Reassociate.cpp revision 210299
1//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass reassociates commutative expressions in an order that is designed
11// to promote better constant propagation, GCSE, LICM, PRE, etc.
12//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
15// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
23#define DEBUG_TYPE "reassociate"
24#include "llvm/Transforms/Scalar.h"
25#include "llvm/Constants.h"
26#include "llvm/DerivedTypes.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/Pass.h"
31#include "llvm/Assembly/Writer.h"
32#include "llvm/Support/CFG.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/Support/ValueHandle.h"
35#include "llvm/Support/raw_ostream.h"
36#include "llvm/ADT/PostOrderIterator.h"
37#include "llvm/ADT/Statistic.h"
38#include "llvm/ADT/DenseMap.h"
39#include <algorithm>
40using namespace llvm;
41
42STATISTIC(NumLinear , "Number of insts linearized");
43STATISTIC(NumChanged, "Number of insts reassociated");
44STATISTIC(NumAnnihil, "Number of expr tree annihilated");
45STATISTIC(NumFactor , "Number of multiplies factored");
46
47namespace {
48  struct ValueEntry {
49    unsigned Rank;
50    Value *Op;
51    ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
52  };
53  inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
54    return LHS.Rank > RHS.Rank;   // Sort so that highest rank goes to start.
55  }
56}
57
58#ifndef NDEBUG
59/// PrintOps - Print out the expression identified in the Ops list.
60///
61static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
62  Module *M = I->getParent()->getParent()->getParent();
63  dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
64       << *Ops[0].Op->getType() << '\t';
65  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
66    dbgs() << "[ ";
67    WriteAsOperand(dbgs(), Ops[i].Op, false, M);
68    dbgs() << ", #" << Ops[i].Rank << "] ";
69  }
70}
71#endif
72
73namespace {
74  class Reassociate : public FunctionPass {
75    DenseMap<BasicBlock*, unsigned> RankMap;
76    DenseMap<AssertingVH<>, unsigned> ValueRankMap;
77    bool MadeChange;
78  public:
79    static char ID; // Pass identification, replacement for typeid
80    Reassociate() : FunctionPass(&ID) {}
81
82    bool runOnFunction(Function &F);
83
84    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
85      AU.setPreservesCFG();
86    }
87  private:
88    void BuildRankMap(Function &F);
89    unsigned getRank(Value *V);
90    Value *ReassociateExpression(BinaryOperator *I);
91    void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops,
92                         unsigned Idx = 0);
93    Value *OptimizeExpression(BinaryOperator *I,
94                              SmallVectorImpl<ValueEntry> &Ops);
95    Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
96    void LinearizeExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
97    void LinearizeExpr(BinaryOperator *I);
98    Value *RemoveFactorFromExpression(Value *V, Value *Factor);
99    void ReassociateBB(BasicBlock *BB);
100
101    void RemoveDeadBinaryOp(Value *V);
102  };
103}
104
105char Reassociate::ID = 0;
106static RegisterPass<Reassociate> X("reassociate", "Reassociate expressions");
107
108// Public interface to the Reassociate pass
109FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
110
111void Reassociate::RemoveDeadBinaryOp(Value *V) {
112  Instruction *Op = dyn_cast<Instruction>(V);
113  if (!Op || !isa<BinaryOperator>(Op) || !Op->use_empty())
114    return;
115
116  Value *LHS = Op->getOperand(0), *RHS = Op->getOperand(1);
117
118  ValueRankMap.erase(Op);
119  Op->eraseFromParent();
120  RemoveDeadBinaryOp(LHS);
121  RemoveDeadBinaryOp(RHS);
122}
123
124
125static bool isUnmovableInstruction(Instruction *I) {
126  if (I->getOpcode() == Instruction::PHI ||
127      I->getOpcode() == Instruction::Alloca ||
128      I->getOpcode() == Instruction::Load ||
129      I->getOpcode() == Instruction::Invoke ||
130      (I->getOpcode() == Instruction::Call &&
131       !isa<DbgInfoIntrinsic>(I)) ||
132      I->getOpcode() == Instruction::UDiv ||
133      I->getOpcode() == Instruction::SDiv ||
134      I->getOpcode() == Instruction::FDiv ||
135      I->getOpcode() == Instruction::URem ||
136      I->getOpcode() == Instruction::SRem ||
137      I->getOpcode() == Instruction::FRem)
138    return true;
139  return false;
140}
141
142void Reassociate::BuildRankMap(Function &F) {
143  unsigned i = 2;
144
145  // Assign distinct ranks to function arguments
146  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
147    ValueRankMap[&*I] = ++i;
148
149  ReversePostOrderTraversal<Function*> RPOT(&F);
150  for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
151         E = RPOT.end(); I != E; ++I) {
152    BasicBlock *BB = *I;
153    unsigned BBRank = RankMap[BB] = ++i << 16;
154
155    // Walk the basic block, adding precomputed ranks for any instructions that
156    // we cannot move.  This ensures that the ranks for these instructions are
157    // all different in the block.
158    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
159      if (isUnmovableInstruction(I))
160        ValueRankMap[&*I] = ++BBRank;
161  }
162}
163
164unsigned Reassociate::getRank(Value *V) {
165  Instruction *I = dyn_cast<Instruction>(V);
166  if (I == 0) {
167    if (isa<Argument>(V)) return ValueRankMap[V];   // Function argument.
168    return 0;  // Otherwise it's a global or constant, rank 0.
169  }
170
171  if (unsigned Rank = ValueRankMap[I])
172    return Rank;    // Rank already known?
173
174  // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
175  // we can reassociate expressions for code motion!  Since we do not recurse
176  // for PHI nodes, we cannot have infinite recursion here, because there
177  // cannot be loops in the value graph that do not go through PHI nodes.
178  unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
179  for (unsigned i = 0, e = I->getNumOperands();
180       i != e && Rank != MaxRank; ++i)
181    Rank = std::max(Rank, getRank(I->getOperand(i)));
182
183  // If this is a not or neg instruction, do not count it for rank.  This
184  // assures us that X and ~X will have the same rank.
185  if (!I->getType()->isIntegerTy() ||
186      (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
187    ++Rank;
188
189  //DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = "
190  //     << Rank << "\n");
191
192  return ValueRankMap[I] = Rank;
193}
194
195/// isReassociableOp - Return true if V is an instruction of the specified
196/// opcode and if it only has one use.
197static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
198  if ((V->hasOneUse() || V->use_empty()) && isa<Instruction>(V) &&
199      cast<Instruction>(V)->getOpcode() == Opcode)
200    return cast<BinaryOperator>(V);
201  return 0;
202}
203
204/// LowerNegateToMultiply - Replace 0-X with X*-1.
205///
206static Instruction *LowerNegateToMultiply(Instruction *Neg,
207                              DenseMap<AssertingVH<>, unsigned> &ValueRankMap) {
208  Constant *Cst = Constant::getAllOnesValue(Neg->getType());
209
210  Instruction *Res = BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg);
211  ValueRankMap.erase(Neg);
212  Res->takeName(Neg);
213  Neg->replaceAllUsesWith(Res);
214  Neg->eraseFromParent();
215  return Res;
216}
217
218// Given an expression of the form '(A+B)+(D+C)', turn it into '(((A+B)+C)+D)'.
219// Note that if D is also part of the expression tree that we recurse to
220// linearize it as well.  Besides that case, this does not recurse into A,B, or
221// C.
222void Reassociate::LinearizeExpr(BinaryOperator *I) {
223  BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
224  BinaryOperator *RHS = cast<BinaryOperator>(I->getOperand(1));
225  assert(isReassociableOp(LHS, I->getOpcode()) &&
226         isReassociableOp(RHS, I->getOpcode()) &&
227         "Not an expression that needs linearization?");
228
229  DEBUG(dbgs() << "Linear" << *LHS << '\n' << *RHS << '\n' << *I << '\n');
230
231  // Move the RHS instruction to live immediately before I, avoiding breaking
232  // dominator properties.
233  RHS->moveBefore(I);
234
235  // Move operands around to do the linearization.
236  I->setOperand(1, RHS->getOperand(0));
237  RHS->setOperand(0, LHS);
238  I->setOperand(0, RHS);
239
240  ++NumLinear;
241  MadeChange = true;
242  DEBUG(dbgs() << "Linearized: " << *I << '\n');
243
244  // If D is part of this expression tree, tail recurse.
245  if (isReassociableOp(I->getOperand(1), I->getOpcode()))
246    LinearizeExpr(I);
247}
248
249
250/// LinearizeExprTree - Given an associative binary expression tree, traverse
251/// all of the uses putting it into canonical form.  This forces a left-linear
252/// form of the expression (((a+b)+c)+d), and collects information about the
253/// rank of the non-tree operands.
254///
255/// NOTE: These intentionally destroys the expression tree operands (turning
256/// them into undef values) to reduce #uses of the values.  This means that the
257/// caller MUST use something like RewriteExprTree to put the values back in.
258///
259void Reassociate::LinearizeExprTree(BinaryOperator *I,
260                                    SmallVectorImpl<ValueEntry> &Ops) {
261  Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
262  unsigned Opcode = I->getOpcode();
263
264  // First step, linearize the expression if it is in ((A+B)+(C+D)) form.
265  BinaryOperator *LHSBO = isReassociableOp(LHS, Opcode);
266  BinaryOperator *RHSBO = isReassociableOp(RHS, Opcode);
267
268  // If this is a multiply expression tree and it contains internal negations,
269  // transform them into multiplies by -1 so they can be reassociated.
270  if (I->getOpcode() == Instruction::Mul) {
271    if (!LHSBO && LHS->hasOneUse() && BinaryOperator::isNeg(LHS)) {
272      LHS = LowerNegateToMultiply(cast<Instruction>(LHS), ValueRankMap);
273      LHSBO = isReassociableOp(LHS, Opcode);
274    }
275    if (!RHSBO && RHS->hasOneUse() && BinaryOperator::isNeg(RHS)) {
276      RHS = LowerNegateToMultiply(cast<Instruction>(RHS), ValueRankMap);
277      RHSBO = isReassociableOp(RHS, Opcode);
278    }
279  }
280
281  if (!LHSBO) {
282    if (!RHSBO) {
283      // Neither the LHS or RHS as part of the tree, thus this is a leaf.  As
284      // such, just remember these operands and their rank.
285      Ops.push_back(ValueEntry(getRank(LHS), LHS));
286      Ops.push_back(ValueEntry(getRank(RHS), RHS));
287
288      // Clear the leaves out.
289      I->setOperand(0, UndefValue::get(I->getType()));
290      I->setOperand(1, UndefValue::get(I->getType()));
291      return;
292    }
293
294    // Turn X+(Y+Z) -> (Y+Z)+X
295    std::swap(LHSBO, RHSBO);
296    std::swap(LHS, RHS);
297    bool Success = !I->swapOperands();
298    assert(Success && "swapOperands failed");
299    Success = false;
300    MadeChange = true;
301  } else if (RHSBO) {
302    // Turn (A+B)+(C+D) -> (((A+B)+C)+D).  This guarantees the RHS is not
303    // part of the expression tree.
304    LinearizeExpr(I);
305    LHS = LHSBO = cast<BinaryOperator>(I->getOperand(0));
306    RHS = I->getOperand(1);
307    RHSBO = 0;
308  }
309
310  // Okay, now we know that the LHS is a nested expression and that the RHS is
311  // not.  Perform reassociation.
312  assert(!isReassociableOp(RHS, Opcode) && "LinearizeExpr failed!");
313
314  // Move LHS right before I to make sure that the tree expression dominates all
315  // values.
316  LHSBO->moveBefore(I);
317
318  // Linearize the expression tree on the LHS.
319  LinearizeExprTree(LHSBO, Ops);
320
321  // Remember the RHS operand and its rank.
322  Ops.push_back(ValueEntry(getRank(RHS), RHS));
323
324  // Clear the RHS leaf out.
325  I->setOperand(1, UndefValue::get(I->getType()));
326}
327
328// RewriteExprTree - Now that the operands for this expression tree are
329// linearized and optimized, emit them in-order.  This function is written to be
330// tail recursive.
331void Reassociate::RewriteExprTree(BinaryOperator *I,
332                                  SmallVectorImpl<ValueEntry> &Ops,
333                                  unsigned i) {
334  if (i+2 == Ops.size()) {
335    if (I->getOperand(0) != Ops[i].Op ||
336        I->getOperand(1) != Ops[i+1].Op) {
337      Value *OldLHS = I->getOperand(0);
338      DEBUG(dbgs() << "RA: " << *I << '\n');
339      I->setOperand(0, Ops[i].Op);
340      I->setOperand(1, Ops[i+1].Op);
341      DEBUG(dbgs() << "TO: " << *I << '\n');
342      MadeChange = true;
343      ++NumChanged;
344
345      // If we reassociated a tree to fewer operands (e.g. (1+a+2) -> (a+3)
346      // delete the extra, now dead, nodes.
347      RemoveDeadBinaryOp(OldLHS);
348    }
349    return;
350  }
351  assert(i+2 < Ops.size() && "Ops index out of range!");
352
353  if (I->getOperand(1) != Ops[i].Op) {
354    DEBUG(dbgs() << "RA: " << *I << '\n');
355    I->setOperand(1, Ops[i].Op);
356    DEBUG(dbgs() << "TO: " << *I << '\n');
357    MadeChange = true;
358    ++NumChanged;
359  }
360
361  BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
362  assert(LHS->getOpcode() == I->getOpcode() &&
363         "Improper expression tree!");
364
365  // Compactify the tree instructions together with each other to guarantee
366  // that the expression tree is dominated by all of Ops.
367  LHS->moveBefore(I);
368  RewriteExprTree(LHS, Ops, i+1);
369}
370
371
372
373// NegateValue - Insert instructions before the instruction pointed to by BI,
374// that computes the negative version of the value specified.  The negative
375// version of the value is returned, and BI is left pointing at the instruction
376// that should be processed next by the reassociation pass.
377//
378static Value *NegateValue(Value *V, Instruction *BI) {
379  if (Constant *C = dyn_cast<Constant>(V))
380    return ConstantExpr::getNeg(C);
381
382  // We are trying to expose opportunity for reassociation.  One of the things
383  // that we want to do to achieve this is to push a negation as deep into an
384  // expression chain as possible, to expose the add instructions.  In practice,
385  // this means that we turn this:
386  //   X = -(A+12+C+D)   into    X = -A + -12 + -C + -D = -12 + -A + -C + -D
387  // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
388  // the constants.  We assume that instcombine will clean up the mess later if
389  // we introduce tons of unnecessary negation instructions.
390  //
391  if (Instruction *I = dyn_cast<Instruction>(V))
392    if (I->getOpcode() == Instruction::Add && I->hasOneUse()) {
393      // Push the negates through the add.
394      I->setOperand(0, NegateValue(I->getOperand(0), BI));
395      I->setOperand(1, NegateValue(I->getOperand(1), BI));
396
397      // We must move the add instruction here, because the neg instructions do
398      // not dominate the old add instruction in general.  By moving it, we are
399      // assured that the neg instructions we just inserted dominate the
400      // instruction we are about to insert after them.
401      //
402      I->moveBefore(BI);
403      I->setName(I->getName()+".neg");
404      return I;
405    }
406
407  // Okay, we need to materialize a negated version of V with an instruction.
408  // Scan the use lists of V to see if we have one already.
409  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
410    User *U = *UI;
411    if (!BinaryOperator::isNeg(U)) continue;
412
413    // We found one!  Now we have to make sure that the definition dominates
414    // this use.  We do this by moving it to the entry block (if it is a
415    // non-instruction value) or right after the definition.  These negates will
416    // be zapped by reassociate later, so we don't need much finesse here.
417    BinaryOperator *TheNeg = cast<BinaryOperator>(U);
418
419    // Verify that the negate is in this function, V might be a constant expr.
420    if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
421      continue;
422
423    BasicBlock::iterator InsertPt;
424    if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
425      if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
426        InsertPt = II->getNormalDest()->begin();
427      } else {
428        InsertPt = InstInput;
429        ++InsertPt;
430      }
431      while (isa<PHINode>(InsertPt)) ++InsertPt;
432    } else {
433      InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
434    }
435    TheNeg->moveBefore(InsertPt);
436    return TheNeg;
437  }
438
439  // Insert a 'neg' instruction that subtracts the value from zero to get the
440  // negation.
441  return BinaryOperator::CreateNeg(V, V->getName() + ".neg", BI);
442}
443
444/// ShouldBreakUpSubtract - Return true if we should break up this subtract of
445/// X-Y into (X + -Y).
446static bool ShouldBreakUpSubtract(Instruction *Sub) {
447  // If this is a negation, we can't split it up!
448  if (BinaryOperator::isNeg(Sub))
449    return false;
450
451  // Don't bother to break this up unless either the LHS is an associable add or
452  // subtract or if this is only used by one.
453  if (isReassociableOp(Sub->getOperand(0), Instruction::Add) ||
454      isReassociableOp(Sub->getOperand(0), Instruction::Sub))
455    return true;
456  if (isReassociableOp(Sub->getOperand(1), Instruction::Add) ||
457      isReassociableOp(Sub->getOperand(1), Instruction::Sub))
458    return true;
459  if (Sub->hasOneUse() &&
460      (isReassociableOp(Sub->use_back(), Instruction::Add) ||
461       isReassociableOp(Sub->use_back(), Instruction::Sub)))
462    return true;
463
464  return false;
465}
466
467/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
468/// only used by an add, transform this into (X+(0-Y)) to promote better
469/// reassociation.
470static Instruction *BreakUpSubtract(Instruction *Sub,
471                              DenseMap<AssertingVH<>, unsigned> &ValueRankMap) {
472  // Convert a subtract into an add and a neg instruction. This allows sub
473  // instructions to be commuted with other add instructions.
474  //
475  // Calculate the negative value of Operand 1 of the sub instruction,
476  // and set it as the RHS of the add instruction we just made.
477  //
478  Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
479  Instruction *New =
480    BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub);
481  New->takeName(Sub);
482
483  // Everyone now refers to the add instruction.
484  ValueRankMap.erase(Sub);
485  Sub->replaceAllUsesWith(New);
486  Sub->eraseFromParent();
487
488  DEBUG(dbgs() << "Negated: " << *New << '\n');
489  return New;
490}
491
492/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
493/// by one, change this into a multiply by a constant to assist with further
494/// reassociation.
495static Instruction *ConvertShiftToMul(Instruction *Shl,
496                              DenseMap<AssertingVH<>, unsigned> &ValueRankMap) {
497  // If an operand of this shift is a reassociable multiply, or if the shift
498  // is used by a reassociable multiply or add, turn into a multiply.
499  if (isReassociableOp(Shl->getOperand(0), Instruction::Mul) ||
500      (Shl->hasOneUse() &&
501       (isReassociableOp(Shl->use_back(), Instruction::Mul) ||
502        isReassociableOp(Shl->use_back(), Instruction::Add)))) {
503    Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
504    MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
505
506    Instruction *Mul =
507      BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
508    ValueRankMap.erase(Shl);
509    Mul->takeName(Shl);
510    Shl->replaceAllUsesWith(Mul);
511    Shl->eraseFromParent();
512    return Mul;
513  }
514  return 0;
515}
516
517// Scan backwards and forwards among values with the same rank as element i to
518// see if X exists.  If X does not exist, return i.  This is useful when
519// scanning for 'x' when we see '-x' because they both get the same rank.
520static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i,
521                                  Value *X) {
522  unsigned XRank = Ops[i].Rank;
523  unsigned e = Ops.size();
524  for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
525    if (Ops[j].Op == X)
526      return j;
527  // Scan backwards.
528  for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
529    if (Ops[j].Op == X)
530      return j;
531  return i;
532}
533
534/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
535/// and returning the result.  Insert the tree before I.
536static Value *EmitAddTreeOfValues(Instruction *I, SmallVectorImpl<Value*> &Ops){
537  if (Ops.size() == 1) return Ops.back();
538
539  Value *V1 = Ops.back();
540  Ops.pop_back();
541  Value *V2 = EmitAddTreeOfValues(I, Ops);
542  return BinaryOperator::CreateAdd(V2, V1, "tmp", I);
543}
544
545/// RemoveFactorFromExpression - If V is an expression tree that is a
546/// multiplication sequence, and if this sequence contains a multiply by Factor,
547/// remove Factor from the tree and return the new tree.
548Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
549  BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
550  if (!BO) return 0;
551
552  SmallVector<ValueEntry, 8> Factors;
553  LinearizeExprTree(BO, Factors);
554
555  bool FoundFactor = false;
556  bool NeedsNegate = false;
557  for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
558    if (Factors[i].Op == Factor) {
559      FoundFactor = true;
560      Factors.erase(Factors.begin()+i);
561      break;
562    }
563
564    // If this is a negative version of this factor, remove it.
565    if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor))
566      if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
567        if (FC1->getValue() == -FC2->getValue()) {
568          FoundFactor = NeedsNegate = true;
569          Factors.erase(Factors.begin()+i);
570          break;
571        }
572  }
573
574  if (!FoundFactor) {
575    // Make sure to restore the operands to the expression tree.
576    RewriteExprTree(BO, Factors);
577    return 0;
578  }
579
580  BasicBlock::iterator InsertPt = BO; ++InsertPt;
581
582  // If this was just a single multiply, remove the multiply and return the only
583  // remaining operand.
584  if (Factors.size() == 1) {
585    ValueRankMap.erase(BO);
586    BO->eraseFromParent();
587    V = Factors[0].Op;
588  } else {
589    RewriteExprTree(BO, Factors);
590    V = BO;
591  }
592
593  if (NeedsNegate)
594    V = BinaryOperator::CreateNeg(V, "neg", InsertPt);
595
596  return V;
597}
598
599/// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
600/// add its operands as factors, otherwise add V to the list of factors.
601///
602/// Ops is the top-level list of add operands we're trying to factor.
603static void FindSingleUseMultiplyFactors(Value *V,
604                                         SmallVectorImpl<Value*> &Factors,
605                                       const SmallVectorImpl<ValueEntry> &Ops,
606                                         bool IsRoot) {
607  BinaryOperator *BO;
608  if (!(V->hasOneUse() || V->use_empty()) || // More than one use.
609      !(BO = dyn_cast<BinaryOperator>(V)) ||
610      BO->getOpcode() != Instruction::Mul) {
611    Factors.push_back(V);
612    return;
613  }
614
615  // If this value has a single use because it is another input to the add
616  // tree we're reassociating and we dropped its use, it actually has two
617  // uses and we can't factor it.
618  if (!IsRoot) {
619    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
620      if (Ops[i].Op == V) {
621        Factors.push_back(V);
622        return;
623      }
624  }
625
626
627  // Otherwise, add the LHS and RHS to the list of factors.
628  FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops, false);
629  FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops, false);
630}
631
632/// OptimizeAndOrXor - Optimize a series of operands to an 'and', 'or', or 'xor'
633/// instruction.  This optimizes based on identities.  If it can be reduced to
634/// a single Value, it is returned, otherwise the Ops list is mutated as
635/// necessary.
636static Value *OptimizeAndOrXor(unsigned Opcode,
637                               SmallVectorImpl<ValueEntry> &Ops) {
638  // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
639  // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
640  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
641    // First, check for X and ~X in the operand list.
642    assert(i < Ops.size());
643    if (BinaryOperator::isNot(Ops[i].Op)) {    // Cannot occur for ^.
644      Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
645      unsigned FoundX = FindInOperandList(Ops, i, X);
646      if (FoundX != i) {
647        if (Opcode == Instruction::And)   // ...&X&~X = 0
648          return Constant::getNullValue(X->getType());
649
650        if (Opcode == Instruction::Or)    // ...|X|~X = -1
651          return Constant::getAllOnesValue(X->getType());
652      }
653    }
654
655    // Next, check for duplicate pairs of values, which we assume are next to
656    // each other, due to our sorting criteria.
657    assert(i < Ops.size());
658    if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
659      if (Opcode == Instruction::And || Opcode == Instruction::Or) {
660        // Drop duplicate values for And and Or.
661        Ops.erase(Ops.begin()+i);
662        --i; --e;
663        ++NumAnnihil;
664        continue;
665      }
666
667      // Drop pairs of values for Xor.
668      assert(Opcode == Instruction::Xor);
669      if (e == 2)
670        return Constant::getNullValue(Ops[0].Op->getType());
671
672      // Y ^ X^X -> Y
673      Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
674      i -= 1; e -= 2;
675      ++NumAnnihil;
676    }
677  }
678  return 0;
679}
680
681/// OptimizeAdd - Optimize a series of operands to an 'add' instruction.  This
682/// optimizes based on identities.  If it can be reduced to a single Value, it
683/// is returned, otherwise the Ops list is mutated as necessary.
684Value *Reassociate::OptimizeAdd(Instruction *I,
685                                SmallVectorImpl<ValueEntry> &Ops) {
686  // Scan the operand lists looking for X and -X pairs.  If we find any, we
687  // can simplify the expression. X+-X == 0.  While we're at it, scan for any
688  // duplicates.  We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
689  //
690  // TODO: We could handle "X + ~X" -> "-1" if we wanted, since "-X = ~X+1".
691  //
692  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
693    Value *TheOp = Ops[i].Op;
694    // Check to see if we've seen this operand before.  If so, we factor all
695    // instances of the operand together.  Due to our sorting criteria, we know
696    // that these need to be next to each other in the vector.
697    if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
698      // Rescan the list, remove all instances of this operand from the expr.
699      unsigned NumFound = 0;
700      do {
701        Ops.erase(Ops.begin()+i);
702        ++NumFound;
703      } while (i != Ops.size() && Ops[i].Op == TheOp);
704
705      DEBUG(errs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
706      ++NumFactor;
707
708      // Insert a new multiply.
709      Value *Mul = ConstantInt::get(cast<IntegerType>(I->getType()), NumFound);
710      Mul = BinaryOperator::CreateMul(TheOp, Mul, "factor", I);
711
712      // Now that we have inserted a multiply, optimize it. This allows us to
713      // handle cases that require multiple factoring steps, such as this:
714      // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
715      Mul = ReassociateExpression(cast<BinaryOperator>(Mul));
716
717      // If every add operand was a duplicate, return the multiply.
718      if (Ops.empty())
719        return Mul;
720
721      // Otherwise, we had some input that didn't have the dupe, such as
722      // "A + A + B" -> "A*2 + B".  Add the new multiply to the list of
723      // things being added by this operation.
724      Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
725
726      --i;
727      e = Ops.size();
728      continue;
729    }
730
731    // Check for X and -X in the operand list.
732    if (!BinaryOperator::isNeg(TheOp))
733      continue;
734
735    Value *X = BinaryOperator::getNegArgument(TheOp);
736    unsigned FoundX = FindInOperandList(Ops, i, X);
737    if (FoundX == i)
738      continue;
739
740    // Remove X and -X from the operand list.
741    if (Ops.size() == 2)
742      return Constant::getNullValue(X->getType());
743
744    Ops.erase(Ops.begin()+i);
745    if (i < FoundX)
746      --FoundX;
747    else
748      --i;   // Need to back up an extra one.
749    Ops.erase(Ops.begin()+FoundX);
750    ++NumAnnihil;
751    --i;     // Revisit element.
752    e -= 2;  // Removed two elements.
753  }
754
755  // Scan the operand list, checking to see if there are any common factors
756  // between operands.  Consider something like A*A+A*B*C+D.  We would like to
757  // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
758  // To efficiently find this, we count the number of times a factor occurs
759  // for any ADD operands that are MULs.
760  DenseMap<Value*, unsigned> FactorOccurrences;
761
762  // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
763  // where they are actually the same multiply.
764  unsigned MaxOcc = 0;
765  Value *MaxOccVal = 0;
766  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
767    BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op);
768    if (BOp == 0 || BOp->getOpcode() != Instruction::Mul || !BOp->use_empty())
769      continue;
770
771    // Compute all of the factors of this added value.
772    SmallVector<Value*, 8> Factors;
773    FindSingleUseMultiplyFactors(BOp, Factors, Ops, true);
774    assert(Factors.size() > 1 && "Bad linearize!");
775
776    // Add one to FactorOccurrences for each unique factor in this op.
777    SmallPtrSet<Value*, 8> Duplicates;
778    for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
779      Value *Factor = Factors[i];
780      if (!Duplicates.insert(Factor)) continue;
781
782      unsigned Occ = ++FactorOccurrences[Factor];
783      if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
784
785      // If Factor is a negative constant, add the negated value as a factor
786      // because we can percolate the negate out.  Watch for minint, which
787      // cannot be positivified.
788      if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor))
789        if (CI->getValue().isNegative() && !CI->getValue().isMinSignedValue()) {
790          Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
791          assert(!Duplicates.count(Factor) &&
792                 "Shouldn't have two constant factors, missed a canonicalize");
793
794          unsigned Occ = ++FactorOccurrences[Factor];
795          if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
796        }
797    }
798  }
799
800  // If any factor occurred more than one time, we can pull it out.
801  if (MaxOcc > 1) {
802    DEBUG(errs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
803    ++NumFactor;
804
805    // Create a new instruction that uses the MaxOccVal twice.  If we don't do
806    // this, we could otherwise run into situations where removing a factor
807    // from an expression will drop a use of maxocc, and this can cause
808    // RemoveFactorFromExpression on successive values to behave differently.
809    Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal);
810    SmallVector<Value*, 4> NewMulOps;
811    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
812      // Only try to remove factors from expressions we're allowed to.
813      BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op);
814      if (BOp == 0 || BOp->getOpcode() != Instruction::Mul || !BOp->use_empty())
815        continue;
816
817      if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
818        NewMulOps.push_back(V);
819        Ops.erase(Ops.begin()+i);
820        --i; --e;
821      }
822    }
823
824    // No need for extra uses anymore.
825    delete DummyInst;
826
827    unsigned NumAddedValues = NewMulOps.size();
828    Value *V = EmitAddTreeOfValues(I, NewMulOps);
829
830    // Now that we have inserted the add tree, optimize it. This allows us to
831    // handle cases that require multiple factoring steps, such as this:
832    // A*A*B + A*A*C   -->   A*(A*B+A*C)   -->   A*(A*(B+C))
833    assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
834    (void)NumAddedValues;
835    V = ReassociateExpression(cast<BinaryOperator>(V));
836
837    // Create the multiply.
838    Value *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I);
839
840    // Rerun associate on the multiply in case the inner expression turned into
841    // a multiply.  We want to make sure that we keep things in canonical form.
842    V2 = ReassociateExpression(cast<BinaryOperator>(V2));
843
844    // If every add operand included the factor (e.g. "A*B + A*C"), then the
845    // entire result expression is just the multiply "A*(B+C)".
846    if (Ops.empty())
847      return V2;
848
849    // Otherwise, we had some input that didn't have the factor, such as
850    // "A*B + A*C + D" -> "A*(B+C) + D".  Add the new multiply to the list of
851    // things being added by this operation.
852    Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
853  }
854
855  return 0;
856}
857
858Value *Reassociate::OptimizeExpression(BinaryOperator *I,
859                                       SmallVectorImpl<ValueEntry> &Ops) {
860  // Now that we have the linearized expression tree, try to optimize it.
861  // Start by folding any constants that we found.
862  bool IterateOptimization = false;
863  if (Ops.size() == 1) return Ops[0].Op;
864
865  unsigned Opcode = I->getOpcode();
866
867  if (Constant *V1 = dyn_cast<Constant>(Ops[Ops.size()-2].Op))
868    if (Constant *V2 = dyn_cast<Constant>(Ops.back().Op)) {
869      Ops.pop_back();
870      Ops.back().Op = ConstantExpr::get(Opcode, V1, V2);
871      return OptimizeExpression(I, Ops);
872    }
873
874  // Check for destructive annihilation due to a constant being used.
875  if (ConstantInt *CstVal = dyn_cast<ConstantInt>(Ops.back().Op))
876    switch (Opcode) {
877    default: break;
878    case Instruction::And:
879      if (CstVal->isZero())                  // X & 0 -> 0
880        return CstVal;
881      if (CstVal->isAllOnesValue())          // X & -1 -> X
882        Ops.pop_back();
883      break;
884    case Instruction::Mul:
885      if (CstVal->isZero()) {                // X * 0 -> 0
886        ++NumAnnihil;
887        return CstVal;
888      }
889
890      if (cast<ConstantInt>(CstVal)->isOne())
891        Ops.pop_back();                      // X * 1 -> X
892      break;
893    case Instruction::Or:
894      if (CstVal->isAllOnesValue())          // X | -1 -> -1
895        return CstVal;
896      // FALLTHROUGH!
897    case Instruction::Add:
898    case Instruction::Xor:
899      if (CstVal->isZero())                  // X [|^+] 0 -> X
900        Ops.pop_back();
901      break;
902    }
903  if (Ops.size() == 1) return Ops[0].Op;
904
905  // Handle destructive annihilation due to identities between elements in the
906  // argument list here.
907  switch (Opcode) {
908  default: break;
909  case Instruction::And:
910  case Instruction::Or:
911  case Instruction::Xor: {
912    unsigned NumOps = Ops.size();
913    if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
914      return Result;
915    IterateOptimization |= Ops.size() != NumOps;
916    break;
917  }
918
919  case Instruction::Add: {
920    unsigned NumOps = Ops.size();
921    if (Value *Result = OptimizeAdd(I, Ops))
922      return Result;
923    IterateOptimization |= Ops.size() != NumOps;
924  }
925
926    break;
927  //case Instruction::Mul:
928  }
929
930  if (IterateOptimization)
931    return OptimizeExpression(I, Ops);
932  return 0;
933}
934
935
936/// ReassociateBB - Inspect all of the instructions in this basic block,
937/// reassociating them as we go.
938void Reassociate::ReassociateBB(BasicBlock *BB) {
939  for (BasicBlock::iterator BBI = BB->begin(); BBI != BB->end(); ) {
940    Instruction *BI = BBI++;
941    if (BI->getOpcode() == Instruction::Shl &&
942        isa<ConstantInt>(BI->getOperand(1)))
943      if (Instruction *NI = ConvertShiftToMul(BI, ValueRankMap)) {
944        MadeChange = true;
945        BI = NI;
946      }
947
948    // Reject cases where it is pointless to do this.
949    if (!isa<BinaryOperator>(BI) || BI->getType()->isFloatingPointTy() ||
950        BI->getType()->isVectorTy())
951      continue;  // Floating point ops are not associative.
952
953    // Do not reassociate boolean (i1) expressions.  We want to preserve the
954    // original order of evaluation for short-circuited comparisons that
955    // SimplifyCFG has folded to AND/OR expressions.  If the expression
956    // is not further optimized, it is likely to be transformed back to a
957    // short-circuited form for code gen, and the source order may have been
958    // optimized for the most likely conditions.
959    if (BI->getType()->isIntegerTy(1))
960      continue;
961
962    // If this is a subtract instruction which is not already in negate form,
963    // see if we can convert it to X+-Y.
964    if (BI->getOpcode() == Instruction::Sub) {
965      if (ShouldBreakUpSubtract(BI)) {
966        BI = BreakUpSubtract(BI, ValueRankMap);
967        // Reset the BBI iterator in case BreakUpSubtract changed the
968        // instruction it points to.
969        BBI = BI;
970        ++BBI;
971        MadeChange = true;
972      } else if (BinaryOperator::isNeg(BI)) {
973        // Otherwise, this is a negation.  See if the operand is a multiply tree
974        // and if this is not an inner node of a multiply tree.
975        if (isReassociableOp(BI->getOperand(1), Instruction::Mul) &&
976            (!BI->hasOneUse() ||
977             !isReassociableOp(BI->use_back(), Instruction::Mul))) {
978          BI = LowerNegateToMultiply(BI, ValueRankMap);
979          MadeChange = true;
980        }
981      }
982    }
983
984    // If this instruction is a commutative binary operator, process it.
985    if (!BI->isAssociative()) continue;
986    BinaryOperator *I = cast<BinaryOperator>(BI);
987
988    // If this is an interior node of a reassociable tree, ignore it until we
989    // get to the root of the tree, to avoid N^2 analysis.
990    if (I->hasOneUse() && isReassociableOp(I->use_back(), I->getOpcode()))
991      continue;
992
993    // If this is an add tree that is used by a sub instruction, ignore it
994    // until we process the subtract.
995    if (I->hasOneUse() && I->getOpcode() == Instruction::Add &&
996        cast<Instruction>(I->use_back())->getOpcode() == Instruction::Sub)
997      continue;
998
999    ReassociateExpression(I);
1000  }
1001}
1002
1003Value *Reassociate::ReassociateExpression(BinaryOperator *I) {
1004
1005  // First, walk the expression tree, linearizing the tree, collecting the
1006  // operand information.
1007  SmallVector<ValueEntry, 8> Ops;
1008  LinearizeExprTree(I, Ops);
1009
1010  DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
1011
1012  // Now that we have linearized the tree to a list and have gathered all of
1013  // the operands and their ranks, sort the operands by their rank.  Use a
1014  // stable_sort so that values with equal ranks will have their relative
1015  // positions maintained (and so the compiler is deterministic).  Note that
1016  // this sorts so that the highest ranking values end up at the beginning of
1017  // the vector.
1018  std::stable_sort(Ops.begin(), Ops.end());
1019
1020  // OptimizeExpression - Now that we have the expression tree in a convenient
1021  // sorted form, optimize it globally if possible.
1022  if (Value *V = OptimizeExpression(I, Ops)) {
1023    // This expression tree simplified to something that isn't a tree,
1024    // eliminate it.
1025    DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
1026    I->replaceAllUsesWith(V);
1027    RemoveDeadBinaryOp(I);
1028    ++NumAnnihil;
1029    return V;
1030  }
1031
1032  // We want to sink immediates as deeply as possible except in the case where
1033  // this is a multiply tree used only by an add, and the immediate is a -1.
1034  // In this case we reassociate to put the negation on the outside so that we
1035  // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
1036  if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
1037      cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
1038      isa<ConstantInt>(Ops.back().Op) &&
1039      cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
1040    ValueEntry Tmp = Ops.pop_back_val();
1041    Ops.insert(Ops.begin(), Tmp);
1042  }
1043
1044  DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
1045
1046  if (Ops.size() == 1) {
1047    // This expression tree simplified to something that isn't a tree,
1048    // eliminate it.
1049    I->replaceAllUsesWith(Ops[0].Op);
1050    RemoveDeadBinaryOp(I);
1051    return Ops[0].Op;
1052  }
1053
1054  // Now that we ordered and optimized the expressions, splat them back into
1055  // the expression tree, removing any unneeded nodes.
1056  RewriteExprTree(I, Ops);
1057  return I;
1058}
1059
1060
1061bool Reassociate::runOnFunction(Function &F) {
1062  // Recalculate the rank map for F
1063  BuildRankMap(F);
1064
1065  MadeChange = false;
1066  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
1067    ReassociateBB(FI);
1068
1069  // We are done with the rank map.
1070  RankMap.clear();
1071  ValueRankMap.clear();
1072  return MadeChange;
1073}
1074
1075