Reassociate.cpp revision 199481
1//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass reassociates commutative expressions in an order that is designed
11// to promote better constant propagation, GCSE, LICM, PRE...
12//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
15// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
23#define DEBUG_TYPE "reassociate"
24#include "llvm/Transforms/Scalar.h"
25#include "llvm/Constants.h"
26#include "llvm/DerivedTypes.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/Pass.h"
31#include "llvm/Assembly/Writer.h"
32#include "llvm/Support/CFG.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/Support/ValueHandle.h"
35#include "llvm/Support/raw_ostream.h"
36#include "llvm/ADT/PostOrderIterator.h"
37#include "llvm/ADT/Statistic.h"
38#include <algorithm>
39#include <map>
40using namespace llvm;
41
42STATISTIC(NumLinear , "Number of insts linearized");
43STATISTIC(NumChanged, "Number of insts reassociated");
44STATISTIC(NumAnnihil, "Number of expr tree annihilated");
45STATISTIC(NumFactor , "Number of multiplies factored");
46
47namespace {
48  struct ValueEntry {
49    unsigned Rank;
50    Value *Op;
51    ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
52  };
53  inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
54    return LHS.Rank > RHS.Rank;   // Sort so that highest rank goes to start.
55  }
56}
57
58#ifndef NDEBUG
59/// PrintOps - Print out the expression identified in the Ops list.
60///
61static void PrintOps(Instruction *I, const std::vector<ValueEntry> &Ops) {
62  Module *M = I->getParent()->getParent()->getParent();
63  errs() << Instruction::getOpcodeName(I->getOpcode()) << " "
64       << *Ops[0].Op->getType();
65  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
66    WriteAsOperand(errs() << " ", Ops[i].Op, false, M);
67    errs() << "," << Ops[i].Rank;
68  }
69}
70#endif
71
72namespace {
73  class Reassociate : public FunctionPass {
74    std::map<BasicBlock*, unsigned> RankMap;
75    std::map<AssertingVH<>, unsigned> ValueRankMap;
76    bool MadeChange;
77  public:
78    static char ID; // Pass identification, replacement for typeid
79    Reassociate() : FunctionPass(&ID) {}
80
81    bool runOnFunction(Function &F);
82
83    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
84      AU.setPreservesCFG();
85    }
86  private:
87    void BuildRankMap(Function &F);
88    unsigned getRank(Value *V);
89    void ReassociateExpression(BinaryOperator *I);
90    void RewriteExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops,
91                         unsigned Idx = 0);
92    Value *OptimizeExpression(BinaryOperator *I, std::vector<ValueEntry> &Ops);
93    void LinearizeExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops);
94    void LinearizeExpr(BinaryOperator *I);
95    Value *RemoveFactorFromExpression(Value *V, Value *Factor);
96    void ReassociateBB(BasicBlock *BB);
97
98    void RemoveDeadBinaryOp(Value *V);
99  };
100}
101
102char Reassociate::ID = 0;
103static RegisterPass<Reassociate> X("reassociate", "Reassociate expressions");
104
105// Public interface to the Reassociate pass
106FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
107
108void Reassociate::RemoveDeadBinaryOp(Value *V) {
109  Instruction *Op = dyn_cast<Instruction>(V);
110  if (!Op || !isa<BinaryOperator>(Op) || !isa<CmpInst>(Op) || !Op->use_empty())
111    return;
112
113  Value *LHS = Op->getOperand(0), *RHS = Op->getOperand(1);
114  RemoveDeadBinaryOp(LHS);
115  RemoveDeadBinaryOp(RHS);
116}
117
118
119static bool isUnmovableInstruction(Instruction *I) {
120  if (I->getOpcode() == Instruction::PHI ||
121      I->getOpcode() == Instruction::Alloca ||
122      I->getOpcode() == Instruction::Load ||
123      I->getOpcode() == Instruction::Invoke ||
124      (I->getOpcode() == Instruction::Call &&
125       !isa<DbgInfoIntrinsic>(I)) ||
126      I->getOpcode() == Instruction::UDiv ||
127      I->getOpcode() == Instruction::SDiv ||
128      I->getOpcode() == Instruction::FDiv ||
129      I->getOpcode() == Instruction::URem ||
130      I->getOpcode() == Instruction::SRem ||
131      I->getOpcode() == Instruction::FRem)
132    return true;
133  return false;
134}
135
136void Reassociate::BuildRankMap(Function &F) {
137  unsigned i = 2;
138
139  // Assign distinct ranks to function arguments
140  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
141    ValueRankMap[&*I] = ++i;
142
143  ReversePostOrderTraversal<Function*> RPOT(&F);
144  for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
145         E = RPOT.end(); I != E; ++I) {
146    BasicBlock *BB = *I;
147    unsigned BBRank = RankMap[BB] = ++i << 16;
148
149    // Walk the basic block, adding precomputed ranks for any instructions that
150    // we cannot move.  This ensures that the ranks for these instructions are
151    // all different in the block.
152    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
153      if (isUnmovableInstruction(I))
154        ValueRankMap[&*I] = ++BBRank;
155  }
156}
157
158unsigned Reassociate::getRank(Value *V) {
159  if (isa<Argument>(V)) return ValueRankMap[V];   // Function argument...
160
161  Instruction *I = dyn_cast<Instruction>(V);
162  if (I == 0) return 0;  // Otherwise it's a global or constant, rank 0.
163
164  unsigned &CachedRank = ValueRankMap[I];
165  if (CachedRank) return CachedRank;    // Rank already known?
166
167  // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
168  // we can reassociate expressions for code motion!  Since we do not recurse
169  // for PHI nodes, we cannot have infinite recursion here, because there
170  // cannot be loops in the value graph that do not go through PHI nodes.
171  unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
172  for (unsigned i = 0, e = I->getNumOperands();
173       i != e && Rank != MaxRank; ++i)
174    Rank = std::max(Rank, getRank(I->getOperand(i)));
175
176  // If this is a not or neg instruction, do not count it for rank.  This
177  // assures us that X and ~X will have the same rank.
178  if (!I->getType()->isInteger() ||
179      (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
180    ++Rank;
181
182  //DEBUG(errs() << "Calculated Rank[" << V->getName() << "] = "
183  //     << Rank << "\n");
184
185  return CachedRank = Rank;
186}
187
188/// isReassociableOp - Return true if V is an instruction of the specified
189/// opcode and if it only has one use.
190static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
191  if ((V->hasOneUse() || V->use_empty()) && isa<Instruction>(V) &&
192      cast<Instruction>(V)->getOpcode() == Opcode)
193    return cast<BinaryOperator>(V);
194  return 0;
195}
196
197/// LowerNegateToMultiply - Replace 0-X with X*-1.
198///
199static Instruction *LowerNegateToMultiply(Instruction *Neg,
200                              std::map<AssertingVH<>, unsigned> &ValueRankMap) {
201  Constant *Cst = Constant::getAllOnesValue(Neg->getType());
202
203  Instruction *Res = BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg);
204  ValueRankMap.erase(Neg);
205  Res->takeName(Neg);
206  Neg->replaceAllUsesWith(Res);
207  Neg->eraseFromParent();
208  return Res;
209}
210
211// Given an expression of the form '(A+B)+(D+C)', turn it into '(((A+B)+C)+D)'.
212// Note that if D is also part of the expression tree that we recurse to
213// linearize it as well.  Besides that case, this does not recurse into A,B, or
214// C.
215void Reassociate::LinearizeExpr(BinaryOperator *I) {
216  BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
217  BinaryOperator *RHS = cast<BinaryOperator>(I->getOperand(1));
218  assert(isReassociableOp(LHS, I->getOpcode()) &&
219         isReassociableOp(RHS, I->getOpcode()) &&
220         "Not an expression that needs linearization?");
221
222  DEBUG(errs() << "Linear" << *LHS << '\n' << *RHS << '\n' << *I << '\n');
223
224  // Move the RHS instruction to live immediately before I, avoiding breaking
225  // dominator properties.
226  RHS->moveBefore(I);
227
228  // Move operands around to do the linearization.
229  I->setOperand(1, RHS->getOperand(0));
230  RHS->setOperand(0, LHS);
231  I->setOperand(0, RHS);
232
233  ++NumLinear;
234  MadeChange = true;
235  DEBUG(errs() << "Linearized: " << *I << '\n');
236
237  // If D is part of this expression tree, tail recurse.
238  if (isReassociableOp(I->getOperand(1), I->getOpcode()))
239    LinearizeExpr(I);
240}
241
242
243/// LinearizeExprTree - Given an associative binary expression tree, traverse
244/// all of the uses putting it into canonical form.  This forces a left-linear
245/// form of the the expression (((a+b)+c)+d), and collects information about the
246/// rank of the non-tree operands.
247///
248/// NOTE: These intentionally destroys the expression tree operands (turning
249/// them into undef values) to reduce #uses of the values.  This means that the
250/// caller MUST use something like RewriteExprTree to put the values back in.
251///
252void Reassociate::LinearizeExprTree(BinaryOperator *I,
253                                    std::vector<ValueEntry> &Ops) {
254  Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
255  unsigned Opcode = I->getOpcode();
256
257  // First step, linearize the expression if it is in ((A+B)+(C+D)) form.
258  BinaryOperator *LHSBO = isReassociableOp(LHS, Opcode);
259  BinaryOperator *RHSBO = isReassociableOp(RHS, Opcode);
260
261  // If this is a multiply expression tree and it contains internal negations,
262  // transform them into multiplies by -1 so they can be reassociated.
263  if (I->getOpcode() == Instruction::Mul) {
264    if (!LHSBO && LHS->hasOneUse() && BinaryOperator::isNeg(LHS)) {
265      LHS = LowerNegateToMultiply(cast<Instruction>(LHS), ValueRankMap);
266      LHSBO = isReassociableOp(LHS, Opcode);
267    }
268    if (!RHSBO && RHS->hasOneUse() && BinaryOperator::isNeg(RHS)) {
269      RHS = LowerNegateToMultiply(cast<Instruction>(RHS), ValueRankMap);
270      RHSBO = isReassociableOp(RHS, Opcode);
271    }
272  }
273
274  if (!LHSBO) {
275    if (!RHSBO) {
276      // Neither the LHS or RHS as part of the tree, thus this is a leaf.  As
277      // such, just remember these operands and their rank.
278      Ops.push_back(ValueEntry(getRank(LHS), LHS));
279      Ops.push_back(ValueEntry(getRank(RHS), RHS));
280
281      // Clear the leaves out.
282      I->setOperand(0, UndefValue::get(I->getType()));
283      I->setOperand(1, UndefValue::get(I->getType()));
284      return;
285    } else {
286      // Turn X+(Y+Z) -> (Y+Z)+X
287      std::swap(LHSBO, RHSBO);
288      std::swap(LHS, RHS);
289      bool Success = !I->swapOperands();
290      assert(Success && "swapOperands failed");
291      Success = false;
292      MadeChange = true;
293    }
294  } else if (RHSBO) {
295    // Turn (A+B)+(C+D) -> (((A+B)+C)+D).  This guarantees the the RHS is not
296    // part of the expression tree.
297    LinearizeExpr(I);
298    LHS = LHSBO = cast<BinaryOperator>(I->getOperand(0));
299    RHS = I->getOperand(1);
300    RHSBO = 0;
301  }
302
303  // Okay, now we know that the LHS is a nested expression and that the RHS is
304  // not.  Perform reassociation.
305  assert(!isReassociableOp(RHS, Opcode) && "LinearizeExpr failed!");
306
307  // Move LHS right before I to make sure that the tree expression dominates all
308  // values.
309  LHSBO->moveBefore(I);
310
311  // Linearize the expression tree on the LHS.
312  LinearizeExprTree(LHSBO, Ops);
313
314  // Remember the RHS operand and its rank.
315  Ops.push_back(ValueEntry(getRank(RHS), RHS));
316
317  // Clear the RHS leaf out.
318  I->setOperand(1, UndefValue::get(I->getType()));
319}
320
321// RewriteExprTree - Now that the operands for this expression tree are
322// linearized and optimized, emit them in-order.  This function is written to be
323// tail recursive.
324void Reassociate::RewriteExprTree(BinaryOperator *I,
325                                  std::vector<ValueEntry> &Ops,
326                                  unsigned i) {
327  if (i+2 == Ops.size()) {
328    if (I->getOperand(0) != Ops[i].Op ||
329        I->getOperand(1) != Ops[i+1].Op) {
330      Value *OldLHS = I->getOperand(0);
331      DEBUG(errs() << "RA: " << *I << '\n');
332      I->setOperand(0, Ops[i].Op);
333      I->setOperand(1, Ops[i+1].Op);
334      DEBUG(errs() << "TO: " << *I << '\n');
335      MadeChange = true;
336      ++NumChanged;
337
338      // If we reassociated a tree to fewer operands (e.g. (1+a+2) -> (a+3)
339      // delete the extra, now dead, nodes.
340      RemoveDeadBinaryOp(OldLHS);
341    }
342    return;
343  }
344  assert(i+2 < Ops.size() && "Ops index out of range!");
345
346  if (I->getOperand(1) != Ops[i].Op) {
347    DEBUG(errs() << "RA: " << *I << '\n');
348    I->setOperand(1, Ops[i].Op);
349    DEBUG(errs() << "TO: " << *I << '\n');
350    MadeChange = true;
351    ++NumChanged;
352  }
353
354  BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
355  assert(LHS->getOpcode() == I->getOpcode() &&
356         "Improper expression tree!");
357
358  // Compactify the tree instructions together with each other to guarantee
359  // that the expression tree is dominated by all of Ops.
360  LHS->moveBefore(I);
361  RewriteExprTree(LHS, Ops, i+1);
362}
363
364
365
366// NegateValue - Insert instructions before the instruction pointed to by BI,
367// that computes the negative version of the value specified.  The negative
368// version of the value is returned, and BI is left pointing at the instruction
369// that should be processed next by the reassociation pass.
370//
371static Value *NegateValue(Value *V, Instruction *BI) {
372  // We are trying to expose opportunity for reassociation.  One of the things
373  // that we want to do to achieve this is to push a negation as deep into an
374  // expression chain as possible, to expose the add instructions.  In practice,
375  // this means that we turn this:
376  //   X = -(A+12+C+D)   into    X = -A + -12 + -C + -D = -12 + -A + -C + -D
377  // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
378  // the constants.  We assume that instcombine will clean up the mess later if
379  // we introduce tons of unnecessary negation instructions...
380  //
381  if (Instruction *I = dyn_cast<Instruction>(V))
382    if (I->getOpcode() == Instruction::Add && I->hasOneUse()) {
383      // Push the negates through the add.
384      I->setOperand(0, NegateValue(I->getOperand(0), BI));
385      I->setOperand(1, NegateValue(I->getOperand(1), BI));
386
387      // We must move the add instruction here, because the neg instructions do
388      // not dominate the old add instruction in general.  By moving it, we are
389      // assured that the neg instructions we just inserted dominate the
390      // instruction we are about to insert after them.
391      //
392      I->moveBefore(BI);
393      I->setName(I->getName()+".neg");
394      return I;
395    }
396
397  // Insert a 'neg' instruction that subtracts the value from zero to get the
398  // negation.
399  //
400  return BinaryOperator::CreateNeg(V, V->getName() + ".neg", BI);
401}
402
403/// ShouldBreakUpSubtract - Return true if we should break up this subtract of
404/// X-Y into (X + -Y).
405static bool ShouldBreakUpSubtract(Instruction *Sub) {
406  // If this is a negation, we can't split it up!
407  if (BinaryOperator::isNeg(Sub))
408    return false;
409
410  // Don't bother to break this up unless either the LHS is an associable add or
411  // subtract or if this is only used by one.
412  if (isReassociableOp(Sub->getOperand(0), Instruction::Add) ||
413      isReassociableOp(Sub->getOperand(0), Instruction::Sub))
414    return true;
415  if (isReassociableOp(Sub->getOperand(1), Instruction::Add) ||
416      isReassociableOp(Sub->getOperand(1), Instruction::Sub))
417    return true;
418  if (Sub->hasOneUse() &&
419      (isReassociableOp(Sub->use_back(), Instruction::Add) ||
420       isReassociableOp(Sub->use_back(), Instruction::Sub)))
421    return true;
422
423  return false;
424}
425
426/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
427/// only used by an add, transform this into (X+(0-Y)) to promote better
428/// reassociation.
429static Instruction *BreakUpSubtract(Instruction *Sub,
430                              std::map<AssertingVH<>, unsigned> &ValueRankMap) {
431  // Convert a subtract into an add and a neg instruction... so that sub
432  // instructions can be commuted with other add instructions...
433  //
434  // Calculate the negative value of Operand 1 of the sub instruction...
435  // and set it as the RHS of the add instruction we just made...
436  //
437  Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
438  Instruction *New =
439    BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub);
440  New->takeName(Sub);
441
442  // Everyone now refers to the add instruction.
443  ValueRankMap.erase(Sub);
444  Sub->replaceAllUsesWith(New);
445  Sub->eraseFromParent();
446
447  DEBUG(errs() << "Negated: " << *New << '\n');
448  return New;
449}
450
451/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
452/// by one, change this into a multiply by a constant to assist with further
453/// reassociation.
454static Instruction *ConvertShiftToMul(Instruction *Shl,
455                              std::map<AssertingVH<>, unsigned> &ValueRankMap) {
456  // If an operand of this shift is a reassociable multiply, or if the shift
457  // is used by a reassociable multiply or add, turn into a multiply.
458  if (isReassociableOp(Shl->getOperand(0), Instruction::Mul) ||
459      (Shl->hasOneUse() &&
460       (isReassociableOp(Shl->use_back(), Instruction::Mul) ||
461        isReassociableOp(Shl->use_back(), Instruction::Add)))) {
462    Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
463    MulCst =
464        ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
465
466    Instruction *Mul = BinaryOperator::CreateMul(Shl->getOperand(0), MulCst,
467                                                 "", Shl);
468    ValueRankMap.erase(Shl);
469    Mul->takeName(Shl);
470    Shl->replaceAllUsesWith(Mul);
471    Shl->eraseFromParent();
472    return Mul;
473  }
474  return 0;
475}
476
477// Scan backwards and forwards among values with the same rank as element i to
478// see if X exists.  If X does not exist, return i.
479static unsigned FindInOperandList(std::vector<ValueEntry> &Ops, unsigned i,
480                                  Value *X) {
481  unsigned XRank = Ops[i].Rank;
482  unsigned e = Ops.size();
483  for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
484    if (Ops[j].Op == X)
485      return j;
486  // Scan backwards
487  for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
488    if (Ops[j].Op == X)
489      return j;
490  return i;
491}
492
493/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
494/// and returning the result.  Insert the tree before I.
495static Value *EmitAddTreeOfValues(Instruction *I, std::vector<Value*> &Ops) {
496  if (Ops.size() == 1) return Ops.back();
497
498  Value *V1 = Ops.back();
499  Ops.pop_back();
500  Value *V2 = EmitAddTreeOfValues(I, Ops);
501  return BinaryOperator::CreateAdd(V2, V1, "tmp", I);
502}
503
504/// RemoveFactorFromExpression - If V is an expression tree that is a
505/// multiplication sequence, and if this sequence contains a multiply by Factor,
506/// remove Factor from the tree and return the new tree.
507Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
508  BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
509  if (!BO) return 0;
510
511  std::vector<ValueEntry> Factors;
512  LinearizeExprTree(BO, Factors);
513
514  bool FoundFactor = false;
515  for (unsigned i = 0, e = Factors.size(); i != e; ++i)
516    if (Factors[i].Op == Factor) {
517      FoundFactor = true;
518      Factors.erase(Factors.begin()+i);
519      break;
520    }
521  if (!FoundFactor) {
522    // Make sure to restore the operands to the expression tree.
523    RewriteExprTree(BO, Factors);
524    return 0;
525  }
526
527  if (Factors.size() == 1) return Factors[0].Op;
528
529  RewriteExprTree(BO, Factors);
530  return BO;
531}
532
533/// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
534/// add its operands as factors, otherwise add V to the list of factors.
535static void FindSingleUseMultiplyFactors(Value *V,
536                                         std::vector<Value*> &Factors) {
537  BinaryOperator *BO;
538  if ((!V->hasOneUse() && !V->use_empty()) ||
539      !(BO = dyn_cast<BinaryOperator>(V)) ||
540      BO->getOpcode() != Instruction::Mul) {
541    Factors.push_back(V);
542    return;
543  }
544
545  // Otherwise, add the LHS and RHS to the list of factors.
546  FindSingleUseMultiplyFactors(BO->getOperand(1), Factors);
547  FindSingleUseMultiplyFactors(BO->getOperand(0), Factors);
548}
549
550
551
552Value *Reassociate::OptimizeExpression(BinaryOperator *I,
553                                       std::vector<ValueEntry> &Ops) {
554  // Now that we have the linearized expression tree, try to optimize it.
555  // Start by folding any constants that we found.
556  bool IterateOptimization = false;
557  if (Ops.size() == 1) return Ops[0].Op;
558
559  unsigned Opcode = I->getOpcode();
560
561  if (Constant *V1 = dyn_cast<Constant>(Ops[Ops.size()-2].Op))
562    if (Constant *V2 = dyn_cast<Constant>(Ops.back().Op)) {
563      Ops.pop_back();
564      Ops.back().Op = ConstantExpr::get(Opcode, V1, V2);
565      return OptimizeExpression(I, Ops);
566    }
567
568  // Check for destructive annihilation due to a constant being used.
569  if (ConstantInt *CstVal = dyn_cast<ConstantInt>(Ops.back().Op))
570    switch (Opcode) {
571    default: break;
572    case Instruction::And:
573      if (CstVal->isZero()) {                // ... & 0 -> 0
574        ++NumAnnihil;
575        return CstVal;
576      } else if (CstVal->isAllOnesValue()) { // ... & -1 -> ...
577        Ops.pop_back();
578      }
579      break;
580    case Instruction::Mul:
581      if (CstVal->isZero()) {                // ... * 0 -> 0
582        ++NumAnnihil;
583        return CstVal;
584      } else if (cast<ConstantInt>(CstVal)->isOne()) {
585        Ops.pop_back();                      // ... * 1 -> ...
586      }
587      break;
588    case Instruction::Or:
589      if (CstVal->isAllOnesValue()) {        // ... | -1 -> -1
590        ++NumAnnihil;
591        return CstVal;
592      }
593      // FALLTHROUGH!
594    case Instruction::Add:
595    case Instruction::Xor:
596      if (CstVal->isZero())                  // ... [|^+] 0 -> ...
597        Ops.pop_back();
598      break;
599    }
600  if (Ops.size() == 1) return Ops[0].Op;
601
602  // Handle destructive annihilation do to identities between elements in the
603  // argument list here.
604  switch (Opcode) {
605  default: break;
606  case Instruction::And:
607  case Instruction::Or:
608  case Instruction::Xor:
609    // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
610    // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
611    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
612      // First, check for X and ~X in the operand list.
613      assert(i < Ops.size());
614      if (BinaryOperator::isNot(Ops[i].Op)) {    // Cannot occur for ^.
615        Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
616        unsigned FoundX = FindInOperandList(Ops, i, X);
617        if (FoundX != i) {
618          if (Opcode == Instruction::And) {   // ...&X&~X = 0
619            ++NumAnnihil;
620            return Constant::getNullValue(X->getType());
621          } else if (Opcode == Instruction::Or) {   // ...|X|~X = -1
622            ++NumAnnihil;
623            return Constant::getAllOnesValue(X->getType());
624          }
625        }
626      }
627
628      // Next, check for duplicate pairs of values, which we assume are next to
629      // each other, due to our sorting criteria.
630      assert(i < Ops.size());
631      if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
632        if (Opcode == Instruction::And || Opcode == Instruction::Or) {
633          // Drop duplicate values.
634          Ops.erase(Ops.begin()+i);
635          --i; --e;
636          IterateOptimization = true;
637          ++NumAnnihil;
638        } else {
639          assert(Opcode == Instruction::Xor);
640          if (e == 2) {
641            ++NumAnnihil;
642            return Constant::getNullValue(Ops[0].Op->getType());
643          }
644          // ... X^X -> ...
645          Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
646          i -= 1; e -= 2;
647          IterateOptimization = true;
648          ++NumAnnihil;
649        }
650      }
651    }
652    break;
653
654  case Instruction::Add:
655    // Scan the operand lists looking for X and -X pairs.  If we find any, we
656    // can simplify the expression. X+-X == 0.
657    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
658      assert(i < Ops.size());
659      // Check for X and -X in the operand list.
660      if (BinaryOperator::isNeg(Ops[i].Op)) {
661        Value *X = BinaryOperator::getNegArgument(Ops[i].Op);
662        unsigned FoundX = FindInOperandList(Ops, i, X);
663        if (FoundX != i) {
664          // Remove X and -X from the operand list.
665          if (Ops.size() == 2) {
666            ++NumAnnihil;
667            return Constant::getNullValue(X->getType());
668          } else {
669            Ops.erase(Ops.begin()+i);
670            if (i < FoundX)
671              --FoundX;
672            else
673              --i;   // Need to back up an extra one.
674            Ops.erase(Ops.begin()+FoundX);
675            IterateOptimization = true;
676            ++NumAnnihil;
677            --i;     // Revisit element.
678            e -= 2;  // Removed two elements.
679          }
680        }
681      }
682    }
683
684
685    // Scan the operand list, checking to see if there are any common factors
686    // between operands.  Consider something like A*A+A*B*C+D.  We would like to
687    // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
688    // To efficiently find this, we count the number of times a factor occurs
689    // for any ADD operands that are MULs.
690    std::map<Value*, unsigned> FactorOccurrences;
691    unsigned MaxOcc = 0;
692    Value *MaxOccVal = 0;
693    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
694      if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op)) {
695        if (BOp->getOpcode() == Instruction::Mul && BOp->use_empty()) {
696          // Compute all of the factors of this added value.
697          std::vector<Value*> Factors;
698          FindSingleUseMultiplyFactors(BOp, Factors);
699          assert(Factors.size() > 1 && "Bad linearize!");
700
701          // Add one to FactorOccurrences for each unique factor in this op.
702          if (Factors.size() == 2) {
703            unsigned Occ = ++FactorOccurrences[Factors[0]];
704            if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[0]; }
705            if (Factors[0] != Factors[1]) {   // Don't double count A*A.
706              Occ = ++FactorOccurrences[Factors[1]];
707              if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[1]; }
708            }
709          } else {
710            std::set<Value*> Duplicates;
711            for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
712              if (Duplicates.insert(Factors[i]).second) {
713                unsigned Occ = ++FactorOccurrences[Factors[i]];
714                if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[i]; }
715              }
716            }
717          }
718        }
719      }
720    }
721
722    // If any factor occurred more than one time, we can pull it out.
723    if (MaxOcc > 1) {
724      DEBUG(errs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << "\n");
725
726      // Create a new instruction that uses the MaxOccVal twice.  If we don't do
727      // this, we could otherwise run into situations where removing a factor
728      // from an expression will drop a use of maxocc, and this can cause
729      // RemoveFactorFromExpression on successive values to behave differently.
730      Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal);
731      std::vector<Value*> NewMulOps;
732      for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
733        if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
734          NewMulOps.push_back(V);
735          Ops.erase(Ops.begin()+i);
736          --i; --e;
737        }
738      }
739
740      // No need for extra uses anymore.
741      delete DummyInst;
742
743      unsigned NumAddedValues = NewMulOps.size();
744      Value *V = EmitAddTreeOfValues(I, NewMulOps);
745      Value *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I);
746
747      // Now that we have inserted V and its sole use, optimize it. This allows
748      // us to handle cases that require multiple factoring steps, such as this:
749      // A*A*B + A*A*C   -->   A*(A*B+A*C)   -->   A*(A*(B+C))
750      if (NumAddedValues > 1)
751        ReassociateExpression(cast<BinaryOperator>(V));
752
753      ++NumFactor;
754
755      if (Ops.empty())
756        return V2;
757
758      // Add the new value to the list of things being added.
759      Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
760
761      // Rewrite the tree so that there is now a use of V.
762      RewriteExprTree(I, Ops);
763      return OptimizeExpression(I, Ops);
764    }
765    break;
766  //case Instruction::Mul:
767  }
768
769  if (IterateOptimization)
770    return OptimizeExpression(I, Ops);
771  return 0;
772}
773
774
775/// ReassociateBB - Inspect all of the instructions in this basic block,
776/// reassociating them as we go.
777void Reassociate::ReassociateBB(BasicBlock *BB) {
778  for (BasicBlock::iterator BBI = BB->begin(); BBI != BB->end(); ) {
779    Instruction *BI = BBI++;
780    if (BI->getOpcode() == Instruction::Shl &&
781        isa<ConstantInt>(BI->getOperand(1)))
782      if (Instruction *NI = ConvertShiftToMul(BI, ValueRankMap)) {
783        MadeChange = true;
784        BI = NI;
785      }
786
787    // Reject cases where it is pointless to do this.
788    if (!isa<BinaryOperator>(BI) || BI->getType()->isFloatingPoint() ||
789        isa<VectorType>(BI->getType()))
790      continue;  // Floating point ops are not associative.
791
792    // If this is a subtract instruction which is not already in negate form,
793    // see if we can convert it to X+-Y.
794    if (BI->getOpcode() == Instruction::Sub) {
795      if (ShouldBreakUpSubtract(BI)) {
796        BI = BreakUpSubtract(BI, ValueRankMap);
797        MadeChange = true;
798      } else if (BinaryOperator::isNeg(BI)) {
799        // Otherwise, this is a negation.  See if the operand is a multiply tree
800        // and if this is not an inner node of a multiply tree.
801        if (isReassociableOp(BI->getOperand(1), Instruction::Mul) &&
802            (!BI->hasOneUse() ||
803             !isReassociableOp(BI->use_back(), Instruction::Mul))) {
804          BI = LowerNegateToMultiply(BI, ValueRankMap);
805          MadeChange = true;
806        }
807      }
808    }
809
810    // If this instruction is a commutative binary operator, process it.
811    if (!BI->isAssociative()) continue;
812    BinaryOperator *I = cast<BinaryOperator>(BI);
813
814    // If this is an interior node of a reassociable tree, ignore it until we
815    // get to the root of the tree, to avoid N^2 analysis.
816    if (I->hasOneUse() && isReassociableOp(I->use_back(), I->getOpcode()))
817      continue;
818
819    // If this is an add tree that is used by a sub instruction, ignore it
820    // until we process the subtract.
821    if (I->hasOneUse() && I->getOpcode() == Instruction::Add &&
822        cast<Instruction>(I->use_back())->getOpcode() == Instruction::Sub)
823      continue;
824
825    ReassociateExpression(I);
826  }
827}
828
829void Reassociate::ReassociateExpression(BinaryOperator *I) {
830
831  // First, walk the expression tree, linearizing the tree, collecting
832  std::vector<ValueEntry> Ops;
833  LinearizeExprTree(I, Ops);
834
835  DEBUG(errs() << "RAIn:\t"; PrintOps(I, Ops); errs() << "\n");
836
837  // Now that we have linearized the tree to a list and have gathered all of
838  // the operands and their ranks, sort the operands by their rank.  Use a
839  // stable_sort so that values with equal ranks will have their relative
840  // positions maintained (and so the compiler is deterministic).  Note that
841  // this sorts so that the highest ranking values end up at the beginning of
842  // the vector.
843  std::stable_sort(Ops.begin(), Ops.end());
844
845  // OptimizeExpression - Now that we have the expression tree in a convenient
846  // sorted form, optimize it globally if possible.
847  if (Value *V = OptimizeExpression(I, Ops)) {
848    // This expression tree simplified to something that isn't a tree,
849    // eliminate it.
850    DEBUG(errs() << "Reassoc to scalar: " << *V << "\n");
851    I->replaceAllUsesWith(V);
852    RemoveDeadBinaryOp(I);
853    return;
854  }
855
856  // We want to sink immediates as deeply as possible except in the case where
857  // this is a multiply tree used only by an add, and the immediate is a -1.
858  // In this case we reassociate to put the negation on the outside so that we
859  // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
860  if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
861      cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
862      isa<ConstantInt>(Ops.back().Op) &&
863      cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
864    Ops.insert(Ops.begin(), Ops.back());
865    Ops.pop_back();
866  }
867
868  DEBUG(errs() << "RAOut:\t"; PrintOps(I, Ops); errs() << "\n");
869
870  if (Ops.size() == 1) {
871    // This expression tree simplified to something that isn't a tree,
872    // eliminate it.
873    I->replaceAllUsesWith(Ops[0].Op);
874    RemoveDeadBinaryOp(I);
875  } else {
876    // Now that we ordered and optimized the expressions, splat them back into
877    // the expression tree, removing any unneeded nodes.
878    RewriteExprTree(I, Ops);
879  }
880}
881
882
883bool Reassociate::runOnFunction(Function &F) {
884  // Recalculate the rank map for F
885  BuildRankMap(F);
886
887  MadeChange = false;
888  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
889    ReassociateBB(FI);
890
891  // We are done with the rank map...
892  RankMap.clear();
893  ValueRankMap.clear();
894  return MadeChange;
895}
896
897