struct ValueEntry {
52    unsigned Rank;
53    Value *Op;
54    ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
55  };
56  inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
57    return LHS.Rank > RHS.Rank;   // Sort so that highest rank goes to start.
58  }
59}
60
61#ifndef NDEBUG
62/// PrintOps - Print out the expression identified in the Ops list.
63///
64static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
65  Module *M = I->getParent()->getParent()->getParent();
66  dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
67       << *Ops[0].Op->getType() << '\t';
68  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
69    dbgs() << "[ ";
70    WriteAsOperand(dbgs(), Ops[i].Op, false, M);
71    dbgs() << ", #" << Ops[i].Rank << "] ";
72  }
73}
74#endif
75
76namespace {
77  /// \brief Utility class representing a base and exponent pair which form one
78  /// factor of some product.
79  struct Factor {
80    Value *Base;
81    unsigned Power;
82
83    Factor(Value *Base, unsigned Power) : Base(Base), Power(Power) {}
84
85    /// \brief Sort factors by their Base.
86    struct BaseSorter {
87      bool operator()(const Factor &LHS, const Factor &RHS) {
88        return LHS.Base < RHS.Base;
89      }
90    };
91
92    /// \brief Compare factors for equal bases.
93    struct BaseEqual {
94      bool operator()(const Factor &LHS, const Factor &RHS) {
95        return LHS.Base == RHS.Base;
96      }
97    };
98
99    /// \brief Sort factors in descending order by their power.
100    struct PowerDescendingSorter {
101      bool operator()(const Factor &LHS, const Factor &RHS) {
102        return LHS.Power > RHS.Power;
103      }
104    };
105
106    /// \brief Compare factors for equal powers.
107    struct PowerEqual {
108      bool operator()(const Factor &LHS, const Factor &RHS) {
109        return LHS.Power == RHS.Power;
110      }
111    };
112  };
113
114  /// Utility class representing a non-constant Xor-operand. We classify
115  /// non-constant Xor-Operands into two categories:
116  ///  C1) The operand is in the form "X & C", where C is a constant and C != ~0
117  ///  C2)
118  ///    C2.1) The operand is in the form of "X | C", where C is a non-zero
119  ///          constant.
120  ///    C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this
121  ///          operand as "E | 0"
122  class XorOpnd {
123  public:
124    XorOpnd(Value *V);
125    const XorOpnd &operator=(const XorOpnd &That);
126
127    bool isInvalid() const { return SymbolicPart == 0; }
128    bool isOrExpr() const { return isOr; }
129    Value *getValue() const { return OrigVal; }
130    Value *getSymbolicPart() const { return SymbolicPart; }
131    unsigned getSymbolicRank() const { return SymbolicRank; }
132    const APInt &getConstPart() const { return ConstPart; }
133
134    void Invalidate() { SymbolicPart = OrigVal = 0; }
135    void setSymbolicRank(unsigned R) { SymbolicRank = R; }
136
137    // Sort the XorOpnd-Pointer in ascending order of symbolic-value-rank.
138    // The purpose is twofold:
139    // 1) Cluster together the operands sharing the same symbolic-value.
140    // 2) Operand having smaller symbolic-value-rank is permuted earlier, which
141    //   could potentially shorten crital path, and expose more loop-invariants.
142    //   Note that values' rank are basically defined in RPO order (FIXME).
143    //   So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier
144    //   than Y which is defined earlier than Z. Permute "x | 1", "Y & 2",
145    //   "z" in the order of X-Y-Z is better than any other orders.
146    class PtrSortFunctor {
147      ArrayRef<XorOpnd> A;
148
149    public:
150      PtrSortFunctor(ArrayRef<XorOpnd> Array) : A(Array) {}
151      bool operator()(unsigned LHSIndex, unsigned RHSIndex) {
152        return A[LHSIndex].getSymbolicRank() < A[RHSIndex].getSymbolicRank();
153      }
154    };
155  private:
156    Value *OrigVal;
157    Value *SymbolicPart;
158    APInt ConstPart;
159    unsigned SymbolicRank;
160    bool isOr;
161  };
162}
163
164namespace {
165  class Reassociate : public FunctionPass {
166    DenseMap<BasicBlock*, unsigned> RankMap;
167    DenseMap<AssertingVH<Value>, unsigned> ValueRankMap;
168    SetVector<AssertingVH<Instruction> > RedoInsts;
169    bool MadeChange;
170  public:
171    static char ID; // Pass identification, replacement for typeid
172    Reassociate() : FunctionPass(ID) {
173      initializeReassociatePass(*PassRegistry::getPassRegistry());
174    }
175
176    bool runOnFunction(Function &F);
177
178    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
179      AU.setPreservesCFG();
180    }
181  private:
182    void BuildRankMap(Function &F);
183    unsigned getRank(Value *V);
184    void ReassociateExpression(BinaryOperator *I);
185    void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
186    Value *OptimizeExpression(BinaryOperator *I,
187                              SmallVectorImpl<ValueEntry> &Ops);
188    Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
189    Value *OptimizeXor(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
190    bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, APInt &ConstOpnd,
191                        Value *&Res);
192    bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2,
193                        APInt &ConstOpnd, Value *&Res);
194    bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
195                                SmallVectorImpl<Factor> &Factors);
196    Value *buildMinimalMultiplyDAG(IRBuilder<> &Builder,
197                                   SmallVectorImpl<Factor> &Factors);
198    Value *OptimizeMul(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
199    Value *RemoveFactorFromExpression(Value *V, Value *Factor);
200    void EraseInst(Instruction *I);
201    void OptimizeInst(Instruction *I);
202  };
203}
204
205XorOpnd::XorOpnd(Value *V) {
206  assert(!isa<ConstantInt>(V) && "No ConstantInt");
207  OrigVal = V;
208  Instruction *I = dyn_cast<Instruction>(V);
209  SymbolicRank = 0;
210
211  if (I && (I->getOpcode() == Instruction::Or ||
212            I->getOpcode() == Instruction::And)) {
213    Value *V0 = I->getOperand(0);
214    Value *V1 = I->getOperand(1);
215    if (isa<ConstantInt>(V0))
216      std::swap(V0, V1);
217
218    if (ConstantInt *C = dyn_cast<ConstantInt>(V1)) {
219      ConstPart = C->getValue();
220      SymbolicPart = V0;
221      isOr = (I->getOpcode() == Instruction::Or);
222      return;
223    }
224  }
225
226  // view the operand as "V | 0"
227  SymbolicPart = V;
228  ConstPart = APInt::getNullValue(V->getType()->getIntegerBitWidth());
229  isOr = true;
230}
231
232const XorOpnd &XorOpnd::operator=(const XorOpnd &That) {
233  OrigVal = That.OrigVal;
234  SymbolicPart = That.SymbolicPart;
235  ConstPart = That.ConstPart;
236  SymbolicRank = That.SymbolicRank;
237  isOr = That.isOr;
238  return *this;
239}
240
241char Reassociate::ID = 0;
242INITIALIZE_PASS(Reassociate, "reassociate",
243                "Reassociate expressions", false, false)
244
245// Public interface to the Reassociate pass
246FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
247
248/// isReassociableOp - Return true if V is an instruction of the specified
249/// opcode and if it only has one use.
250static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
251  if (V->hasOneUse() && isa<Instruction>(V) &&
252      cast<Instruction>(V)->getOpcode() == Opcode)
253    return cast<BinaryOperator>(V);
254  return 0;
255}
256
257static bool isUnmovableInstruction(Instruction *I) {
258  if (I->getOpcode() == Instruction::PHI ||
259      I->getOpcode() == Instruction::LandingPad ||
260      I->getOpcode() == Instruction::Alloca ||
261      I->getOpcode() == Instruction::Load ||
262      I->getOpcode() == Instruction::Invoke ||
263      (I->getOpcode() == Instruction::Call &&
264       !isa<DbgInfoIntrinsic>(I)) ||
265      I->getOpcode() == Instruction::UDiv ||
266      I->getOpcode() == Instruction::SDiv ||
267      I->getOpcode() == Instruction::FDiv ||
268      I->getOpcode() == Instruction::URem ||
269      I->getOpcode() == Instruction::SRem ||
270      I->getOpcode() == Instruction::FRem)
271    return true;
272  return false;
273}
274
275void Reassociate::BuildRankMap(Function &F) {
276  unsigned i = 2;
277
278  // Assign distinct ranks to function arguments
279  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
280    ValueRankMap[&*I] = ++i;
281
282  ReversePostOrderTraversal<Function*> RPOT(&F);
283  for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
284         E = RPOT.end(); I != E; ++I) {
285    BasicBlock *BB = *I;
286    unsigned BBRank = RankMap[BB] = ++i << 16;
287
288    // Walk the basic block, adding precomputed ranks for any instructions that
289    // we cannot move.  This ensures that the ranks for these instructions are
290    // all different in the block.
291    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
292      if (isUnmovableInstruction(I))
293        ValueRankMap[&*I] = ++BBRank;
294  }
295}
296
297unsigned Reassociate::getRank(Value *V) {
298  Instruction *I = dyn_cast<Instruction>(V);
299  if (I == 0) {
300    if (isa<Argument>(V)) return ValueRankMap[V];   // Function argument.
301    return 0;  // Otherwise it's a global or constant, rank 0.
302  }
303
304  if (unsigned Rank = ValueRankMap[I])
305    return Rank;    // Rank already known?
306
307  // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
308  // we can reassociate expressions for code motion!  Since we do not recurse
309  // for PHI nodes, we cannot have infinite recursion here, because there
310  // cannot be loops in the value graph that do not go through PHI nodes.
311  unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
312  for (unsigned i = 0, e = I->getNumOperands();
313       i != e && Rank != MaxRank; ++i)
314    Rank = std::max(Rank, getRank(I->getOperand(i)));
315
316  // If this is a not or neg instruction, do not count it for rank.  This
317  // assures us that X and ~X will have the same rank.
318  if (!I->getType()->isIntegerTy() ||
319      (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
320    ++Rank;
321
322  //DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = "
323  //     << Rank << "\n");
324
325  return ValueRankMap[I] = Rank;
326}
327
328/// LowerNegateToMultiply - Replace 0-X with X*-1.
329///
330static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
331  Constant *Cst = Constant::getAllOnesValue(Neg->getType());
332
333  BinaryOperator *Res =
334    BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg);
335  Neg->setOperand(1, Constant::getNullValue(Neg->getType())); // Drop use of op.
336  Res->takeName(Neg);
337  Neg->replaceAllUsesWith(Res);
338  Res->setDebugLoc(Neg->getDebugLoc());
339  return Res;
340}
341
342/// CarmichaelShift - Returns k such that lambda(2^Bitwidth) = 2^k, where lambda
343/// is the Carmichael function. This means that x^(2^k) === 1 mod 2^Bitwidth for
344/// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
345/// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
346/// even x in Bitwidth-bit arithmetic.
347static unsigned CarmichaelShift(unsigned Bitwidth) {
348  if (Bitwidth < 3)
349    return Bitwidth - 1;
350  return Bitwidth - 2;
351}
352
353/// IncorporateWeight - Add the extra weight 'RHS' to the existing weight 'LHS',
354/// reducing the combined weight using any special properties of the operation.
355/// The existing weight LHS represents the computation X op X op ... op X where
356/// X occurs LHS times.  The combined weight represents  X op X op ... op X with
357/// X occurring LHS + RHS times.  If op is "Xor" for example then the combined
358/// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
359/// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
360static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
361  // If we were working with infinite precision arithmetic then the combined
362  // weight would be LHS + RHS.  But we are using finite precision arithmetic,
363  // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
364  // for nilpotent operations and addition, but not for idempotent operations
365  // and multiplication), so it is important to correctly reduce the combined
366  // weight back into range if wrapping would be wrong.
367
368  // If RHS is zero then the weight didn't change.
369  if (RHS.isMinValue())
370    return;
371  // If LHS is zero then the combined weight is RHS.
372  if (LHS.isMinValue()) {
373    LHS = RHS;
374    return;
375  }
376  // From this point on we know that neither LHS nor RHS is zero.
377
378  if (Instruction::isIdempotent(Opcode)) {
379    // Idempotent means X op X === X, so any non-zero weight is equivalent to a
380    // weight of 1.  Keeping weights at zero or one also means that wrapping is
381    // not a problem.
382    assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
383    return; // Return a weight of 1.
384  }
385  if (Instruction::isNilpotent(Opcode)) {
386    // Nilpotent means X op X === 0, so reduce weights modulo 2.
387    assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
388    LHS = 0; // 1 + 1 === 0 modulo 2.
389    return;
390  }
391  if (Opcode == Instruction::Add) {
392    // TODO: Reduce the weight by exploiting nsw/nuw?
393    LHS += RHS;
394    return;
395  }
396
397  assert(Opcode == Instruction::Mul && "Unknown associative operation!");
398  unsigned Bitwidth = LHS.getBitWidth();
399  // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
400  // can be replaced with W-CM.  That's because x^W=x^(W-CM) for every Bitwidth
401  // bit number x, since either x is odd in which case x^CM = 1, or x is even in
402  // which case both x^W and x^(W - CM) are zero.  By subtracting off multiples
403  // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
404  // which by a happy accident means that they can always be represented using
405  // Bitwidth bits.
406  // TODO: Reduce the weight by exploiting nsw/nuw?  (Could do much better than
407  // the Carmichael number).
408  if (Bitwidth > 3) {
409    /// CM - The value of Carmichael's lambda function.
410    APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
411    // Any weight W >= Threshold can be replaced with W - CM.
412    APInt Threshold = CM + Bitwidth;
413    assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!");
414    // For Bitwidth 4 or more the following sum does not overflow.
415    LHS += RHS;
416    while (LHS.uge(Threshold))
417      LHS -= CM;
418  } else {
419    // To avoid problems with overflow do everything the same as above but using
420    // a larger type.
421    unsigned CM = 1U << CarmichaelShift(Bitwidth);
422    unsigned Threshold = CM + Bitwidth;
423    assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&
424           "Weights not reduced!");
425    unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
426    while (Total >= Threshold)
427      Total -= CM;
428    LHS = Total;
429  }
430}
431
432typedef std::pair<Value*, APInt> RepeatedValue;
433
434/// LinearizeExprTree - Given an associative binary expression, return the leaf
435/// nodes in Ops along with their weights (how many times the leaf occurs).  The
436/// original expression is the same as
437///   (Ops[0].first op Ops[0].first op ... Ops[0].first)  <- Ops[0].second times
438/// op
439///   (Ops[1].first op Ops[1].first op ... Ops[1].first)  <- Ops[1].second times
440/// op
441///   ...
442/// op
443///   (Ops[N].first op Ops[N].first op ... Ops[N].first)  <- Ops[N].second times
444///
445/// Note that the values Ops[0].first, ..., Ops[N].first are all distinct.
446///
447/// This routine may modify the function, in which case it returns 'true'.  The
448/// changes it makes may well be destructive, changing the value computed by 'I'
449/// to something completely different.  Thus if the routine returns 'true' then
450/// you MUST either replace I with a new expression computed from the Ops array,
451/// or use RewriteExprTree to put the values back in.
452///
453/// A leaf node is either not a binary operation of the same kind as the root
454/// node 'I' (i.e. is not a binary operator at all, or is, but with a different
455/// opcode), or is the same kind of binary operator but has a use which either
456/// does not belong to the expression, or does belong to the expression but is
457/// a leaf node.  Every leaf node has at least one use that is a non-leaf node
458/// of the expression, while for non-leaf nodes (except for the root 'I') every
459/// use is a non-leaf node of the expression.
460///
461/// For example:
462///           expression graph        node names
463///
464///                     +        |        I
465///                    / \       |
466///                   +   +      |      A,  B
467///                  / \ / \     |
468///                 *   +   *    |    C,  D,  E
469///                / \ / \ / \   |
470///                   +   *      |      F,  G
471///
472/// The leaf nodes are C, E, F and G.  The Ops array will contain (maybe not in
473/// that order) (C, 1), (E, 1), (F, 2), (G, 2).
474///
475/// The expression is maximal: if some instruction is a binary operator of the
476/// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
477/// then the instruction also belongs to the expression, is not a leaf node of
478/// it, and its operands also belong to the expression (but may be leaf nodes).
479///
480/// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
481/// order to ensure that every non-root node in the expression has *exactly one*
482/// use by a non-leaf node of the expression.  This destruction means that the
483/// caller MUST either replace 'I' with a new expression or use something like
484/// RewriteExprTree to put the values back in if the routine indicates that it
485/// made a change by returning 'true'.
486///
487/// In the above example either the right operand of A or the left operand of B
488/// will be replaced by undef.  If it is B's operand then this gives:
489///
490///                     +        |        I
491///                    / \       |
492///                   +   +      |      A,  B - operand of B replaced with undef
493///                  / \   \     |
494///                 *   +   *    |    C,  D,  E
495///                / \ / \ / \   |
496///                   +   *      |      F,  G
497///
498/// Note that such undef operands can only be reached by passing through 'I'.
499/// For example, if you visit operands recursively starting from a leaf node
500/// then you will never see such an undef operand unless you get back to 'I',
501/// which requires passing through a phi node.
502///
503/// Note that this routine may also mutate binary operators of the wrong type
504/// that have all uses inside the expression (i.e. only used by non-leaf nodes
505/// of the expression) if it can turn them into binary operators of the right
506/// type and thus make the expression bigger.
507
508static bool LinearizeExprTree(BinaryOperator *I,
509                              SmallVectorImpl<RepeatedValue> &Ops) {
510  DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
511  unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
512  unsigned Opcode = I->getOpcode();
513  assert(Instruction::isAssociative(Opcode) &&
514         Instruction::isCommutative(Opcode) &&
515         "Expected an associative and commutative operation!");
516
517  // Visit all operands of the expression, keeping track of their weight (the
518  // number of paths from the expression root to the operand, or if you like
519  // the number of times that operand occurs in the linearized expression).
520  // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
521  // while A has weight two.
522
523  // Worklist of non-leaf nodes (their operands are in the expression too) along
524  // with their weights, representing a certain number of paths to the operator.
525  // If an operator occurs in the worklist multiple times then we found multiple
526  // ways to get to it.
527  SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight)
528  Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
529  bool MadeChange = false;
530
531  // Leaves of the expression are values that either aren't the right kind of
532  // operation (eg: a constant, or a multiply in an add tree), or are, but have
533  // some uses that are not inside the expression.  For example, in I = X + X,
534  // X = A + B, the value X has two uses (by I) that are in the expression.  If
535  // X has any other uses, for example in a return instruction, then we consider
536  // X to be a leaf, and won't analyze it further.  When we first visit a value,
537  // if it has more than one use then at first we conservatively consider it to
538  // be a leaf.  Later, as the expression is explored, we may discover some more
539  // uses of the value from inside the expression.  If all uses turn out to be
540  // from within the expression (and the value is a binary operator of the right
541  // kind) then the value is no longer considered to be a leaf, and its operands
542  // are explored.
543
544  // Leaves - Keeps track of the set of putative leaves as well as the number of
545  // paths to each leaf seen so far.
546  typedef DenseMap<Value*, APInt> LeafMap;
547  LeafMap Leaves; // Leaf -> Total weight so far.
548  SmallVector<Value*, 8> LeafOrder; // Ensure deterministic leaf output order.
549
550#ifndef NDEBUG
551  SmallPtrSet<Value*, 8> Visited; // For sanity checking the iteration scheme.
552#endif
553  while (!Worklist.empty()) {
554    std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val();
555    I = P.first; // We examine the operands of this binary operator.
556
557    for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands.
558      Value *Op = I->getOperand(OpIdx);
559      APInt Weight = P.second; // Number of paths to this operand.
560      DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
561      assert(!Op->use_empty() && "No uses, so how did we get to it?!");
562
563      // If this is a binary operation of the right kind with only one use then
564      // add its operands to the expression.
565      if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
566        assert(Visited.insert(Op) && "Not first visit!");
567        DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
568        Worklist.push_back(std::make_pair(BO, Weight));
569        continue;
570      }
571
572      // Appears to be a leaf.  Is the operand already in the set of leaves?
573      LeafMap::iterator It = Leaves.find(Op);
574      if (It == Leaves.end()) {
575        // Not in the leaf map.  Must be the first time we saw this operand.
576        assert(Visited.insert(Op) && "Not first visit!");
577        if (!Op->hasOneUse()) {
578          // This value has uses not accounted for by the expression, so it is
579          // not safe to modify.  Mark it as being a leaf.
580          DEBUG(dbgs() << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
581          LeafOrder.push_back(Op);
582          Leaves[Op] = Weight;
583          continue;
584        }
585        // No uses outside the expression, try morphing it.
586      } else if (It != Leaves.end()) {
587        // Already in the leaf map.
588        assert(Visited.count(Op) && "In leaf map but not visited!");
589
590        // Update the number of paths to the leaf.
591        IncorporateWeight(It->second, Weight, Opcode);
592
593#if 0   // TODO: Re-enable once PR13021 is fixed.
594        // The leaf already has one use from inside the expression.  As we want
595        // exactly one such use, drop this new use of the leaf.
596        assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
597        I->setOperand(OpIdx, UndefValue::get(I->getType()));
598        MadeChange = true;
599
600        // If the leaf is a binary operation of the right kind and we now see
601        // that its multiple original uses were in fact all by nodes belonging
602        // to the expression, then no longer consider it to be a leaf and add
603        // its operands to the expression.
604        if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
605          DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n");
606          Worklist.push_back(std::make_pair(BO, It->second));
607          Leaves.erase(It);
608          continue;
609        }
610#endif
611
612        // If we still have uses that are not accounted for by the expression
613        // then it is not safe to modify the value.
614        if (!Op->hasOneUse())
615          continue;
616
617        // No uses outside the expression, try morphing it.
618        Weight = It->second;
619        Leaves.erase(It); // Since the value may be morphed below.
620      }
621
622      // At this point we have a value which, first of all, is not a binary
623      // expression of the right kind, and secondly, is only used inside the
624      // expression.  This means that it can safely be modified.  See if we
625      // can usefully morph it into an expression of the right kind.
626      assert((!isa<Instruction>(Op) ||
627              cast<Instruction>(Op)->getOpcode() != Opcode) &&
628             "Should have been handled above!");
629      assert(Op->hasOneUse() && "Has uses outside the expression tree!");
630
631      // If this is a multiply expression, turn any internal negations into
632      // multiplies by -1 so they can be reassociated.
633      BinaryOperator *BO = dyn_cast<BinaryOperator>(Op);
634      if (Opcode == Instruction::Mul && BO && BinaryOperator::isNeg(BO)) {
635        DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
636        BO = LowerNegateToMultiply(BO);
637        DEBUG(dbgs() << *BO << 'n');
638        Worklist.push_back(std::make_pair(BO, Weight));
639        MadeChange = true;
640        continue;
641      }
642
643      // Failed to morph into an expression of the right type.  This really is
644      // a leaf.
645      DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
646      assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
647      LeafOrder.push_back(Op);
648      Leaves[Op] = Weight;
649    }
650  }
651
652  // The leaves, repeated according to their weights, represent the linearized
653  // form of the expression.
654  for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) {
655    Value *V = LeafOrder[i];
656    LeafMap::iterator It = Leaves.find(V);
657    if (It == Leaves.end())
658      // Node initially thought to be a leaf wasn't.
659      continue;
660    assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
661    APInt Weight = It->second;
662    if (Weight.isMinValue())
663      // Leaf already output or weight reduction eliminated it.
664      continue;
665    // Ensure the leaf is only output once.
666    It->second = 0;
667    Ops.push_back(std::make_pair(V, Weight));
668  }
669
670  // For nilpotent operations or addition there may be no operands, for example
671  // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
672  // in both cases the weight reduces to 0 causing the value to be skipped.
673  if (Ops.empty()) {
674    Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
675    assert(Identity && "Associative operation without identity!");
676    Ops.push_back(std::make_pair(Identity, APInt(Bitwidth, 1)));
677  }
678
679  return MadeChange;
680}
681
682// RewriteExprTree - Now that the operands for this expression tree are
683// linearized and optimized, emit them in-order.
684void Reassociate::RewriteExprTree(BinaryOperator *I,
685                                  SmallVectorImpl<ValueEntry> &Ops) {
686  assert(Ops.size() > 1 && "Single values should be used directly!");
687
688  // Since our optimizations should never increase the number of operations, the
689  // new expression can usually be written reusing the existing binary operators
690  // from the original expression tree, without creating any new instructions,
691  // though the rewritten expression may have a completely different topology.
692  // We take care to not change anything if the new expression will be the same
693  // as the original.  If more than trivial changes (like commuting operands)
694  // were made then we are obliged to clear out any optional subclass data like
695  // nsw flags.
696
697  /// NodesToRewrite - Nodes from the original expression available for writing
698  /// the new expression into.
699  SmallVector<BinaryOperator*, 8> NodesToRewrite;
700  unsigned Opcode = I->getOpcode();
701  BinaryOperator *Op = I;
702
703  /// NotRewritable - The operands being written will be the leaves of the new
704  /// expression and must not be used as inner nodes (via NodesToRewrite) by
705  /// mistake.  Inner nodes are always reassociable, and usually leaves are not
706  /// (if they were they would have been incorporated into the expression and so
707  /// would not be leaves), so most of the time there is no danger of this.  But
708  /// in rare cases a leaf may become reassociable if an optimization kills uses
709  /// of it, or it may momentarily become reassociable during rewriting (below)
710  /// due it being removed as an operand of one of its uses.  Ensure that misuse
711  /// of leaf nodes as inner nodes cannot occur by remembering all of the future
712  /// leaves and refusing to reuse any of them as inner nodes.
713  SmallPtrSet<Value*, 8> NotRewritable;
714  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
715    NotRewritable.insert(Ops[i].Op);
716
717  // ExpressionChanged - Non-null if the rewritten expression differs from the
718  // original in some non-trivial way, requiring the clearing of optional flags.
719  // Flags are cleared from the operator in ExpressionChanged up to I inclusive.
720  BinaryOperator *ExpressionChanged = 0;
721  for (unsigned i = 0; ; ++i) {
722    // The last operation (which comes earliest in the IR) is special as both
723    // operands will come from Ops, rather than just one with the other being
724    // a subexpression.
725    if (i+2 == Ops.size()) {
726      Value *NewLHS = Ops[i].Op;
727      Value *NewRHS = Ops[i+1].Op;
728      Value *OldLHS = Op->getOperand(0);
729      Value *OldRHS = Op->getOperand(1);
730
731      if (NewLHS == OldLHS && NewRHS == OldRHS)
732        // Nothing changed, leave it alone.
733        break;
734
735      if (NewLHS == OldRHS && NewRHS == OldLHS) {
736        // The order of the operands was reversed.  Swap them.
737        DEBUG(dbgs() << "RA: " << *Op << '\n');
738        Op->swapOperands();
739        DEBUG(dbgs() << "TO: " << *Op << '\n');
740        MadeChange = true;
741        ++NumChanged;
742        break;
743      }
744
745      // The new operation differs non-trivially from the original. Overwrite
746      // the old operands with the new ones.
747      DEBUG(dbgs() << "RA: " << *Op << '\n');
748      if (NewLHS != OldLHS) {
749        BinaryOperator *BO = isReassociableOp(OldLHS, Opcode);
750        if (BO && !NotRewritable.count(BO))
751          NodesToRewrite.push_back(BO);
752        Op->setOperand(0, NewLHS);
753      }
754      if (NewRHS != OldRHS) {
755        BinaryOperator *BO = isReassociableOp(OldRHS, Opcode);
756        if (BO && !NotRewritable.count(BO))
757          NodesToRewrite.push_back(BO);
758        Op->setOperand(1, NewRHS);
759      }
760      DEBUG(dbgs() << "TO: " << *Op << '\n');
761
762      ExpressionChanged = Op;
763      MadeChange = true;
764      ++NumChanged;
765
766      break;
767    }
768
769    // Not the last operation.  The left-hand side will be a sub-expression
770    // while the right-hand side will be the current element of Ops.
771    Value *NewRHS = Ops[i].Op;
772    if (NewRHS != Op->getOperand(1)) {
773      DEBUG(dbgs() << "RA: " << *Op << '\n');
774      if (NewRHS == Op->getOperand(0)) {
775        // The new right-hand side was already present as the left operand.  If
776        // we are lucky then swapping the operands will sort out both of them.
777        Op->swapOperands();
778      } else {
779        // Overwrite with the new right-hand side.
780        BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode);
781        if (BO && !NotRewritable.count(BO))
782          NodesToRewrite.push_back(BO);
783        Op->setOperand(1, NewRHS);
784        ExpressionChanged = Op;
785      }
786      DEBUG(dbgs() << "TO: " << *Op << '\n');
787      MadeChange = true;
788      ++NumChanged;
789    }
790
791    // Now deal with the left-hand side.  If this is already an operation node
792    // from the original expression then just rewrite the rest of the expression
793    // into it.
794    BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode);
795    if (BO && !NotRewritable.count(BO)) {
796      Op = BO;
797      continue;
798    }
799
800    // Otherwise, grab a spare node from the original expression and use that as
801    // the left-hand side.  If there are no nodes left then the optimizers made
802    // an expression with more nodes than the original!  This usually means that
803    // they did something stupid but it might mean that the problem was just too
804    // hard (finding the mimimal number of multiplications needed to realize a
805    // multiplication expression is NP-complete).  Whatever the reason, smart or
806    // stupid, create a new node if there are none left.
807    BinaryOperator *NewOp;
808    if (NodesToRewrite.empty()) {
809      Constant *Undef = UndefValue::get(I->getType());
810      NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode),
811                                     Undef, Undef, "", I);
812    } else {
813      NewOp = NodesToRewrite.pop_back_val();
814    }
815
816    DEBUG(dbgs() << "RA: " << *Op << '\n');
817    Op->setOperand(0, NewOp);
818    DEBUG(dbgs() << "TO: " << *Op << '\n');
819    ExpressionChanged = Op;
820    MadeChange = true;
821    ++NumChanged;
822    Op = NewOp;
823  }
824
825  // If the expression changed non-trivially then clear out all subclass data
826  // starting from the operator specified in ExpressionChanged, and compactify
827  // the operators to just before the expression root to guarantee that the
828  // expression tree is dominated by all of Ops.
829  if (ExpressionChanged)
830    do {
831      ExpressionChanged->clearSubclassOptionalData();
832      if (ExpressionChanged == I)
833        break;
834      ExpressionChanged->moveBefore(I);
835      ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->use_begin());
836    } while (1);
837
838  // Throw away any left over nodes from the original expression.
839  for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
840    RedoInsts.insert(NodesToRewrite[i]);
841}
842
843/// NegateValue - Insert instructions before the instruction pointed to by BI,
844/// that computes the negative version of the value specified.  The negative
845/// version of the value is returned, and BI is left pointing at the instruction
846/// that should be processed next by the reassociation pass.
847static Value *NegateValue(Value *V, Instruction *BI) {
848  if (Constant *C = dyn_cast<Constant>(V))
849    return ConstantExpr::getNeg(C);
850
851  // We are trying to expose opportunity for reassociation.  One of the things
852  // that we want to do to achieve this is to push a negation as deep into an
853  // expression chain as possible, to expose the add instructions.  In practice,
854  // this means that we turn this:
855  //   X = -(A+12+C+D)   into    X = -A + -12 + -C + -D = -12 + -A + -C + -D
856  // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
857  // the constants.  We assume that instcombine will clean up the mess later if
858  // we introduce tons of unnecessary negation instructions.
859  //
860  if (BinaryOperator *I = isReassociableOp(V, Instruction::Add)) {
861    // Push the negates through the add.
862    I->setOperand(0, NegateValue(I->getOperand(0), BI));
863    I->setOperand(1, NegateValue(I->getOperand(1), BI));
864
865    // We must move the add instruction here, because the neg instructions do
866    // not dominate the old add instruction in general.  By moving it, we are
867    // assured that the neg instructions we just inserted dominate the
868    // instruction we are about to insert after them.
869    //
870    I->moveBefore(BI);
871    I->setName(I->getName()+".neg");
872    return I;
873  }
874
875  // Okay, we need to materialize a negated version of V with an instruction.
876  // Scan the use lists of V to see if we have one already.
877  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
878    User *U = *UI;
879    if (!BinaryOperator::isNeg(U)) continue;
880
881    // We found one!  Now we have to make sure that the definition dominates
882    // this use.  We do this by moving it to the entry block (if it is a
883    // non-instruction value) or right after the definition.  These negates will
884    // be zapped by reassociate later, so we don't need much finesse here.
885    BinaryOperator *TheNeg = cast<BinaryOperator>(U);
886
887    // Verify that the negate is in this function, V might be a constant expr.
888    if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
889      continue;
890
891    BasicBlock::iterator InsertPt;
892    if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
893      if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
894        InsertPt = II->getNormalDest()->begin();
895      } else {
896        InsertPt = InstInput;
897        ++InsertPt;
898      }
899      while (isa<PHINode>(InsertPt)) ++InsertPt;
900    } else {
901      InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
902    }
903    TheNeg->moveBefore(InsertPt);
904    return TheNeg;
905  }
906
907  // Insert a 'neg' instruction that subtracts the value from zero to get the
908  // negation.
909  return BinaryOperator::CreateNeg(V, V->getName() + ".neg", BI);
910}
911
912/// ShouldBreakUpSubtract - Return true if we should break up this subtract of
913/// X-Y into (X + -Y).
914static bool ShouldBreakUpSubtract(Instruction *Sub) {
915  // If this is a negation, we can't split it up!
916  if (BinaryOperator::isNeg(Sub))
917    return false;
918
919  // Don't bother to break this up unless either the LHS is an associable add or
920  // subtract or if this is only used by one.
921  if (isReassociableOp(Sub->getOperand(0), Instruction::Add) ||
922      isReassociableOp(Sub->getOperand(0), Instruction::Sub))
923    return true;
924  if (isReassociableOp(Sub->getOperand(1), Instruction::Add) ||
925      isReassociableOp(Sub->getOperand(1), Instruction::Sub))
926    return true;
927  if (Sub->hasOneUse() &&
928      (isReassociableOp(Sub->use_back(), Instruction::Add) ||
929       isReassociableOp(Sub->use_back(), Instruction::Sub)))
930    return true;
931
932  return false;
933}
934
935/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
936/// only used by an add, transform this into (X+(0-Y)) to promote better
937/// reassociation.
938static BinaryOperator *BreakUpSubtract(Instruction *Sub) {
939  // Convert a subtract into an add and a neg instruction. This allows sub
940  // instructions to be commuted with other add instructions.
941  //
942  // Calculate the negative value of Operand 1 of the sub instruction,
943  // and set it as the RHS of the add instruction we just made.
944  //
945  Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
946  BinaryOperator *New =
947    BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub);
948  Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
949  Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
950  New->takeName(Sub);
951
952  // Everyone now refers to the add instruction.
953  Sub->replaceAllUsesWith(New);
954  New->setDebugLoc(Sub->getDebugLoc());
955
956  DEBUG(dbgs() << "Negated: " << *New << '\n');
957  return New;
958}
959
960/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
961/// by one, change this into a multiply by a constant to assist with further
962/// reassociation.
963static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
964  Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
965  MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
966
967  BinaryOperator *Mul =
968    BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
969  Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op.
970  Mul->takeName(Shl);
971  Shl->replaceAllUsesWith(Mul);
972  Mul->setDebugLoc(Shl->getDebugLoc());
973  return Mul;
974}
975
976/// FindInOperandList - Scan backwards and forwards among values with the same
977/// rank as element i to see if X exists.  If X does not exist, return i.  This
978/// is useful when scanning for 'x' when we see '-x' because they both get the
979/// same rank.
980static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i,
981                                  Value *X) {
982  unsigned XRank = Ops[i].Rank;
983  unsigned e = Ops.size();
984  for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
985    if (Ops[j].Op == X)
986      return j;
987  // Scan backwards.
988  for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
989    if (Ops[j].Op == X)
990      return j;
991  return i;
992}
993
994/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
995/// and returning the result.  Insert the tree before I.
996static Value *EmitAddTreeOfValues(Instruction *I,
997                                  SmallVectorImpl<WeakVH> &Ops){
998  if (Ops.size() == 1) return Ops.back();
999
1000  Value *V1 = Ops.back();
1001  Ops.pop_back();
1002  Value *V2 = EmitAddTreeOfValues(I, Ops);
1003  return BinaryOperator::CreateAdd(V2, V1, "tmp", I);
1004}
1005
1006/// RemoveFactorFromExpression - If V is an expression tree that is a
1007/// multiplication sequence, and if this sequence contains a multiply by Factor,
1008/// remove Factor from the tree and return the new tree.
1009Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
1010  BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
1011  if (!BO) return 0;
1012
1013  SmallVector<RepeatedValue, 8> Tree;
1014  MadeChange |= LinearizeExprTree(BO, Tree);
1015  SmallVector<ValueEntry, 8> Factors;
1016  Factors.reserve(Tree.size());
1017  for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
1018    RepeatedValue E = Tree[i];
1019    Factors.append(E.second.getZExtValue(),
1020                   ValueEntry(getRank(E.first), E.first));
1021  }
1022
1023  bool FoundFactor = false;
1024  bool NeedsNegate = false;
1025  for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1026    if (Factors[i].Op == Factor) {
1027      FoundFactor = true;
1028      Factors.erase(Factors.begin()+i);
1029      break;
1030    }
1031
1032    // If this is a negative version of this factor, remove it.
1033    if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor))
1034      if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
1035        if (FC1->getValue() == -FC2->getValue()) {
1036          FoundFactor = NeedsNegate = true;
1037          Factors.erase(Factors.begin()+i);
1038          break;
1039        }
1040  }
1041
1042  if (!FoundFactor) {
1043    // Make sure to restore the operands to the expression tree.
1044    RewriteExprTree(BO, Factors);
1045    return 0;
1046  }
1047
1048  BasicBlock::iterator InsertPt = BO; ++InsertPt;
1049
1050  // If this was just a single multiply, remove the multiply and return the only
1051  // remaining operand.
1052  if (Factors.size() == 1) {
1053    RedoInsts.insert(BO);
1054    V = Factors[0].Op;
1055  } else {
1056    RewriteExprTree(BO, Factors);
1057    V = BO;
1058  }
1059
1060  if (NeedsNegate)
1061    V = BinaryOperator::CreateNeg(V, "neg", InsertPt);
1062
1063  return V;
1064}
1065
1066/// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
1067/// add its operands as factors, otherwise add V to the list of factors.
1068///
1069/// Ops is the top-level list of add operands we're trying to factor.
1070static void FindSingleUseMultiplyFactors(Value *V,
1071                                         SmallVectorImpl<Value*> &Factors,
1072                                       const SmallVectorImpl<ValueEntry> &Ops) {
1073  BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
1074  if (!BO) {
1075    Factors.push_back(V);
1076    return;
1077  }
1078
1079  // Otherwise, add the LHS and RHS to the list of factors.
1080  FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops);
1081  FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops);
1082}
1083
1084/// OptimizeAndOrXor - Optimize a series of operands to an 'and', 'or', or 'xor'
1085/// instruction.  This optimizes based on identities.  If it can be reduced to
1086/// a single Value, it is returned, otherwise the Ops list is mutated as
1087/// necessary.
1088static Value *OptimizeAndOrXor(unsigned Opcode,
1089                               SmallVectorImpl<ValueEntry> &Ops) {
1090  // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
1091  // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
1092  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1093    // First, check for X and ~X in the operand list.
1094    assert(i < Ops.size());
1095    if (BinaryOperator::isNot(Ops[i].Op)) {    // Cannot occur for ^.
1096      Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
1097      unsigned FoundX = FindInOperandList(Ops, i, X);
1098      if (FoundX != i) {
1099        if (Opcode == Instruction::And)   // ...&X&~X = 0
1100          return Constant::getNullValue(X->getType());
1101
1102        if (Opcode == Instruction::Or)    // ...|X|~X = -1
1103          return Constant::getAllOnesValue(X->getType());
1104      }
1105    }
1106
1107    // Next, check for duplicate pairs of values, which we assume are next to
1108    // each other, due to our sorting criteria.
1109    assert(i < Ops.size());
1110    if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
1111      if (Opcode == Instruction::And || Opcode == Instruction::Or) {
1112        // Drop duplicate values for And and Or.
1113        Ops.erase(Ops.begin()+i);
1114        --i; --e;
1115        ++NumAnnihil;
1116        continue;
1117      }
1118
1119      // Drop pairs of values for Xor.
1120      assert(Opcode == Instruction::Xor);
1121      if (e == 2)
1122        return Constant::getNullValue(Ops[0].Op->getType());
1123
1124      // Y ^ X^X -> Y
1125      Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1126      i -= 1; e -= 2;
1127      ++NumAnnihil;
1128    }
1129  }
1130  return 0;
1131}
1132
1133/// Helper funciton of CombineXorOpnd(). It creates a bitwise-and
1134/// instruction with the given two operands, and return the resulting
1135/// instruction. There are two special cases: 1) if the constant operand is 0,
1136/// it will return NULL. 2) if the constant is ~0, the symbolic operand will
1137/// be returned.
1138static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd,
1139                             const APInt &ConstOpnd) {
1140  if (ConstOpnd != 0) {
1141    if (!ConstOpnd.isAllOnesValue()) {
1142      LLVMContext &Ctx = Opnd->getType()->getContext();
1143      Instruction *I;
1144      I = BinaryOperator::CreateAnd(Opnd, ConstantInt::get(Ctx, ConstOpnd),
1145                                    "and.ra", InsertBefore);
1146      I->setDebugLoc(InsertBefore->getDebugLoc());
1147      return I;
1148    }
1149    return Opnd;
1150  }
1151  return 0;
1152}
1153
1154// Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd"
1155// into "R ^ C", where C would be 0, and R is a symbolic value.
1156//
1157// If it was successful, true is returned, and the "R" and "C" is returned
1158// via "Res" and "ConstOpnd", respectively; otherwise, false is returned,
1159// and both "Res" and "ConstOpnd" remain unchanged.
1160//
1161bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1162                                 APInt &ConstOpnd, Value *&Res) {
1163  // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2
1164  //                       = ((x | c1) ^ c1) ^ (c1 ^ c2)
1165  //                       = (x & ~c1) ^ (c1 ^ c2)
1166  // It is useful only when c1 == c2.
1167  if (Opnd1->isOrExpr() && Opnd1->getConstPart() != 0) {
1168    if (!Opnd1->getValue()->hasOneUse())
1169      return false;
1170
1171    const APInt &C1 = Opnd1->getConstPart();
1172    if (C1 != ConstOpnd)
1173      return false;
1174
1175    Value *X = Opnd1->getSymbolicPart();
1176    Res = createAndInstr(I, X, ~C1);
1177    // ConstOpnd was C2, now C1 ^ C2.
1178    ConstOpnd ^= C1;
1179
1180    if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1181      RedoInsts.insert(T);
1182    return true;
1183  }
1184  return false;
1185}
1186
1187
1188// Helper function of OptimizeXor(). It tries to simplify
1189// "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a
1190// symbolic value.
1191//
1192// If it was successful, true is returned, and the "R" and "C" is returned
1193// via "Res" and "ConstOpnd", respectively (If the entire expression is
1194// evaluated to a constant, the Res is set to NULL); otherwise, false is
1195// returned, and both "Res" and "ConstOpnd" remain unchanged.
1196bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2,
1197                                 APInt &ConstOpnd, Value *&Res) {
1198  Value *X = Opnd1->getSymbolicPart();
1199  if (X != Opnd2->getSymbolicPart())
1200    return false;
1201
1202  const APInt &C1 = Opnd1->getConstPart();
1203  const APInt &C2 = Opnd2->getConstPart();
1204
1205  // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.)
1206  int DeadInstNum = 1;
1207  if (Opnd1->getValue()->hasOneUse())
1208    DeadInstNum++;
1209  if (Opnd2->getValue()->hasOneUse())
1210    DeadInstNum++;
1211
1212  // Xor-Rule 2:
1213  //  (x | c1) ^ (x & c2)
1214  //   = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1
1215  //   = (x & ~c1) ^ (x & c2) ^ c1               // Xor-Rule 1
1216  //   = (x & c3) ^ c1, where c3 = ~c1 ^ c2      // Xor-rule 3
1217  //
1218  if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) {
1219    if (Opnd2->isOrExpr())
1220      std::swap(Opnd1, Opnd2);
1221
1222    APInt C3((~C1) ^ C2);
1223
1224    // Do not increase code size!
1225    if (C3 != 0 && !C3.isAllOnesValue()) {
1226      int NewInstNum = ConstOpnd != 0 ? 1 : 2;
1227      if (NewInstNum > DeadInstNum)
1228        return false;
1229    }
1230
1231    Res = createAndInstr(I, X, C3);
1232    ConstOpnd ^= C1;
1233
1234  } else if (Opnd1->isOrExpr()) {
1235    // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2
1236    //
1237    APInt C3 = C1 ^ C2;
1238
1239    // Do not increase code size
1240    if (C3 != 0 && !C3.isAllOnesValue()) {
1241      int NewInstNum = ConstOpnd != 0 ? 1 : 2;
1242      if (NewInstNum > DeadInstNum)
1243        return false;
1244    }
1245
1246    Res = createAndInstr(I, X, C3);
1247    ConstOpnd ^= C3;
1248  } else {
1249    // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2))
1250    //
1251    APInt C3 = C1 ^ C2;
1252    Res = createAndInstr(I, X, C3);
1253  }
1254
1255  // Put the original operands in the Redo list; hope they will be deleted
1256  // as dead code.
1257  if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1258    RedoInsts.insert(T);
1259  if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue()))
1260    RedoInsts.insert(T);
1261
1262  return true;
1263}
1264
1265/// Optimize a series of operands to an 'xor' instruction. If it can be reduced
1266/// to a single Value, it is returned, otherwise the Ops list is mutated as
1267/// necessary.
1268Value *Reassociate::OptimizeXor(Instruction *I,
1269                                SmallVectorImpl<ValueEntry> &Ops) {
1270  if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops))
1271    return V;
1272
1273  if (Ops.size() == 1)
1274    return 0;
1275
1276  SmallVector<XorOpnd, 8> Opnds;
1277  SmallVector<unsigned, 8> OpndIndices;
1278  Type *Ty = Ops[0].Op->getType();
1279  APInt ConstOpnd(Ty->getIntegerBitWidth(), 0);
1280
1281  // Step 1: Convert ValueEntry to XorOpnd
1282  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1283    Value *V = Ops[i].Op;
1284    if (!isa<ConstantInt>(V)) {
1285      XorOpnd O(V);
1286      O.setSymbolicRank(getRank(O.getSymbolicPart()));
1287      Opnds.push_back(O);
1288      OpndIndices.push_back(Opnds.size() - 1);
1289    } else
1290      ConstOpnd ^= cast<ConstantInt>(V)->getValue();
1291  }
1292
1293  // Step 2: Sort the Xor-Operands in a way such that the operands containing
1294  //  the same symbolic value cluster together. For instance, the input operand
1295  //  sequence ("x | 123", "y & 456", "x & 789") will be sorted into:
1296  //  ("x | 123", "x & 789", "y & 456").
1297  std::sort(OpndIndices.begin(), OpndIndices.end(),
1298            XorOpnd::PtrSortFunctor(Opnds));
1299
1300  // Step 3: Combine adjacent operands
1301  XorOpnd *PrevOpnd = 0;
1302  bool Changed = false;
1303  for (unsigned i = 0, e = Opnds.size(); i < e; i++) {
1304    XorOpnd *CurrOpnd = &Opnds[OpndIndices[i]];
1305    // The combined value
1306    Value *CV;
1307
1308    // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd"
1309    if (ConstOpnd != 0 && CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) {
1310      Changed = true;
1311      if (CV)
1312        *CurrOpnd = XorOpnd(CV);
1313      else {
1314        CurrOpnd->Invalidate();
1315        continue;
1316      }
1317    }
1318
1319    if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) {
1320      PrevOpnd = CurrOpnd;
1321      continue;
1322    }
1323
1324    // step 3.2: When previous and current operands share the same symbolic
1325    //  value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd"
1326    //
1327    if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) {
1328      // Remove previous operand
1329      PrevOpnd->Invalidate();
1330      if (CV) {
1331        *CurrOpnd = XorOpnd(CV);
1332        PrevOpnd = CurrOpnd;
1333      } else {
1334        CurrOpnd->Invalidate();
1335        PrevOpnd = 0;
1336      }
1337      Changed = true;
1338    }
1339  }
1340
1341  // Step 4: Reassemble the Ops
1342  if (Changed) {
1343    Ops.clear();
1344    for (unsigned int i = 0, e = Opnds.size(); i < e; i++) {
1345      XorOpnd &O = Opnds[i];
1346      if (O.isInvalid())
1347        continue;
1348      ValueEntry VE(getRank(O.getValue()), O.getValue());
1349      Ops.push_back(VE);
1350    }
1351    if (ConstOpnd != 0) {
1352      Value *C = ConstantInt::get(Ty->getContext(), ConstOpnd);
1353      ValueEntry VE(getRank(C), C);
1354      Ops.push_back(VE);
1355    }
1356    int Sz = Ops.size();
1357    if (Sz == 1)
1358      return Ops.back().Op;
1359    else if (Sz == 0) {
1360      assert(ConstOpnd == 0);
1361      return ConstantInt::get(Ty->getContext(), ConstOpnd);
1362    }
1363  }
1364
1365  return 0;
1366}
1367
1368/// OptimizeAdd - Optimize a series of operands to an 'add' instruction.  This
1369/// optimizes based on identities.  If it can be reduced to a single Value, it
1370/// is returned, otherwise the Ops list is mutated as necessary.
1371Value *Reassociate::OptimizeAdd(Instruction *I,
1372                                SmallVectorImpl<ValueEntry> &Ops) {
1373  // Scan the operand lists looking for X and -X pairs.  If we find any, we
1374  // can simplify the expression. X+-X == 0.  While we're at it, scan for any
1375  // duplicates.  We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
1376  //
1377  // TODO: We could handle "X + ~X" -> "-1" if we wanted, since "-X = ~X+1".
1378  //
1379  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1380    Value *TheOp = Ops[i].Op;
1381    // Check to see if we've seen this operand before.  If so, we factor all
1382    // instances of the operand together.  Due to our sorting criteria, we know
1383    // that these need to be next to each other in the vector.
1384    if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
1385      // Rescan the list, remove all instances of this operand from the expr.
1386      unsigned NumFound = 0;
1387      do {
1388        Ops.erase(Ops.begin()+i);
1389        ++NumFound;
1390      } while (i != Ops.size() && Ops[i].Op == TheOp);
1391
1392      DEBUG(errs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
1393      ++NumFactor;
1394
1395      // Insert a new multiply.
1396      Value *Mul = ConstantInt::get(cast<IntegerType>(I->getType()), NumFound);
1397      Mul = BinaryOperator::CreateMul(TheOp, Mul, "factor", I);
1398
1399      // Now that we have inserted a multiply, optimize it. This allows us to
1400      // handle cases that require multiple factoring steps, such as this:
1401      // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
1402      RedoInsts.insert(cast<Instruction>(Mul));
1403
1404      // If every add operand was a duplicate, return the multiply.
1405      if (Ops.empty())
1406        return Mul;
1407
1408      // Otherwise, we had some input that didn't have the dupe, such as
1409      // "A + A + B" -> "A*2 + B".  Add the new multiply to the list of
1410      // things being added by this operation.
1411      Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
1412
1413      --i;
1414      e = Ops.size();
1415      continue;
1416    }
1417
1418    // Check for X and -X in the operand list.
1419    if (!BinaryOperator::isNeg(TheOp))
1420      continue;
1421
1422    Value *X = BinaryOperator::getNegArgument(TheOp);
1423    unsigned FoundX = FindInOperandList(Ops, i, X);
1424    if (FoundX == i)
1425      continue;
1426
1427    // Remove X and -X from the operand list.
1428    if (Ops.size() == 2)
1429      return Constant::getNullValue(X->getType());
1430
1431    Ops.erase(Ops.begin()+i);
1432    if (i < FoundX)
1433      --FoundX;
1434    else
1435      --i;   // Need to back up an extra one.
1436    Ops.erase(Ops.begin()+FoundX);
1437    ++NumAnnihil;
1438    --i;     // Revisit element.
1439    e -= 2;  // Removed two elements.
1440  }
1441
1442  // Scan the operand list, checking to see if there are any common factors
1443  // between operands.  Consider something like A*A+A*B*C+D.  We would like to
1444  // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
1445  // To efficiently find this, we count the number of times a factor occurs
1446  // for any ADD operands that are MULs.
1447  DenseMap<Value*, unsigned> FactorOccurrences;
1448
1449  // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
1450  // where they are actually the same multiply.
1451  unsigned MaxOcc = 0;
1452  Value *MaxOccVal = 0;
1453  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1454    BinaryOperator *BOp = isReassociableOp(Ops[i].Op, Instruction::Mul);
1455    if (!BOp)
1456      continue;
1457
1458    // Compute all of the factors of this added value.
1459    SmallVector<Value*, 8> Factors;
1460    FindSingleUseMultiplyFactors(BOp, Factors, Ops);
1461    assert(Factors.size() > 1 && "Bad linearize!");
1462
1463    // Add one to FactorOccurrences for each unique factor in this op.
1464    SmallPtrSet<Value*, 8> Duplicates;
1465    for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1466      Value *Factor = Factors[i];
1467      if (!Duplicates.insert(Factor)) continue;
1468
1469      unsigned Occ = ++FactorOccurrences[Factor];
1470      if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
1471
1472      // If Factor is a negative constant, add the negated value as a factor
1473      // because we can percolate the negate out.  Watch for minint, which
1474      // cannot be positivified.
1475      if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor))
1476        if (CI->isNegative() && !CI->isMinValue(true)) {
1477          Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
1478          assert(!Duplicates.count(Factor) &&
1479                 "Shouldn't have two constant factors, missed a canonicalize");
1480
1481          unsigned Occ = ++FactorOccurrences[Factor];
1482          if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
1483        }
1484    }
1485  }
1486
1487  // If any factor occurred more than one time, we can pull it out.
1488  if (MaxOcc > 1) {
1489    DEBUG(errs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
1490    ++NumFactor;
1491
1492    // Create a new instruction that uses the MaxOccVal twice.  If we don't do
1493    // this, we could otherwise run into situations where removing a factor
1494    // from an expression will drop a use of maxocc, and this can cause
1495    // RemoveFactorFromExpression on successive values to behave differently.
1496    Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal);
1497    SmallVector<WeakVH, 4> NewMulOps;
1498    for (unsigned i = 0; i != Ops.size(); ++i) {
1499      // Only try to remove factors from expressions we're allowed to.
1500      BinaryOperator *BOp = isReassociableOp(Ops[i].Op, Instruction::Mul);
1501      if (!BOp)
1502        continue;
1503
1504      if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
1505        // The factorized operand may occur several times.  Convert them all in
1506        // one fell swoop.
1507        for (unsigned j = Ops.size(); j != i;) {
1508          --j;
1509          if (Ops[j].Op == Ops[i].Op) {
1510            NewMulOps.push_back(V);
1511            Ops.erase(Ops.begin()+j);
1512          }
1513        }
1514        --i;
1515      }
1516    }
1517
1518    // No need for extra uses anymore.
1519    delete DummyInst;
1520
1521    unsigned NumAddedValues = NewMulOps.size();
1522    Value *V = EmitAddTreeOfValues(I, NewMulOps);
1523
1524    // Now that we have inserted the add tree, optimize it. This allows us to
1525    // handle cases that require multiple factoring steps, such as this:
1526    // A*A*B + A*A*C   -->   A*(A*B+A*C)   -->   A*(A*(B+C))
1527    assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
1528    (void)NumAddedValues;
1529    if (Instruction *VI = dyn_cast<Instruction>(V))
1530      RedoInsts.insert(VI);
1531
1532    // Create the multiply.
1533    Instruction *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I);
1534
1535    // Rerun associate on the multiply in case the inner expression turned into
1536    // a multiply.  We want to make sure that we keep things in canonical form.
1537    RedoInsts.insert(V2);
1538
1539    // If every add operand included the factor (e.g. "A*B + A*C"), then the
1540    // entire result expression is just the multiply "A*(B+C)".
1541    if (Ops.empty())
1542      return V2;
1543
1544    // Otherwise, we had some input that didn't have the factor, such as
1545    // "A*B + A*C + D" -> "A*(B+C) + D".  Add the new multiply to the list of
1546    // things being added by this operation.
1547    Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
1548  }
1549
1550  return 0;
1551}
1552
1553namespace {
1554  /// \brief Predicate tests whether a ValueEntry's op is in a map.
1555  struct IsValueInMap {
1556    const DenseMap<Value *, unsigned> &Map;
1557
1558    IsValueInMap(const DenseMap<Value *, unsigned> &Map) : Map(Map) {}
1559
1560    bool operator()(const ValueEntry &Entry) {
1561      return Map.find(Entry.Op) != Map.end();
1562    }
1563  };
1564}
1565
1566/// \brief Build up a vector of value/power pairs factoring a product.
1567///
1568/// Given a series of multiplication operands, build a vector of factors and
1569/// the powers each is raised to when forming the final product. Sort them in
1570/// the order of descending power.
1571///
1572///      (x*x)          -> [(x, 2)]
1573///     ((x*x)*x)       -> [(x, 3)]
1574///   ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
1575///
1576/// \returns Whether any factors have a power greater than one.
1577bool Reassociate::collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
1578                                         SmallVectorImpl<Factor> &Factors) {
1579  // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
1580  // Compute the sum of powers of simplifiable factors.
1581  unsigned FactorPowerSum = 0;
1582  for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
1583    Value *Op = Ops[Idx-1].Op;
1584
1585    // Count the number of occurrences of this value.
1586    unsigned Count = 1;
1587    for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
1588      ++Count;
1589    // Track for simplification all factors which occur 2 or more times.
1590    if (Count > 1)
1591      FactorPowerSum += Count;
1592  }
1593
1594  // We can only simplify factors if the sum of the powers of our simplifiable
1595  // factors is 4 or higher. When that is the case, we will *always* have
1596  // a simplification. This is an important invariant to prevent cyclicly
1597  // trying to simplify already minimal formations.
1598  if (FactorPowerSum < 4)
1599    return false;
1600
1601  // Now gather the simplifiable factors, removing them from Ops.
1602  FactorPowerSum = 0;
1603  for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
1604    Value *Op = Ops[Idx-1].Op;
1605
1606    // Count the number of occurrences of this value.
1607    unsigned Count = 1;
1608    for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
1609      ++Count;
1610    if (Count == 1)
1611      continue;
1612    // Move an even number of occurrences to Factors.
1613    Count &= ~1U;
1614    Idx -= Count;
1615    FactorPowerSum += Count;
1616    Factors.push_back(Factor(Op, Count));
1617    Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
1618  }
1619
1620  // None of the adjustments above should have reduced the sum of factor powers
1621  // below our mininum of '4'.
1622  assert(FactorPowerSum >= 4);
1623
1624  std::sort(Factors.begin(), Factors.end(), Factor::PowerDescendingSorter());
1625  return true;
1626}
1627
1628/// \brief Build a tree of multiplies, computing the product of Ops.
1629static Value *buildMultiplyTree(IRBuilder<> &Builder,
1630                                SmallVectorImpl<Value*> &Ops) {
1631  if (Ops.size() == 1)
1632    return Ops.back();
1633
1634  Value *LHS = Ops.pop_back_val();
1635  do {
1636    LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
1637  } while (!Ops.empty());
1638
1639  return LHS;
1640}
1641
1642/// \brief Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
1643///
1644/// Given a vector of values raised to various powers, where no two values are
1645/// equal and the powers are sorted in decreasing order, compute the minimal
1646/// DAG of multiplies to compute the final product, and return that product
1647/// value.
1648Value *Reassociate::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
1649                                            SmallVectorImpl<Factor> &Factors) {
1650  assert(Factors[0].Power);
1651  SmallVector<Value *, 4> OuterProduct;
1652  for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
1653       Idx < Size && Factors[Idx].Power > 0; ++Idx) {
1654    if (Factors[Idx].Power != Factors[LastIdx].Power) {
1655      LastIdx = Idx;
1656      continue;
1657    }
1658
1659    // We want to multiply across all the factors with the same power so that
1660    // we can raise them to that power as a single entity. Build a mini tree
1661    // for that.
1662    SmallVector<Value *, 4> InnerProduct;
1663    InnerProduct.push_back(Factors[LastIdx].Base);
1664    do {
1665      InnerProduct.push_back(Factors[Idx].Base);
1666      ++Idx;
1667    } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
1668
1669    // Reset the base value of the first factor to the new expression tree.
1670    // We'll remove all the factors with the same power in a second pass.
1671    Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
1672    if (Instruction *MI = dyn_cast<Instruction>(M))
1673      RedoInsts.insert(MI);
1674
1675    LastIdx = Idx;
1676  }
1677  // Unique factors with equal powers -- we've folded them into the first one's
1678  // base.
1679  Factors.erase(std::unique(Factors.begin(), Factors.end(),
1680                            Factor::PowerEqual()),
1681                Factors.end());
1682
1683  // Iteratively collect the base of each factor with an add power into the
1684  // outer product, and halve each power in preparation for squaring the
1685  // expression.
1686  for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
1687    if (Factors[Idx].Power & 1)
1688      OuterProduct.push_back(Factors[Idx].Base);
1689    Factors[Idx].Power >>= 1;
1690  }
1691  if (Factors[0].Power) {
1692    Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
1693    OuterProduct.push_back(SquareRoot);
1694    OuterProduct.push_back(SquareRoot);
1695  }
1696  if (OuterProduct.size() == 1)
1697    return OuterProduct.front();
1698
1699  Value *V = buildMultiplyTree(Builder, OuterProduct);
1700  return V;
1701}
1702
1703Value *Reassociate::OptimizeMul(BinaryOperator *I,
1704                                SmallVectorImpl<ValueEntry> &Ops) {
1705  // We can only optimize the multiplies when there is a chain of more than
1706  // three, such that a balanced tree might require fewer total multiplies.
1707  if (Ops.size() < 4)
1708    return 0;
1709
1710  // Try to turn linear trees of multiplies without other uses of the
1711  // intermediate stages into minimal multiply DAGs with perfect sub-expression
1712  // re-use.
1713  SmallVector<Factor, 4> Factors;
1714  if (!collectMultiplyFactors(Ops, Factors))
1715    return 0; // All distinct factors, so nothing left for us to do.
1716
1717  IRBuilder<> Builder(I);
1718  Value *V = buildMinimalMultiplyDAG(Builder, Factors);
1719  if (Ops.empty())
1720    return V;
1721
1722  ValueEntry NewEntry = ValueEntry(getRank(V), V);
1723  Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry);
1724  return 0;
1725}
1726
1727Value *Reassociate::OptimizeExpression(BinaryOperator *I,
1728                                       SmallVectorImpl<ValueEntry> &Ops) {
1729  // Now that we have the linearized expression tree, try to optimize it.
1730  // Start by folding any constants that we found.
1731  Constant *Cst = 0;
1732  unsigned Opcode = I->getOpcode();
1733  while (!Ops.empty() && isa<Constant>(Ops.back().Op)) {
1734    Constant *C = cast<Constant>(Ops.pop_back_val().Op);
1735    Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C;
1736  }
1737  // If there was nothing but constants then we are done.
1738  if (Ops.empty())
1739    return Cst;
1740
1741  // Put the combined constant back at the end of the operand list, except if
1742  // there is no point.  For example, an add of 0 gets dropped here, while a
1743  // multiplication by zero turns the whole expression into zero.
1744  if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) {
1745    if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType()))
1746      return Cst;
1747    Ops.push_back(ValueEntry(0, Cst));
1748  }
1749
1750  if (Ops.size() == 1) return Ops[0].Op;
1751
1752  // Handle destructive annihilation due to identities between elements in the
1753  // argument list here.
1754  unsigned NumOps = Ops.size();
1755  switch (Opcode) {
1756  default: break;
1757  case Instruction::And:
1758  case Instruction::Or:
1759    if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
1760      return Result;
1761    break;
1762
1763  case Instruction::Xor:
1764    if (Value *Result = OptimizeXor(I, Ops))
1765      return Result;
1766    break;
1767
1768  case Instruction::Add:
1769    if (Value *Result = OptimizeAdd(I, Ops))
1770      return Result;
1771    break;
1772
1773  case Instruction::Mul:
1774    if (Value *Result = OptimizeMul(I, Ops))
1775      return Result;
1776    break;
1777  }
1778
1779  if (Ops.size() != NumOps)
1780    return OptimizeExpression(I, Ops);
1781  return 0;
1782}
1783
1784/// EraseInst - Zap the given instruction, adding interesting operands to the
1785/// work list.
1786void Reassociate::EraseInst(Instruction *I) {
1787  assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
1788  SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
1789  // Erase the dead instruction.
1790  ValueRankMap.erase(I);
1791  RedoInsts.remove(I);
1792  I->eraseFromParent();
1793  // Optimize its operands.
1794  SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
1795  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1796    if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
1797      // If this is a node in an expression tree, climb to the expression root
1798      // and add that since that's where optimization actually happens.
1799      unsigned Opcode = Op->getOpcode();
1800      while (Op->hasOneUse() && Op->use_back()->getOpcode() == Opcode &&
1801             Visited.insert(Op))
1802        Op = Op->use_back();
1803      RedoInsts.insert(Op);
1804    }
1805}
1806
1807/// OptimizeInst - Inspect and optimize the given instruction. Note that erasing
1808/// instructions is not allowed.
1809void Reassociate::OptimizeInst(Instruction *I) {
1810  // Only consider operations that we understand.
1811  if (!isa<BinaryOperator>(I))
1812    return;
1813
1814  if (I->getOpcode() == Instruction::Shl &&
1815      isa<ConstantInt>(I->getOperand(1)))
1816    // If an operand of this shift is a reassociable multiply, or if the shift
1817    // is used by a reassociable multiply or add, turn into a multiply.
1818    if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
1819        (I->hasOneUse() &&
1820         (isReassociableOp(I->use_back(), Instruction::Mul) ||
1821          isReassociableOp(I->use_back(), Instruction::Add)))) {
1822      Instruction *NI = ConvertShiftToMul(I);
1823      RedoInsts.insert(I);
1824      MadeChange = true;
1825      I = NI;
1826    }
1827
1828  // Floating point binary operators are not associative, but we can still
1829  // commute (some) of them, to canonicalize the order of their operands.
1830  // This can potentially expose more CSE opportunities, and makes writing
1831  // other transformations simpler.
1832  if ((I->getType()->isFloatingPointTy() || I->getType()->isVectorTy())) {
1833    // FAdd and FMul can be commuted.
1834    if (I->getOpcode() != Instruction::FMul &&
1835        I->getOpcode() != Instruction::FAdd)
1836      return;
1837
1838    Value *LHS = I->getOperand(0);
1839    Value *RHS = I->getOperand(1);
1840    unsigned LHSRank = getRank(LHS);
1841    unsigned RHSRank = getRank(RHS);
1842
1843    // Sort the operands by rank.
1844    if (RHSRank < LHSRank) {
1845      I->setOperand(0, RHS);
1846      I->setOperand(1, LHS);
1847    }
1848
1849    return;
1850  }
1851
1852  // Do not reassociate boolean (i1) expressions.  We want to preserve the
1853  // original order of evaluation for short-circuited comparisons that
1854  // SimplifyCFG has folded to AND/OR expressions.  If the expression
1855  // is not further optimized, it is likely to be transformed back to a
1856  // short-circuited form for code gen, and the source order may have been
1857  // optimized for the most likely conditions.
1858  if (I->getType()->isIntegerTy(1))
1859    return;
1860
1861  // If this is a subtract instruction which is not already in negate form,
1862  // see if we can convert it to X+-Y.
1863  if (I->getOpcode() == Instruction::Sub) {
1864    if (ShouldBreakUpSubtract(I)) {
1865      Instruction *NI = BreakUpSubtract(I);
1866      RedoInsts.insert(I);
1867      MadeChange = true;
1868      I = NI;
1869    } else if (BinaryOperator::isNeg(I)) {
1870      // Otherwise, this is a negation.  See if the operand is a multiply tree
1871      // and if this is not an inner node of a multiply tree.
1872      if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
1873          (!I->hasOneUse() ||
1874           !isReassociableOp(I->use_back(), Instruction::Mul))) {
1875        Instruction *NI = LowerNegateToMultiply(I);
1876        RedoInsts.insert(I);
1877        MadeChange = true;
1878        I = NI;
1879      }
1880    }
1881  }
1882
1883  // If this instruction is an associative binary operator, process it.
1884  if (!I->isAssociative()) return;
1885  BinaryOperator *BO = cast<BinaryOperator>(I);
1886
1887  // If this is an interior node of a reassociable tree, ignore it until we
1888  // get to the root of the tree, to avoid N^2 analysis.
1889  unsigned Opcode = BO->getOpcode();
1890  if (BO->hasOneUse() && BO->use_back()->getOpcode() == Opcode)
1891    return;
1892
1893  // If this is an add tree that is used by a sub instruction, ignore it
1894  // until we process the subtract.
1895  if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
1896      cast<Instruction>(BO->use_back())->getOpcode() == Instruction::Sub)
1897    return;
1898
1899  ReassociateExpression(BO);
1900}
1901
1902void Reassociate::ReassociateExpression(BinaryOperator *I) {
1903
1904  // First, walk the expression tree, linearizing the tree, collecting the
1905  // operand information.
1906  SmallVector<RepeatedValue, 8> Tree;
1907  MadeChange |= LinearizeExprTree(I, Tree);
1908  SmallVector<ValueEntry, 8> Ops;
1909  Ops.reserve(Tree.size());
1910  for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
1911    RepeatedValue E = Tree[i];
1912    Ops.append(E.second.getZExtValue(),
1913               ValueEntry(getRank(E.first), E.first));
1914  }
1915
1916  DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
1917
1918  // Now that we have linearized the tree to a list and have gathered all of
1919  // the operands and their ranks, sort the operands by their rank.  Use a
1920  // stable_sort so that values with equal ranks will have their relative
1921  // positions maintained (and so the compiler is deterministic).  Note that
1922  // this sorts so that the highest ranking values end up at the beginning of
1923  // the vector.
1924  std::stable_sort(Ops.begin(), Ops.end());
1925
1926  // OptimizeExpression - Now that we have the expression tree in a convenient
1927  // sorted form, optimize it globally if possible.
1928  if (Value *V = OptimizeExpression(I, Ops)) {
1929    if (V == I)
1930      // Self-referential expression in unreachable code.
1931      return;
1932    // This expression tree simplified to something that isn't a tree,
1933    // eliminate it.
1934    DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
1935    I->replaceAllUsesWith(V);
1936    if (Instruction *VI = dyn_cast<Instruction>(V))
1937      VI->setDebugLoc(I->getDebugLoc());
1938    RedoInsts.insert(I);
1939    ++NumAnnihil;
1940    return;
1941  }
1942
1943  // We want to sink immediates as deeply as possible except in the case where
1944  // this is a multiply tree used only by an add, and the immediate is a -1.
1945  // In this case we reassociate to put the negation on the outside so that we
1946  // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
1947  if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
1948      cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
1949      isa<ConstantInt>(Ops.back().Op) &&
1950      cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
1951    ValueEntry Tmp = Ops.pop_back_val();
1952    Ops.insert(Ops.begin(), Tmp);
1953  }
1954
1955  DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
1956
1957  if (Ops.size() == 1) {
1958    if (Ops[0].Op == I)
1959      // Self-referential expression in unreachable code.
1960      return;
1961
1962    // This expression tree simplified to something that isn't a tree,
1963    // eliminate it.
1964    I->replaceAllUsesWith(Ops[0].Op);
1965    if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
1966      OI->setDebugLoc(I->getDebugLoc());
1967    RedoInsts.insert(I);
1968    return;
1969  }
1970
1971  // Now that we ordered and optimized the expressions, splat them back into
1972  // the expression tree, removing any unneeded nodes.
1973  RewriteExprTree(I, Ops);
1974}
1975
1976bool Reassociate::runOnFunction(Function &F) {
1977  // Calculate the rank map for F
1978  BuildRankMap(F);
1979
1980  MadeChange = false;
1981  for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
1982    // Optimize every instruction in the basic block.
1983    for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE; )
1984      if (isInstructionTriviallyDead(II)) {
1985        EraseInst(II++);
1986      } else {
1987        OptimizeInst(II);
1988        assert(II->getParent() == BI && "Moved to a different block!");
1989        ++II;
1990      }
1991
1992    // If this produced extra instructions to optimize, handle them now.
1993    while (!RedoInsts.empty()) {
1994      Instruction *I = RedoInsts.pop_back_val();
1995      if (isInstructionTriviallyDead(I))
1996        EraseInst(I);
1997      else
1998        OptimizeInst(I);
1999    }
2000  }
2001
2002  // We are done with the rank map.
2003  RankMap.clear();
2004  ValueRankMap.clear();
2005
2006  return MadeChange;
2007}
2008