InstructionCombining.cpp revision 251662
1//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// InstructionCombining - Combine instructions to form fewer, simple
11// instructions.  This pass does not modify the CFG.  This pass is where
12// algebraic simplification happens.
13//
14// This pass combines things like:
15//    %Y = add i32 %X, 1
16//    %Z = add i32 %Y, 1
17// into:
18//    %Z = add i32 %X, 2
19//
20// This is a simple worklist driven algorithm.
21//
22// This pass guarantees that the following canonicalizations are performed on
23// the program:
24//    1. If a binary operator has a constant operand, it is moved to the RHS
25//    2. Bitwise operators with constant operands are always grouped so that
26//       shifts are performed first, then or's, then and's, then xor's.
27//    3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
28//    4. All cmp instructions on boolean values are replaced with logical ops
29//    5. add X, X is represented as (X*2) => (X << 1)
30//    6. Multiplies with a power-of-two constant argument are transformed into
31//       shifts.
32//   ... etc.
33//
34//===----------------------------------------------------------------------===//
35
36#define DEBUG_TYPE "instcombine"
37#include "llvm/Transforms/Scalar.h"
38#include "InstCombine.h"
39#include "llvm-c/Initialization.h"
40#include "llvm/ADT/SmallPtrSet.h"
41#include "llvm/ADT/Statistic.h"
42#include "llvm/ADT/StringSwitch.h"
43#include "llvm/Analysis/ConstantFolding.h"
44#include "llvm/Analysis/InstructionSimplify.h"
45#include "llvm/Analysis/MemoryBuiltins.h"
46#include "llvm/IR/DataLayout.h"
47#include "llvm/IR/IntrinsicInst.h"
48#include "llvm/Support/CFG.h"
49#include "llvm/Support/CommandLine.h"
50#include "llvm/Support/Debug.h"
51#include "llvm/Support/GetElementPtrTypeIterator.h"
52#include "llvm/Support/PatternMatch.h"
53#include "llvm/Support/ValueHandle.h"
54#include "llvm/Target/TargetLibraryInfo.h"
55#include "llvm/Transforms/Utils/Local.h"
56#include <algorithm>
57#include <climits>
58using namespace llvm;
59using namespace llvm::PatternMatch;
60
61STATISTIC(NumCombined , "Number of insts combined");
62STATISTIC(NumConstProp, "Number of constant folds");
63STATISTIC(NumDeadInst , "Number of dead inst eliminated");
64STATISTIC(NumSunkInst , "Number of instructions sunk");
65STATISTIC(NumExpand,    "Number of expansions");
66STATISTIC(NumFactor   , "Number of factorizations");
67STATISTIC(NumReassoc  , "Number of reassociations");
68
69static cl::opt<bool> UnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
70                                   cl::init(false),
71                                   cl::desc("Enable unsafe double to float "
72                                            "shrinking for math lib calls"));
73
74// Initialization Routines
75void llvm::initializeInstCombine(PassRegistry &Registry) {
76  initializeInstCombinerPass(Registry);
77}
78
79void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
80  initializeInstCombine(*unwrap(R));
81}
82
83char InstCombiner::ID = 0;
84INITIALIZE_PASS_BEGIN(InstCombiner, "instcombine",
85                "Combine redundant instructions", false, false)
86INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
87INITIALIZE_PASS_END(InstCombiner, "instcombine",
88                "Combine redundant instructions", false, false)
89
90void InstCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
91  AU.setPreservesCFG();
92  AU.addRequired<TargetLibraryInfo>();
93}
94
95
96Value *InstCombiner::EmitGEPOffset(User *GEP) {
97  return llvm::EmitGEPOffset(Builder, *getDataLayout(), GEP);
98}
99
100/// ShouldChangeType - Return true if it is desirable to convert a computation
101/// from 'From' to 'To'.  We don't want to convert from a legal to an illegal
102/// type for example, or from a smaller to a larger illegal type.
103bool InstCombiner::ShouldChangeType(Type *From, Type *To) const {
104  assert(From->isIntegerTy() && To->isIntegerTy());
105
106  // If we don't have TD, we don't know if the source/dest are legal.
107  if (!TD) return false;
108
109  unsigned FromWidth = From->getPrimitiveSizeInBits();
110  unsigned ToWidth = To->getPrimitiveSizeInBits();
111  bool FromLegal = TD->isLegalInteger(FromWidth);
112  bool ToLegal = TD->isLegalInteger(ToWidth);
113
114  // If this is a legal integer from type, and the result would be an illegal
115  // type, don't do the transformation.
116  if (FromLegal && !ToLegal)
117    return false;
118
119  // Otherwise, if both are illegal, do not increase the size of the result. We
120  // do allow things like i160 -> i64, but not i64 -> i160.
121  if (!FromLegal && !ToLegal && ToWidth > FromWidth)
122    return false;
123
124  return true;
125}
126
127// Return true, if No Signed Wrap should be maintained for I.
128// The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
129// where both B and C should be ConstantInts, results in a constant that does
130// not overflow. This function only handles the Add and Sub opcodes. For
131// all other opcodes, the function conservatively returns false.
132static bool MaintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
133  OverflowingBinaryOperator *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
134  if (!OBO || !OBO->hasNoSignedWrap()) {
135    return false;
136  }
137
138  // We reason about Add and Sub Only.
139  Instruction::BinaryOps Opcode = I.getOpcode();
140  if (Opcode != Instruction::Add &&
141      Opcode != Instruction::Sub) {
142    return false;
143  }
144
145  ConstantInt *CB = dyn_cast<ConstantInt>(B);
146  ConstantInt *CC = dyn_cast<ConstantInt>(C);
147
148  if (!CB || !CC) {
149    return false;
150  }
151
152  const APInt &BVal = CB->getValue();
153  const APInt &CVal = CC->getValue();
154  bool Overflow = false;
155
156  if (Opcode == Instruction::Add) {
157    BVal.sadd_ov(CVal, Overflow);
158  } else {
159    BVal.ssub_ov(CVal, Overflow);
160  }
161
162  return !Overflow;
163}
164
165/// Conservatively clears subclassOptionalData after a reassociation or
166/// commutation. We preserve fast-math flags when applicable as they can be
167/// preserved.
168static void ClearSubclassDataAfterReassociation(BinaryOperator &I) {
169  FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I);
170  if (!FPMO) {
171    I.clearSubclassOptionalData();
172    return;
173  }
174
175  FastMathFlags FMF = I.getFastMathFlags();
176  I.clearSubclassOptionalData();
177  I.setFastMathFlags(FMF);
178}
179
180/// SimplifyAssociativeOrCommutative - This performs a few simplifications for
181/// operators which are associative or commutative:
182//
183//  Commutative operators:
184//
185//  1. Order operands such that they are listed from right (least complex) to
186//     left (most complex).  This puts constants before unary operators before
187//     binary operators.
188//
189//  Associative operators:
190//
191//  2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
192//  3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
193//
194//  Associative and commutative operators:
195//
196//  4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
197//  5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
198//  6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
199//     if C1 and C2 are constants.
200//
201bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
202  Instruction::BinaryOps Opcode = I.getOpcode();
203  bool Changed = false;
204
205  do {
206    // Order operands such that they are listed from right (least complex) to
207    // left (most complex).  This puts constants before unary operators before
208    // binary operators.
209    if (I.isCommutative() && getComplexity(I.getOperand(0)) <
210        getComplexity(I.getOperand(1)))
211      Changed = !I.swapOperands();
212
213    BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
214    BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
215
216    if (I.isAssociative()) {
217      // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
218      if (Op0 && Op0->getOpcode() == Opcode) {
219        Value *A = Op0->getOperand(0);
220        Value *B = Op0->getOperand(1);
221        Value *C = I.getOperand(1);
222
223        // Does "B op C" simplify?
224        if (Value *V = SimplifyBinOp(Opcode, B, C, TD)) {
225          // It simplifies to V.  Form "A op V".
226          I.setOperand(0, A);
227          I.setOperand(1, V);
228          // Conservatively clear the optional flags, since they may not be
229          // preserved by the reassociation.
230          if (MaintainNoSignedWrap(I, B, C) &&
231              (!Op0 || (isa<BinaryOperator>(Op0) && Op0->hasNoSignedWrap()))) {
232            // Note: this is only valid because SimplifyBinOp doesn't look at
233            // the operands to Op0.
234            I.clearSubclassOptionalData();
235            I.setHasNoSignedWrap(true);
236          } else {
237            ClearSubclassDataAfterReassociation(I);
238          }
239
240          Changed = true;
241          ++NumReassoc;
242          continue;
243        }
244      }
245
246      // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
247      if (Op1 && Op1->getOpcode() == Opcode) {
248        Value *A = I.getOperand(0);
249        Value *B = Op1->getOperand(0);
250        Value *C = Op1->getOperand(1);
251
252        // Does "A op B" simplify?
253        if (Value *V = SimplifyBinOp(Opcode, A, B, TD)) {
254          // It simplifies to V.  Form "V op C".
255          I.setOperand(0, V);
256          I.setOperand(1, C);
257          // Conservatively clear the optional flags, since they may not be
258          // preserved by the reassociation.
259          ClearSubclassDataAfterReassociation(I);
260          Changed = true;
261          ++NumReassoc;
262          continue;
263        }
264      }
265    }
266
267    if (I.isAssociative() && I.isCommutative()) {
268      // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
269      if (Op0 && Op0->getOpcode() == Opcode) {
270        Value *A = Op0->getOperand(0);
271        Value *B = Op0->getOperand(1);
272        Value *C = I.getOperand(1);
273
274        // Does "C op A" simplify?
275        if (Value *V = SimplifyBinOp(Opcode, C, A, TD)) {
276          // It simplifies to V.  Form "V op B".
277          I.setOperand(0, V);
278          I.setOperand(1, B);
279          // Conservatively clear the optional flags, since they may not be
280          // preserved by the reassociation.
281          ClearSubclassDataAfterReassociation(I);
282          Changed = true;
283          ++NumReassoc;
284          continue;
285        }
286      }
287
288      // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
289      if (Op1 && Op1->getOpcode() == Opcode) {
290        Value *A = I.getOperand(0);
291        Value *B = Op1->getOperand(0);
292        Value *C = Op1->getOperand(1);
293
294        // Does "C op A" simplify?
295        if (Value *V = SimplifyBinOp(Opcode, C, A, TD)) {
296          // It simplifies to V.  Form "B op V".
297          I.setOperand(0, B);
298          I.setOperand(1, V);
299          // Conservatively clear the optional flags, since they may not be
300          // preserved by the reassociation.
301          ClearSubclassDataAfterReassociation(I);
302          Changed = true;
303          ++NumReassoc;
304          continue;
305        }
306      }
307
308      // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
309      // if C1 and C2 are constants.
310      if (Op0 && Op1 &&
311          Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
312          isa<Constant>(Op0->getOperand(1)) &&
313          isa<Constant>(Op1->getOperand(1)) &&
314          Op0->hasOneUse() && Op1->hasOneUse()) {
315        Value *A = Op0->getOperand(0);
316        Constant *C1 = cast<Constant>(Op0->getOperand(1));
317        Value *B = Op1->getOperand(0);
318        Constant *C2 = cast<Constant>(Op1->getOperand(1));
319
320        Constant *Folded = ConstantExpr::get(Opcode, C1, C2);
321        BinaryOperator *New = BinaryOperator::Create(Opcode, A, B);
322        InsertNewInstWith(New, I);
323        New->takeName(Op1);
324        I.setOperand(0, New);
325        I.setOperand(1, Folded);
326        // Conservatively clear the optional flags, since they may not be
327        // preserved by the reassociation.
328        ClearSubclassDataAfterReassociation(I);
329
330        Changed = true;
331        continue;
332      }
333    }
334
335    // No further simplifications.
336    return Changed;
337  } while (1);
338}
339
340/// LeftDistributesOverRight - Whether "X LOp (Y ROp Z)" is always equal to
341/// "(X LOp Y) ROp (X LOp Z)".
342static bool LeftDistributesOverRight(Instruction::BinaryOps LOp,
343                                     Instruction::BinaryOps ROp) {
344  switch (LOp) {
345  default:
346    return false;
347
348  case Instruction::And:
349    // And distributes over Or and Xor.
350    switch (ROp) {
351    default:
352      return false;
353    case Instruction::Or:
354    case Instruction::Xor:
355      return true;
356    }
357
358  case Instruction::Mul:
359    // Multiplication distributes over addition and subtraction.
360    switch (ROp) {
361    default:
362      return false;
363    case Instruction::Add:
364    case Instruction::Sub:
365      return true;
366    }
367
368  case Instruction::Or:
369    // Or distributes over And.
370    switch (ROp) {
371    default:
372      return false;
373    case Instruction::And:
374      return true;
375    }
376  }
377}
378
379/// RightDistributesOverLeft - Whether "(X LOp Y) ROp Z" is always equal to
380/// "(X ROp Z) LOp (Y ROp Z)".
381static bool RightDistributesOverLeft(Instruction::BinaryOps LOp,
382                                     Instruction::BinaryOps ROp) {
383  if (Instruction::isCommutative(ROp))
384    return LeftDistributesOverRight(ROp, LOp);
385  // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
386  // but this requires knowing that the addition does not overflow and other
387  // such subtleties.
388  return false;
389}
390
391/// SimplifyUsingDistributiveLaws - This tries to simplify binary operations
392/// which some other binary operation distributes over either by factorizing
393/// out common terms (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this
394/// results in simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is
395/// a win).  Returns the simplified value, or null if it didn't simplify.
396Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
397  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
398  BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
399  BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
400  Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); // op
401
402  // Factorization.
403  if (Op0 && Op1 && Op0->getOpcode() == Op1->getOpcode()) {
404    // The instruction has the form "(A op' B) op (C op' D)".  Try to factorize
405    // a common term.
406    Value *A = Op0->getOperand(0), *B = Op0->getOperand(1);
407    Value *C = Op1->getOperand(0), *D = Op1->getOperand(1);
408    Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
409
410    // Does "X op' Y" always equal "Y op' X"?
411    bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
412
413    // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
414    if (LeftDistributesOverRight(InnerOpcode, TopLevelOpcode))
415      // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
416      // commutative case, "(A op' B) op (C op' A)"?
417      if (A == C || (InnerCommutative && A == D)) {
418        if (A != C)
419          std::swap(C, D);
420        // Consider forming "A op' (B op D)".
421        // If "B op D" simplifies then it can be formed with no cost.
422        Value *V = SimplifyBinOp(TopLevelOpcode, B, D, TD);
423        // If "B op D" doesn't simplify then only go on if both of the existing
424        // operations "A op' B" and "C op' D" will be zapped as no longer used.
425        if (!V && Op0->hasOneUse() && Op1->hasOneUse())
426          V = Builder->CreateBinOp(TopLevelOpcode, B, D, Op1->getName());
427        if (V) {
428          ++NumFactor;
429          V = Builder->CreateBinOp(InnerOpcode, A, V);
430          V->takeName(&I);
431          return V;
432        }
433      }
434
435    // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
436    if (RightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
437      // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
438      // commutative case, "(A op' B) op (B op' D)"?
439      if (B == D || (InnerCommutative && B == C)) {
440        if (B != D)
441          std::swap(C, D);
442        // Consider forming "(A op C) op' B".
443        // If "A op C" simplifies then it can be formed with no cost.
444        Value *V = SimplifyBinOp(TopLevelOpcode, A, C, TD);
445        // If "A op C" doesn't simplify then only go on if both of the existing
446        // operations "A op' B" and "C op' D" will be zapped as no longer used.
447        if (!V && Op0->hasOneUse() && Op1->hasOneUse())
448          V = Builder->CreateBinOp(TopLevelOpcode, A, C, Op0->getName());
449        if (V) {
450          ++NumFactor;
451          V = Builder->CreateBinOp(InnerOpcode, V, B);
452          V->takeName(&I);
453          return V;
454        }
455      }
456  }
457
458  // Expansion.
459  if (Op0 && RightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
460    // The instruction has the form "(A op' B) op C".  See if expanding it out
461    // to "(A op C) op' (B op C)" results in simplifications.
462    Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
463    Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
464
465    // Do "A op C" and "B op C" both simplify?
466    if (Value *L = SimplifyBinOp(TopLevelOpcode, A, C, TD))
467      if (Value *R = SimplifyBinOp(TopLevelOpcode, B, C, TD)) {
468        // They do! Return "L op' R".
469        ++NumExpand;
470        // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
471        if ((L == A && R == B) ||
472            (Instruction::isCommutative(InnerOpcode) && L == B && R == A))
473          return Op0;
474        // Otherwise return "L op' R" if it simplifies.
475        if (Value *V = SimplifyBinOp(InnerOpcode, L, R, TD))
476          return V;
477        // Otherwise, create a new instruction.
478        C = Builder->CreateBinOp(InnerOpcode, L, R);
479        C->takeName(&I);
480        return C;
481      }
482  }
483
484  if (Op1 && LeftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
485    // The instruction has the form "A op (B op' C)".  See if expanding it out
486    // to "(A op B) op' (A op C)" results in simplifications.
487    Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
488    Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
489
490    // Do "A op B" and "A op C" both simplify?
491    if (Value *L = SimplifyBinOp(TopLevelOpcode, A, B, TD))
492      if (Value *R = SimplifyBinOp(TopLevelOpcode, A, C, TD)) {
493        // They do! Return "L op' R".
494        ++NumExpand;
495        // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
496        if ((L == B && R == C) ||
497            (Instruction::isCommutative(InnerOpcode) && L == C && R == B))
498          return Op1;
499        // Otherwise return "L op' R" if it simplifies.
500        if (Value *V = SimplifyBinOp(InnerOpcode, L, R, TD))
501          return V;
502        // Otherwise, create a new instruction.
503        A = Builder->CreateBinOp(InnerOpcode, L, R);
504        A->takeName(&I);
505        return A;
506      }
507  }
508
509  return 0;
510}
511
512// dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
513// if the LHS is a constant zero (which is the 'negate' form).
514//
515Value *InstCombiner::dyn_castNegVal(Value *V) const {
516  if (BinaryOperator::isNeg(V))
517    return BinaryOperator::getNegArgument(V);
518
519  // Constants can be considered to be negated values if they can be folded.
520  if (ConstantInt *C = dyn_cast<ConstantInt>(V))
521    return ConstantExpr::getNeg(C);
522
523  if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
524    if (C->getType()->getElementType()->isIntegerTy())
525      return ConstantExpr::getNeg(C);
526
527  return 0;
528}
529
530// dyn_castFNegVal - Given a 'fsub' instruction, return the RHS of the
531// instruction if the LHS is a constant negative zero (which is the 'negate'
532// form).
533//
534Value *InstCombiner::dyn_castFNegVal(Value *V, bool IgnoreZeroSign) const {
535  if (BinaryOperator::isFNeg(V, IgnoreZeroSign))
536    return BinaryOperator::getFNegArgument(V);
537
538  // Constants can be considered to be negated values if they can be folded.
539  if (ConstantFP *C = dyn_cast<ConstantFP>(V))
540    return ConstantExpr::getFNeg(C);
541
542  if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
543    if (C->getType()->getElementType()->isFloatingPointTy())
544      return ConstantExpr::getFNeg(C);
545
546  return 0;
547}
548
549static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
550                                             InstCombiner *IC) {
551  if (CastInst *CI = dyn_cast<CastInst>(&I)) {
552    return IC->Builder->CreateCast(CI->getOpcode(), SO, I.getType());
553  }
554
555  // Figure out if the constant is the left or the right argument.
556  bool ConstIsRHS = isa<Constant>(I.getOperand(1));
557  Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
558
559  if (Constant *SOC = dyn_cast<Constant>(SO)) {
560    if (ConstIsRHS)
561      return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
562    return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
563  }
564
565  Value *Op0 = SO, *Op1 = ConstOperand;
566  if (!ConstIsRHS)
567    std::swap(Op0, Op1);
568
569  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
570    return IC->Builder->CreateBinOp(BO->getOpcode(), Op0, Op1,
571                                    SO->getName()+".op");
572  if (ICmpInst *CI = dyn_cast<ICmpInst>(&I))
573    return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
574                                   SO->getName()+".cmp");
575  if (FCmpInst *CI = dyn_cast<FCmpInst>(&I))
576    return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
577                                   SO->getName()+".cmp");
578  llvm_unreachable("Unknown binary instruction type!");
579}
580
581// FoldOpIntoSelect - Given an instruction with a select as one operand and a
582// constant as the other operand, try to fold the binary operator into the
583// select arguments.  This also works for Cast instructions, which obviously do
584// not have a second operand.
585Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) {
586  // Don't modify shared select instructions
587  if (!SI->hasOneUse()) return 0;
588  Value *TV = SI->getOperand(1);
589  Value *FV = SI->getOperand(2);
590
591  if (isa<Constant>(TV) || isa<Constant>(FV)) {
592    // Bool selects with constant operands can be folded to logical ops.
593    if (SI->getType()->isIntegerTy(1)) return 0;
594
595    // If it's a bitcast involving vectors, make sure it has the same number of
596    // elements on both sides.
597    if (BitCastInst *BC = dyn_cast<BitCastInst>(&Op)) {
598      VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
599      VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());
600
601      // Verify that either both or neither are vectors.
602      if ((SrcTy == NULL) != (DestTy == NULL)) return 0;
603      // If vectors, verify that they have the same number of elements.
604      if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements())
605        return 0;
606    }
607
608    Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, this);
609    Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, this);
610
611    return SelectInst::Create(SI->getCondition(),
612                              SelectTrueVal, SelectFalseVal);
613  }
614  return 0;
615}
616
617
618/// FoldOpIntoPhi - Given a binary operator, cast instruction, or select which
619/// has a PHI node as operand #0, see if we can fold the instruction into the
620/// PHI (which is only possible if all operands to the PHI are constants).
621///
622Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
623  PHINode *PN = cast<PHINode>(I.getOperand(0));
624  unsigned NumPHIValues = PN->getNumIncomingValues();
625  if (NumPHIValues == 0)
626    return 0;
627
628  // We normally only transform phis with a single use.  However, if a PHI has
629  // multiple uses and they are all the same operation, we can fold *all* of the
630  // uses into the PHI.
631  if (!PN->hasOneUse()) {
632    // Walk the use list for the instruction, comparing them to I.
633    for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end();
634         UI != E; ++UI) {
635      Instruction *User = cast<Instruction>(*UI);
636      if (User != &I && !I.isIdenticalTo(User))
637        return 0;
638    }
639    // Otherwise, we can replace *all* users with the new PHI we form.
640  }
641
642  // Check to see if all of the operands of the PHI are simple constants
643  // (constantint/constantfp/undef).  If there is one non-constant value,
644  // remember the BB it is in.  If there is more than one or if *it* is a PHI,
645  // bail out.  We don't do arbitrary constant expressions here because moving
646  // their computation can be expensive without a cost model.
647  BasicBlock *NonConstBB = 0;
648  for (unsigned i = 0; i != NumPHIValues; ++i) {
649    Value *InVal = PN->getIncomingValue(i);
650    if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal))
651      continue;
652
653    if (isa<PHINode>(InVal)) return 0;  // Itself a phi.
654    if (NonConstBB) return 0;  // More than one non-const value.
655
656    NonConstBB = PN->getIncomingBlock(i);
657
658    // If the InVal is an invoke at the end of the pred block, then we can't
659    // insert a computation after it without breaking the edge.
660    if (InvokeInst *II = dyn_cast<InvokeInst>(InVal))
661      if (II->getParent() == NonConstBB)
662        return 0;
663
664    // If the incoming non-constant value is in I's block, we will remove one
665    // instruction, but insert another equivalent one, leading to infinite
666    // instcombine.
667    if (NonConstBB == I.getParent())
668      return 0;
669  }
670
671  // If there is exactly one non-constant value, we can insert a copy of the
672  // operation in that block.  However, if this is a critical edge, we would be
673  // inserting the computation one some other paths (e.g. inside a loop).  Only
674  // do this if the pred block is unconditionally branching into the phi block.
675  if (NonConstBB != 0) {
676    BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
677    if (!BI || !BI->isUnconditional()) return 0;
678  }
679
680  // Okay, we can do the transformation: create the new PHI node.
681  PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
682  InsertNewInstBefore(NewPN, *PN);
683  NewPN->takeName(PN);
684
685  // If we are going to have to insert a new computation, do so right before the
686  // predecessors terminator.
687  if (NonConstBB)
688    Builder->SetInsertPoint(NonConstBB->getTerminator());
689
690  // Next, add all of the operands to the PHI.
691  if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
692    // We only currently try to fold the condition of a select when it is a phi,
693    // not the true/false values.
694    Value *TrueV = SI->getTrueValue();
695    Value *FalseV = SI->getFalseValue();
696    BasicBlock *PhiTransBB = PN->getParent();
697    for (unsigned i = 0; i != NumPHIValues; ++i) {
698      BasicBlock *ThisBB = PN->getIncomingBlock(i);
699      Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
700      Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
701      Value *InV = 0;
702      if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
703        InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
704      else
705        InV = Builder->CreateSelect(PN->getIncomingValue(i),
706                                    TrueVInPred, FalseVInPred, "phitmp");
707      NewPN->addIncoming(InV, ThisBB);
708    }
709  } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) {
710    Constant *C = cast<Constant>(I.getOperand(1));
711    for (unsigned i = 0; i != NumPHIValues; ++i) {
712      Value *InV = 0;
713      if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
714        InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
715      else if (isa<ICmpInst>(CI))
716        InV = Builder->CreateICmp(CI->getPredicate(), PN->getIncomingValue(i),
717                                  C, "phitmp");
718      else
719        InV = Builder->CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i),
720                                  C, "phitmp");
721      NewPN->addIncoming(InV, PN->getIncomingBlock(i));
722    }
723  } else if (I.getNumOperands() == 2) {
724    Constant *C = cast<Constant>(I.getOperand(1));
725    for (unsigned i = 0; i != NumPHIValues; ++i) {
726      Value *InV = 0;
727      if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
728        InV = ConstantExpr::get(I.getOpcode(), InC, C);
729      else
730        InV = Builder->CreateBinOp(cast<BinaryOperator>(I).getOpcode(),
731                                   PN->getIncomingValue(i), C, "phitmp");
732      NewPN->addIncoming(InV, PN->getIncomingBlock(i));
733    }
734  } else {
735    CastInst *CI = cast<CastInst>(&I);
736    Type *RetTy = CI->getType();
737    for (unsigned i = 0; i != NumPHIValues; ++i) {
738      Value *InV;
739      if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
740        InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
741      else
742        InV = Builder->CreateCast(CI->getOpcode(),
743                                PN->getIncomingValue(i), I.getType(), "phitmp");
744      NewPN->addIncoming(InV, PN->getIncomingBlock(i));
745    }
746  }
747
748  for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end();
749       UI != E; ) {
750    Instruction *User = cast<Instruction>(*UI++);
751    if (User == &I) continue;
752    ReplaceInstUsesWith(*User, NewPN);
753    EraseInstFromFunction(*User);
754  }
755  return ReplaceInstUsesWith(I, NewPN);
756}
757
758/// FindElementAtOffset - Given a type and a constant offset, determine whether
759/// or not there is a sequence of GEP indices into the type that will land us at
760/// the specified offset.  If so, fill them into NewIndices and return the
761/// resultant element type, otherwise return null.
762Type *InstCombiner::FindElementAtOffset(Type *Ty, int64_t Offset,
763                                          SmallVectorImpl<Value*> &NewIndices) {
764  if (!TD) return 0;
765  if (!Ty->isSized()) return 0;
766
767  // Start with the index over the outer type.  Note that the type size
768  // might be zero (even if the offset isn't zero) if the indexed type
769  // is something like [0 x {int, int}]
770  Type *IntPtrTy = TD->getIntPtrType(Ty->getContext());
771  int64_t FirstIdx = 0;
772  if (int64_t TySize = TD->getTypeAllocSize(Ty)) {
773    FirstIdx = Offset/TySize;
774    Offset -= FirstIdx*TySize;
775
776    // Handle hosts where % returns negative instead of values [0..TySize).
777    if (Offset < 0) {
778      --FirstIdx;
779      Offset += TySize;
780      assert(Offset >= 0);
781    }
782    assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
783  }
784
785  NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));
786
787  // Index into the types.  If we fail, set OrigBase to null.
788  while (Offset) {
789    // Indexing into tail padding between struct/array elements.
790    if (uint64_t(Offset*8) >= TD->getTypeSizeInBits(Ty))
791      return 0;
792
793    if (StructType *STy = dyn_cast<StructType>(Ty)) {
794      const StructLayout *SL = TD->getStructLayout(STy);
795      assert(Offset < (int64_t)SL->getSizeInBytes() &&
796             "Offset must stay within the indexed type");
797
798      unsigned Elt = SL->getElementContainingOffset(Offset);
799      NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
800                                            Elt));
801
802      Offset -= SL->getElementOffset(Elt);
803      Ty = STy->getElementType(Elt);
804    } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
805      uint64_t EltSize = TD->getTypeAllocSize(AT->getElementType());
806      assert(EltSize && "Cannot index into a zero-sized array");
807      NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
808      Offset %= EltSize;
809      Ty = AT->getElementType();
810    } else {
811      // Otherwise, we can't index into the middle of this atomic type, bail.
812      return 0;
813    }
814  }
815
816  return Ty;
817}
818
819static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
820  // If this GEP has only 0 indices, it is the same pointer as
821  // Src. If Src is not a trivial GEP too, don't combine
822  // the indices.
823  if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
824      !Src.hasOneUse())
825    return false;
826  return true;
827}
828
829/// Descale - Return a value X such that Val = X * Scale, or null if none.  If
830/// the multiplication is known not to overflow then NoSignedWrap is set.
831Value *InstCombiner::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) {
832  assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!");
833  assert(cast<IntegerType>(Val->getType())->getBitWidth() ==
834         Scale.getBitWidth() && "Scale not compatible with value!");
835
836  // If Val is zero or Scale is one then Val = Val * Scale.
837  if (match(Val, m_Zero()) || Scale == 1) {
838    NoSignedWrap = true;
839    return Val;
840  }
841
842  // If Scale is zero then it does not divide Val.
843  if (Scale.isMinValue())
844    return 0;
845
846  // Look through chains of multiplications, searching for a constant that is
847  // divisible by Scale.  For example, descaling X*(Y*(Z*4)) by a factor of 4
848  // will find the constant factor 4 and produce X*(Y*Z).  Descaling X*(Y*8) by
849  // a factor of 4 will produce X*(Y*2).  The principle of operation is to bore
850  // down from Val:
851  //
852  //     Val = M1 * X          ||   Analysis starts here and works down
853  //      M1 = M2 * Y          ||   Doesn't descend into terms with more
854  //      M2 =  Z * 4          \/   than one use
855  //
856  // Then to modify a term at the bottom:
857  //
858  //     Val = M1 * X
859  //      M1 =  Z * Y          ||   Replaced M2 with Z
860  //
861  // Then to work back up correcting nsw flags.
862
863  // Op - the term we are currently analyzing.  Starts at Val then drills down.
864  // Replaced with its descaled value before exiting from the drill down loop.
865  Value *Op = Val;
866
867  // Parent - initially null, but after drilling down notes where Op came from.
868  // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the
869  // 0'th operand of Val.
870  std::pair<Instruction*, unsigned> Parent;
871
872  // RequireNoSignedWrap - Set if the transform requires a descaling at deeper
873  // levels that doesn't overflow.
874  bool RequireNoSignedWrap = false;
875
876  // logScale - log base 2 of the scale.  Negative if not a power of 2.
877  int32_t logScale = Scale.exactLogBase2();
878
879  for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down
880
881    if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
882      // If Op is a constant divisible by Scale then descale to the quotient.
883      APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth.
884      APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder);
885      if (!Remainder.isMinValue())
886        // Not divisible by Scale.
887        return 0;
888      // Replace with the quotient in the parent.
889      Op = ConstantInt::get(CI->getType(), Quotient);
890      NoSignedWrap = true;
891      break;
892    }
893
894    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) {
895
896      if (BO->getOpcode() == Instruction::Mul) {
897        // Multiplication.
898        NoSignedWrap = BO->hasNoSignedWrap();
899        if (RequireNoSignedWrap && !NoSignedWrap)
900          return 0;
901
902        // There are three cases for multiplication: multiplication by exactly
903        // the scale, multiplication by a constant different to the scale, and
904        // multiplication by something else.
905        Value *LHS = BO->getOperand(0);
906        Value *RHS = BO->getOperand(1);
907
908        if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
909          // Multiplication by a constant.
910          if (CI->getValue() == Scale) {
911            // Multiplication by exactly the scale, replace the multiplication
912            // by its left-hand side in the parent.
913            Op = LHS;
914            break;
915          }
916
917          // Otherwise drill down into the constant.
918          if (!Op->hasOneUse())
919            return 0;
920
921          Parent = std::make_pair(BO, 1);
922          continue;
923        }
924
925        // Multiplication by something else. Drill down into the left-hand side
926        // since that's where the reassociate pass puts the good stuff.
927        if (!Op->hasOneUse())
928          return 0;
929
930        Parent = std::make_pair(BO, 0);
931        continue;
932      }
933
934      if (logScale > 0 && BO->getOpcode() == Instruction::Shl &&
935          isa<ConstantInt>(BO->getOperand(1))) {
936        // Multiplication by a power of 2.
937        NoSignedWrap = BO->hasNoSignedWrap();
938        if (RequireNoSignedWrap && !NoSignedWrap)
939          return 0;
940
941        Value *LHS = BO->getOperand(0);
942        int32_t Amt = cast<ConstantInt>(BO->getOperand(1))->
943          getLimitedValue(Scale.getBitWidth());
944        // Op = LHS << Amt.
945
946        if (Amt == logScale) {
947          // Multiplication by exactly the scale, replace the multiplication
948          // by its left-hand side in the parent.
949          Op = LHS;
950          break;
951        }
952        if (Amt < logScale || !Op->hasOneUse())
953          return 0;
954
955        // Multiplication by more than the scale.  Reduce the multiplying amount
956        // by the scale in the parent.
957        Parent = std::make_pair(BO, 1);
958        Op = ConstantInt::get(BO->getType(), Amt - logScale);
959        break;
960      }
961    }
962
963    if (!Op->hasOneUse())
964      return 0;
965
966    if (CastInst *Cast = dyn_cast<CastInst>(Op)) {
967      if (Cast->getOpcode() == Instruction::SExt) {
968        // Op is sign-extended from a smaller type, descale in the smaller type.
969        unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
970        APInt SmallScale = Scale.trunc(SmallSize);
971        // Suppose Op = sext X, and we descale X as Y * SmallScale.  We want to
972        // descale Op as (sext Y) * Scale.  In order to have
973        //   sext (Y * SmallScale) = (sext Y) * Scale
974        // some conditions need to hold however: SmallScale must sign-extend to
975        // Scale and the multiplication Y * SmallScale should not overflow.
976        if (SmallScale.sext(Scale.getBitWidth()) != Scale)
977          // SmallScale does not sign-extend to Scale.
978          return 0;
979        assert(SmallScale.exactLogBase2() == logScale);
980        // Require that Y * SmallScale must not overflow.
981        RequireNoSignedWrap = true;
982
983        // Drill down through the cast.
984        Parent = std::make_pair(Cast, 0);
985        Scale = SmallScale;
986        continue;
987      }
988
989      if (Cast->getOpcode() == Instruction::Trunc) {
990        // Op is truncated from a larger type, descale in the larger type.
991        // Suppose Op = trunc X, and we descale X as Y * sext Scale.  Then
992        //   trunc (Y * sext Scale) = (trunc Y) * Scale
993        // always holds.  However (trunc Y) * Scale may overflow even if
994        // trunc (Y * sext Scale) does not, so nsw flags need to be cleared
995        // from this point up in the expression (see later).
996        if (RequireNoSignedWrap)
997          return 0;
998
999        // Drill down through the cast.
1000        unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1001        Parent = std::make_pair(Cast, 0);
1002        Scale = Scale.sext(LargeSize);
1003        if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits())
1004          logScale = -1;
1005        assert(Scale.exactLogBase2() == logScale);
1006        continue;
1007      }
1008    }
1009
1010    // Unsupported expression, bail out.
1011    return 0;
1012  }
1013
1014  // We know that we can successfully descale, so from here on we can safely
1015  // modify the IR.  Op holds the descaled version of the deepest term in the
1016  // expression.  NoSignedWrap is 'true' if multiplying Op by Scale is known
1017  // not to overflow.
1018
1019  if (!Parent.first)
1020    // The expression only had one term.
1021    return Op;
1022
1023  // Rewrite the parent using the descaled version of its operand.
1024  assert(Parent.first->hasOneUse() && "Drilled down when more than one use!");
1025  assert(Op != Parent.first->getOperand(Parent.second) &&
1026         "Descaling was a no-op?");
1027  Parent.first->setOperand(Parent.second, Op);
1028  Worklist.Add(Parent.first);
1029
1030  // Now work back up the expression correcting nsw flags.  The logic is based
1031  // on the following observation: if X * Y is known not to overflow as a signed
1032  // multiplication, and Y is replaced by a value Z with smaller absolute value,
1033  // then X * Z will not overflow as a signed multiplication either.  As we work
1034  // our way up, having NoSignedWrap 'true' means that the descaled value at the
1035  // current level has strictly smaller absolute value than the original.
1036  Instruction *Ancestor = Parent.first;
1037  do {
1038    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) {
1039      // If the multiplication wasn't nsw then we can't say anything about the
1040      // value of the descaled multiplication, and we have to clear nsw flags
1041      // from this point on up.
1042      bool OpNoSignedWrap = BO->hasNoSignedWrap();
1043      NoSignedWrap &= OpNoSignedWrap;
1044      if (NoSignedWrap != OpNoSignedWrap) {
1045        BO->setHasNoSignedWrap(NoSignedWrap);
1046        Worklist.Add(Ancestor);
1047      }
1048    } else if (Ancestor->getOpcode() == Instruction::Trunc) {
1049      // The fact that the descaled input to the trunc has smaller absolute
1050      // value than the original input doesn't tell us anything useful about
1051      // the absolute values of the truncations.
1052      NoSignedWrap = false;
1053    }
1054    assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) &&
1055           "Failed to keep proper track of nsw flags while drilling down?");
1056
1057    if (Ancestor == Val)
1058      // Got to the top, all done!
1059      return Val;
1060
1061    // Move up one level in the expression.
1062    assert(Ancestor->hasOneUse() && "Drilled down when more than one use!");
1063    Ancestor = Ancestor->use_back();
1064  } while (1);
1065}
1066
1067Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
1068  SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end());
1069
1070  if (Value *V = SimplifyGEPInst(Ops, TD))
1071    return ReplaceInstUsesWith(GEP, V);
1072
1073  Value *PtrOp = GEP.getOperand(0);
1074
1075  // Eliminate unneeded casts for indices, and replace indices which displace
1076  // by multiples of a zero size type with zero.
1077  if (TD) {
1078    bool MadeChange = false;
1079    Type *IntPtrTy = TD->getIntPtrType(GEP.getPointerOperandType());
1080
1081    gep_type_iterator GTI = gep_type_begin(GEP);
1082    for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end();
1083         I != E; ++I, ++GTI) {
1084      // Skip indices into struct types.
1085      SequentialType *SeqTy = dyn_cast<SequentialType>(*GTI);
1086      if (!SeqTy) continue;
1087
1088      // If the element type has zero size then any index over it is equivalent
1089      // to an index of zero, so replace it with zero if it is not zero already.
1090      if (SeqTy->getElementType()->isSized() &&
1091          TD->getTypeAllocSize(SeqTy->getElementType()) == 0)
1092        if (!isa<Constant>(*I) || !cast<Constant>(*I)->isNullValue()) {
1093          *I = Constant::getNullValue(IntPtrTy);
1094          MadeChange = true;
1095        }
1096
1097      Type *IndexTy = (*I)->getType();
1098      if (IndexTy != IntPtrTy) {
1099        // If we are using a wider index than needed for this platform, shrink
1100        // it to what we need.  If narrower, sign-extend it to what we need.
1101        // This explicit cast can make subsequent optimizations more obvious.
1102        *I = Builder->CreateIntCast(*I, IntPtrTy, true);
1103        MadeChange = true;
1104      }
1105    }
1106    if (MadeChange) return &GEP;
1107  }
1108
1109  // Combine Indices - If the source pointer to this getelementptr instruction
1110  // is a getelementptr instruction, combine the indices of the two
1111  // getelementptr instructions into a single instruction.
1112  //
1113  if (GEPOperator *Src = dyn_cast<GEPOperator>(PtrOp)) {
1114    if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
1115      return 0;
1116
1117    // Note that if our source is a gep chain itself then we wait for that
1118    // chain to be resolved before we perform this transformation.  This
1119    // avoids us creating a TON of code in some cases.
1120    if (GEPOperator *SrcGEP =
1121          dyn_cast<GEPOperator>(Src->getOperand(0)))
1122      if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP))
1123        return 0;   // Wait until our source is folded to completion.
1124
1125    SmallVector<Value*, 8> Indices;
1126
1127    // Find out whether the last index in the source GEP is a sequential idx.
1128    bool EndsWithSequential = false;
1129    for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
1130         I != E; ++I)
1131      EndsWithSequential = !(*I)->isStructTy();
1132
1133    // Can we combine the two pointer arithmetics offsets?
1134    if (EndsWithSequential) {
1135      // Replace: gep (gep %P, long B), long A, ...
1136      // With:    T = long A+B; gep %P, T, ...
1137      //
1138      Value *Sum;
1139      Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
1140      Value *GO1 = GEP.getOperand(1);
1141      if (SO1 == Constant::getNullValue(SO1->getType())) {
1142        Sum = GO1;
1143      } else if (GO1 == Constant::getNullValue(GO1->getType())) {
1144        Sum = SO1;
1145      } else {
1146        // If they aren't the same type, then the input hasn't been processed
1147        // by the loop above yet (which canonicalizes sequential index types to
1148        // intptr_t).  Just avoid transforming this until the input has been
1149        // normalized.
1150        if (SO1->getType() != GO1->getType())
1151          return 0;
1152        Sum = Builder->CreateAdd(SO1, GO1, PtrOp->getName()+".sum");
1153      }
1154
1155      // Update the GEP in place if possible.
1156      if (Src->getNumOperands() == 2) {
1157        GEP.setOperand(0, Src->getOperand(0));
1158        GEP.setOperand(1, Sum);
1159        return &GEP;
1160      }
1161      Indices.append(Src->op_begin()+1, Src->op_end()-1);
1162      Indices.push_back(Sum);
1163      Indices.append(GEP.op_begin()+2, GEP.op_end());
1164    } else if (isa<Constant>(*GEP.idx_begin()) &&
1165               cast<Constant>(*GEP.idx_begin())->isNullValue() &&
1166               Src->getNumOperands() != 1) {
1167      // Otherwise we can do the fold if the first index of the GEP is a zero
1168      Indices.append(Src->op_begin()+1, Src->op_end());
1169      Indices.append(GEP.idx_begin()+1, GEP.idx_end());
1170    }
1171
1172    if (!Indices.empty())
1173      return (GEP.isInBounds() && Src->isInBounds()) ?
1174        GetElementPtrInst::CreateInBounds(Src->getOperand(0), Indices,
1175                                          GEP.getName()) :
1176        GetElementPtrInst::Create(Src->getOperand(0), Indices, GEP.getName());
1177  }
1178
1179  // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
1180  Value *StrippedPtr = PtrOp->stripPointerCasts();
1181  PointerType *StrippedPtrTy = dyn_cast<PointerType>(StrippedPtr->getType());
1182
1183  // We do not handle pointer-vector geps here.
1184  if (!StrippedPtrTy)
1185    return 0;
1186
1187  if (StrippedPtr != PtrOp &&
1188    StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace()) {
1189
1190    bool HasZeroPointerIndex = false;
1191    if (ConstantInt *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
1192      HasZeroPointerIndex = C->isZero();
1193
1194    // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
1195    // into     : GEP [10 x i8]* X, i32 0, ...
1196    //
1197    // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
1198    //           into     : GEP i8* X, ...
1199    //
1200    // This occurs when the program declares an array extern like "int X[];"
1201    if (HasZeroPointerIndex) {
1202      PointerType *CPTy = cast<PointerType>(PtrOp->getType());
1203      if (ArrayType *CATy =
1204          dyn_cast<ArrayType>(CPTy->getElementType())) {
1205        // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
1206        if (CATy->getElementType() == StrippedPtrTy->getElementType()) {
1207          // -> GEP i8* X, ...
1208          SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end());
1209          GetElementPtrInst *Res =
1210            GetElementPtrInst::Create(StrippedPtr, Idx, GEP.getName());
1211          Res->setIsInBounds(GEP.isInBounds());
1212          return Res;
1213        }
1214
1215        if (ArrayType *XATy =
1216              dyn_cast<ArrayType>(StrippedPtrTy->getElementType())){
1217          // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
1218          if (CATy->getElementType() == XATy->getElementType()) {
1219            // -> GEP [10 x i8]* X, i32 0, ...
1220            // At this point, we know that the cast source type is a pointer
1221            // to an array of the same type as the destination pointer
1222            // array.  Because the array type is never stepped over (there
1223            // is a leading zero) we can fold the cast into this GEP.
1224            GEP.setOperand(0, StrippedPtr);
1225            return &GEP;
1226          }
1227        }
1228      }
1229    } else if (GEP.getNumOperands() == 2) {
1230      // Transform things like:
1231      // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
1232      // into:  %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
1233      Type *SrcElTy = StrippedPtrTy->getElementType();
1234      Type *ResElTy=cast<PointerType>(PtrOp->getType())->getElementType();
1235      if (TD && SrcElTy->isArrayTy() &&
1236          TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType()) ==
1237          TD->getTypeAllocSize(ResElTy)) {
1238        Value *Idx[2];
1239        Idx[0] = Constant::getNullValue(Type::getInt32Ty(GEP.getContext()));
1240        Idx[1] = GEP.getOperand(1);
1241        Value *NewGEP = GEP.isInBounds() ?
1242          Builder->CreateInBoundsGEP(StrippedPtr, Idx, GEP.getName()) :
1243          Builder->CreateGEP(StrippedPtr, Idx, GEP.getName());
1244        // V and GEP are both pointer types --> BitCast
1245        return new BitCastInst(NewGEP, GEP.getType());
1246      }
1247
1248      // Transform things like:
1249      // %V = mul i64 %N, 4
1250      // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V
1251      // into:  %t1 = getelementptr i32* %arr, i32 %N; bitcast
1252      if (TD && ResElTy->isSized() && SrcElTy->isSized()) {
1253        // Check that changing the type amounts to dividing the index by a scale
1254        // factor.
1255        uint64_t ResSize = TD->getTypeAllocSize(ResElTy);
1256        uint64_t SrcSize = TD->getTypeAllocSize(SrcElTy);
1257        if (ResSize && SrcSize % ResSize == 0) {
1258          Value *Idx = GEP.getOperand(1);
1259          unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
1260          uint64_t Scale = SrcSize / ResSize;
1261
1262          // Earlier transforms ensure that the index has type IntPtrType, which
1263          // considerably simplifies the logic by eliminating implicit casts.
1264          assert(Idx->getType() == TD->getIntPtrType(GEP.getContext()) &&
1265                 "Index not cast to pointer width?");
1266
1267          bool NSW;
1268          if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
1269            // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
1270            // If the multiplication NewIdx * Scale may overflow then the new
1271            // GEP may not be "inbounds".
1272            Value *NewGEP = GEP.isInBounds() && NSW ?
1273              Builder->CreateInBoundsGEP(StrippedPtr, NewIdx, GEP.getName()) :
1274              Builder->CreateGEP(StrippedPtr, NewIdx, GEP.getName());
1275            // The NewGEP must be pointer typed, so must the old one -> BitCast
1276            return new BitCastInst(NewGEP, GEP.getType());
1277          }
1278        }
1279      }
1280
1281      // Similarly, transform things like:
1282      // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
1283      //   (where tmp = 8*tmp2) into:
1284      // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
1285      if (TD && ResElTy->isSized() && SrcElTy->isSized() &&
1286          SrcElTy->isArrayTy()) {
1287        // Check that changing to the array element type amounts to dividing the
1288        // index by a scale factor.
1289        uint64_t ResSize = TD->getTypeAllocSize(ResElTy);
1290        uint64_t ArrayEltSize =
1291          TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType());
1292        if (ResSize && ArrayEltSize % ResSize == 0) {
1293          Value *Idx = GEP.getOperand(1);
1294          unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
1295          uint64_t Scale = ArrayEltSize / ResSize;
1296
1297          // Earlier transforms ensure that the index has type IntPtrType, which
1298          // considerably simplifies the logic by eliminating implicit casts.
1299          assert(Idx->getType() == TD->getIntPtrType(GEP.getContext()) &&
1300                 "Index not cast to pointer width?");
1301
1302          bool NSW;
1303          if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
1304            // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
1305            // If the multiplication NewIdx * Scale may overflow then the new
1306            // GEP may not be "inbounds".
1307            Value *Off[2];
1308            Off[0] = Constant::getNullValue(Type::getInt32Ty(GEP.getContext()));
1309            Off[1] = NewIdx;
1310            Value *NewGEP = GEP.isInBounds() && NSW ?
1311              Builder->CreateInBoundsGEP(StrippedPtr, Off, GEP.getName()) :
1312              Builder->CreateGEP(StrippedPtr, Off, GEP.getName());
1313            // The NewGEP must be pointer typed, so must the old one -> BitCast
1314            return new BitCastInst(NewGEP, GEP.getType());
1315          }
1316        }
1317      }
1318    }
1319  }
1320
1321  /// See if we can simplify:
1322  ///   X = bitcast A* to B*
1323  ///   Y = gep X, <...constant indices...>
1324  /// into a gep of the original struct.  This is important for SROA and alias
1325  /// analysis of unions.  If "A" is also a bitcast, wait for A/X to be merged.
1326  if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) {
1327    APInt Offset(TD ? TD->getPointerSizeInBits() : 1, 0);
1328    if (TD &&
1329        !isa<BitCastInst>(BCI->getOperand(0)) &&
1330        GEP.accumulateConstantOffset(*TD, Offset) &&
1331        StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace()) {
1332
1333      // If this GEP instruction doesn't move the pointer, just replace the GEP
1334      // with a bitcast of the real input to the dest type.
1335      if (!Offset) {
1336        // If the bitcast is of an allocation, and the allocation will be
1337        // converted to match the type of the cast, don't touch this.
1338        if (isa<AllocaInst>(BCI->getOperand(0)) ||
1339            isAllocationFn(BCI->getOperand(0), TLI)) {
1340          // See if the bitcast simplifies, if so, don't nuke this GEP yet.
1341          if (Instruction *I = visitBitCast(*BCI)) {
1342            if (I != BCI) {
1343              I->takeName(BCI);
1344              BCI->getParent()->getInstList().insert(BCI, I);
1345              ReplaceInstUsesWith(*BCI, I);
1346            }
1347            return &GEP;
1348          }
1349        }
1350        return new BitCastInst(BCI->getOperand(0), GEP.getType());
1351      }
1352
1353      // Otherwise, if the offset is non-zero, we need to find out if there is a
1354      // field at Offset in 'A's type.  If so, we can pull the cast through the
1355      // GEP.
1356      SmallVector<Value*, 8> NewIndices;
1357      Type *InTy =
1358        cast<PointerType>(BCI->getOperand(0)->getType())->getElementType();
1359      if (FindElementAtOffset(InTy, Offset.getSExtValue(), NewIndices)) {
1360        Value *NGEP = GEP.isInBounds() ?
1361          Builder->CreateInBoundsGEP(BCI->getOperand(0), NewIndices) :
1362          Builder->CreateGEP(BCI->getOperand(0), NewIndices);
1363
1364        if (NGEP->getType() == GEP.getType())
1365          return ReplaceInstUsesWith(GEP, NGEP);
1366        NGEP->takeName(&GEP);
1367        return new BitCastInst(NGEP, GEP.getType());
1368      }
1369    }
1370  }
1371
1372  return 0;
1373}
1374
1375
1376
1377static bool
1378isAllocSiteRemovable(Instruction *AI, SmallVectorImpl<WeakVH> &Users,
1379                     const TargetLibraryInfo *TLI) {
1380  SmallVector<Instruction*, 4> Worklist;
1381  Worklist.push_back(AI);
1382
1383  do {
1384    Instruction *PI = Worklist.pop_back_val();
1385    for (Value::use_iterator UI = PI->use_begin(), UE = PI->use_end(); UI != UE;
1386         ++UI) {
1387      Instruction *I = cast<Instruction>(*UI);
1388      switch (I->getOpcode()) {
1389      default:
1390        // Give up the moment we see something we can't handle.
1391        return false;
1392
1393      case Instruction::BitCast:
1394      case Instruction::GetElementPtr:
1395        Users.push_back(I);
1396        Worklist.push_back(I);
1397        continue;
1398
1399      case Instruction::ICmp: {
1400        ICmpInst *ICI = cast<ICmpInst>(I);
1401        // We can fold eq/ne comparisons with null to false/true, respectively.
1402        if (!ICI->isEquality() || !isa<ConstantPointerNull>(ICI->getOperand(1)))
1403          return false;
1404        Users.push_back(I);
1405        continue;
1406      }
1407
1408      case Instruction::Call:
1409        // Ignore no-op and store intrinsics.
1410        if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1411          switch (II->getIntrinsicID()) {
1412          default:
1413            return false;
1414
1415          case Intrinsic::memmove:
1416          case Intrinsic::memcpy:
1417          case Intrinsic::memset: {
1418            MemIntrinsic *MI = cast<MemIntrinsic>(II);
1419            if (MI->isVolatile() || MI->getRawDest() != PI)
1420              return false;
1421          }
1422          // fall through
1423          case Intrinsic::dbg_declare:
1424          case Intrinsic::dbg_value:
1425          case Intrinsic::invariant_start:
1426          case Intrinsic::invariant_end:
1427          case Intrinsic::lifetime_start:
1428          case Intrinsic::lifetime_end:
1429          case Intrinsic::objectsize:
1430            Users.push_back(I);
1431            continue;
1432          }
1433        }
1434
1435        if (isFreeCall(I, TLI)) {
1436          Users.push_back(I);
1437          continue;
1438        }
1439        return false;
1440
1441      case Instruction::Store: {
1442        StoreInst *SI = cast<StoreInst>(I);
1443        if (SI->isVolatile() || SI->getPointerOperand() != PI)
1444          return false;
1445        Users.push_back(I);
1446        continue;
1447      }
1448      }
1449      llvm_unreachable("missing a return?");
1450    }
1451  } while (!Worklist.empty());
1452  return true;
1453}
1454
1455Instruction *InstCombiner::visitAllocSite(Instruction &MI) {
1456  // If we have a malloc call which is only used in any amount of comparisons
1457  // to null and free calls, delete the calls and replace the comparisons with
1458  // true or false as appropriate.
1459  SmallVector<WeakVH, 64> Users;
1460  if (isAllocSiteRemovable(&MI, Users, TLI)) {
1461    for (unsigned i = 0, e = Users.size(); i != e; ++i) {
1462      Instruction *I = cast_or_null<Instruction>(&*Users[i]);
1463      if (!I) continue;
1464
1465      if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
1466        ReplaceInstUsesWith(*C,
1467                            ConstantInt::get(Type::getInt1Ty(C->getContext()),
1468                                             C->isFalseWhenEqual()));
1469      } else if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I)) {
1470        ReplaceInstUsesWith(*I, UndefValue::get(I->getType()));
1471      } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1472        if (II->getIntrinsicID() == Intrinsic::objectsize) {
1473          ConstantInt *CI = cast<ConstantInt>(II->getArgOperand(1));
1474          uint64_t DontKnow = CI->isZero() ? -1ULL : 0;
1475          ReplaceInstUsesWith(*I, ConstantInt::get(I->getType(), DontKnow));
1476        }
1477      }
1478      EraseInstFromFunction(*I);
1479    }
1480
1481    if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) {
1482      // Replace invoke with a NOP intrinsic to maintain the original CFG
1483      Module *M = II->getParent()->getParent()->getParent();
1484      Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing);
1485      InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(),
1486                         None, "", II->getParent());
1487    }
1488    return EraseInstFromFunction(MI);
1489  }
1490  return 0;
1491}
1492
1493/// \brief Move the call to free before a NULL test.
1494///
1495/// Check if this free is accessed after its argument has been test
1496/// against NULL (property 0).
1497/// If yes, it is legal to move this call in its predecessor block.
1498///
1499/// The move is performed only if the block containing the call to free
1500/// will be removed, i.e.:
1501/// 1. it has only one predecessor P, and P has two successors
1502/// 2. it contains the call and an unconditional branch
1503/// 3. its successor is the same as its predecessor's successor
1504///
1505/// The profitability is out-of concern here and this function should
1506/// be called only if the caller knows this transformation would be
1507/// profitable (e.g., for code size).
1508static Instruction *
1509tryToMoveFreeBeforeNullTest(CallInst &FI) {
1510  Value *Op = FI.getArgOperand(0);
1511  BasicBlock *FreeInstrBB = FI.getParent();
1512  BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor();
1513
1514  // Validate part of constraint #1: Only one predecessor
1515  // FIXME: We can extend the number of predecessor, but in that case, we
1516  //        would duplicate the call to free in each predecessor and it may
1517  //        not be profitable even for code size.
1518  if (!PredBB)
1519    return 0;
1520
1521  // Validate constraint #2: Does this block contains only the call to
1522  //                         free and an unconditional branch?
1523  // FIXME: We could check if we can speculate everything in the
1524  //        predecessor block
1525  if (FreeInstrBB->size() != 2)
1526    return 0;
1527  BasicBlock *SuccBB;
1528  if (!match(FreeInstrBB->getTerminator(), m_UnconditionalBr(SuccBB)))
1529    return 0;
1530
1531  // Validate the rest of constraint #1 by matching on the pred branch.
1532  TerminatorInst *TI = PredBB->getTerminator();
1533  BasicBlock *TrueBB, *FalseBB;
1534  ICmpInst::Predicate Pred;
1535  if (!match(TI, m_Br(m_ICmp(Pred, m_Specific(Op), m_Zero()), TrueBB, FalseBB)))
1536    return 0;
1537  if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
1538    return 0;
1539
1540  // Validate constraint #3: Ensure the null case just falls through.
1541  if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB))
1542    return 0;
1543  assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) &&
1544         "Broken CFG: missing edge from predecessor to successor");
1545
1546  FI.moveBefore(TI);
1547  return &FI;
1548}
1549
1550
1551Instruction *InstCombiner::visitFree(CallInst &FI) {
1552  Value *Op = FI.getArgOperand(0);
1553
1554  // free undef -> unreachable.
1555  if (isa<UndefValue>(Op)) {
1556    // Insert a new store to null because we cannot modify the CFG here.
1557    Builder->CreateStore(ConstantInt::getTrue(FI.getContext()),
1558                         UndefValue::get(Type::getInt1PtrTy(FI.getContext())));
1559    return EraseInstFromFunction(FI);
1560  }
1561
1562  // If we have 'free null' delete the instruction.  This can happen in stl code
1563  // when lots of inlining happens.
1564  if (isa<ConstantPointerNull>(Op))
1565    return EraseInstFromFunction(FI);
1566
1567  // If we optimize for code size, try to move the call to free before the null
1568  // test so that simplify cfg can remove the empty block and dead code
1569  // elimination the branch. I.e., helps to turn something like:
1570  // if (foo) free(foo);
1571  // into
1572  // free(foo);
1573  if (MinimizeSize)
1574    if (Instruction *I = tryToMoveFreeBeforeNullTest(FI))
1575      return I;
1576
1577  return 0;
1578}
1579
1580
1581
1582Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
1583  // Change br (not X), label True, label False to: br X, label False, True
1584  Value *X = 0;
1585  BasicBlock *TrueDest;
1586  BasicBlock *FalseDest;
1587  if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
1588      !isa<Constant>(X)) {
1589    // Swap Destinations and condition...
1590    BI.setCondition(X);
1591    BI.swapSuccessors();
1592    return &BI;
1593  }
1594
1595  // Cannonicalize fcmp_one -> fcmp_oeq
1596  FCmpInst::Predicate FPred; Value *Y;
1597  if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)),
1598                             TrueDest, FalseDest)) &&
1599      BI.getCondition()->hasOneUse())
1600    if (FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
1601        FPred == FCmpInst::FCMP_OGE) {
1602      FCmpInst *Cond = cast<FCmpInst>(BI.getCondition());
1603      Cond->setPredicate(FCmpInst::getInversePredicate(FPred));
1604
1605      // Swap Destinations and condition.
1606      BI.swapSuccessors();
1607      Worklist.Add(Cond);
1608      return &BI;
1609    }
1610
1611  // Cannonicalize icmp_ne -> icmp_eq
1612  ICmpInst::Predicate IPred;
1613  if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
1614                      TrueDest, FalseDest)) &&
1615      BI.getCondition()->hasOneUse())
1616    if (IPred == ICmpInst::ICMP_NE  || IPred == ICmpInst::ICMP_ULE ||
1617        IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
1618        IPred == ICmpInst::ICMP_SGE) {
1619      ICmpInst *Cond = cast<ICmpInst>(BI.getCondition());
1620      Cond->setPredicate(ICmpInst::getInversePredicate(IPred));
1621      // Swap Destinations and condition.
1622      BI.swapSuccessors();
1623      Worklist.Add(Cond);
1624      return &BI;
1625    }
1626
1627  return 0;
1628}
1629
1630Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
1631  Value *Cond = SI.getCondition();
1632  if (Instruction *I = dyn_cast<Instruction>(Cond)) {
1633    if (I->getOpcode() == Instruction::Add)
1634      if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
1635        // change 'switch (X+4) case 1:' into 'switch (X) case -3'
1636        // Skip the first item since that's the default case.
1637        for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end();
1638             i != e; ++i) {
1639          ConstantInt* CaseVal = i.getCaseValue();
1640          Constant* NewCaseVal = ConstantExpr::getSub(cast<Constant>(CaseVal),
1641                                                      AddRHS);
1642          assert(isa<ConstantInt>(NewCaseVal) &&
1643                 "Result of expression should be constant");
1644          i.setValue(cast<ConstantInt>(NewCaseVal));
1645        }
1646        SI.setCondition(I->getOperand(0));
1647        Worklist.Add(I);
1648        return &SI;
1649      }
1650  }
1651  return 0;
1652}
1653
1654Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
1655  Value *Agg = EV.getAggregateOperand();
1656
1657  if (!EV.hasIndices())
1658    return ReplaceInstUsesWith(EV, Agg);
1659
1660  if (Constant *C = dyn_cast<Constant>(Agg)) {
1661    if (Constant *C2 = C->getAggregateElement(*EV.idx_begin())) {
1662      if (EV.getNumIndices() == 0)
1663        return ReplaceInstUsesWith(EV, C2);
1664      // Extract the remaining indices out of the constant indexed by the
1665      // first index
1666      return ExtractValueInst::Create(C2, EV.getIndices().slice(1));
1667    }
1668    return 0; // Can't handle other constants
1669  }
1670
1671  if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
1672    // We're extracting from an insertvalue instruction, compare the indices
1673    const unsigned *exti, *exte, *insi, *inse;
1674    for (exti = EV.idx_begin(), insi = IV->idx_begin(),
1675         exte = EV.idx_end(), inse = IV->idx_end();
1676         exti != exte && insi != inse;
1677         ++exti, ++insi) {
1678      if (*insi != *exti)
1679        // The insert and extract both reference distinctly different elements.
1680        // This means the extract is not influenced by the insert, and we can
1681        // replace the aggregate operand of the extract with the aggregate
1682        // operand of the insert. i.e., replace
1683        // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
1684        // %E = extractvalue { i32, { i32 } } %I, 0
1685        // with
1686        // %E = extractvalue { i32, { i32 } } %A, 0
1687        return ExtractValueInst::Create(IV->getAggregateOperand(),
1688                                        EV.getIndices());
1689    }
1690    if (exti == exte && insi == inse)
1691      // Both iterators are at the end: Index lists are identical. Replace
1692      // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
1693      // %C = extractvalue { i32, { i32 } } %B, 1, 0
1694      // with "i32 42"
1695      return ReplaceInstUsesWith(EV, IV->getInsertedValueOperand());
1696    if (exti == exte) {
1697      // The extract list is a prefix of the insert list. i.e. replace
1698      // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
1699      // %E = extractvalue { i32, { i32 } } %I, 1
1700      // with
1701      // %X = extractvalue { i32, { i32 } } %A, 1
1702      // %E = insertvalue { i32 } %X, i32 42, 0
1703      // by switching the order of the insert and extract (though the
1704      // insertvalue should be left in, since it may have other uses).
1705      Value *NewEV = Builder->CreateExtractValue(IV->getAggregateOperand(),
1706                                                 EV.getIndices());
1707      return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
1708                                     makeArrayRef(insi, inse));
1709    }
1710    if (insi == inse)
1711      // The insert list is a prefix of the extract list
1712      // We can simply remove the common indices from the extract and make it
1713      // operate on the inserted value instead of the insertvalue result.
1714      // i.e., replace
1715      // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
1716      // %E = extractvalue { i32, { i32 } } %I, 1, 0
1717      // with
1718      // %E extractvalue { i32 } { i32 42 }, 0
1719      return ExtractValueInst::Create(IV->getInsertedValueOperand(),
1720                                      makeArrayRef(exti, exte));
1721  }
1722  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Agg)) {
1723    // We're extracting from an intrinsic, see if we're the only user, which
1724    // allows us to simplify multiple result intrinsics to simpler things that
1725    // just get one value.
1726    if (II->hasOneUse()) {
1727      // Check if we're grabbing the overflow bit or the result of a 'with
1728      // overflow' intrinsic.  If it's the latter we can remove the intrinsic
1729      // and replace it with a traditional binary instruction.
1730      switch (II->getIntrinsicID()) {
1731      case Intrinsic::uadd_with_overflow:
1732      case Intrinsic::sadd_with_overflow:
1733        if (*EV.idx_begin() == 0) {  // Normal result.
1734          Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
1735          ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
1736          EraseInstFromFunction(*II);
1737          return BinaryOperator::CreateAdd(LHS, RHS);
1738        }
1739
1740        // If the normal result of the add is dead, and the RHS is a constant,
1741        // we can transform this into a range comparison.
1742        // overflow = uadd a, -4  -->  overflow = icmp ugt a, 3
1743        if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow)
1744          if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getArgOperand(1)))
1745            return new ICmpInst(ICmpInst::ICMP_UGT, II->getArgOperand(0),
1746                                ConstantExpr::getNot(CI));
1747        break;
1748      case Intrinsic::usub_with_overflow:
1749      case Intrinsic::ssub_with_overflow:
1750        if (*EV.idx_begin() == 0) {  // Normal result.
1751          Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
1752          ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
1753          EraseInstFromFunction(*II);
1754          return BinaryOperator::CreateSub(LHS, RHS);
1755        }
1756        break;
1757      case Intrinsic::umul_with_overflow:
1758      case Intrinsic::smul_with_overflow:
1759        if (*EV.idx_begin() == 0) {  // Normal result.
1760          Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
1761          ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
1762          EraseInstFromFunction(*II);
1763          return BinaryOperator::CreateMul(LHS, RHS);
1764        }
1765        break;
1766      default:
1767        break;
1768      }
1769    }
1770  }
1771  if (LoadInst *L = dyn_cast<LoadInst>(Agg))
1772    // If the (non-volatile) load only has one use, we can rewrite this to a
1773    // load from a GEP. This reduces the size of the load.
1774    // FIXME: If a load is used only by extractvalue instructions then this
1775    //        could be done regardless of having multiple uses.
1776    if (L->isSimple() && L->hasOneUse()) {
1777      // extractvalue has integer indices, getelementptr has Value*s. Convert.
1778      SmallVector<Value*, 4> Indices;
1779      // Prefix an i32 0 since we need the first element.
1780      Indices.push_back(Builder->getInt32(0));
1781      for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end();
1782            I != E; ++I)
1783        Indices.push_back(Builder->getInt32(*I));
1784
1785      // We need to insert these at the location of the old load, not at that of
1786      // the extractvalue.
1787      Builder->SetInsertPoint(L->getParent(), L);
1788      Value *GEP = Builder->CreateInBoundsGEP(L->getPointerOperand(), Indices);
1789      // Returning the load directly will cause the main loop to insert it in
1790      // the wrong spot, so use ReplaceInstUsesWith().
1791      return ReplaceInstUsesWith(EV, Builder->CreateLoad(GEP));
1792    }
1793  // We could simplify extracts from other values. Note that nested extracts may
1794  // already be simplified implicitly by the above: extract (extract (insert) )
1795  // will be translated into extract ( insert ( extract ) ) first and then just
1796  // the value inserted, if appropriate. Similarly for extracts from single-use
1797  // loads: extract (extract (load)) will be translated to extract (load (gep))
1798  // and if again single-use then via load (gep (gep)) to load (gep).
1799  // However, double extracts from e.g. function arguments or return values
1800  // aren't handled yet.
1801  return 0;
1802}
1803
1804enum Personality_Type {
1805  Unknown_Personality,
1806  GNU_Ada_Personality,
1807  GNU_CXX_Personality,
1808  GNU_ObjC_Personality
1809};
1810
1811/// RecognizePersonality - See if the given exception handling personality
1812/// function is one that we understand.  If so, return a description of it;
1813/// otherwise return Unknown_Personality.
1814static Personality_Type RecognizePersonality(Value *Pers) {
1815  Function *F = dyn_cast<Function>(Pers->stripPointerCasts());
1816  if (!F)
1817    return Unknown_Personality;
1818  return StringSwitch<Personality_Type>(F->getName())
1819    .Case("__gnat_eh_personality", GNU_Ada_Personality)
1820    .Case("__gxx_personality_v0",  GNU_CXX_Personality)
1821    .Case("__objc_personality_v0", GNU_ObjC_Personality)
1822    .Default(Unknown_Personality);
1823}
1824
1825/// isCatchAll - Return 'true' if the given typeinfo will match anything.
1826static bool isCatchAll(Personality_Type Personality, Constant *TypeInfo) {
1827  switch (Personality) {
1828  case Unknown_Personality:
1829    return false;
1830  case GNU_Ada_Personality:
1831    // While __gnat_all_others_value will match any Ada exception, it doesn't
1832    // match foreign exceptions (or didn't, before gcc-4.7).
1833    return false;
1834  case GNU_CXX_Personality:
1835  case GNU_ObjC_Personality:
1836    return TypeInfo->isNullValue();
1837  }
1838  llvm_unreachable("Unknown personality!");
1839}
1840
1841static bool shorter_filter(const Value *LHS, const Value *RHS) {
1842  return
1843    cast<ArrayType>(LHS->getType())->getNumElements()
1844  <
1845    cast<ArrayType>(RHS->getType())->getNumElements();
1846}
1847
1848Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) {
1849  // The logic here should be correct for any real-world personality function.
1850  // However if that turns out not to be true, the offending logic can always
1851  // be conditioned on the personality function, like the catch-all logic is.
1852  Personality_Type Personality = RecognizePersonality(LI.getPersonalityFn());
1853
1854  // Simplify the list of clauses, eg by removing repeated catch clauses
1855  // (these are often created by inlining).
1856  bool MakeNewInstruction = false; // If true, recreate using the following:
1857  SmallVector<Value *, 16> NewClauses; // - Clauses for the new instruction;
1858  bool CleanupFlag = LI.isCleanup();   // - The new instruction is a cleanup.
1859
1860  SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
1861  for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
1862    bool isLastClause = i + 1 == e;
1863    if (LI.isCatch(i)) {
1864      // A catch clause.
1865      Value *CatchClause = LI.getClause(i);
1866      Constant *TypeInfo = cast<Constant>(CatchClause->stripPointerCasts());
1867
1868      // If we already saw this clause, there is no point in having a second
1869      // copy of it.
1870      if (AlreadyCaught.insert(TypeInfo)) {
1871        // This catch clause was not already seen.
1872        NewClauses.push_back(CatchClause);
1873      } else {
1874        // Repeated catch clause - drop the redundant copy.
1875        MakeNewInstruction = true;
1876      }
1877
1878      // If this is a catch-all then there is no point in keeping any following
1879      // clauses or marking the landingpad as having a cleanup.
1880      if (isCatchAll(Personality, TypeInfo)) {
1881        if (!isLastClause)
1882          MakeNewInstruction = true;
1883        CleanupFlag = false;
1884        break;
1885      }
1886    } else {
1887      // A filter clause.  If any of the filter elements were already caught
1888      // then they can be dropped from the filter.  It is tempting to try to
1889      // exploit the filter further by saying that any typeinfo that does not
1890      // occur in the filter can't be caught later (and thus can be dropped).
1891      // However this would be wrong, since typeinfos can match without being
1892      // equal (for example if one represents a C++ class, and the other some
1893      // class derived from it).
1894      assert(LI.isFilter(i) && "Unsupported landingpad clause!");
1895      Value *FilterClause = LI.getClause(i);
1896      ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
1897      unsigned NumTypeInfos = FilterType->getNumElements();
1898
1899      // An empty filter catches everything, so there is no point in keeping any
1900      // following clauses or marking the landingpad as having a cleanup.  By
1901      // dealing with this case here the following code is made a bit simpler.
1902      if (!NumTypeInfos) {
1903        NewClauses.push_back(FilterClause);
1904        if (!isLastClause)
1905          MakeNewInstruction = true;
1906        CleanupFlag = false;
1907        break;
1908      }
1909
1910      bool MakeNewFilter = false; // If true, make a new filter.
1911      SmallVector<Constant *, 16> NewFilterElts; // New elements.
1912      if (isa<ConstantAggregateZero>(FilterClause)) {
1913        // Not an empty filter - it contains at least one null typeinfo.
1914        assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
1915        Constant *TypeInfo =
1916          Constant::getNullValue(FilterType->getElementType());
1917        // If this typeinfo is a catch-all then the filter can never match.
1918        if (isCatchAll(Personality, TypeInfo)) {
1919          // Throw the filter away.
1920          MakeNewInstruction = true;
1921          continue;
1922        }
1923
1924        // There is no point in having multiple copies of this typeinfo, so
1925        // discard all but the first copy if there is more than one.
1926        NewFilterElts.push_back(TypeInfo);
1927        if (NumTypeInfos > 1)
1928          MakeNewFilter = true;
1929      } else {
1930        ConstantArray *Filter = cast<ConstantArray>(FilterClause);
1931        SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
1932        NewFilterElts.reserve(NumTypeInfos);
1933
1934        // Remove any filter elements that were already caught or that already
1935        // occurred in the filter.  While there, see if any of the elements are
1936        // catch-alls.  If so, the filter can be discarded.
1937        bool SawCatchAll = false;
1938        for (unsigned j = 0; j != NumTypeInfos; ++j) {
1939          Value *Elt = Filter->getOperand(j);
1940          Constant *TypeInfo = cast<Constant>(Elt->stripPointerCasts());
1941          if (isCatchAll(Personality, TypeInfo)) {
1942            // This element is a catch-all.  Bail out, noting this fact.
1943            SawCatchAll = true;
1944            break;
1945          }
1946          if (AlreadyCaught.count(TypeInfo))
1947            // Already caught by an earlier clause, so having it in the filter
1948            // is pointless.
1949            continue;
1950          // There is no point in having multiple copies of the same typeinfo in
1951          // a filter, so only add it if we didn't already.
1952          if (SeenInFilter.insert(TypeInfo))
1953            NewFilterElts.push_back(cast<Constant>(Elt));
1954        }
1955        // A filter containing a catch-all cannot match anything by definition.
1956        if (SawCatchAll) {
1957          // Throw the filter away.
1958          MakeNewInstruction = true;
1959          continue;
1960        }
1961
1962        // If we dropped something from the filter, make a new one.
1963        if (NewFilterElts.size() < NumTypeInfos)
1964          MakeNewFilter = true;
1965      }
1966      if (MakeNewFilter) {
1967        FilterType = ArrayType::get(FilterType->getElementType(),
1968                                    NewFilterElts.size());
1969        FilterClause = ConstantArray::get(FilterType, NewFilterElts);
1970        MakeNewInstruction = true;
1971      }
1972
1973      NewClauses.push_back(FilterClause);
1974
1975      // If the new filter is empty then it will catch everything so there is
1976      // no point in keeping any following clauses or marking the landingpad
1977      // as having a cleanup.  The case of the original filter being empty was
1978      // already handled above.
1979      if (MakeNewFilter && !NewFilterElts.size()) {
1980        assert(MakeNewInstruction && "New filter but not a new instruction!");
1981        CleanupFlag = false;
1982        break;
1983      }
1984    }
1985  }
1986
1987  // If several filters occur in a row then reorder them so that the shortest
1988  // filters come first (those with the smallest number of elements).  This is
1989  // advantageous because shorter filters are more likely to match, speeding up
1990  // unwinding, but mostly because it increases the effectiveness of the other
1991  // filter optimizations below.
1992  for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
1993    unsigned j;
1994    // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
1995    for (j = i; j != e; ++j)
1996      if (!isa<ArrayType>(NewClauses[j]->getType()))
1997        break;
1998
1999    // Check whether the filters are already sorted by length.  We need to know
2000    // if sorting them is actually going to do anything so that we only make a
2001    // new landingpad instruction if it does.
2002    for (unsigned k = i; k + 1 < j; ++k)
2003      if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
2004        // Not sorted, so sort the filters now.  Doing an unstable sort would be
2005        // correct too but reordering filters pointlessly might confuse users.
2006        std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
2007                         shorter_filter);
2008        MakeNewInstruction = true;
2009        break;
2010      }
2011
2012    // Look for the next batch of filters.
2013    i = j + 1;
2014  }
2015
2016  // If typeinfos matched if and only if equal, then the elements of a filter L
2017  // that occurs later than a filter F could be replaced by the intersection of
2018  // the elements of F and L.  In reality two typeinfos can match without being
2019  // equal (for example if one represents a C++ class, and the other some class
2020  // derived from it) so it would be wrong to perform this transform in general.
2021  // However the transform is correct and useful if F is a subset of L.  In that
2022  // case L can be replaced by F, and thus removed altogether since repeating a
2023  // filter is pointless.  So here we look at all pairs of filters F and L where
2024  // L follows F in the list of clauses, and remove L if every element of F is
2025  // an element of L.  This can occur when inlining C++ functions with exception
2026  // specifications.
2027  for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
2028    // Examine each filter in turn.
2029    Value *Filter = NewClauses[i];
2030    ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
2031    if (!FTy)
2032      // Not a filter - skip it.
2033      continue;
2034    unsigned FElts = FTy->getNumElements();
2035    // Examine each filter following this one.  Doing this backwards means that
2036    // we don't have to worry about filters disappearing under us when removed.
2037    for (unsigned j = NewClauses.size() - 1; j != i; --j) {
2038      Value *LFilter = NewClauses[j];
2039      ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
2040      if (!LTy)
2041        // Not a filter - skip it.
2042        continue;
2043      // If Filter is a subset of LFilter, i.e. every element of Filter is also
2044      // an element of LFilter, then discard LFilter.
2045      SmallVector<Value *, 16>::iterator J = NewClauses.begin() + j;
2046      // If Filter is empty then it is a subset of LFilter.
2047      if (!FElts) {
2048        // Discard LFilter.
2049        NewClauses.erase(J);
2050        MakeNewInstruction = true;
2051        // Move on to the next filter.
2052        continue;
2053      }
2054      unsigned LElts = LTy->getNumElements();
2055      // If Filter is longer than LFilter then it cannot be a subset of it.
2056      if (FElts > LElts)
2057        // Move on to the next filter.
2058        continue;
2059      // At this point we know that LFilter has at least one element.
2060      if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
2061        // Filter is a subset of LFilter iff Filter contains only zeros (as we
2062        // already know that Filter is not longer than LFilter).
2063        if (isa<ConstantAggregateZero>(Filter)) {
2064          assert(FElts <= LElts && "Should have handled this case earlier!");
2065          // Discard LFilter.
2066          NewClauses.erase(J);
2067          MakeNewInstruction = true;
2068        }
2069        // Move on to the next filter.
2070        continue;
2071      }
2072      ConstantArray *LArray = cast<ConstantArray>(LFilter);
2073      if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
2074        // Since Filter is non-empty and contains only zeros, it is a subset of
2075        // LFilter iff LFilter contains a zero.
2076        assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
2077        for (unsigned l = 0; l != LElts; ++l)
2078          if (LArray->getOperand(l)->isNullValue()) {
2079            // LFilter contains a zero - discard it.
2080            NewClauses.erase(J);
2081            MakeNewInstruction = true;
2082            break;
2083          }
2084        // Move on to the next filter.
2085        continue;
2086      }
2087      // At this point we know that both filters are ConstantArrays.  Loop over
2088      // operands to see whether every element of Filter is also an element of
2089      // LFilter.  Since filters tend to be short this is probably faster than
2090      // using a method that scales nicely.
2091      ConstantArray *FArray = cast<ConstantArray>(Filter);
2092      bool AllFound = true;
2093      for (unsigned f = 0; f != FElts; ++f) {
2094        Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
2095        AllFound = false;
2096        for (unsigned l = 0; l != LElts; ++l) {
2097          Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
2098          if (LTypeInfo == FTypeInfo) {
2099            AllFound = true;
2100            break;
2101          }
2102        }
2103        if (!AllFound)
2104          break;
2105      }
2106      if (AllFound) {
2107        // Discard LFilter.
2108        NewClauses.erase(J);
2109        MakeNewInstruction = true;
2110      }
2111      // Move on to the next filter.
2112    }
2113  }
2114
2115  // If we changed any of the clauses, replace the old landingpad instruction
2116  // with a new one.
2117  if (MakeNewInstruction) {
2118    LandingPadInst *NLI = LandingPadInst::Create(LI.getType(),
2119                                                 LI.getPersonalityFn(),
2120                                                 NewClauses.size());
2121    for (unsigned i = 0, e = NewClauses.size(); i != e; ++i)
2122      NLI->addClause(NewClauses[i]);
2123    // A landing pad with no clauses must have the cleanup flag set.  It is
2124    // theoretically possible, though highly unlikely, that we eliminated all
2125    // clauses.  If so, force the cleanup flag to true.
2126    if (NewClauses.empty())
2127      CleanupFlag = true;
2128    NLI->setCleanup(CleanupFlag);
2129    return NLI;
2130  }
2131
2132  // Even if none of the clauses changed, we may nonetheless have understood
2133  // that the cleanup flag is pointless.  Clear it if so.
2134  if (LI.isCleanup() != CleanupFlag) {
2135    assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
2136    LI.setCleanup(CleanupFlag);
2137    return &LI;
2138  }
2139
2140  return 0;
2141}
2142
2143
2144
2145
2146/// TryToSinkInstruction - Try to move the specified instruction from its
2147/// current block into the beginning of DestBlock, which can only happen if it's
2148/// safe to move the instruction past all of the instructions between it and the
2149/// end of its block.
2150static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
2151  assert(I->hasOneUse() && "Invariants didn't hold!");
2152
2153  // Cannot move control-flow-involving, volatile loads, vaarg, etc.
2154  if (isa<PHINode>(I) || isa<LandingPadInst>(I) || I->mayHaveSideEffects() ||
2155      isa<TerminatorInst>(I))
2156    return false;
2157
2158  // Do not sink alloca instructions out of the entry block.
2159  if (isa<AllocaInst>(I) && I->getParent() ==
2160        &DestBlock->getParent()->getEntryBlock())
2161    return false;
2162
2163  // We can only sink load instructions if there is nothing between the load and
2164  // the end of block that could change the value.
2165  if (I->mayReadFromMemory()) {
2166    for (BasicBlock::iterator Scan = I, E = I->getParent()->end();
2167         Scan != E; ++Scan)
2168      if (Scan->mayWriteToMemory())
2169        return false;
2170  }
2171
2172  BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
2173  I->moveBefore(InsertPos);
2174  ++NumSunkInst;
2175  return true;
2176}
2177
2178
2179/// AddReachableCodeToWorklist - Walk the function in depth-first order, adding
2180/// all reachable code to the worklist.
2181///
2182/// This has a couple of tricks to make the code faster and more powerful.  In
2183/// particular, we constant fold and DCE instructions as we go, to avoid adding
2184/// them to the worklist (this significantly speeds up instcombine on code where
2185/// many instructions are dead or constant).  Additionally, if we find a branch
2186/// whose condition is a known constant, we only visit the reachable successors.
2187///
2188static bool AddReachableCodeToWorklist(BasicBlock *BB,
2189                                       SmallPtrSet<BasicBlock*, 64> &Visited,
2190                                       InstCombiner &IC,
2191                                       const DataLayout *TD,
2192                                       const TargetLibraryInfo *TLI) {
2193  bool MadeIRChange = false;
2194  SmallVector<BasicBlock*, 256> Worklist;
2195  Worklist.push_back(BB);
2196
2197  SmallVector<Instruction*, 128> InstrsForInstCombineWorklist;
2198  DenseMap<ConstantExpr*, Constant*> FoldedConstants;
2199
2200  do {
2201    BB = Worklist.pop_back_val();
2202
2203    // We have now visited this block!  If we've already been here, ignore it.
2204    if (!Visited.insert(BB)) continue;
2205
2206    for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
2207      Instruction *Inst = BBI++;
2208
2209      // DCE instruction if trivially dead.
2210      if (isInstructionTriviallyDead(Inst, TLI)) {
2211        ++NumDeadInst;
2212        DEBUG(errs() << "IC: DCE: " << *Inst << '\n');
2213        Inst->eraseFromParent();
2214        continue;
2215      }
2216
2217      // ConstantProp instruction if trivially constant.
2218      if (!Inst->use_empty() && isa<Constant>(Inst->getOperand(0)))
2219        if (Constant *C = ConstantFoldInstruction(Inst, TD, TLI)) {
2220          DEBUG(errs() << "IC: ConstFold to: " << *C << " from: "
2221                       << *Inst << '\n');
2222          Inst->replaceAllUsesWith(C);
2223          ++NumConstProp;
2224          Inst->eraseFromParent();
2225          continue;
2226        }
2227
2228      if (TD) {
2229        // See if we can constant fold its operands.
2230        for (User::op_iterator i = Inst->op_begin(), e = Inst->op_end();
2231             i != e; ++i) {
2232          ConstantExpr *CE = dyn_cast<ConstantExpr>(i);
2233          if (CE == 0) continue;
2234
2235          Constant*& FoldRes = FoldedConstants[CE];
2236          if (!FoldRes)
2237            FoldRes = ConstantFoldConstantExpression(CE, TD, TLI);
2238          if (!FoldRes)
2239            FoldRes = CE;
2240
2241          if (FoldRes != CE) {
2242            *i = FoldRes;
2243            MadeIRChange = true;
2244          }
2245        }
2246      }
2247
2248      InstrsForInstCombineWorklist.push_back(Inst);
2249    }
2250
2251    // Recursively visit successors.  If this is a branch or switch on a
2252    // constant, only visit the reachable successor.
2253    TerminatorInst *TI = BB->getTerminator();
2254    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
2255      if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
2256        bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
2257        BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
2258        Worklist.push_back(ReachableBB);
2259        continue;
2260      }
2261    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
2262      if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
2263        // See if this is an explicit destination.
2264        for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
2265             i != e; ++i)
2266          if (i.getCaseValue() == Cond) {
2267            BasicBlock *ReachableBB = i.getCaseSuccessor();
2268            Worklist.push_back(ReachableBB);
2269            continue;
2270          }
2271
2272        // Otherwise it is the default destination.
2273        Worklist.push_back(SI->getDefaultDest());
2274        continue;
2275      }
2276    }
2277
2278    for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
2279      Worklist.push_back(TI->getSuccessor(i));
2280  } while (!Worklist.empty());
2281
2282  // Once we've found all of the instructions to add to instcombine's worklist,
2283  // add them in reverse order.  This way instcombine will visit from the top
2284  // of the function down.  This jives well with the way that it adds all uses
2285  // of instructions to the worklist after doing a transformation, thus avoiding
2286  // some N^2 behavior in pathological cases.
2287  IC.Worklist.AddInitialGroup(&InstrsForInstCombineWorklist[0],
2288                              InstrsForInstCombineWorklist.size());
2289
2290  return MadeIRChange;
2291}
2292
2293bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
2294  MadeIRChange = false;
2295
2296  DEBUG(errs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
2297               << F.getName() << "\n");
2298
2299  {
2300    // Do a depth-first traversal of the function, populate the worklist with
2301    // the reachable instructions.  Ignore blocks that are not reachable.  Keep
2302    // track of which blocks we visit.
2303    SmallPtrSet<BasicBlock*, 64> Visited;
2304    MadeIRChange |= AddReachableCodeToWorklist(F.begin(), Visited, *this, TD,
2305                                               TLI);
2306
2307    // Do a quick scan over the function.  If we find any blocks that are
2308    // unreachable, remove any instructions inside of them.  This prevents
2309    // the instcombine code from having to deal with some bad special cases.
2310    for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
2311      if (Visited.count(BB)) continue;
2312
2313      // Delete the instructions backwards, as it has a reduced likelihood of
2314      // having to update as many def-use and use-def chains.
2315      Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
2316      while (EndInst != BB->begin()) {
2317        // Delete the next to last instruction.
2318        BasicBlock::iterator I = EndInst;
2319        Instruction *Inst = --I;
2320        if (!Inst->use_empty())
2321          Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
2322        if (isa<LandingPadInst>(Inst)) {
2323          EndInst = Inst;
2324          continue;
2325        }
2326        if (!isa<DbgInfoIntrinsic>(Inst)) {
2327          ++NumDeadInst;
2328          MadeIRChange = true;
2329        }
2330        Inst->eraseFromParent();
2331      }
2332    }
2333  }
2334
2335  while (!Worklist.isEmpty()) {
2336    Instruction *I = Worklist.RemoveOne();
2337    if (I == 0) continue;  // skip null values.
2338
2339    // Check to see if we can DCE the instruction.
2340    if (isInstructionTriviallyDead(I, TLI)) {
2341      DEBUG(errs() << "IC: DCE: " << *I << '\n');
2342      EraseInstFromFunction(*I);
2343      ++NumDeadInst;
2344      MadeIRChange = true;
2345      continue;
2346    }
2347
2348    // Instruction isn't dead, see if we can constant propagate it.
2349    if (!I->use_empty() && isa<Constant>(I->getOperand(0)))
2350      if (Constant *C = ConstantFoldInstruction(I, TD, TLI)) {
2351        DEBUG(errs() << "IC: ConstFold to: " << *C << " from: " << *I << '\n');
2352
2353        // Add operands to the worklist.
2354        ReplaceInstUsesWith(*I, C);
2355        ++NumConstProp;
2356        EraseInstFromFunction(*I);
2357        MadeIRChange = true;
2358        continue;
2359      }
2360
2361    // See if we can trivially sink this instruction to a successor basic block.
2362    if (I->hasOneUse()) {
2363      BasicBlock *BB = I->getParent();
2364      Instruction *UserInst = cast<Instruction>(I->use_back());
2365      BasicBlock *UserParent;
2366
2367      // Get the block the use occurs in.
2368      if (PHINode *PN = dyn_cast<PHINode>(UserInst))
2369        UserParent = PN->getIncomingBlock(I->use_begin().getUse());
2370      else
2371        UserParent = UserInst->getParent();
2372
2373      if (UserParent != BB) {
2374        bool UserIsSuccessor = false;
2375        // See if the user is one of our successors.
2376        for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
2377          if (*SI == UserParent) {
2378            UserIsSuccessor = true;
2379            break;
2380          }
2381
2382        // If the user is one of our immediate successors, and if that successor
2383        // only has us as a predecessors (we'd have to split the critical edge
2384        // otherwise), we can keep going.
2385        if (UserIsSuccessor && UserParent->getSinglePredecessor())
2386          // Okay, the CFG is simple enough, try to sink this instruction.
2387          MadeIRChange |= TryToSinkInstruction(I, UserParent);
2388      }
2389    }
2390
2391    // Now that we have an instruction, try combining it to simplify it.
2392    Builder->SetInsertPoint(I->getParent(), I);
2393    Builder->SetCurrentDebugLocation(I->getDebugLoc());
2394
2395#ifndef NDEBUG
2396    std::string OrigI;
2397#endif
2398    DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
2399    DEBUG(errs() << "IC: Visiting: " << OrigI << '\n');
2400
2401    if (Instruction *Result = visit(*I)) {
2402      ++NumCombined;
2403      // Should we replace the old instruction with a new one?
2404      if (Result != I) {
2405        DEBUG(errs() << "IC: Old = " << *I << '\n'
2406                     << "    New = " << *Result << '\n');
2407
2408        if (!I->getDebugLoc().isUnknown())
2409          Result->setDebugLoc(I->getDebugLoc());
2410        // Everything uses the new instruction now.
2411        I->replaceAllUsesWith(Result);
2412
2413        // Move the name to the new instruction first.
2414        Result->takeName(I);
2415
2416        // Push the new instruction and any users onto the worklist.
2417        Worklist.Add(Result);
2418        Worklist.AddUsersToWorkList(*Result);
2419
2420        // Insert the new instruction into the basic block...
2421        BasicBlock *InstParent = I->getParent();
2422        BasicBlock::iterator InsertPos = I;
2423
2424        // If we replace a PHI with something that isn't a PHI, fix up the
2425        // insertion point.
2426        if (!isa<PHINode>(Result) && isa<PHINode>(InsertPos))
2427          InsertPos = InstParent->getFirstInsertionPt();
2428
2429        InstParent->getInstList().insert(InsertPos, Result);
2430
2431        EraseInstFromFunction(*I);
2432      } else {
2433#ifndef NDEBUG
2434        DEBUG(errs() << "IC: Mod = " << OrigI << '\n'
2435                     << "    New = " << *I << '\n');
2436#endif
2437
2438        // If the instruction was modified, it's possible that it is now dead.
2439        // if so, remove it.
2440        if (isInstructionTriviallyDead(I, TLI)) {
2441          EraseInstFromFunction(*I);
2442        } else {
2443          Worklist.Add(I);
2444          Worklist.AddUsersToWorkList(*I);
2445        }
2446      }
2447      MadeIRChange = true;
2448    }
2449  }
2450
2451  Worklist.Zap();
2452  return MadeIRChange;
2453}
2454
2455namespace {
2456class InstCombinerLibCallSimplifier : public LibCallSimplifier {
2457  InstCombiner *IC;
2458public:
2459  InstCombinerLibCallSimplifier(const DataLayout *TD,
2460                                const TargetLibraryInfo *TLI,
2461                                InstCombiner *IC)
2462    : LibCallSimplifier(TD, TLI, UnsafeFPShrink) {
2463    this->IC = IC;
2464  }
2465
2466  /// replaceAllUsesWith - override so that instruction replacement
2467  /// can be defined in terms of the instruction combiner framework.
2468  virtual void replaceAllUsesWith(Instruction *I, Value *With) const {
2469    IC->ReplaceInstUsesWith(*I, With);
2470  }
2471};
2472}
2473
2474bool InstCombiner::runOnFunction(Function &F) {
2475  TD = getAnalysisIfAvailable<DataLayout>();
2476  TLI = &getAnalysis<TargetLibraryInfo>();
2477  // Minimizing size?
2478  MinimizeSize = F.getAttributes().hasAttribute(AttributeSet::FunctionIndex,
2479                                                Attribute::MinSize);
2480
2481  /// Builder - This is an IRBuilder that automatically inserts new
2482  /// instructions into the worklist when they are created.
2483  IRBuilder<true, TargetFolder, InstCombineIRInserter>
2484    TheBuilder(F.getContext(), TargetFolder(TD),
2485               InstCombineIRInserter(Worklist));
2486  Builder = &TheBuilder;
2487
2488  InstCombinerLibCallSimplifier TheSimplifier(TD, TLI, this);
2489  Simplifier = &TheSimplifier;
2490
2491  bool EverMadeChange = false;
2492
2493  // Lower dbg.declare intrinsics otherwise their value may be clobbered
2494  // by instcombiner.
2495  EverMadeChange = LowerDbgDeclare(F);
2496
2497  // Iterate while there is work to do.
2498  unsigned Iteration = 0;
2499  while (DoOneIteration(F, Iteration++))
2500    EverMadeChange = true;
2501
2502  Builder = 0;
2503  return EverMadeChange;
2504}
2505
2506FunctionPass *llvm::createInstructionCombiningPass() {
2507  return new InstCombiner();
2508}
2509