Reassociate.cpp revision 212904
1//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass reassociates commutative expressions in an order that is designed
11// to promote better constant propagation, GCSE, LICM, PRE, etc.
12//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
15// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
23#define DEBUG_TYPE "reassociate"
24#include "llvm/Transforms/Scalar.h"
25#include "llvm/Constants.h"
26#include "llvm/DerivedTypes.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/Pass.h"
31#include "llvm/Assembly/Writer.h"
32#include "llvm/Support/CFG.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/Support/ValueHandle.h"
35#include "llvm/Support/raw_ostream.h"
36#include "llvm/ADT/PostOrderIterator.h"
37#include "llvm/ADT/Statistic.h"
38#include "llvm/ADT/DenseMap.h"
39#include <algorithm>
40using namespace llvm;
41
42STATISTIC(NumLinear , "Number of insts linearized");
43STATISTIC(NumChanged, "Number of insts reassociated");
44STATISTIC(NumAnnihil, "Number of expr tree annihilated");
45STATISTIC(NumFactor , "Number of multiplies factored");
46
47namespace {
48  struct ValueEntry {
49    unsigned Rank;
50    Value *Op;
51    ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
52  };
53  inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
54    return LHS.Rank > RHS.Rank;   // Sort so that highest rank goes to start.
55  }
56}
57
58#ifndef NDEBUG
59/// PrintOps - Print out the expression identified in the Ops list.
60///
61static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
62  Module *M = I->getParent()->getParent()->getParent();
63  dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
64       << *Ops[0].Op->getType() << '\t';
65  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
66    dbgs() << "[ ";
67    WriteAsOperand(dbgs(), Ops[i].Op, false, M);
68    dbgs() << ", #" << Ops[i].Rank << "] ";
69  }
70}
71#endif
72
73namespace {
74  class Reassociate : public FunctionPass {
75    DenseMap<BasicBlock*, unsigned> RankMap;
76    DenseMap<AssertingVH<>, unsigned> ValueRankMap;
77    bool MadeChange;
78  public:
79    static char ID; // Pass identification, replacement for typeid
80    Reassociate() : FunctionPass(ID) {}
81
82    bool runOnFunction(Function &F);
83
84    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
85      AU.setPreservesCFG();
86    }
87  private:
88    void BuildRankMap(Function &F);
89    unsigned getRank(Value *V);
90    Value *ReassociateExpression(BinaryOperator *I);
91    void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops,
92                         unsigned Idx = 0);
93    Value *OptimizeExpression(BinaryOperator *I,
94                              SmallVectorImpl<ValueEntry> &Ops);
95    Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
96    void LinearizeExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
97    void LinearizeExpr(BinaryOperator *I);
98    Value *RemoveFactorFromExpression(Value *V, Value *Factor);
99    void ReassociateBB(BasicBlock *BB);
100
101    void RemoveDeadBinaryOp(Value *V);
102  };
103}
104
105char Reassociate::ID = 0;
106INITIALIZE_PASS(Reassociate, "reassociate",
107                "Reassociate expressions", false, false);
108
109// Public interface to the Reassociate pass
110FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
111
112void Reassociate::RemoveDeadBinaryOp(Value *V) {
113  Instruction *Op = dyn_cast<Instruction>(V);
114  if (!Op || !isa<BinaryOperator>(Op) || !Op->use_empty())
115    return;
116
117  Value *LHS = Op->getOperand(0), *RHS = Op->getOperand(1);
118
119  ValueRankMap.erase(Op);
120  Op->eraseFromParent();
121  RemoveDeadBinaryOp(LHS);
122  RemoveDeadBinaryOp(RHS);
123}
124
125
126static bool isUnmovableInstruction(Instruction *I) {
127  if (I->getOpcode() == Instruction::PHI ||
128      I->getOpcode() == Instruction::Alloca ||
129      I->getOpcode() == Instruction::Load ||
130      I->getOpcode() == Instruction::Invoke ||
131      (I->getOpcode() == Instruction::Call &&
132       !isa<DbgInfoIntrinsic>(I)) ||
133      I->getOpcode() == Instruction::UDiv ||
134      I->getOpcode() == Instruction::SDiv ||
135      I->getOpcode() == Instruction::FDiv ||
136      I->getOpcode() == Instruction::URem ||
137      I->getOpcode() == Instruction::SRem ||
138      I->getOpcode() == Instruction::FRem)
139    return true;
140  return false;
141}
142
143void Reassociate::BuildRankMap(Function &F) {
144  unsigned i = 2;
145
146  // Assign distinct ranks to function arguments
147  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
148    ValueRankMap[&*I] = ++i;
149
150  ReversePostOrderTraversal<Function*> RPOT(&F);
151  for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
152         E = RPOT.end(); I != E; ++I) {
153    BasicBlock *BB = *I;
154    unsigned BBRank = RankMap[BB] = ++i << 16;
155
156    // Walk the basic block, adding precomputed ranks for any instructions that
157    // we cannot move.  This ensures that the ranks for these instructions are
158    // all different in the block.
159    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
160      if (isUnmovableInstruction(I))
161        ValueRankMap[&*I] = ++BBRank;
162  }
163}
164
165unsigned Reassociate::getRank(Value *V) {
166  Instruction *I = dyn_cast<Instruction>(V);
167  if (I == 0) {
168    if (isa<Argument>(V)) return ValueRankMap[V];   // Function argument.
169    return 0;  // Otherwise it's a global or constant, rank 0.
170  }
171
172  if (unsigned Rank = ValueRankMap[I])
173    return Rank;    // Rank already known?
174
175  // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
176  // we can reassociate expressions for code motion!  Since we do not recurse
177  // for PHI nodes, we cannot have infinite recursion here, because there
178  // cannot be loops in the value graph that do not go through PHI nodes.
179  unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
180  for (unsigned i = 0, e = I->getNumOperands();
181       i != e && Rank != MaxRank; ++i)
182    Rank = std::max(Rank, getRank(I->getOperand(i)));
183
184  // If this is a not or neg instruction, do not count it for rank.  This
185  // assures us that X and ~X will have the same rank.
186  if (!I->getType()->isIntegerTy() ||
187      (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
188    ++Rank;
189
190  //DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = "
191  //     << Rank << "\n");
192
193  return ValueRankMap[I] = Rank;
194}
195
196/// isReassociableOp - Return true if V is an instruction of the specified
197/// opcode and if it only has one use.
198static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
199  if ((V->hasOneUse() || V->use_empty()) && isa<Instruction>(V) &&
200      cast<Instruction>(V)->getOpcode() == Opcode)
201    return cast<BinaryOperator>(V);
202  return 0;
203}
204
205/// LowerNegateToMultiply - Replace 0-X with X*-1.
206///
207static Instruction *LowerNegateToMultiply(Instruction *Neg,
208                              DenseMap<AssertingVH<>, unsigned> &ValueRankMap) {
209  Constant *Cst = Constant::getAllOnesValue(Neg->getType());
210
211  Instruction *Res = BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg);
212  ValueRankMap.erase(Neg);
213  Res->takeName(Neg);
214  Neg->replaceAllUsesWith(Res);
215  Neg->eraseFromParent();
216  return Res;
217}
218
219// Given an expression of the form '(A+B)+(D+C)', turn it into '(((A+B)+C)+D)'.
220// Note that if D is also part of the expression tree that we recurse to
221// linearize it as well.  Besides that case, this does not recurse into A,B, or
222// C.
223void Reassociate::LinearizeExpr(BinaryOperator *I) {
224  BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
225  BinaryOperator *RHS = cast<BinaryOperator>(I->getOperand(1));
226  assert(isReassociableOp(LHS, I->getOpcode()) &&
227         isReassociableOp(RHS, I->getOpcode()) &&
228         "Not an expression that needs linearization?");
229
230  DEBUG(dbgs() << "Linear" << *LHS << '\n' << *RHS << '\n' << *I << '\n');
231
232  // Move the RHS instruction to live immediately before I, avoiding breaking
233  // dominator properties.
234  RHS->moveBefore(I);
235
236  // Move operands around to do the linearization.
237  I->setOperand(1, RHS->getOperand(0));
238  RHS->setOperand(0, LHS);
239  I->setOperand(0, RHS);
240
241  ++NumLinear;
242  MadeChange = true;
243  DEBUG(dbgs() << "Linearized: " << *I << '\n');
244
245  // If D is part of this expression tree, tail recurse.
246  if (isReassociableOp(I->getOperand(1), I->getOpcode()))
247    LinearizeExpr(I);
248}
249
250
251/// LinearizeExprTree - Given an associative binary expression tree, traverse
252/// all of the uses putting it into canonical form.  This forces a left-linear
253/// form of the expression (((a+b)+c)+d), and collects information about the
254/// rank of the non-tree operands.
255///
256/// NOTE: These intentionally destroys the expression tree operands (turning
257/// them into undef values) to reduce #uses of the values.  This means that the
258/// caller MUST use something like RewriteExprTree to put the values back in.
259///
260void Reassociate::LinearizeExprTree(BinaryOperator *I,
261                                    SmallVectorImpl<ValueEntry> &Ops) {
262  Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
263  unsigned Opcode = I->getOpcode();
264
265  // First step, linearize the expression if it is in ((A+B)+(C+D)) form.
266  BinaryOperator *LHSBO = isReassociableOp(LHS, Opcode);
267  BinaryOperator *RHSBO = isReassociableOp(RHS, Opcode);
268
269  // If this is a multiply expression tree and it contains internal negations,
270  // transform them into multiplies by -1 so they can be reassociated.
271  if (I->getOpcode() == Instruction::Mul) {
272    if (!LHSBO && LHS->hasOneUse() && BinaryOperator::isNeg(LHS)) {
273      LHS = LowerNegateToMultiply(cast<Instruction>(LHS), ValueRankMap);
274      LHSBO = isReassociableOp(LHS, Opcode);
275    }
276    if (!RHSBO && RHS->hasOneUse() && BinaryOperator::isNeg(RHS)) {
277      RHS = LowerNegateToMultiply(cast<Instruction>(RHS), ValueRankMap);
278      RHSBO = isReassociableOp(RHS, Opcode);
279    }
280  }
281
282  if (!LHSBO) {
283    if (!RHSBO) {
284      // Neither the LHS or RHS as part of the tree, thus this is a leaf.  As
285      // such, just remember these operands and their rank.
286      Ops.push_back(ValueEntry(getRank(LHS), LHS));
287      Ops.push_back(ValueEntry(getRank(RHS), RHS));
288
289      // Clear the leaves out.
290      I->setOperand(0, UndefValue::get(I->getType()));
291      I->setOperand(1, UndefValue::get(I->getType()));
292      return;
293    }
294
295    // Turn X+(Y+Z) -> (Y+Z)+X
296    std::swap(LHSBO, RHSBO);
297    std::swap(LHS, RHS);
298    bool Success = !I->swapOperands();
299    assert(Success && "swapOperands failed");
300    Success = false;
301    MadeChange = true;
302  } else if (RHSBO) {
303    // Turn (A+B)+(C+D) -> (((A+B)+C)+D).  This guarantees the RHS is not
304    // part of the expression tree.
305    LinearizeExpr(I);
306    LHS = LHSBO = cast<BinaryOperator>(I->getOperand(0));
307    RHS = I->getOperand(1);
308    RHSBO = 0;
309  }
310
311  // Okay, now we know that the LHS is a nested expression and that the RHS is
312  // not.  Perform reassociation.
313  assert(!isReassociableOp(RHS, Opcode) && "LinearizeExpr failed!");
314
315  // Move LHS right before I to make sure that the tree expression dominates all
316  // values.
317  LHSBO->moveBefore(I);
318
319  // Linearize the expression tree on the LHS.
320  LinearizeExprTree(LHSBO, Ops);
321
322  // Remember the RHS operand and its rank.
323  Ops.push_back(ValueEntry(getRank(RHS), RHS));
324
325  // Clear the RHS leaf out.
326  I->setOperand(1, UndefValue::get(I->getType()));
327}
328
329// RewriteExprTree - Now that the operands for this expression tree are
330// linearized and optimized, emit them in-order.  This function is written to be
331// tail recursive.
332void Reassociate::RewriteExprTree(BinaryOperator *I,
333                                  SmallVectorImpl<ValueEntry> &Ops,
334                                  unsigned i) {
335  if (i+2 == Ops.size()) {
336    if (I->getOperand(0) != Ops[i].Op ||
337        I->getOperand(1) != Ops[i+1].Op) {
338      Value *OldLHS = I->getOperand(0);
339      DEBUG(dbgs() << "RA: " << *I << '\n');
340      I->setOperand(0, Ops[i].Op);
341      I->setOperand(1, Ops[i+1].Op);
342      DEBUG(dbgs() << "TO: " << *I << '\n');
343      MadeChange = true;
344      ++NumChanged;
345
346      // If we reassociated a tree to fewer operands (e.g. (1+a+2) -> (a+3)
347      // delete the extra, now dead, nodes.
348      RemoveDeadBinaryOp(OldLHS);
349    }
350    return;
351  }
352  assert(i+2 < Ops.size() && "Ops index out of range!");
353
354  if (I->getOperand(1) != Ops[i].Op) {
355    DEBUG(dbgs() << "RA: " << *I << '\n');
356    I->setOperand(1, Ops[i].Op);
357    DEBUG(dbgs() << "TO: " << *I << '\n');
358    MadeChange = true;
359    ++NumChanged;
360  }
361
362  BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
363  assert(LHS->getOpcode() == I->getOpcode() &&
364         "Improper expression tree!");
365
366  // Compactify the tree instructions together with each other to guarantee
367  // that the expression tree is dominated by all of Ops.
368  LHS->moveBefore(I);
369  RewriteExprTree(LHS, Ops, i+1);
370}
371
372
373
374// NegateValue - Insert instructions before the instruction pointed to by BI,
375// that computes the negative version of the value specified.  The negative
376// version of the value is returned, and BI is left pointing at the instruction
377// that should be processed next by the reassociation pass.
378//
379static Value *NegateValue(Value *V, Instruction *BI) {
380  if (Constant *C = dyn_cast<Constant>(V))
381    return ConstantExpr::getNeg(C);
382
383  // We are trying to expose opportunity for reassociation.  One of the things
384  // that we want to do to achieve this is to push a negation as deep into an
385  // expression chain as possible, to expose the add instructions.  In practice,
386  // this means that we turn this:
387  //   X = -(A+12+C+D)   into    X = -A + -12 + -C + -D = -12 + -A + -C + -D
388  // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
389  // the constants.  We assume that instcombine will clean up the mess later if
390  // we introduce tons of unnecessary negation instructions.
391  //
392  if (Instruction *I = dyn_cast<Instruction>(V))
393    if (I->getOpcode() == Instruction::Add && I->hasOneUse()) {
394      // Push the negates through the add.
395      I->setOperand(0, NegateValue(I->getOperand(0), BI));
396      I->setOperand(1, NegateValue(I->getOperand(1), BI));
397
398      // We must move the add instruction here, because the neg instructions do
399      // not dominate the old add instruction in general.  By moving it, we are
400      // assured that the neg instructions we just inserted dominate the
401      // instruction we are about to insert after them.
402      //
403      I->moveBefore(BI);
404      I->setName(I->getName()+".neg");
405      return I;
406    }
407
408  // Okay, we need to materialize a negated version of V with an instruction.
409  // Scan the use lists of V to see if we have one already.
410  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
411    User *U = *UI;
412    if (!BinaryOperator::isNeg(U)) continue;
413
414    // We found one!  Now we have to make sure that the definition dominates
415    // this use.  We do this by moving it to the entry block (if it is a
416    // non-instruction value) or right after the definition.  These negates will
417    // be zapped by reassociate later, so we don't need much finesse here.
418    BinaryOperator *TheNeg = cast<BinaryOperator>(U);
419
420    // Verify that the negate is in this function, V might be a constant expr.
421    if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
422      continue;
423
424    BasicBlock::iterator InsertPt;
425    if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
426      if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
427        InsertPt = II->getNormalDest()->begin();
428      } else {
429        InsertPt = InstInput;
430        ++InsertPt;
431      }
432      while (isa<PHINode>(InsertPt)) ++InsertPt;
433    } else {
434      InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
435    }
436    TheNeg->moveBefore(InsertPt);
437    return TheNeg;
438  }
439
440  // Insert a 'neg' instruction that subtracts the value from zero to get the
441  // negation.
442  return BinaryOperator::CreateNeg(V, V->getName() + ".neg", BI);
443}
444
445/// ShouldBreakUpSubtract - Return true if we should break up this subtract of
446/// X-Y into (X + -Y).
447static bool ShouldBreakUpSubtract(Instruction *Sub) {
448  // If this is a negation, we can't split it up!
449  if (BinaryOperator::isNeg(Sub))
450    return false;
451
452  // Don't bother to break this up unless either the LHS is an associable add or
453  // subtract or if this is only used by one.
454  if (isReassociableOp(Sub->getOperand(0), Instruction::Add) ||
455      isReassociableOp(Sub->getOperand(0), Instruction::Sub))
456    return true;
457  if (isReassociableOp(Sub->getOperand(1), Instruction::Add) ||
458      isReassociableOp(Sub->getOperand(1), Instruction::Sub))
459    return true;
460  if (Sub->hasOneUse() &&
461      (isReassociableOp(Sub->use_back(), Instruction::Add) ||
462       isReassociableOp(Sub->use_back(), Instruction::Sub)))
463    return true;
464
465  return false;
466}
467
468/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
469/// only used by an add, transform this into (X+(0-Y)) to promote better
470/// reassociation.
471static Instruction *BreakUpSubtract(Instruction *Sub,
472                              DenseMap<AssertingVH<>, unsigned> &ValueRankMap) {
473  // Convert a subtract into an add and a neg instruction. This allows sub
474  // instructions to be commuted with other add instructions.
475  //
476  // Calculate the negative value of Operand 1 of the sub instruction,
477  // and set it as the RHS of the add instruction we just made.
478  //
479  Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
480  Instruction *New =
481    BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub);
482  New->takeName(Sub);
483
484  // Everyone now refers to the add instruction.
485  ValueRankMap.erase(Sub);
486  Sub->replaceAllUsesWith(New);
487  Sub->eraseFromParent();
488
489  DEBUG(dbgs() << "Negated: " << *New << '\n');
490  return New;
491}
492
493/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
494/// by one, change this into a multiply by a constant to assist with further
495/// reassociation.
496static Instruction *ConvertShiftToMul(Instruction *Shl,
497                              DenseMap<AssertingVH<>, unsigned> &ValueRankMap) {
498  // If an operand of this shift is a reassociable multiply, or if the shift
499  // is used by a reassociable multiply or add, turn into a multiply.
500  if (isReassociableOp(Shl->getOperand(0), Instruction::Mul) ||
501      (Shl->hasOneUse() &&
502       (isReassociableOp(Shl->use_back(), Instruction::Mul) ||
503        isReassociableOp(Shl->use_back(), Instruction::Add)))) {
504    Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
505    MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
506
507    Instruction *Mul =
508      BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
509    ValueRankMap.erase(Shl);
510    Mul->takeName(Shl);
511    Shl->replaceAllUsesWith(Mul);
512    Shl->eraseFromParent();
513    return Mul;
514  }
515  return 0;
516}
517
518// Scan backwards and forwards among values with the same rank as element i to
519// see if X exists.  If X does not exist, return i.  This is useful when
520// scanning for 'x' when we see '-x' because they both get the same rank.
521static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i,
522                                  Value *X) {
523  unsigned XRank = Ops[i].Rank;
524  unsigned e = Ops.size();
525  for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
526    if (Ops[j].Op == X)
527      return j;
528  // Scan backwards.
529  for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
530    if (Ops[j].Op == X)
531      return j;
532  return i;
533}
534
535/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
536/// and returning the result.  Insert the tree before I.
537static Value *EmitAddTreeOfValues(Instruction *I, SmallVectorImpl<Value*> &Ops){
538  if (Ops.size() == 1) return Ops.back();
539
540  Value *V1 = Ops.back();
541  Ops.pop_back();
542  Value *V2 = EmitAddTreeOfValues(I, Ops);
543  return BinaryOperator::CreateAdd(V2, V1, "tmp", I);
544}
545
546/// RemoveFactorFromExpression - If V is an expression tree that is a
547/// multiplication sequence, and if this sequence contains a multiply by Factor,
548/// remove Factor from the tree and return the new tree.
549Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
550  BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
551  if (!BO) return 0;
552
553  SmallVector<ValueEntry, 8> Factors;
554  LinearizeExprTree(BO, Factors);
555
556  bool FoundFactor = false;
557  bool NeedsNegate = false;
558  for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
559    if (Factors[i].Op == Factor) {
560      FoundFactor = true;
561      Factors.erase(Factors.begin()+i);
562      break;
563    }
564
565    // If this is a negative version of this factor, remove it.
566    if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor))
567      if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
568        if (FC1->getValue() == -FC2->getValue()) {
569          FoundFactor = NeedsNegate = true;
570          Factors.erase(Factors.begin()+i);
571          break;
572        }
573  }
574
575  if (!FoundFactor) {
576    // Make sure to restore the operands to the expression tree.
577    RewriteExprTree(BO, Factors);
578    return 0;
579  }
580
581  BasicBlock::iterator InsertPt = BO; ++InsertPt;
582
583  // If this was just a single multiply, remove the multiply and return the only
584  // remaining operand.
585  if (Factors.size() == 1) {
586    ValueRankMap.erase(BO);
587    BO->eraseFromParent();
588    V = Factors[0].Op;
589  } else {
590    RewriteExprTree(BO, Factors);
591    V = BO;
592  }
593
594  if (NeedsNegate)
595    V = BinaryOperator::CreateNeg(V, "neg", InsertPt);
596
597  return V;
598}
599
600/// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
601/// add its operands as factors, otherwise add V to the list of factors.
602///
603/// Ops is the top-level list of add operands we're trying to factor.
604static void FindSingleUseMultiplyFactors(Value *V,
605                                         SmallVectorImpl<Value*> &Factors,
606                                       const SmallVectorImpl<ValueEntry> &Ops,
607                                         bool IsRoot) {
608  BinaryOperator *BO;
609  if (!(V->hasOneUse() || V->use_empty()) || // More than one use.
610      !(BO = dyn_cast<BinaryOperator>(V)) ||
611      BO->getOpcode() != Instruction::Mul) {
612    Factors.push_back(V);
613    return;
614  }
615
616  // If this value has a single use because it is another input to the add
617  // tree we're reassociating and we dropped its use, it actually has two
618  // uses and we can't factor it.
619  if (!IsRoot) {
620    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
621      if (Ops[i].Op == V) {
622        Factors.push_back(V);
623        return;
624      }
625  }
626
627
628  // Otherwise, add the LHS and RHS to the list of factors.
629  FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops, false);
630  FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops, false);
631}
632
633/// OptimizeAndOrXor - Optimize a series of operands to an 'and', 'or', or 'xor'
634/// instruction.  This optimizes based on identities.  If it can be reduced to
635/// a single Value, it is returned, otherwise the Ops list is mutated as
636/// necessary.
637static Value *OptimizeAndOrXor(unsigned Opcode,
638                               SmallVectorImpl<ValueEntry> &Ops) {
639  // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
640  // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
641  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
642    // First, check for X and ~X in the operand list.
643    assert(i < Ops.size());
644    if (BinaryOperator::isNot(Ops[i].Op)) {    // Cannot occur for ^.
645      Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
646      unsigned FoundX = FindInOperandList(Ops, i, X);
647      if (FoundX != i) {
648        if (Opcode == Instruction::And)   // ...&X&~X = 0
649          return Constant::getNullValue(X->getType());
650
651        if (Opcode == Instruction::Or)    // ...|X|~X = -1
652          return Constant::getAllOnesValue(X->getType());
653      }
654    }
655
656    // Next, check for duplicate pairs of values, which we assume are next to
657    // each other, due to our sorting criteria.
658    assert(i < Ops.size());
659    if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
660      if (Opcode == Instruction::And || Opcode == Instruction::Or) {
661        // Drop duplicate values for And and Or.
662        Ops.erase(Ops.begin()+i);
663        --i; --e;
664        ++NumAnnihil;
665        continue;
666      }
667
668      // Drop pairs of values for Xor.
669      assert(Opcode == Instruction::Xor);
670      if (e == 2)
671        return Constant::getNullValue(Ops[0].Op->getType());
672
673      // Y ^ X^X -> Y
674      Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
675      i -= 1; e -= 2;
676      ++NumAnnihil;
677    }
678  }
679  return 0;
680}
681
682/// OptimizeAdd - Optimize a series of operands to an 'add' instruction.  This
683/// optimizes based on identities.  If it can be reduced to a single Value, it
684/// is returned, otherwise the Ops list is mutated as necessary.
685Value *Reassociate::OptimizeAdd(Instruction *I,
686                                SmallVectorImpl<ValueEntry> &Ops) {
687  // Scan the operand lists looking for X and -X pairs.  If we find any, we
688  // can simplify the expression. X+-X == 0.  While we're at it, scan for any
689  // duplicates.  We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
690  //
691  // TODO: We could handle "X + ~X" -> "-1" if we wanted, since "-X = ~X+1".
692  //
693  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
694    Value *TheOp = Ops[i].Op;
695    // Check to see if we've seen this operand before.  If so, we factor all
696    // instances of the operand together.  Due to our sorting criteria, we know
697    // that these need to be next to each other in the vector.
698    if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
699      // Rescan the list, remove all instances of this operand from the expr.
700      unsigned NumFound = 0;
701      do {
702        Ops.erase(Ops.begin()+i);
703        ++NumFound;
704      } while (i != Ops.size() && Ops[i].Op == TheOp);
705
706      DEBUG(errs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
707      ++NumFactor;
708
709      // Insert a new multiply.
710      Value *Mul = ConstantInt::get(cast<IntegerType>(I->getType()), NumFound);
711      Mul = BinaryOperator::CreateMul(TheOp, Mul, "factor", I);
712
713      // Now that we have inserted a multiply, optimize it. This allows us to
714      // handle cases that require multiple factoring steps, such as this:
715      // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
716      Mul = ReassociateExpression(cast<BinaryOperator>(Mul));
717
718      // If every add operand was a duplicate, return the multiply.
719      if (Ops.empty())
720        return Mul;
721
722      // Otherwise, we had some input that didn't have the dupe, such as
723      // "A + A + B" -> "A*2 + B".  Add the new multiply to the list of
724      // things being added by this operation.
725      Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
726
727      --i;
728      e = Ops.size();
729      continue;
730    }
731
732    // Check for X and -X in the operand list.
733    if (!BinaryOperator::isNeg(TheOp))
734      continue;
735
736    Value *X = BinaryOperator::getNegArgument(TheOp);
737    unsigned FoundX = FindInOperandList(Ops, i, X);
738    if (FoundX == i)
739      continue;
740
741    // Remove X and -X from the operand list.
742    if (Ops.size() == 2)
743      return Constant::getNullValue(X->getType());
744
745    Ops.erase(Ops.begin()+i);
746    if (i < FoundX)
747      --FoundX;
748    else
749      --i;   // Need to back up an extra one.
750    Ops.erase(Ops.begin()+FoundX);
751    ++NumAnnihil;
752    --i;     // Revisit element.
753    e -= 2;  // Removed two elements.
754  }
755
756  // Scan the operand list, checking to see if there are any common factors
757  // between operands.  Consider something like A*A+A*B*C+D.  We would like to
758  // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
759  // To efficiently find this, we count the number of times a factor occurs
760  // for any ADD operands that are MULs.
761  DenseMap<Value*, unsigned> FactorOccurrences;
762
763  // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
764  // where they are actually the same multiply.
765  unsigned MaxOcc = 0;
766  Value *MaxOccVal = 0;
767  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
768    BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op);
769    if (BOp == 0 || BOp->getOpcode() != Instruction::Mul || !BOp->use_empty())
770      continue;
771
772    // Compute all of the factors of this added value.
773    SmallVector<Value*, 8> Factors;
774    FindSingleUseMultiplyFactors(BOp, Factors, Ops, true);
775    assert(Factors.size() > 1 && "Bad linearize!");
776
777    // Add one to FactorOccurrences for each unique factor in this op.
778    SmallPtrSet<Value*, 8> Duplicates;
779    for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
780      Value *Factor = Factors[i];
781      if (!Duplicates.insert(Factor)) continue;
782
783      unsigned Occ = ++FactorOccurrences[Factor];
784      if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
785
786      // If Factor is a negative constant, add the negated value as a factor
787      // because we can percolate the negate out.  Watch for minint, which
788      // cannot be positivified.
789      if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor))
790        if (CI->getValue().isNegative() && !CI->getValue().isMinSignedValue()) {
791          Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
792          assert(!Duplicates.count(Factor) &&
793                 "Shouldn't have two constant factors, missed a canonicalize");
794
795          unsigned Occ = ++FactorOccurrences[Factor];
796          if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
797        }
798    }
799  }
800
801  // If any factor occurred more than one time, we can pull it out.
802  if (MaxOcc > 1) {
803    DEBUG(errs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
804    ++NumFactor;
805
806    // Create a new instruction that uses the MaxOccVal twice.  If we don't do
807    // this, we could otherwise run into situations where removing a factor
808    // from an expression will drop a use of maxocc, and this can cause
809    // RemoveFactorFromExpression on successive values to behave differently.
810    Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal);
811    SmallVector<Value*, 4> NewMulOps;
812    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
813      // Only try to remove factors from expressions we're allowed to.
814      BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op);
815      if (BOp == 0 || BOp->getOpcode() != Instruction::Mul || !BOp->use_empty())
816        continue;
817
818      if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
819        NewMulOps.push_back(V);
820        Ops.erase(Ops.begin()+i);
821        --i; --e;
822      }
823    }
824
825    // No need for extra uses anymore.
826    delete DummyInst;
827
828    unsigned NumAddedValues = NewMulOps.size();
829    Value *V = EmitAddTreeOfValues(I, NewMulOps);
830
831    // Now that we have inserted the add tree, optimize it. This allows us to
832    // handle cases that require multiple factoring steps, such as this:
833    // A*A*B + A*A*C   -->   A*(A*B+A*C)   -->   A*(A*(B+C))
834    assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
835    (void)NumAddedValues;
836    V = ReassociateExpression(cast<BinaryOperator>(V));
837
838    // Create the multiply.
839    Value *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I);
840
841    // Rerun associate on the multiply in case the inner expression turned into
842    // a multiply.  We want to make sure that we keep things in canonical form.
843    V2 = ReassociateExpression(cast<BinaryOperator>(V2));
844
845    // If every add operand included the factor (e.g. "A*B + A*C"), then the
846    // entire result expression is just the multiply "A*(B+C)".
847    if (Ops.empty())
848      return V2;
849
850    // Otherwise, we had some input that didn't have the factor, such as
851    // "A*B + A*C + D" -> "A*(B+C) + D".  Add the new multiply to the list of
852    // things being added by this operation.
853    Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
854  }
855
856  return 0;
857}
858
859Value *Reassociate::OptimizeExpression(BinaryOperator *I,
860                                       SmallVectorImpl<ValueEntry> &Ops) {
861  // Now that we have the linearized expression tree, try to optimize it.
862  // Start by folding any constants that we found.
863  bool IterateOptimization = false;
864  if (Ops.size() == 1) return Ops[0].Op;
865
866  unsigned Opcode = I->getOpcode();
867
868  if (Constant *V1 = dyn_cast<Constant>(Ops[Ops.size()-2].Op))
869    if (Constant *V2 = dyn_cast<Constant>(Ops.back().Op)) {
870      Ops.pop_back();
871      Ops.back().Op = ConstantExpr::get(Opcode, V1, V2);
872      return OptimizeExpression(I, Ops);
873    }
874
875  // Check for destructive annihilation due to a constant being used.
876  if (ConstantInt *CstVal = dyn_cast<ConstantInt>(Ops.back().Op))
877    switch (Opcode) {
878    default: break;
879    case Instruction::And:
880      if (CstVal->isZero())                  // X & 0 -> 0
881        return CstVal;
882      if (CstVal->isAllOnesValue())          // X & -1 -> X
883        Ops.pop_back();
884      break;
885    case Instruction::Mul:
886      if (CstVal->isZero()) {                // X * 0 -> 0
887        ++NumAnnihil;
888        return CstVal;
889      }
890
891      if (cast<ConstantInt>(CstVal)->isOne())
892        Ops.pop_back();                      // X * 1 -> X
893      break;
894    case Instruction::Or:
895      if (CstVal->isAllOnesValue())          // X | -1 -> -1
896        return CstVal;
897      // FALLTHROUGH!
898    case Instruction::Add:
899    case Instruction::Xor:
900      if (CstVal->isZero())                  // X [|^+] 0 -> X
901        Ops.pop_back();
902      break;
903    }
904  if (Ops.size() == 1) return Ops[0].Op;
905
906  // Handle destructive annihilation due to identities between elements in the
907  // argument list here.
908  switch (Opcode) {
909  default: break;
910  case Instruction::And:
911  case Instruction::Or:
912  case Instruction::Xor: {
913    unsigned NumOps = Ops.size();
914    if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
915      return Result;
916    IterateOptimization |= Ops.size() != NumOps;
917    break;
918  }
919
920  case Instruction::Add: {
921    unsigned NumOps = Ops.size();
922    if (Value *Result = OptimizeAdd(I, Ops))
923      return Result;
924    IterateOptimization |= Ops.size() != NumOps;
925  }
926
927    break;
928  //case Instruction::Mul:
929  }
930
931  if (IterateOptimization)
932    return OptimizeExpression(I, Ops);
933  return 0;
934}
935
936
937/// ReassociateBB - Inspect all of the instructions in this basic block,
938/// reassociating them as we go.
939void Reassociate::ReassociateBB(BasicBlock *BB) {
940  for (BasicBlock::iterator BBI = BB->begin(); BBI != BB->end(); ) {
941    Instruction *BI = BBI++;
942    if (BI->getOpcode() == Instruction::Shl &&
943        isa<ConstantInt>(BI->getOperand(1)))
944      if (Instruction *NI = ConvertShiftToMul(BI, ValueRankMap)) {
945        MadeChange = true;
946        BI = NI;
947      }
948
949    // Reject cases where it is pointless to do this.
950    if (!isa<BinaryOperator>(BI) || BI->getType()->isFloatingPointTy() ||
951        BI->getType()->isVectorTy())
952      continue;  // Floating point ops are not associative.
953
954    // Do not reassociate boolean (i1) expressions.  We want to preserve the
955    // original order of evaluation for short-circuited comparisons that
956    // SimplifyCFG has folded to AND/OR expressions.  If the expression
957    // is not further optimized, it is likely to be transformed back to a
958    // short-circuited form for code gen, and the source order may have been
959    // optimized for the most likely conditions.
960    if (BI->getType()->isIntegerTy(1))
961      continue;
962
963    // If this is a subtract instruction which is not already in negate form,
964    // see if we can convert it to X+-Y.
965    if (BI->getOpcode() == Instruction::Sub) {
966      if (ShouldBreakUpSubtract(BI)) {
967        BI = BreakUpSubtract(BI, ValueRankMap);
968        // Reset the BBI iterator in case BreakUpSubtract changed the
969        // instruction it points to.
970        BBI = BI;
971        ++BBI;
972        MadeChange = true;
973      } else if (BinaryOperator::isNeg(BI)) {
974        // Otherwise, this is a negation.  See if the operand is a multiply tree
975        // and if this is not an inner node of a multiply tree.
976        if (isReassociableOp(BI->getOperand(1), Instruction::Mul) &&
977            (!BI->hasOneUse() ||
978             !isReassociableOp(BI->use_back(), Instruction::Mul))) {
979          BI = LowerNegateToMultiply(BI, ValueRankMap);
980          MadeChange = true;
981        }
982      }
983    }
984
985    // If this instruction is a commutative binary operator, process it.
986    if (!BI->isAssociative()) continue;
987    BinaryOperator *I = cast<BinaryOperator>(BI);
988
989    // If this is an interior node of a reassociable tree, ignore it until we
990    // get to the root of the tree, to avoid N^2 analysis.
991    if (I->hasOneUse() && isReassociableOp(I->use_back(), I->getOpcode()))
992      continue;
993
994    // If this is an add tree that is used by a sub instruction, ignore it
995    // until we process the subtract.
996    if (I->hasOneUse() && I->getOpcode() == Instruction::Add &&
997        cast<Instruction>(I->use_back())->getOpcode() == Instruction::Sub)
998      continue;
999
1000    ReassociateExpression(I);
1001  }
1002}
1003
1004Value *Reassociate::ReassociateExpression(BinaryOperator *I) {
1005
1006  // First, walk the expression tree, linearizing the tree, collecting the
1007  // operand information.
1008  SmallVector<ValueEntry, 8> Ops;
1009  LinearizeExprTree(I, Ops);
1010
1011  DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
1012
1013  // Now that we have linearized the tree to a list and have gathered all of
1014  // the operands and their ranks, sort the operands by their rank.  Use a
1015  // stable_sort so that values with equal ranks will have their relative
1016  // positions maintained (and so the compiler is deterministic).  Note that
1017  // this sorts so that the highest ranking values end up at the beginning of
1018  // the vector.
1019  std::stable_sort(Ops.begin(), Ops.end());
1020
1021  // OptimizeExpression - Now that we have the expression tree in a convenient
1022  // sorted form, optimize it globally if possible.
1023  if (Value *V = OptimizeExpression(I, Ops)) {
1024    // This expression tree simplified to something that isn't a tree,
1025    // eliminate it.
1026    DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
1027    I->replaceAllUsesWith(V);
1028    RemoveDeadBinaryOp(I);
1029    ++NumAnnihil;
1030    return V;
1031  }
1032
1033  // We want to sink immediates as deeply as possible except in the case where
1034  // this is a multiply tree used only by an add, and the immediate is a -1.
1035  // In this case we reassociate to put the negation on the outside so that we
1036  // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
1037  if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
1038      cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
1039      isa<ConstantInt>(Ops.back().Op) &&
1040      cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
1041    ValueEntry Tmp = Ops.pop_back_val();
1042    Ops.insert(Ops.begin(), Tmp);
1043  }
1044
1045  DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
1046
1047  if (Ops.size() == 1) {
1048    // This expression tree simplified to something that isn't a tree,
1049    // eliminate it.
1050    I->replaceAllUsesWith(Ops[0].Op);
1051    RemoveDeadBinaryOp(I);
1052    return Ops[0].Op;
1053  }
1054
1055  // Now that we ordered and optimized the expressions, splat them back into
1056  // the expression tree, removing any unneeded nodes.
1057  RewriteExprTree(I, Ops);
1058  return I;
1059}
1060
1061
1062bool Reassociate::runOnFunction(Function &F) {
1063  // Recalculate the rank map for F
1064  BuildRankMap(F);
1065
1066  MadeChange = false;
1067  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
1068    ReassociateBB(FI);
1069
1070  // We are done with the rank map.
1071  RankMap.clear();
1072  ValueRankMap.clear();
1073  return MadeChange;
1074}
1075
1076