MemCpyOptimizer.cpp revision 221345
1//===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs various transformations related to eliminating memcpy
11// calls, or transforming sets of stores into memset's.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "memcpyopt"
16#include "llvm/Transforms/Scalar.h"
17#include "llvm/GlobalVariable.h"
18#include "llvm/IntrinsicInst.h"
19#include "llvm/Instructions.h"
20#include "llvm/ADT/SmallVector.h"
21#include "llvm/ADT/Statistic.h"
22#include "llvm/Analysis/Dominators.h"
23#include "llvm/Analysis/AliasAnalysis.h"
24#include "llvm/Analysis/MemoryDependenceAnalysis.h"
25#include "llvm/Analysis/ValueTracking.h"
26#include "llvm/Support/Debug.h"
27#include "llvm/Support/GetElementPtrTypeIterator.h"
28#include "llvm/Support/IRBuilder.h"
29#include "llvm/Support/raw_ostream.h"
30#include "llvm/Target/TargetData.h"
31#include "llvm/Target/TargetLibraryInfo.h"
32#include <list>
33using namespace llvm;
34
35STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted");
36STATISTIC(NumMemSetInfer, "Number of memsets inferred");
37STATISTIC(NumMoveToCpy,   "Number of memmoves converted to memcpy");
38STATISTIC(NumCpyToSet,    "Number of memcpys converted to memset");
39
40static int64_t GetOffsetFromIndex(const GetElementPtrInst *GEP, unsigned Idx,
41                                  bool &VariableIdxFound, const TargetData &TD){
42  // Skip over the first indices.
43  gep_type_iterator GTI = gep_type_begin(GEP);
44  for (unsigned i = 1; i != Idx; ++i, ++GTI)
45    /*skip along*/;
46
47  // Compute the offset implied by the rest of the indices.
48  int64_t Offset = 0;
49  for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
50    ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i));
51    if (OpC == 0)
52      return VariableIdxFound = true;
53    if (OpC->isZero()) continue;  // No offset.
54
55    // Handle struct indices, which add their field offset to the pointer.
56    if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
57      Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
58      continue;
59    }
60
61    // Otherwise, we have a sequential type like an array or vector.  Multiply
62    // the index by the ElementSize.
63    uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
64    Offset += Size*OpC->getSExtValue();
65  }
66
67  return Offset;
68}
69
70/// IsPointerOffset - Return true if Ptr1 is provably equal to Ptr2 plus a
71/// constant offset, and return that constant offset.  For example, Ptr1 might
72/// be &A[42], and Ptr2 might be &A[40].  In this case offset would be -8.
73static bool IsPointerOffset(Value *Ptr1, Value *Ptr2, int64_t &Offset,
74                            const TargetData &TD) {
75  Ptr1 = Ptr1->stripPointerCasts();
76  Ptr2 = Ptr2->stripPointerCasts();
77  GetElementPtrInst *GEP1 = dyn_cast<GetElementPtrInst>(Ptr1);
78  GetElementPtrInst *GEP2 = dyn_cast<GetElementPtrInst>(Ptr2);
79
80  bool VariableIdxFound = false;
81
82  // If one pointer is a GEP and the other isn't, then see if the GEP is a
83  // constant offset from the base, as in "P" and "gep P, 1".
84  if (GEP1 && GEP2 == 0 && GEP1->getOperand(0)->stripPointerCasts() == Ptr2) {
85    Offset = -GetOffsetFromIndex(GEP1, 1, VariableIdxFound, TD);
86    return !VariableIdxFound;
87  }
88
89  if (GEP2 && GEP1 == 0 && GEP2->getOperand(0)->stripPointerCasts() == Ptr1) {
90    Offset = GetOffsetFromIndex(GEP2, 1, VariableIdxFound, TD);
91    return !VariableIdxFound;
92  }
93
94  // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
95  // base.  After that base, they may have some number of common (and
96  // potentially variable) indices.  After that they handle some constant
97  // offset, which determines their offset from each other.  At this point, we
98  // handle no other case.
99  if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0))
100    return false;
101
102  // Skip any common indices and track the GEP types.
103  unsigned Idx = 1;
104  for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx)
105    if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx))
106      break;
107
108  int64_t Offset1 = GetOffsetFromIndex(GEP1, Idx, VariableIdxFound, TD);
109  int64_t Offset2 = GetOffsetFromIndex(GEP2, Idx, VariableIdxFound, TD);
110  if (VariableIdxFound) return false;
111
112  Offset = Offset2-Offset1;
113  return true;
114}
115
116
117/// MemsetRange - Represents a range of memset'd bytes with the ByteVal value.
118/// This allows us to analyze stores like:
119///   store 0 -> P+1
120///   store 0 -> P+0
121///   store 0 -> P+3
122///   store 0 -> P+2
123/// which sometimes happens with stores to arrays of structs etc.  When we see
124/// the first store, we make a range [1, 2).  The second store extends the range
125/// to [0, 2).  The third makes a new range [2, 3).  The fourth store joins the
126/// two ranges into [0, 3) which is memset'able.
127namespace {
128struct MemsetRange {
129  // Start/End - A semi range that describes the span that this range covers.
130  // The range is closed at the start and open at the end: [Start, End).
131  int64_t Start, End;
132
133  /// StartPtr - The getelementptr instruction that points to the start of the
134  /// range.
135  Value *StartPtr;
136
137  /// Alignment - The known alignment of the first store.
138  unsigned Alignment;
139
140  /// TheStores - The actual stores that make up this range.
141  SmallVector<Instruction*, 16> TheStores;
142
143  bool isProfitableToUseMemset(const TargetData &TD) const;
144
145};
146} // end anon namespace
147
148bool MemsetRange::isProfitableToUseMemset(const TargetData &TD) const {
149  // If we found more than 8 stores to merge or 64 bytes, use memset.
150  if (TheStores.size() >= 8 || End-Start >= 64) return true;
151
152  // If there is nothing to merge, don't do anything.
153  if (TheStores.size() < 2) return false;
154
155  // If any of the stores are a memset, then it is always good to extend the
156  // memset.
157  for (unsigned i = 0, e = TheStores.size(); i != e; ++i)
158    if (!isa<StoreInst>(TheStores[i]))
159      return true;
160
161  // Assume that the code generator is capable of merging pairs of stores
162  // together if it wants to.
163  if (TheStores.size() == 2) return false;
164
165  // If we have fewer than 8 stores, it can still be worthwhile to do this.
166  // For example, merging 4 i8 stores into an i32 store is useful almost always.
167  // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the
168  // memset will be split into 2 32-bit stores anyway) and doing so can
169  // pessimize the llvm optimizer.
170  //
171  // Since we don't have perfect knowledge here, make some assumptions: assume
172  // the maximum GPR width is the same size as the pointer size and assume that
173  // this width can be stored.  If so, check to see whether we will end up
174  // actually reducing the number of stores used.
175  unsigned Bytes = unsigned(End-Start);
176  unsigned NumPointerStores = Bytes/TD.getPointerSize();
177
178  // Assume the remaining bytes if any are done a byte at a time.
179  unsigned NumByteStores = Bytes - NumPointerStores*TD.getPointerSize();
180
181  // If we will reduce the # stores (according to this heuristic), do the
182  // transformation.  This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32
183  // etc.
184  return TheStores.size() > NumPointerStores+NumByteStores;
185}
186
187
188namespace {
189class MemsetRanges {
190  /// Ranges - A sorted list of the memset ranges.  We use std::list here
191  /// because each element is relatively large and expensive to copy.
192  std::list<MemsetRange> Ranges;
193  typedef std::list<MemsetRange>::iterator range_iterator;
194  const TargetData &TD;
195public:
196  MemsetRanges(const TargetData &td) : TD(td) {}
197
198  typedef std::list<MemsetRange>::const_iterator const_iterator;
199  const_iterator begin() const { return Ranges.begin(); }
200  const_iterator end() const { return Ranges.end(); }
201  bool empty() const { return Ranges.empty(); }
202
203  void addInst(int64_t OffsetFromFirst, Instruction *Inst) {
204    if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
205      addStore(OffsetFromFirst, SI);
206    else
207      addMemSet(OffsetFromFirst, cast<MemSetInst>(Inst));
208  }
209
210  void addStore(int64_t OffsetFromFirst, StoreInst *SI) {
211    int64_t StoreSize = TD.getTypeStoreSize(SI->getOperand(0)->getType());
212
213    addRange(OffsetFromFirst, StoreSize,
214             SI->getPointerOperand(), SI->getAlignment(), SI);
215  }
216
217  void addMemSet(int64_t OffsetFromFirst, MemSetInst *MSI) {
218    int64_t Size = cast<ConstantInt>(MSI->getLength())->getZExtValue();
219    addRange(OffsetFromFirst, Size, MSI->getDest(), MSI->getAlignment(), MSI);
220  }
221
222  void addRange(int64_t Start, int64_t Size, Value *Ptr,
223                unsigned Alignment, Instruction *Inst);
224
225};
226
227} // end anon namespace
228
229
230/// addRange - Add a new store to the MemsetRanges data structure.  This adds a
231/// new range for the specified store at the specified offset, merging into
232/// existing ranges as appropriate.
233///
234/// Do a linear search of the ranges to see if this can be joined and/or to
235/// find the insertion point in the list.  We keep the ranges sorted for
236/// simplicity here.  This is a linear search of a linked list, which is ugly,
237/// however the number of ranges is limited, so this won't get crazy slow.
238void MemsetRanges::addRange(int64_t Start, int64_t Size, Value *Ptr,
239                            unsigned Alignment, Instruction *Inst) {
240  int64_t End = Start+Size;
241  range_iterator I = Ranges.begin(), E = Ranges.end();
242
243  while (I != E && Start > I->End)
244    ++I;
245
246  // We now know that I == E, in which case we didn't find anything to merge
247  // with, or that Start <= I->End.  If End < I->Start or I == E, then we need
248  // to insert a new range.  Handle this now.
249  if (I == E || End < I->Start) {
250    MemsetRange &R = *Ranges.insert(I, MemsetRange());
251    R.Start        = Start;
252    R.End          = End;
253    R.StartPtr     = Ptr;
254    R.Alignment    = Alignment;
255    R.TheStores.push_back(Inst);
256    return;
257  }
258
259  // This store overlaps with I, add it.
260  I->TheStores.push_back(Inst);
261
262  // At this point, we may have an interval that completely contains our store.
263  // If so, just add it to the interval and return.
264  if (I->Start <= Start && I->End >= End)
265    return;
266
267  // Now we know that Start <= I->End and End >= I->Start so the range overlaps
268  // but is not entirely contained within the range.
269
270  // See if the range extends the start of the range.  In this case, it couldn't
271  // possibly cause it to join the prior range, because otherwise we would have
272  // stopped on *it*.
273  if (Start < I->Start) {
274    I->Start = Start;
275    I->StartPtr = Ptr;
276    I->Alignment = Alignment;
277  }
278
279  // Now we know that Start <= I->End and Start >= I->Start (so the startpoint
280  // is in or right at the end of I), and that End >= I->Start.  Extend I out to
281  // End.
282  if (End > I->End) {
283    I->End = End;
284    range_iterator NextI = I;
285    while (++NextI != E && End >= NextI->Start) {
286      // Merge the range in.
287      I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end());
288      if (NextI->End > I->End)
289        I->End = NextI->End;
290      Ranges.erase(NextI);
291      NextI = I;
292    }
293  }
294}
295
296//===----------------------------------------------------------------------===//
297//                         MemCpyOpt Pass
298//===----------------------------------------------------------------------===//
299
300namespace {
301  class MemCpyOpt : public FunctionPass {
302    MemoryDependenceAnalysis *MD;
303    TargetLibraryInfo *TLI;
304    const TargetData *TD;
305  public:
306    static char ID; // Pass identification, replacement for typeid
307    MemCpyOpt() : FunctionPass(ID) {
308      initializeMemCpyOptPass(*PassRegistry::getPassRegistry());
309      MD = 0;
310      TLI = 0;
311      TD = 0;
312    }
313
314    bool runOnFunction(Function &F);
315
316  private:
317    // This transformation requires dominator postdominator info
318    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
319      AU.setPreservesCFG();
320      AU.addRequired<DominatorTree>();
321      AU.addRequired<MemoryDependenceAnalysis>();
322      AU.addRequired<AliasAnalysis>();
323      AU.addRequired<TargetLibraryInfo>();
324      AU.addPreserved<AliasAnalysis>();
325      AU.addPreserved<MemoryDependenceAnalysis>();
326    }
327
328    // Helper fuctions
329    bool processStore(StoreInst *SI, BasicBlock::iterator &BBI);
330    bool processMemSet(MemSetInst *SI, BasicBlock::iterator &BBI);
331    bool processMemCpy(MemCpyInst *M);
332    bool processMemMove(MemMoveInst *M);
333    bool performCallSlotOptzn(Instruction *cpy, Value *cpyDst, Value *cpySrc,
334                              uint64_t cpyLen, CallInst *C);
335    bool processMemCpyMemCpyDependence(MemCpyInst *M, MemCpyInst *MDep,
336                                       uint64_t MSize);
337    bool processByValArgument(CallSite CS, unsigned ArgNo);
338    Instruction *tryMergingIntoMemset(Instruction *I, Value *StartPtr,
339                                      Value *ByteVal);
340
341    bool iterateOnFunction(Function &F);
342  };
343
344  char MemCpyOpt::ID = 0;
345}
346
347// createMemCpyOptPass - The public interface to this file...
348FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOpt(); }
349
350INITIALIZE_PASS_BEGIN(MemCpyOpt, "memcpyopt", "MemCpy Optimization",
351                      false, false)
352INITIALIZE_PASS_DEPENDENCY(DominatorTree)
353INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
354INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
355INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
356INITIALIZE_PASS_END(MemCpyOpt, "memcpyopt", "MemCpy Optimization",
357                    false, false)
358
359/// tryMergingIntoMemset - When scanning forward over instructions, we look for
360/// some other patterns to fold away.  In particular, this looks for stores to
361/// neighboring locations of memory.  If it sees enough consecutive ones, it
362/// attempts to merge them together into a memcpy/memset.
363Instruction *MemCpyOpt::tryMergingIntoMemset(Instruction *StartInst,
364                                             Value *StartPtr, Value *ByteVal) {
365  if (TD == 0) return 0;
366
367  // Okay, so we now have a single store that can be splatable.  Scan to find
368  // all subsequent stores of the same value to offset from the same pointer.
369  // Join these together into ranges, so we can decide whether contiguous blocks
370  // are stored.
371  MemsetRanges Ranges(*TD);
372
373  BasicBlock::iterator BI = StartInst;
374  for (++BI; !isa<TerminatorInst>(BI); ++BI) {
375    if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) {
376      // If the instruction is readnone, ignore it, otherwise bail out.  We
377      // don't even allow readonly here because we don't want something like:
378      // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
379      if (BI->mayWriteToMemory() || BI->mayReadFromMemory())
380        break;
381      continue;
382    }
383
384    if (StoreInst *NextStore = dyn_cast<StoreInst>(BI)) {
385      // If this is a store, see if we can merge it in.
386      if (NextStore->isVolatile()) break;
387
388      // Check to see if this stored value is of the same byte-splattable value.
389      if (ByteVal != isBytewiseValue(NextStore->getOperand(0)))
390        break;
391
392      // Check to see if this store is to a constant offset from the start ptr.
393      int64_t Offset;
394      if (!IsPointerOffset(StartPtr, NextStore->getPointerOperand(),
395                           Offset, *TD))
396        break;
397
398      Ranges.addStore(Offset, NextStore);
399    } else {
400      MemSetInst *MSI = cast<MemSetInst>(BI);
401
402      if (MSI->isVolatile() || ByteVal != MSI->getValue() ||
403          !isa<ConstantInt>(MSI->getLength()))
404        break;
405
406      // Check to see if this store is to a constant offset from the start ptr.
407      int64_t Offset;
408      if (!IsPointerOffset(StartPtr, MSI->getDest(), Offset, *TD))
409        break;
410
411      Ranges.addMemSet(Offset, MSI);
412    }
413  }
414
415  // If we have no ranges, then we just had a single store with nothing that
416  // could be merged in.  This is a very common case of course.
417  if (Ranges.empty())
418    return 0;
419
420  // If we had at least one store that could be merged in, add the starting
421  // store as well.  We try to avoid this unless there is at least something
422  // interesting as a small compile-time optimization.
423  Ranges.addInst(0, StartInst);
424
425  // If we create any memsets, we put it right before the first instruction that
426  // isn't part of the memset block.  This ensure that the memset is dominated
427  // by any addressing instruction needed by the start of the block.
428  IRBuilder<> Builder(BI);
429
430  // Now that we have full information about ranges, loop over the ranges and
431  // emit memset's for anything big enough to be worthwhile.
432  Instruction *AMemSet = 0;
433  for (MemsetRanges::const_iterator I = Ranges.begin(), E = Ranges.end();
434       I != E; ++I) {
435    const MemsetRange &Range = *I;
436
437    if (Range.TheStores.size() == 1) continue;
438
439    // If it is profitable to lower this range to memset, do so now.
440    if (!Range.isProfitableToUseMemset(*TD))
441      continue;
442
443    // Otherwise, we do want to transform this!  Create a new memset.
444    // Get the starting pointer of the block.
445    StartPtr = Range.StartPtr;
446
447    // Determine alignment
448    unsigned Alignment = Range.Alignment;
449    if (Alignment == 0) {
450      const Type *EltType =
451        cast<PointerType>(StartPtr->getType())->getElementType();
452      Alignment = TD->getABITypeAlignment(EltType);
453    }
454
455    AMemSet =
456      Builder.CreateMemSet(StartPtr, ByteVal, Range.End-Range.Start, Alignment);
457
458    DEBUG(dbgs() << "Replace stores:\n";
459          for (unsigned i = 0, e = Range.TheStores.size(); i != e; ++i)
460            dbgs() << *Range.TheStores[i] << '\n';
461          dbgs() << "With: " << *AMemSet << '\n');
462
463    // Zap all the stores.
464    for (SmallVector<Instruction*, 16>::const_iterator
465         SI = Range.TheStores.begin(),
466         SE = Range.TheStores.end(); SI != SE; ++SI) {
467      MD->removeInstruction(*SI);
468      (*SI)->eraseFromParent();
469    }
470    ++NumMemSetInfer;
471  }
472
473  return AMemSet;
474}
475
476
477bool MemCpyOpt::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
478  if (SI->isVolatile()) return false;
479
480  if (TD == 0) return false;
481
482  // Detect cases where we're performing call slot forwarding, but
483  // happen to be using a load-store pair to implement it, rather than
484  // a memcpy.
485  if (LoadInst *LI = dyn_cast<LoadInst>(SI->getOperand(0))) {
486    if (!LI->isVolatile() && LI->hasOneUse()) {
487      MemDepResult dep = MD->getDependency(LI);
488      CallInst *C = 0;
489      if (dep.isClobber() && !isa<MemCpyInst>(dep.getInst()))
490        C = dyn_cast<CallInst>(dep.getInst());
491
492      if (C) {
493        bool changed = performCallSlotOptzn(LI,
494                        SI->getPointerOperand()->stripPointerCasts(),
495                        LI->getPointerOperand()->stripPointerCasts(),
496                        TD->getTypeStoreSize(SI->getOperand(0)->getType()), C);
497        if (changed) {
498          MD->removeInstruction(SI);
499          SI->eraseFromParent();
500          MD->removeInstruction(LI);
501          LI->eraseFromParent();
502          ++NumMemCpyInstr;
503          return true;
504        }
505      }
506    }
507  }
508
509  // There are two cases that are interesting for this code to handle: memcpy
510  // and memset.  Right now we only handle memset.
511
512  // Ensure that the value being stored is something that can be memset'able a
513  // byte at a time like "0" or "-1" or any width, as well as things like
514  // 0xA0A0A0A0 and 0.0.
515  if (Value *ByteVal = isBytewiseValue(SI->getOperand(0)))
516    if (Instruction *I = tryMergingIntoMemset(SI, SI->getPointerOperand(),
517                                              ByteVal)) {
518      BBI = I;  // Don't invalidate iterator.
519      return true;
520    }
521
522  return false;
523}
524
525bool MemCpyOpt::processMemSet(MemSetInst *MSI, BasicBlock::iterator &BBI) {
526  // See if there is another memset or store neighboring this memset which
527  // allows us to widen out the memset to do a single larger store.
528  if (isa<ConstantInt>(MSI->getLength()) && !MSI->isVolatile())
529    if (Instruction *I = tryMergingIntoMemset(MSI, MSI->getDest(),
530                                              MSI->getValue())) {
531      BBI = I;  // Don't invalidate iterator.
532      return true;
533    }
534  return false;
535}
536
537
538/// performCallSlotOptzn - takes a memcpy and a call that it depends on,
539/// and checks for the possibility of a call slot optimization by having
540/// the call write its result directly into the destination of the memcpy.
541bool MemCpyOpt::performCallSlotOptzn(Instruction *cpy,
542                                     Value *cpyDest, Value *cpySrc,
543                                     uint64_t cpyLen, CallInst *C) {
544  // The general transformation to keep in mind is
545  //
546  //   call @func(..., src, ...)
547  //   memcpy(dest, src, ...)
548  //
549  // ->
550  //
551  //   memcpy(dest, src, ...)
552  //   call @func(..., dest, ...)
553  //
554  // Since moving the memcpy is technically awkward, we additionally check that
555  // src only holds uninitialized values at the moment of the call, meaning that
556  // the memcpy can be discarded rather than moved.
557
558  // Deliberately get the source and destination with bitcasts stripped away,
559  // because we'll need to do type comparisons based on the underlying type.
560  CallSite CS(C);
561
562  // Require that src be an alloca.  This simplifies the reasoning considerably.
563  AllocaInst *srcAlloca = dyn_cast<AllocaInst>(cpySrc);
564  if (!srcAlloca)
565    return false;
566
567  // Check that all of src is copied to dest.
568  if (TD == 0) return false;
569
570  ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize());
571  if (!srcArraySize)
572    return false;
573
574  uint64_t srcSize = TD->getTypeAllocSize(srcAlloca->getAllocatedType()) *
575    srcArraySize->getZExtValue();
576
577  if (cpyLen < srcSize)
578    return false;
579
580  // Check that accessing the first srcSize bytes of dest will not cause a
581  // trap.  Otherwise the transform is invalid since it might cause a trap
582  // to occur earlier than it otherwise would.
583  if (AllocaInst *A = dyn_cast<AllocaInst>(cpyDest)) {
584    // The destination is an alloca.  Check it is larger than srcSize.
585    ConstantInt *destArraySize = dyn_cast<ConstantInt>(A->getArraySize());
586    if (!destArraySize)
587      return false;
588
589    uint64_t destSize = TD->getTypeAllocSize(A->getAllocatedType()) *
590      destArraySize->getZExtValue();
591
592    if (destSize < srcSize)
593      return false;
594  } else if (Argument *A = dyn_cast<Argument>(cpyDest)) {
595    // If the destination is an sret parameter then only accesses that are
596    // outside of the returned struct type can trap.
597    if (!A->hasStructRetAttr())
598      return false;
599
600    const Type *StructTy = cast<PointerType>(A->getType())->getElementType();
601    uint64_t destSize = TD->getTypeAllocSize(StructTy);
602
603    if (destSize < srcSize)
604      return false;
605  } else {
606    return false;
607  }
608
609  // Check that src is not accessed except via the call and the memcpy.  This
610  // guarantees that it holds only undefined values when passed in (so the final
611  // memcpy can be dropped), that it is not read or written between the call and
612  // the memcpy, and that writing beyond the end of it is undefined.
613  SmallVector<User*, 8> srcUseList(srcAlloca->use_begin(),
614                                   srcAlloca->use_end());
615  while (!srcUseList.empty()) {
616    User *UI = srcUseList.pop_back_val();
617
618    if (isa<BitCastInst>(UI)) {
619      for (User::use_iterator I = UI->use_begin(), E = UI->use_end();
620           I != E; ++I)
621        srcUseList.push_back(*I);
622    } else if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(UI)) {
623      if (G->hasAllZeroIndices())
624        for (User::use_iterator I = UI->use_begin(), E = UI->use_end();
625             I != E; ++I)
626          srcUseList.push_back(*I);
627      else
628        return false;
629    } else if (UI != C && UI != cpy) {
630      return false;
631    }
632  }
633
634  // Since we're changing the parameter to the callsite, we need to make sure
635  // that what would be the new parameter dominates the callsite.
636  DominatorTree &DT = getAnalysis<DominatorTree>();
637  if (Instruction *cpyDestInst = dyn_cast<Instruction>(cpyDest))
638    if (!DT.dominates(cpyDestInst, C))
639      return false;
640
641  // In addition to knowing that the call does not access src in some
642  // unexpected manner, for example via a global, which we deduce from
643  // the use analysis, we also need to know that it does not sneakily
644  // access dest.  We rely on AA to figure this out for us.
645  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
646  if (AA.getModRefInfo(C, cpyDest, srcSize) != AliasAnalysis::NoModRef)
647    return false;
648
649  // All the checks have passed, so do the transformation.
650  bool changedArgument = false;
651  for (unsigned i = 0; i < CS.arg_size(); ++i)
652    if (CS.getArgument(i)->stripPointerCasts() == cpySrc) {
653      if (cpySrc->getType() != cpyDest->getType())
654        cpyDest = CastInst::CreatePointerCast(cpyDest, cpySrc->getType(),
655                                              cpyDest->getName(), C);
656      changedArgument = true;
657      if (CS.getArgument(i)->getType() == cpyDest->getType())
658        CS.setArgument(i, cpyDest);
659      else
660        CS.setArgument(i, CastInst::CreatePointerCast(cpyDest,
661                          CS.getArgument(i)->getType(), cpyDest->getName(), C));
662    }
663
664  if (!changedArgument)
665    return false;
666
667  // Drop any cached information about the call, because we may have changed
668  // its dependence information by changing its parameter.
669  MD->removeInstruction(C);
670
671  // Remove the memcpy.
672  MD->removeInstruction(cpy);
673  ++NumMemCpyInstr;
674
675  return true;
676}
677
678/// processMemCpyMemCpyDependence - We've found that the (upward scanning)
679/// memory dependence of memcpy 'M' is the memcpy 'MDep'.  Try to simplify M to
680/// copy from MDep's input if we can.  MSize is the size of M's copy.
681///
682bool MemCpyOpt::processMemCpyMemCpyDependence(MemCpyInst *M, MemCpyInst *MDep,
683                                              uint64_t MSize) {
684  // We can only transforms memcpy's where the dest of one is the source of the
685  // other.
686  if (M->getSource() != MDep->getDest() || MDep->isVolatile())
687    return false;
688
689  // If dep instruction is reading from our current input, then it is a noop
690  // transfer and substituting the input won't change this instruction.  Just
691  // ignore the input and let someone else zap MDep.  This handles cases like:
692  //    memcpy(a <- a)
693  //    memcpy(b <- a)
694  if (M->getSource() == MDep->getSource())
695    return false;
696
697  // Second, the length of the memcpy's must be the same, or the preceding one
698  // must be larger than the following one.
699  ConstantInt *MDepLen = dyn_cast<ConstantInt>(MDep->getLength());
700  ConstantInt *MLen = dyn_cast<ConstantInt>(M->getLength());
701  if (!MDepLen || !MLen || MDepLen->getZExtValue() < MLen->getZExtValue())
702    return false;
703
704  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
705
706  // Verify that the copied-from memory doesn't change in between the two
707  // transfers.  For example, in:
708  //    memcpy(a <- b)
709  //    *b = 42;
710  //    memcpy(c <- a)
711  // It would be invalid to transform the second memcpy into memcpy(c <- b).
712  //
713  // TODO: If the code between M and MDep is transparent to the destination "c",
714  // then we could still perform the xform by moving M up to the first memcpy.
715  //
716  // NOTE: This is conservative, it will stop on any read from the source loc,
717  // not just the defining memcpy.
718  MemDepResult SourceDep =
719    MD->getPointerDependencyFrom(AA.getLocationForSource(MDep),
720                                 false, M, M->getParent());
721  if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
722    return false;
723
724  // If the dest of the second might alias the source of the first, then the
725  // source and dest might overlap.  We still want to eliminate the intermediate
726  // value, but we have to generate a memmove instead of memcpy.
727  bool UseMemMove = false;
728  if (!AA.isNoAlias(AA.getLocationForDest(M), AA.getLocationForSource(MDep)))
729    UseMemMove = true;
730
731  // If all checks passed, then we can transform M.
732
733  // Make sure to use the lesser of the alignment of the source and the dest
734  // since we're changing where we're reading from, but don't want to increase
735  // the alignment past what can be read from or written to.
736  // TODO: Is this worth it if we're creating a less aligned memcpy? For
737  // example we could be moving from movaps -> movq on x86.
738  unsigned Align = std::min(MDep->getAlignment(), M->getAlignment());
739
740  IRBuilder<> Builder(M);
741  if (UseMemMove)
742    Builder.CreateMemMove(M->getRawDest(), MDep->getRawSource(), M->getLength(),
743                          Align, M->isVolatile());
744  else
745    Builder.CreateMemCpy(M->getRawDest(), MDep->getRawSource(), M->getLength(),
746                         Align, M->isVolatile());
747
748  // Remove the instruction we're replacing.
749  MD->removeInstruction(M);
750  M->eraseFromParent();
751  ++NumMemCpyInstr;
752  return true;
753}
754
755
756/// processMemCpy - perform simplification of memcpy's.  If we have memcpy A
757/// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite
758/// B to be a memcpy from X to Z (or potentially a memmove, depending on
759/// circumstances). This allows later passes to remove the first memcpy
760/// altogether.
761bool MemCpyOpt::processMemCpy(MemCpyInst *M) {
762  // We can only optimize statically-sized memcpy's that are non-volatile.
763  ConstantInt *CopySize = dyn_cast<ConstantInt>(M->getLength());
764  if (CopySize == 0 || M->isVolatile()) return false;
765
766  // If the source and destination of the memcpy are the same, then zap it.
767  if (M->getSource() == M->getDest()) {
768    MD->removeInstruction(M);
769    M->eraseFromParent();
770    return false;
771  }
772
773  // If copying from a constant, try to turn the memcpy into a memset.
774  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(M->getSource()))
775    if (GV->isConstant() && GV->hasDefinitiveInitializer())
776      if (Value *ByteVal = isBytewiseValue(GV->getInitializer())) {
777        IRBuilder<> Builder(M);
778        Builder.CreateMemSet(M->getRawDest(), ByteVal, CopySize,
779                             M->getAlignment(), false);
780        MD->removeInstruction(M);
781        M->eraseFromParent();
782        ++NumCpyToSet;
783        return true;
784      }
785
786  // The are two possible optimizations we can do for memcpy:
787  //   a) memcpy-memcpy xform which exposes redundance for DSE.
788  //   b) call-memcpy xform for return slot optimization.
789  MemDepResult DepInfo = MD->getDependency(M);
790  if (!DepInfo.isClobber())
791    return false;
792
793  if (MemCpyInst *MDep = dyn_cast<MemCpyInst>(DepInfo.getInst()))
794    return processMemCpyMemCpyDependence(M, MDep, CopySize->getZExtValue());
795
796  if (CallInst *C = dyn_cast<CallInst>(DepInfo.getInst())) {
797    if (performCallSlotOptzn(M, M->getDest(), M->getSource(),
798                             CopySize->getZExtValue(), C)) {
799      MD->removeInstruction(M);
800      M->eraseFromParent();
801      return true;
802    }
803  }
804
805  return false;
806}
807
808/// processMemMove - Transforms memmove calls to memcpy calls when the src/dst
809/// are guaranteed not to alias.
810bool MemCpyOpt::processMemMove(MemMoveInst *M) {
811  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
812
813  if (!TLI->has(LibFunc::memmove))
814    return false;
815
816  // See if the pointers alias.
817  if (!AA.isNoAlias(AA.getLocationForDest(M), AA.getLocationForSource(M)))
818    return false;
819
820  DEBUG(dbgs() << "MemCpyOpt: Optimizing memmove -> memcpy: " << *M << "\n");
821
822  // If not, then we know we can transform this.
823  Module *Mod = M->getParent()->getParent()->getParent();
824  const Type *ArgTys[3] = { M->getRawDest()->getType(),
825                            M->getRawSource()->getType(),
826                            M->getLength()->getType() };
827  M->setCalledFunction(Intrinsic::getDeclaration(Mod, Intrinsic::memcpy,
828                                                 ArgTys, 3));
829
830  // MemDep may have over conservative information about this instruction, just
831  // conservatively flush it from the cache.
832  MD->removeInstruction(M);
833
834  ++NumMoveToCpy;
835  return true;
836}
837
838/// processByValArgument - This is called on every byval argument in call sites.
839bool MemCpyOpt::processByValArgument(CallSite CS, unsigned ArgNo) {
840  if (TD == 0) return false;
841
842  // Find out what feeds this byval argument.
843  Value *ByValArg = CS.getArgument(ArgNo);
844  const Type *ByValTy =cast<PointerType>(ByValArg->getType())->getElementType();
845  uint64_t ByValSize = TD->getTypeAllocSize(ByValTy);
846  MemDepResult DepInfo =
847    MD->getPointerDependencyFrom(AliasAnalysis::Location(ByValArg, ByValSize),
848                                 true, CS.getInstruction(),
849                                 CS.getInstruction()->getParent());
850  if (!DepInfo.isClobber())
851    return false;
852
853  // If the byval argument isn't fed by a memcpy, ignore it.  If it is fed by
854  // a memcpy, see if we can byval from the source of the memcpy instead of the
855  // result.
856  MemCpyInst *MDep = dyn_cast<MemCpyInst>(DepInfo.getInst());
857  if (MDep == 0 || MDep->isVolatile() ||
858      ByValArg->stripPointerCasts() != MDep->getDest())
859    return false;
860
861  // The length of the memcpy must be larger or equal to the size of the byval.
862  ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength());
863  if (C1 == 0 || C1->getValue().getZExtValue() < ByValSize)
864    return false;
865
866  // Get the alignment of the byval.  If it is greater than the memcpy, then we
867  // can't do the substitution.  If the call doesn't specify the alignment, then
868  // it is some target specific value that we can't know.
869  unsigned ByValAlign = CS.getParamAlignment(ArgNo+1);
870  if (ByValAlign == 0 || MDep->getAlignment() < ByValAlign)
871    return false;
872
873  // Verify that the copied-from memory doesn't change in between the memcpy and
874  // the byval call.
875  //    memcpy(a <- b)
876  //    *b = 42;
877  //    foo(*a)
878  // It would be invalid to transform the second memcpy into foo(*b).
879  //
880  // NOTE: This is conservative, it will stop on any read from the source loc,
881  // not just the defining memcpy.
882  MemDepResult SourceDep =
883    MD->getPointerDependencyFrom(AliasAnalysis::getLocationForSource(MDep),
884                                 false, CS.getInstruction(), MDep->getParent());
885  if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
886    return false;
887
888  Value *TmpCast = MDep->getSource();
889  if (MDep->getSource()->getType() != ByValArg->getType())
890    TmpCast = new BitCastInst(MDep->getSource(), ByValArg->getType(),
891                              "tmpcast", CS.getInstruction());
892
893  DEBUG(dbgs() << "MemCpyOpt: Forwarding memcpy to byval:\n"
894               << "  " << *MDep << "\n"
895               << "  " << *CS.getInstruction() << "\n");
896
897  // Otherwise we're good!  Update the byval argument.
898  CS.setArgument(ArgNo, TmpCast);
899  ++NumMemCpyInstr;
900  return true;
901}
902
903/// iterateOnFunction - Executes one iteration of MemCpyOpt.
904bool MemCpyOpt::iterateOnFunction(Function &F) {
905  bool MadeChange = false;
906
907  // Walk all instruction in the function.
908  for (Function::iterator BB = F.begin(), BBE = F.end(); BB != BBE; ++BB) {
909    for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE;) {
910      // Avoid invalidating the iterator.
911      Instruction *I = BI++;
912
913      bool RepeatInstruction = false;
914
915      if (StoreInst *SI = dyn_cast<StoreInst>(I))
916        MadeChange |= processStore(SI, BI);
917      else if (MemSetInst *M = dyn_cast<MemSetInst>(I))
918        RepeatInstruction = processMemSet(M, BI);
919      else if (MemCpyInst *M = dyn_cast<MemCpyInst>(I))
920        RepeatInstruction = processMemCpy(M);
921      else if (MemMoveInst *M = dyn_cast<MemMoveInst>(I))
922        RepeatInstruction = processMemMove(M);
923      else if (CallSite CS = (Value*)I) {
924        for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
925          if (CS.paramHasAttr(i+1, Attribute::ByVal))
926            MadeChange |= processByValArgument(CS, i);
927      }
928
929      // Reprocess the instruction if desired.
930      if (RepeatInstruction) {
931        if (BI != BB->begin()) --BI;
932        MadeChange = true;
933      }
934    }
935  }
936
937  return MadeChange;
938}
939
940// MemCpyOpt::runOnFunction - This is the main transformation entry point for a
941// function.
942//
943bool MemCpyOpt::runOnFunction(Function &F) {
944  bool MadeChange = false;
945  MD = &getAnalysis<MemoryDependenceAnalysis>();
946  TD = getAnalysisIfAvailable<TargetData>();
947  TLI = &getAnalysis<TargetLibraryInfo>();
948
949  // If we don't have at least memset and memcpy, there is little point of doing
950  // anything here.  These are required by a freestanding implementation, so if
951  // even they are disabled, there is no point in trying hard.
952  if (!TLI->has(LibFunc::memset) || !TLI->has(LibFunc::memcpy))
953    return false;
954
955  while (1) {
956    if (!iterateOnFunction(F))
957      break;
958    MadeChange = true;
959  }
960
961  MD = 0;
962  return MadeChange;
963}
964