InstructionCombining.cpp revision 218893
1//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// InstructionCombining - Combine instructions to form fewer, simple
11// instructions.  This pass does not modify the CFG.  This pass is where
12// algebraic simplification happens.
13//
14// This pass combines things like:
15//    %Y = add i32 %X, 1
16//    %Z = add i32 %Y, 1
17// into:
18//    %Z = add i32 %X, 2
19//
20// This is a simple worklist driven algorithm.
21//
22// This pass guarantees that the following canonicalizations are performed on
23// the program:
24//    1. If a binary operator has a constant operand, it is moved to the RHS
25//    2. Bitwise operators with constant operands are always grouped so that
26//       shifts are performed first, then or's, then and's, then xor's.
27//    3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
28//    4. All cmp instructions on boolean values are replaced with logical ops
29//    5. add X, X is represented as (X*2) => (X << 1)
30//    6. Multiplies with a power-of-two constant argument are transformed into
31//       shifts.
32//   ... etc.
33//
34//===----------------------------------------------------------------------===//
35
36#define DEBUG_TYPE "instcombine"
37#include "llvm/Transforms/Scalar.h"
38#include "InstCombine.h"
39#include "llvm/IntrinsicInst.h"
40#include "llvm/Analysis/ConstantFolding.h"
41#include "llvm/Analysis/InstructionSimplify.h"
42#include "llvm/Analysis/MemoryBuiltins.h"
43#include "llvm/Target/TargetData.h"
44#include "llvm/Transforms/Utils/Local.h"
45#include "llvm/Support/CFG.h"
46#include "llvm/Support/Debug.h"
47#include "llvm/Support/GetElementPtrTypeIterator.h"
48#include "llvm/Support/PatternMatch.h"
49#include "llvm/ADT/SmallPtrSet.h"
50#include "llvm/ADT/Statistic.h"
51#include "llvm-c/Initialization.h"
52#include <algorithm>
53#include <climits>
54using namespace llvm;
55using namespace llvm::PatternMatch;
56
57STATISTIC(NumCombined , "Number of insts combined");
58STATISTIC(NumConstProp, "Number of constant folds");
59STATISTIC(NumDeadInst , "Number of dead inst eliminated");
60STATISTIC(NumSunkInst , "Number of instructions sunk");
61STATISTIC(NumExpand,    "Number of expansions");
62STATISTIC(NumFactor   , "Number of factorizations");
63STATISTIC(NumReassoc  , "Number of reassociations");
64
65// Initialization Routines
66void llvm::initializeInstCombine(PassRegistry &Registry) {
67  initializeInstCombinerPass(Registry);
68}
69
70void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
71  initializeInstCombine(*unwrap(R));
72}
73
74char InstCombiner::ID = 0;
75INITIALIZE_PASS(InstCombiner, "instcombine",
76                "Combine redundant instructions", false, false)
77
78void InstCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
79  AU.addPreservedID(LCSSAID);
80  AU.setPreservesCFG();
81}
82
83
84/// ShouldChangeType - Return true if it is desirable to convert a computation
85/// from 'From' to 'To'.  We don't want to convert from a legal to an illegal
86/// type for example, or from a smaller to a larger illegal type.
87bool InstCombiner::ShouldChangeType(const Type *From, const Type *To) const {
88  assert(From->isIntegerTy() && To->isIntegerTy());
89
90  // If we don't have TD, we don't know if the source/dest are legal.
91  if (!TD) return false;
92
93  unsigned FromWidth = From->getPrimitiveSizeInBits();
94  unsigned ToWidth = To->getPrimitiveSizeInBits();
95  bool FromLegal = TD->isLegalInteger(FromWidth);
96  bool ToLegal = TD->isLegalInteger(ToWidth);
97
98  // If this is a legal integer from type, and the result would be an illegal
99  // type, don't do the transformation.
100  if (FromLegal && !ToLegal)
101    return false;
102
103  // Otherwise, if both are illegal, do not increase the size of the result. We
104  // do allow things like i160 -> i64, but not i64 -> i160.
105  if (!FromLegal && !ToLegal && ToWidth > FromWidth)
106    return false;
107
108  return true;
109}
110
111
112/// SimplifyAssociativeOrCommutative - This performs a few simplifications for
113/// operators which are associative or commutative:
114//
115//  Commutative operators:
116//
117//  1. Order operands such that they are listed from right (least complex) to
118//     left (most complex).  This puts constants before unary operators before
119//     binary operators.
120//
121//  Associative operators:
122//
123//  2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
124//  3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
125//
126//  Associative and commutative operators:
127//
128//  4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
129//  5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
130//  6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
131//     if C1 and C2 are constants.
132//
133bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
134  Instruction::BinaryOps Opcode = I.getOpcode();
135  bool Changed = false;
136
137  do {
138    // Order operands such that they are listed from right (least complex) to
139    // left (most complex).  This puts constants before unary operators before
140    // binary operators.
141    if (I.isCommutative() && getComplexity(I.getOperand(0)) <
142        getComplexity(I.getOperand(1)))
143      Changed = !I.swapOperands();
144
145    BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
146    BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
147
148    if (I.isAssociative()) {
149      // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
150      if (Op0 && Op0->getOpcode() == Opcode) {
151        Value *A = Op0->getOperand(0);
152        Value *B = Op0->getOperand(1);
153        Value *C = I.getOperand(1);
154
155        // Does "B op C" simplify?
156        if (Value *V = SimplifyBinOp(Opcode, B, C, TD)) {
157          // It simplifies to V.  Form "A op V".
158          I.setOperand(0, A);
159          I.setOperand(1, V);
160          // Conservatively clear the optional flags, since they may not be
161          // preserved by the reassociation.
162          I.clearSubclassOptionalData();
163          Changed = true;
164          ++NumReassoc;
165          continue;
166        }
167      }
168
169      // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
170      if (Op1 && Op1->getOpcode() == Opcode) {
171        Value *A = I.getOperand(0);
172        Value *B = Op1->getOperand(0);
173        Value *C = Op1->getOperand(1);
174
175        // Does "A op B" simplify?
176        if (Value *V = SimplifyBinOp(Opcode, A, B, TD)) {
177          // It simplifies to V.  Form "V op C".
178          I.setOperand(0, V);
179          I.setOperand(1, C);
180          // Conservatively clear the optional flags, since they may not be
181          // preserved by the reassociation.
182          I.clearSubclassOptionalData();
183          Changed = true;
184          ++NumReassoc;
185          continue;
186        }
187      }
188    }
189
190    if (I.isAssociative() && I.isCommutative()) {
191      // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
192      if (Op0 && Op0->getOpcode() == Opcode) {
193        Value *A = Op0->getOperand(0);
194        Value *B = Op0->getOperand(1);
195        Value *C = I.getOperand(1);
196
197        // Does "C op A" simplify?
198        if (Value *V = SimplifyBinOp(Opcode, C, A, TD)) {
199          // It simplifies to V.  Form "V op B".
200          I.setOperand(0, V);
201          I.setOperand(1, B);
202          // Conservatively clear the optional flags, since they may not be
203          // preserved by the reassociation.
204          I.clearSubclassOptionalData();
205          Changed = true;
206          ++NumReassoc;
207          continue;
208        }
209      }
210
211      // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
212      if (Op1 && Op1->getOpcode() == Opcode) {
213        Value *A = I.getOperand(0);
214        Value *B = Op1->getOperand(0);
215        Value *C = Op1->getOperand(1);
216
217        // Does "C op A" simplify?
218        if (Value *V = SimplifyBinOp(Opcode, C, A, TD)) {
219          // It simplifies to V.  Form "B op V".
220          I.setOperand(0, B);
221          I.setOperand(1, V);
222          // Conservatively clear the optional flags, since they may not be
223          // preserved by the reassociation.
224          I.clearSubclassOptionalData();
225          Changed = true;
226          ++NumReassoc;
227          continue;
228        }
229      }
230
231      // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
232      // if C1 and C2 are constants.
233      if (Op0 && Op1 &&
234          Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
235          isa<Constant>(Op0->getOperand(1)) &&
236          isa<Constant>(Op1->getOperand(1)) &&
237          Op0->hasOneUse() && Op1->hasOneUse()) {
238        Value *A = Op0->getOperand(0);
239        Constant *C1 = cast<Constant>(Op0->getOperand(1));
240        Value *B = Op1->getOperand(0);
241        Constant *C2 = cast<Constant>(Op1->getOperand(1));
242
243        Constant *Folded = ConstantExpr::get(Opcode, C1, C2);
244        Instruction *New = BinaryOperator::Create(Opcode, A, B, Op1->getName(),
245                                                  &I);
246        Worklist.Add(New);
247        I.setOperand(0, New);
248        I.setOperand(1, Folded);
249        // Conservatively clear the optional flags, since they may not be
250        // preserved by the reassociation.
251        I.clearSubclassOptionalData();
252        Changed = true;
253        continue;
254      }
255    }
256
257    // No further simplifications.
258    return Changed;
259  } while (1);
260}
261
262/// LeftDistributesOverRight - Whether "X LOp (Y ROp Z)" is always equal to
263/// "(X LOp Y) ROp (X LOp Z)".
264static bool LeftDistributesOverRight(Instruction::BinaryOps LOp,
265                                     Instruction::BinaryOps ROp) {
266  switch (LOp) {
267  default:
268    return false;
269
270  case Instruction::And:
271    // And distributes over Or and Xor.
272    switch (ROp) {
273    default:
274      return false;
275    case Instruction::Or:
276    case Instruction::Xor:
277      return true;
278    }
279
280  case Instruction::Mul:
281    // Multiplication distributes over addition and subtraction.
282    switch (ROp) {
283    default:
284      return false;
285    case Instruction::Add:
286    case Instruction::Sub:
287      return true;
288    }
289
290  case Instruction::Or:
291    // Or distributes over And.
292    switch (ROp) {
293    default:
294      return false;
295    case Instruction::And:
296      return true;
297    }
298  }
299}
300
301/// RightDistributesOverLeft - Whether "(X LOp Y) ROp Z" is always equal to
302/// "(X ROp Z) LOp (Y ROp Z)".
303static bool RightDistributesOverLeft(Instruction::BinaryOps LOp,
304                                     Instruction::BinaryOps ROp) {
305  if (Instruction::isCommutative(ROp))
306    return LeftDistributesOverRight(ROp, LOp);
307  // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
308  // but this requires knowing that the addition does not overflow and other
309  // such subtleties.
310  return false;
311}
312
313/// SimplifyUsingDistributiveLaws - This tries to simplify binary operations
314/// which some other binary operation distributes over either by factorizing
315/// out common terms (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this
316/// results in simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is
317/// a win).  Returns the simplified value, or null if it didn't simplify.
318Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
319  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
320  BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
321  BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
322  Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); // op
323
324  // Factorization.
325  if (Op0 && Op1 && Op0->getOpcode() == Op1->getOpcode()) {
326    // The instruction has the form "(A op' B) op (C op' D)".  Try to factorize
327    // a common term.
328    Value *A = Op0->getOperand(0), *B = Op0->getOperand(1);
329    Value *C = Op1->getOperand(0), *D = Op1->getOperand(1);
330    Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
331
332    // Does "X op' Y" always equal "Y op' X"?
333    bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
334
335    // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
336    if (LeftDistributesOverRight(InnerOpcode, TopLevelOpcode))
337      // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
338      // commutative case, "(A op' B) op (C op' A)"?
339      if (A == C || (InnerCommutative && A == D)) {
340        if (A != C)
341          std::swap(C, D);
342        // Consider forming "A op' (B op D)".
343        // If "B op D" simplifies then it can be formed with no cost.
344        Value *V = SimplifyBinOp(TopLevelOpcode, B, D, TD);
345        // If "B op D" doesn't simplify then only go on if both of the existing
346        // operations "A op' B" and "C op' D" will be zapped as no longer used.
347        if (!V && Op0->hasOneUse() && Op1->hasOneUse())
348          V = Builder->CreateBinOp(TopLevelOpcode, B, D, Op1->getName());
349        if (V) {
350          ++NumFactor;
351          V = Builder->CreateBinOp(InnerOpcode, A, V);
352          V->takeName(&I);
353          return V;
354        }
355      }
356
357    // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
358    if (RightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
359      // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
360      // commutative case, "(A op' B) op (B op' D)"?
361      if (B == D || (InnerCommutative && B == C)) {
362        if (B != D)
363          std::swap(C, D);
364        // Consider forming "(A op C) op' B".
365        // If "A op C" simplifies then it can be formed with no cost.
366        Value *V = SimplifyBinOp(TopLevelOpcode, A, C, TD);
367        // If "A op C" doesn't simplify then only go on if both of the existing
368        // operations "A op' B" and "C op' D" will be zapped as no longer used.
369        if (!V && Op0->hasOneUse() && Op1->hasOneUse())
370          V = Builder->CreateBinOp(TopLevelOpcode, A, C, Op0->getName());
371        if (V) {
372          ++NumFactor;
373          V = Builder->CreateBinOp(InnerOpcode, V, B);
374          V->takeName(&I);
375          return V;
376        }
377      }
378  }
379
380  // Expansion.
381  if (Op0 && RightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
382    // The instruction has the form "(A op' B) op C".  See if expanding it out
383    // to "(A op C) op' (B op C)" results in simplifications.
384    Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
385    Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
386
387    // Do "A op C" and "B op C" both simplify?
388    if (Value *L = SimplifyBinOp(TopLevelOpcode, A, C, TD))
389      if (Value *R = SimplifyBinOp(TopLevelOpcode, B, C, TD)) {
390        // They do! Return "L op' R".
391        ++NumExpand;
392        // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
393        if ((L == A && R == B) ||
394            (Instruction::isCommutative(InnerOpcode) && L == B && R == A))
395          return Op0;
396        // Otherwise return "L op' R" if it simplifies.
397        if (Value *V = SimplifyBinOp(InnerOpcode, L, R, TD))
398          return V;
399        // Otherwise, create a new instruction.
400        C = Builder->CreateBinOp(InnerOpcode, L, R);
401        C->takeName(&I);
402        return C;
403      }
404  }
405
406  if (Op1 && LeftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
407    // The instruction has the form "A op (B op' C)".  See if expanding it out
408    // to "(A op B) op' (A op C)" results in simplifications.
409    Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
410    Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
411
412    // Do "A op B" and "A op C" both simplify?
413    if (Value *L = SimplifyBinOp(TopLevelOpcode, A, B, TD))
414      if (Value *R = SimplifyBinOp(TopLevelOpcode, A, C, TD)) {
415        // They do! Return "L op' R".
416        ++NumExpand;
417        // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
418        if ((L == B && R == C) ||
419            (Instruction::isCommutative(InnerOpcode) && L == C && R == B))
420          return Op1;
421        // Otherwise return "L op' R" if it simplifies.
422        if (Value *V = SimplifyBinOp(InnerOpcode, L, R, TD))
423          return V;
424        // Otherwise, create a new instruction.
425        A = Builder->CreateBinOp(InnerOpcode, L, R);
426        A->takeName(&I);
427        return A;
428      }
429  }
430
431  return 0;
432}
433
434// dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
435// if the LHS is a constant zero (which is the 'negate' form).
436//
437Value *InstCombiner::dyn_castNegVal(Value *V) const {
438  if (BinaryOperator::isNeg(V))
439    return BinaryOperator::getNegArgument(V);
440
441  // Constants can be considered to be negated values if they can be folded.
442  if (ConstantInt *C = dyn_cast<ConstantInt>(V))
443    return ConstantExpr::getNeg(C);
444
445  if (ConstantVector *C = dyn_cast<ConstantVector>(V))
446    if (C->getType()->getElementType()->isIntegerTy())
447      return ConstantExpr::getNeg(C);
448
449  return 0;
450}
451
452// dyn_castFNegVal - Given a 'fsub' instruction, return the RHS of the
453// instruction if the LHS is a constant negative zero (which is the 'negate'
454// form).
455//
456Value *InstCombiner::dyn_castFNegVal(Value *V) const {
457  if (BinaryOperator::isFNeg(V))
458    return BinaryOperator::getFNegArgument(V);
459
460  // Constants can be considered to be negated values if they can be folded.
461  if (ConstantFP *C = dyn_cast<ConstantFP>(V))
462    return ConstantExpr::getFNeg(C);
463
464  if (ConstantVector *C = dyn_cast<ConstantVector>(V))
465    if (C->getType()->getElementType()->isFloatingPointTy())
466      return ConstantExpr::getFNeg(C);
467
468  return 0;
469}
470
471static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
472                                             InstCombiner *IC) {
473  if (CastInst *CI = dyn_cast<CastInst>(&I)) {
474    return IC->Builder->CreateCast(CI->getOpcode(), SO, I.getType());
475  }
476
477  // Figure out if the constant is the left or the right argument.
478  bool ConstIsRHS = isa<Constant>(I.getOperand(1));
479  Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
480
481  if (Constant *SOC = dyn_cast<Constant>(SO)) {
482    if (ConstIsRHS)
483      return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
484    return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
485  }
486
487  Value *Op0 = SO, *Op1 = ConstOperand;
488  if (!ConstIsRHS)
489    std::swap(Op0, Op1);
490
491  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
492    return IC->Builder->CreateBinOp(BO->getOpcode(), Op0, Op1,
493                                    SO->getName()+".op");
494  if (ICmpInst *CI = dyn_cast<ICmpInst>(&I))
495    return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
496                                   SO->getName()+".cmp");
497  if (FCmpInst *CI = dyn_cast<FCmpInst>(&I))
498    return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
499                                   SO->getName()+".cmp");
500  llvm_unreachable("Unknown binary instruction type!");
501}
502
503// FoldOpIntoSelect - Given an instruction with a select as one operand and a
504// constant as the other operand, try to fold the binary operator into the
505// select arguments.  This also works for Cast instructions, which obviously do
506// not have a second operand.
507Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) {
508  // Don't modify shared select instructions
509  if (!SI->hasOneUse()) return 0;
510  Value *TV = SI->getOperand(1);
511  Value *FV = SI->getOperand(2);
512
513  if (isa<Constant>(TV) || isa<Constant>(FV)) {
514    // Bool selects with constant operands can be folded to logical ops.
515    if (SI->getType()->isIntegerTy(1)) return 0;
516
517    // If it's a bitcast involving vectors, make sure it has the same number of
518    // elements on both sides.
519    if (BitCastInst *BC = dyn_cast<BitCastInst>(&Op)) {
520      const VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
521      const VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());
522
523      // Verify that either both or neither are vectors.
524      if ((SrcTy == NULL) != (DestTy == NULL)) return 0;
525      // If vectors, verify that they have the same number of elements.
526      if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements())
527        return 0;
528    }
529
530    Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, this);
531    Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, this);
532
533    return SelectInst::Create(SI->getCondition(),
534                              SelectTrueVal, SelectFalseVal);
535  }
536  return 0;
537}
538
539
540/// FoldOpIntoPhi - Given a binary operator, cast instruction, or select which
541/// has a PHI node as operand #0, see if we can fold the instruction into the
542/// PHI (which is only possible if all operands to the PHI are constants).
543///
544Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
545  PHINode *PN = cast<PHINode>(I.getOperand(0));
546  unsigned NumPHIValues = PN->getNumIncomingValues();
547  if (NumPHIValues == 0)
548    return 0;
549
550  // We normally only transform phis with a single use.  However, if a PHI has
551  // multiple uses and they are all the same operation, we can fold *all* of the
552  // uses into the PHI.
553  if (!PN->hasOneUse()) {
554    // Walk the use list for the instruction, comparing them to I.
555    for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end();
556         UI != E; ++UI) {
557      Instruction *User = cast<Instruction>(*UI);
558      if (User != &I && !I.isIdenticalTo(User))
559        return 0;
560    }
561    // Otherwise, we can replace *all* users with the new PHI we form.
562  }
563
564  // Check to see if all of the operands of the PHI are simple constants
565  // (constantint/constantfp/undef).  If there is one non-constant value,
566  // remember the BB it is in.  If there is more than one or if *it* is a PHI,
567  // bail out.  We don't do arbitrary constant expressions here because moving
568  // their computation can be expensive without a cost model.
569  BasicBlock *NonConstBB = 0;
570  for (unsigned i = 0; i != NumPHIValues; ++i) {
571    Value *InVal = PN->getIncomingValue(i);
572    if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal))
573      continue;
574
575    if (isa<PHINode>(InVal)) return 0;  // Itself a phi.
576    if (NonConstBB) return 0;  // More than one non-const value.
577
578    NonConstBB = PN->getIncomingBlock(i);
579
580    // If the InVal is an invoke at the end of the pred block, then we can't
581    // insert a computation after it without breaking the edge.
582    if (InvokeInst *II = dyn_cast<InvokeInst>(InVal))
583      if (II->getParent() == NonConstBB)
584        return 0;
585
586    // If the incoming non-constant value is in I's block, we will remove one
587    // instruction, but insert another equivalent one, leading to infinite
588    // instcombine.
589    if (NonConstBB == I.getParent())
590      return 0;
591  }
592
593  // If there is exactly one non-constant value, we can insert a copy of the
594  // operation in that block.  However, if this is a critical edge, we would be
595  // inserting the computation one some other paths (e.g. inside a loop).  Only
596  // do this if the pred block is unconditionally branching into the phi block.
597  if (NonConstBB != 0) {
598    BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
599    if (!BI || !BI->isUnconditional()) return 0;
600  }
601
602  // Okay, we can do the transformation: create the new PHI node.
603  PHINode *NewPN = PHINode::Create(I.getType(), "");
604  NewPN->reserveOperandSpace(PN->getNumOperands()/2);
605  InsertNewInstBefore(NewPN, *PN);
606  NewPN->takeName(PN);
607
608  // If we are going to have to insert a new computation, do so right before the
609  // predecessors terminator.
610  if (NonConstBB)
611    Builder->SetInsertPoint(NonConstBB->getTerminator());
612
613  // Next, add all of the operands to the PHI.
614  if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
615    // We only currently try to fold the condition of a select when it is a phi,
616    // not the true/false values.
617    Value *TrueV = SI->getTrueValue();
618    Value *FalseV = SI->getFalseValue();
619    BasicBlock *PhiTransBB = PN->getParent();
620    for (unsigned i = 0; i != NumPHIValues; ++i) {
621      BasicBlock *ThisBB = PN->getIncomingBlock(i);
622      Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
623      Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
624      Value *InV = 0;
625      if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
626        InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
627      else
628        InV = Builder->CreateSelect(PN->getIncomingValue(i),
629                                    TrueVInPred, FalseVInPred, "phitmp");
630      NewPN->addIncoming(InV, ThisBB);
631    }
632  } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) {
633    Constant *C = cast<Constant>(I.getOperand(1));
634    for (unsigned i = 0; i != NumPHIValues; ++i) {
635      Value *InV = 0;
636      if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
637        InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
638      else if (isa<ICmpInst>(CI))
639        InV = Builder->CreateICmp(CI->getPredicate(), PN->getIncomingValue(i),
640                                  C, "phitmp");
641      else
642        InV = Builder->CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i),
643                                  C, "phitmp");
644      NewPN->addIncoming(InV, PN->getIncomingBlock(i));
645    }
646  } else if (I.getNumOperands() == 2) {
647    Constant *C = cast<Constant>(I.getOperand(1));
648    for (unsigned i = 0; i != NumPHIValues; ++i) {
649      Value *InV = 0;
650      if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
651        InV = ConstantExpr::get(I.getOpcode(), InC, C);
652      else
653        InV = Builder->CreateBinOp(cast<BinaryOperator>(I).getOpcode(),
654                                   PN->getIncomingValue(i), C, "phitmp");
655      NewPN->addIncoming(InV, PN->getIncomingBlock(i));
656    }
657  } else {
658    CastInst *CI = cast<CastInst>(&I);
659    const Type *RetTy = CI->getType();
660    for (unsigned i = 0; i != NumPHIValues; ++i) {
661      Value *InV;
662      if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
663        InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
664      else
665        InV = Builder->CreateCast(CI->getOpcode(),
666                                PN->getIncomingValue(i), I.getType(), "phitmp");
667      NewPN->addIncoming(InV, PN->getIncomingBlock(i));
668    }
669  }
670
671  for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end();
672       UI != E; ) {
673    Instruction *User = cast<Instruction>(*UI++);
674    if (User == &I) continue;
675    ReplaceInstUsesWith(*User, NewPN);
676    EraseInstFromFunction(*User);
677  }
678  return ReplaceInstUsesWith(I, NewPN);
679}
680
681/// FindElementAtOffset - Given a type and a constant offset, determine whether
682/// or not there is a sequence of GEP indices into the type that will land us at
683/// the specified offset.  If so, fill them into NewIndices and return the
684/// resultant element type, otherwise return null.
685const Type *InstCombiner::FindElementAtOffset(const Type *Ty, int64_t Offset,
686                                          SmallVectorImpl<Value*> &NewIndices) {
687  if (!TD) return 0;
688  if (!Ty->isSized()) return 0;
689
690  // Start with the index over the outer type.  Note that the type size
691  // might be zero (even if the offset isn't zero) if the indexed type
692  // is something like [0 x {int, int}]
693  const Type *IntPtrTy = TD->getIntPtrType(Ty->getContext());
694  int64_t FirstIdx = 0;
695  if (int64_t TySize = TD->getTypeAllocSize(Ty)) {
696    FirstIdx = Offset/TySize;
697    Offset -= FirstIdx*TySize;
698
699    // Handle hosts where % returns negative instead of values [0..TySize).
700    if (Offset < 0) {
701      --FirstIdx;
702      Offset += TySize;
703      assert(Offset >= 0);
704    }
705    assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
706  }
707
708  NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));
709
710  // Index into the types.  If we fail, set OrigBase to null.
711  while (Offset) {
712    // Indexing into tail padding between struct/array elements.
713    if (uint64_t(Offset*8) >= TD->getTypeSizeInBits(Ty))
714      return 0;
715
716    if (const StructType *STy = dyn_cast<StructType>(Ty)) {
717      const StructLayout *SL = TD->getStructLayout(STy);
718      assert(Offset < (int64_t)SL->getSizeInBytes() &&
719             "Offset must stay within the indexed type");
720
721      unsigned Elt = SL->getElementContainingOffset(Offset);
722      NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
723                                            Elt));
724
725      Offset -= SL->getElementOffset(Elt);
726      Ty = STy->getElementType(Elt);
727    } else if (const ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
728      uint64_t EltSize = TD->getTypeAllocSize(AT->getElementType());
729      assert(EltSize && "Cannot index into a zero-sized array");
730      NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
731      Offset %= EltSize;
732      Ty = AT->getElementType();
733    } else {
734      // Otherwise, we can't index into the middle of this atomic type, bail.
735      return 0;
736    }
737  }
738
739  return Ty;
740}
741
742
743
744Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
745  SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end());
746
747  if (Value *V = SimplifyGEPInst(&Ops[0], Ops.size(), TD))
748    return ReplaceInstUsesWith(GEP, V);
749
750  Value *PtrOp = GEP.getOperand(0);
751
752  // Eliminate unneeded casts for indices, and replace indices which displace
753  // by multiples of a zero size type with zero.
754  if (TD) {
755    bool MadeChange = false;
756    const Type *IntPtrTy = TD->getIntPtrType(GEP.getContext());
757
758    gep_type_iterator GTI = gep_type_begin(GEP);
759    for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end();
760         I != E; ++I, ++GTI) {
761      // Skip indices into struct types.
762      const SequentialType *SeqTy = dyn_cast<SequentialType>(*GTI);
763      if (!SeqTy) continue;
764
765      // If the element type has zero size then any index over it is equivalent
766      // to an index of zero, so replace it with zero if it is not zero already.
767      if (SeqTy->getElementType()->isSized() &&
768          TD->getTypeAllocSize(SeqTy->getElementType()) == 0)
769        if (!isa<Constant>(*I) || !cast<Constant>(*I)->isNullValue()) {
770          *I = Constant::getNullValue(IntPtrTy);
771          MadeChange = true;
772        }
773
774      if ((*I)->getType() != IntPtrTy) {
775        // If we are using a wider index than needed for this platform, shrink
776        // it to what we need.  If narrower, sign-extend it to what we need.
777        // This explicit cast can make subsequent optimizations more obvious.
778        *I = Builder->CreateIntCast(*I, IntPtrTy, true);
779        MadeChange = true;
780      }
781    }
782    if (MadeChange) return &GEP;
783  }
784
785  // Combine Indices - If the source pointer to this getelementptr instruction
786  // is a getelementptr instruction, combine the indices of the two
787  // getelementptr instructions into a single instruction.
788  //
789  if (GEPOperator *Src = dyn_cast<GEPOperator>(PtrOp)) {
790    // Note that if our source is a gep chain itself that we wait for that
791    // chain to be resolved before we perform this transformation.  This
792    // avoids us creating a TON of code in some cases.
793    //
794    if (GetElementPtrInst *SrcGEP =
795          dyn_cast<GetElementPtrInst>(Src->getOperand(0)))
796      if (SrcGEP->getNumOperands() == 2)
797        return 0;   // Wait until our source is folded to completion.
798
799    SmallVector<Value*, 8> Indices;
800
801    // Find out whether the last index in the source GEP is a sequential idx.
802    bool EndsWithSequential = false;
803    for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
804         I != E; ++I)
805      EndsWithSequential = !(*I)->isStructTy();
806
807    // Can we combine the two pointer arithmetics offsets?
808    if (EndsWithSequential) {
809      // Replace: gep (gep %P, long B), long A, ...
810      // With:    T = long A+B; gep %P, T, ...
811      //
812      Value *Sum;
813      Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
814      Value *GO1 = GEP.getOperand(1);
815      if (SO1 == Constant::getNullValue(SO1->getType())) {
816        Sum = GO1;
817      } else if (GO1 == Constant::getNullValue(GO1->getType())) {
818        Sum = SO1;
819      } else {
820        // If they aren't the same type, then the input hasn't been processed
821        // by the loop above yet (which canonicalizes sequential index types to
822        // intptr_t).  Just avoid transforming this until the input has been
823        // normalized.
824        if (SO1->getType() != GO1->getType())
825          return 0;
826        Sum = Builder->CreateAdd(SO1, GO1, PtrOp->getName()+".sum");
827      }
828
829      // Update the GEP in place if possible.
830      if (Src->getNumOperands() == 2) {
831        GEP.setOperand(0, Src->getOperand(0));
832        GEP.setOperand(1, Sum);
833        return &GEP;
834      }
835      Indices.append(Src->op_begin()+1, Src->op_end()-1);
836      Indices.push_back(Sum);
837      Indices.append(GEP.op_begin()+2, GEP.op_end());
838    } else if (isa<Constant>(*GEP.idx_begin()) &&
839               cast<Constant>(*GEP.idx_begin())->isNullValue() &&
840               Src->getNumOperands() != 1) {
841      // Otherwise we can do the fold if the first index of the GEP is a zero
842      Indices.append(Src->op_begin()+1, Src->op_end());
843      Indices.append(GEP.idx_begin()+1, GEP.idx_end());
844    }
845
846    if (!Indices.empty())
847      return (GEP.isInBounds() && Src->isInBounds()) ?
848        GetElementPtrInst::CreateInBounds(Src->getOperand(0), Indices.begin(),
849                                          Indices.end(), GEP.getName()) :
850        GetElementPtrInst::Create(Src->getOperand(0), Indices.begin(),
851                                  Indices.end(), GEP.getName());
852  }
853
854  // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
855  Value *StrippedPtr = PtrOp->stripPointerCasts();
856  if (StrippedPtr != PtrOp) {
857    const PointerType *StrippedPtrTy =cast<PointerType>(StrippedPtr->getType());
858
859    bool HasZeroPointerIndex = false;
860    if (ConstantInt *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
861      HasZeroPointerIndex = C->isZero();
862
863    // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
864    // into     : GEP [10 x i8]* X, i32 0, ...
865    //
866    // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
867    //           into     : GEP i8* X, ...
868    //
869    // This occurs when the program declares an array extern like "int X[];"
870    if (HasZeroPointerIndex) {
871      const PointerType *CPTy = cast<PointerType>(PtrOp->getType());
872      if (const ArrayType *CATy =
873          dyn_cast<ArrayType>(CPTy->getElementType())) {
874        // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
875        if (CATy->getElementType() == StrippedPtrTy->getElementType()) {
876          // -> GEP i8* X, ...
877          SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end());
878          GetElementPtrInst *Res =
879            GetElementPtrInst::Create(StrippedPtr, Idx.begin(),
880                                      Idx.end(), GEP.getName());
881          Res->setIsInBounds(GEP.isInBounds());
882          return Res;
883        }
884
885        if (const ArrayType *XATy =
886              dyn_cast<ArrayType>(StrippedPtrTy->getElementType())){
887          // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
888          if (CATy->getElementType() == XATy->getElementType()) {
889            // -> GEP [10 x i8]* X, i32 0, ...
890            // At this point, we know that the cast source type is a pointer
891            // to an array of the same type as the destination pointer
892            // array.  Because the array type is never stepped over (there
893            // is a leading zero) we can fold the cast into this GEP.
894            GEP.setOperand(0, StrippedPtr);
895            return &GEP;
896          }
897        }
898      }
899    } else if (GEP.getNumOperands() == 2) {
900      // Transform things like:
901      // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
902      // into:  %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
903      const Type *SrcElTy = StrippedPtrTy->getElementType();
904      const Type *ResElTy=cast<PointerType>(PtrOp->getType())->getElementType();
905      if (TD && SrcElTy->isArrayTy() &&
906          TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType()) ==
907          TD->getTypeAllocSize(ResElTy)) {
908        Value *Idx[2];
909        Idx[0] = Constant::getNullValue(Type::getInt32Ty(GEP.getContext()));
910        Idx[1] = GEP.getOperand(1);
911        Value *NewGEP = GEP.isInBounds() ?
912          Builder->CreateInBoundsGEP(StrippedPtr, Idx, Idx + 2, GEP.getName()) :
913          Builder->CreateGEP(StrippedPtr, Idx, Idx + 2, GEP.getName());
914        // V and GEP are both pointer types --> BitCast
915        return new BitCastInst(NewGEP, GEP.getType());
916      }
917
918      // Transform things like:
919      // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
920      //   (where tmp = 8*tmp2) into:
921      // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
922
923      if (TD && SrcElTy->isArrayTy() && ResElTy->isIntegerTy(8)) {
924        uint64_t ArrayEltSize =
925            TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType());
926
927        // Check to see if "tmp" is a scale by a multiple of ArrayEltSize.  We
928        // allow either a mul, shift, or constant here.
929        Value *NewIdx = 0;
930        ConstantInt *Scale = 0;
931        if (ArrayEltSize == 1) {
932          NewIdx = GEP.getOperand(1);
933          Scale = ConstantInt::get(cast<IntegerType>(NewIdx->getType()), 1);
934        } else if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP.getOperand(1))) {
935          NewIdx = ConstantInt::get(CI->getType(), 1);
936          Scale = CI;
937        } else if (Instruction *Inst =dyn_cast<Instruction>(GEP.getOperand(1))){
938          if (Inst->getOpcode() == Instruction::Shl &&
939              isa<ConstantInt>(Inst->getOperand(1))) {
940            ConstantInt *ShAmt = cast<ConstantInt>(Inst->getOperand(1));
941            uint32_t ShAmtVal = ShAmt->getLimitedValue(64);
942            Scale = ConstantInt::get(cast<IntegerType>(Inst->getType()),
943                                     1ULL << ShAmtVal);
944            NewIdx = Inst->getOperand(0);
945          } else if (Inst->getOpcode() == Instruction::Mul &&
946                     isa<ConstantInt>(Inst->getOperand(1))) {
947            Scale = cast<ConstantInt>(Inst->getOperand(1));
948            NewIdx = Inst->getOperand(0);
949          }
950        }
951
952        // If the index will be to exactly the right offset with the scale taken
953        // out, perform the transformation. Note, we don't know whether Scale is
954        // signed or not. We'll use unsigned version of division/modulo
955        // operation after making sure Scale doesn't have the sign bit set.
956        if (ArrayEltSize && Scale && Scale->getSExtValue() >= 0LL &&
957            Scale->getZExtValue() % ArrayEltSize == 0) {
958          Scale = ConstantInt::get(Scale->getType(),
959                                   Scale->getZExtValue() / ArrayEltSize);
960          if (Scale->getZExtValue() != 1) {
961            Constant *C = ConstantExpr::getIntegerCast(Scale, NewIdx->getType(),
962                                                       false /*ZExt*/);
963            NewIdx = Builder->CreateMul(NewIdx, C, "idxscale");
964          }
965
966          // Insert the new GEP instruction.
967          Value *Idx[2];
968          Idx[0] = Constant::getNullValue(Type::getInt32Ty(GEP.getContext()));
969          Idx[1] = NewIdx;
970          Value *NewGEP = GEP.isInBounds() ?
971            Builder->CreateInBoundsGEP(StrippedPtr, Idx, Idx + 2,GEP.getName()):
972            Builder->CreateGEP(StrippedPtr, Idx, Idx + 2, GEP.getName());
973          // The NewGEP must be pointer typed, so must the old one -> BitCast
974          return new BitCastInst(NewGEP, GEP.getType());
975        }
976      }
977    }
978  }
979
980  /// See if we can simplify:
981  ///   X = bitcast A* to B*
982  ///   Y = gep X, <...constant indices...>
983  /// into a gep of the original struct.  This is important for SROA and alias
984  /// analysis of unions.  If "A" is also a bitcast, wait for A/X to be merged.
985  if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) {
986    if (TD &&
987        !isa<BitCastInst>(BCI->getOperand(0)) && GEP.hasAllConstantIndices()) {
988      // Determine how much the GEP moves the pointer.  We are guaranteed to get
989      // a constant back from EmitGEPOffset.
990      ConstantInt *OffsetV = cast<ConstantInt>(EmitGEPOffset(&GEP));
991      int64_t Offset = OffsetV->getSExtValue();
992
993      // If this GEP instruction doesn't move the pointer, just replace the GEP
994      // with a bitcast of the real input to the dest type.
995      if (Offset == 0) {
996        // If the bitcast is of an allocation, and the allocation will be
997        // converted to match the type of the cast, don't touch this.
998        if (isa<AllocaInst>(BCI->getOperand(0)) ||
999            isMalloc(BCI->getOperand(0))) {
1000          // See if the bitcast simplifies, if so, don't nuke this GEP yet.
1001          if (Instruction *I = visitBitCast(*BCI)) {
1002            if (I != BCI) {
1003              I->takeName(BCI);
1004              BCI->getParent()->getInstList().insert(BCI, I);
1005              ReplaceInstUsesWith(*BCI, I);
1006            }
1007            return &GEP;
1008          }
1009        }
1010        return new BitCastInst(BCI->getOperand(0), GEP.getType());
1011      }
1012
1013      // Otherwise, if the offset is non-zero, we need to find out if there is a
1014      // field at Offset in 'A's type.  If so, we can pull the cast through the
1015      // GEP.
1016      SmallVector<Value*, 8> NewIndices;
1017      const Type *InTy =
1018        cast<PointerType>(BCI->getOperand(0)->getType())->getElementType();
1019      if (FindElementAtOffset(InTy, Offset, NewIndices)) {
1020        Value *NGEP = GEP.isInBounds() ?
1021          Builder->CreateInBoundsGEP(BCI->getOperand(0), NewIndices.begin(),
1022                                     NewIndices.end()) :
1023          Builder->CreateGEP(BCI->getOperand(0), NewIndices.begin(),
1024                             NewIndices.end());
1025
1026        if (NGEP->getType() == GEP.getType())
1027          return ReplaceInstUsesWith(GEP, NGEP);
1028        NGEP->takeName(&GEP);
1029        return new BitCastInst(NGEP, GEP.getType());
1030      }
1031    }
1032  }
1033
1034  return 0;
1035}
1036
1037
1038
1039static bool IsOnlyNullComparedAndFreed(const Value &V) {
1040  for (Value::const_use_iterator UI = V.use_begin(), UE = V.use_end();
1041       UI != UE; ++UI) {
1042    const User *U = *UI;
1043    if (isFreeCall(U))
1044      continue;
1045    if (const ICmpInst *ICI = dyn_cast<ICmpInst>(U))
1046      if (ICI->isEquality() && isa<ConstantPointerNull>(ICI->getOperand(1)))
1047        continue;
1048    return false;
1049  }
1050  return true;
1051}
1052
1053Instruction *InstCombiner::visitMalloc(Instruction &MI) {
1054  // If we have a malloc call which is only used in any amount of comparisons
1055  // to null and free calls, delete the calls and replace the comparisons with
1056  // true or false as appropriate.
1057  if (IsOnlyNullComparedAndFreed(MI)) {
1058    for (Value::use_iterator UI = MI.use_begin(), UE = MI.use_end();
1059         UI != UE;) {
1060      // We can assume that every remaining use is a free call or an icmp eq/ne
1061      // to null, so the cast is safe.
1062      Instruction *I = cast<Instruction>(*UI);
1063
1064      // Early increment here, as we're about to get rid of the user.
1065      ++UI;
1066
1067      if (isFreeCall(I)) {
1068        EraseInstFromFunction(*cast<CallInst>(I));
1069        continue;
1070      }
1071      // Again, the cast is safe.
1072      ICmpInst *C = cast<ICmpInst>(I);
1073      ReplaceInstUsesWith(*C, ConstantInt::get(Type::getInt1Ty(C->getContext()),
1074                                               C->isFalseWhenEqual()));
1075      EraseInstFromFunction(*C);
1076    }
1077    return EraseInstFromFunction(MI);
1078  }
1079  return 0;
1080}
1081
1082
1083
1084Instruction *InstCombiner::visitFree(CallInst &FI) {
1085  Value *Op = FI.getArgOperand(0);
1086
1087  // free undef -> unreachable.
1088  if (isa<UndefValue>(Op)) {
1089    // Insert a new store to null because we cannot modify the CFG here.
1090    new StoreInst(ConstantInt::getTrue(FI.getContext()),
1091           UndefValue::get(Type::getInt1PtrTy(FI.getContext())), &FI);
1092    return EraseInstFromFunction(FI);
1093  }
1094
1095  // If we have 'free null' delete the instruction.  This can happen in stl code
1096  // when lots of inlining happens.
1097  if (isa<ConstantPointerNull>(Op))
1098    return EraseInstFromFunction(FI);
1099
1100  return 0;
1101}
1102
1103
1104
1105Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
1106  // Change br (not X), label True, label False to: br X, label False, True
1107  Value *X = 0;
1108  BasicBlock *TrueDest;
1109  BasicBlock *FalseDest;
1110  if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
1111      !isa<Constant>(X)) {
1112    // Swap Destinations and condition...
1113    BI.setCondition(X);
1114    BI.setSuccessor(0, FalseDest);
1115    BI.setSuccessor(1, TrueDest);
1116    return &BI;
1117  }
1118
1119  // Cannonicalize fcmp_one -> fcmp_oeq
1120  FCmpInst::Predicate FPred; Value *Y;
1121  if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)),
1122                             TrueDest, FalseDest)) &&
1123      BI.getCondition()->hasOneUse())
1124    if (FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
1125        FPred == FCmpInst::FCMP_OGE) {
1126      FCmpInst *Cond = cast<FCmpInst>(BI.getCondition());
1127      Cond->setPredicate(FCmpInst::getInversePredicate(FPred));
1128
1129      // Swap Destinations and condition.
1130      BI.setSuccessor(0, FalseDest);
1131      BI.setSuccessor(1, TrueDest);
1132      Worklist.Add(Cond);
1133      return &BI;
1134    }
1135
1136  // Cannonicalize icmp_ne -> icmp_eq
1137  ICmpInst::Predicate IPred;
1138  if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
1139                      TrueDest, FalseDest)) &&
1140      BI.getCondition()->hasOneUse())
1141    if (IPred == ICmpInst::ICMP_NE  || IPred == ICmpInst::ICMP_ULE ||
1142        IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
1143        IPred == ICmpInst::ICMP_SGE) {
1144      ICmpInst *Cond = cast<ICmpInst>(BI.getCondition());
1145      Cond->setPredicate(ICmpInst::getInversePredicate(IPred));
1146      // Swap Destinations and condition.
1147      BI.setSuccessor(0, FalseDest);
1148      BI.setSuccessor(1, TrueDest);
1149      Worklist.Add(Cond);
1150      return &BI;
1151    }
1152
1153  return 0;
1154}
1155
1156Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
1157  Value *Cond = SI.getCondition();
1158  if (Instruction *I = dyn_cast<Instruction>(Cond)) {
1159    if (I->getOpcode() == Instruction::Add)
1160      if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
1161        // change 'switch (X+4) case 1:' into 'switch (X) case -3'
1162        for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2)
1163          SI.setOperand(i,
1164                   ConstantExpr::getSub(cast<Constant>(SI.getOperand(i)),
1165                                                AddRHS));
1166        SI.setOperand(0, I->getOperand(0));
1167        Worklist.Add(I);
1168        return &SI;
1169      }
1170  }
1171  return 0;
1172}
1173
1174Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
1175  Value *Agg = EV.getAggregateOperand();
1176
1177  if (!EV.hasIndices())
1178    return ReplaceInstUsesWith(EV, Agg);
1179
1180  if (Constant *C = dyn_cast<Constant>(Agg)) {
1181    if (isa<UndefValue>(C))
1182      return ReplaceInstUsesWith(EV, UndefValue::get(EV.getType()));
1183
1184    if (isa<ConstantAggregateZero>(C))
1185      return ReplaceInstUsesWith(EV, Constant::getNullValue(EV.getType()));
1186
1187    if (isa<ConstantArray>(C) || isa<ConstantStruct>(C)) {
1188      // Extract the element indexed by the first index out of the constant
1189      Value *V = C->getOperand(*EV.idx_begin());
1190      if (EV.getNumIndices() > 1)
1191        // Extract the remaining indices out of the constant indexed by the
1192        // first index
1193        return ExtractValueInst::Create(V, EV.idx_begin() + 1, EV.idx_end());
1194      else
1195        return ReplaceInstUsesWith(EV, V);
1196    }
1197    return 0; // Can't handle other constants
1198  }
1199  if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
1200    // We're extracting from an insertvalue instruction, compare the indices
1201    const unsigned *exti, *exte, *insi, *inse;
1202    for (exti = EV.idx_begin(), insi = IV->idx_begin(),
1203         exte = EV.idx_end(), inse = IV->idx_end();
1204         exti != exte && insi != inse;
1205         ++exti, ++insi) {
1206      if (*insi != *exti)
1207        // The insert and extract both reference distinctly different elements.
1208        // This means the extract is not influenced by the insert, and we can
1209        // replace the aggregate operand of the extract with the aggregate
1210        // operand of the insert. i.e., replace
1211        // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
1212        // %E = extractvalue { i32, { i32 } } %I, 0
1213        // with
1214        // %E = extractvalue { i32, { i32 } } %A, 0
1215        return ExtractValueInst::Create(IV->getAggregateOperand(),
1216                                        EV.idx_begin(), EV.idx_end());
1217    }
1218    if (exti == exte && insi == inse)
1219      // Both iterators are at the end: Index lists are identical. Replace
1220      // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
1221      // %C = extractvalue { i32, { i32 } } %B, 1, 0
1222      // with "i32 42"
1223      return ReplaceInstUsesWith(EV, IV->getInsertedValueOperand());
1224    if (exti == exte) {
1225      // The extract list is a prefix of the insert list. i.e. replace
1226      // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
1227      // %E = extractvalue { i32, { i32 } } %I, 1
1228      // with
1229      // %X = extractvalue { i32, { i32 } } %A, 1
1230      // %E = insertvalue { i32 } %X, i32 42, 0
1231      // by switching the order of the insert and extract (though the
1232      // insertvalue should be left in, since it may have other uses).
1233      Value *NewEV = Builder->CreateExtractValue(IV->getAggregateOperand(),
1234                                                 EV.idx_begin(), EV.idx_end());
1235      return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
1236                                     insi, inse);
1237    }
1238    if (insi == inse)
1239      // The insert list is a prefix of the extract list
1240      // We can simply remove the common indices from the extract and make it
1241      // operate on the inserted value instead of the insertvalue result.
1242      // i.e., replace
1243      // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
1244      // %E = extractvalue { i32, { i32 } } %I, 1, 0
1245      // with
1246      // %E extractvalue { i32 } { i32 42 }, 0
1247      return ExtractValueInst::Create(IV->getInsertedValueOperand(),
1248                                      exti, exte);
1249  }
1250  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Agg)) {
1251    // We're extracting from an intrinsic, see if we're the only user, which
1252    // allows us to simplify multiple result intrinsics to simpler things that
1253    // just get one value.
1254    if (II->hasOneUse()) {
1255      // Check if we're grabbing the overflow bit or the result of a 'with
1256      // overflow' intrinsic.  If it's the latter we can remove the intrinsic
1257      // and replace it with a traditional binary instruction.
1258      switch (II->getIntrinsicID()) {
1259      case Intrinsic::uadd_with_overflow:
1260      case Intrinsic::sadd_with_overflow:
1261        if (*EV.idx_begin() == 0) {  // Normal result.
1262          Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
1263          II->replaceAllUsesWith(UndefValue::get(II->getType()));
1264          EraseInstFromFunction(*II);
1265          return BinaryOperator::CreateAdd(LHS, RHS);
1266        }
1267
1268        // If the normal result of the add is dead, and the RHS is a constant,
1269        // we can transform this into a range comparison.
1270        // overflow = uadd a, -4  -->  overflow = icmp ugt a, 3
1271        if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow)
1272          if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getArgOperand(1)))
1273            return new ICmpInst(ICmpInst::ICMP_UGT, II->getArgOperand(0),
1274                                ConstantExpr::getNot(CI));
1275        break;
1276      case Intrinsic::usub_with_overflow:
1277      case Intrinsic::ssub_with_overflow:
1278        if (*EV.idx_begin() == 0) {  // Normal result.
1279          Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
1280          II->replaceAllUsesWith(UndefValue::get(II->getType()));
1281          EraseInstFromFunction(*II);
1282          return BinaryOperator::CreateSub(LHS, RHS);
1283        }
1284        break;
1285      case Intrinsic::umul_with_overflow:
1286      case Intrinsic::smul_with_overflow:
1287        if (*EV.idx_begin() == 0) {  // Normal result.
1288          Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
1289          II->replaceAllUsesWith(UndefValue::get(II->getType()));
1290          EraseInstFromFunction(*II);
1291          return BinaryOperator::CreateMul(LHS, RHS);
1292        }
1293        break;
1294      default:
1295        break;
1296      }
1297    }
1298  }
1299  if (LoadInst *L = dyn_cast<LoadInst>(Agg))
1300    // If the (non-volatile) load only has one use, we can rewrite this to a
1301    // load from a GEP. This reduces the size of the load.
1302    // FIXME: If a load is used only by extractvalue instructions then this
1303    //        could be done regardless of having multiple uses.
1304    if (!L->isVolatile() && L->hasOneUse()) {
1305      // extractvalue has integer indices, getelementptr has Value*s. Convert.
1306      SmallVector<Value*, 4> Indices;
1307      // Prefix an i32 0 since we need the first element.
1308      Indices.push_back(Builder->getInt32(0));
1309      for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end();
1310            I != E; ++I)
1311        Indices.push_back(Builder->getInt32(*I));
1312
1313      // We need to insert these at the location of the old load, not at that of
1314      // the extractvalue.
1315      Builder->SetInsertPoint(L->getParent(), L);
1316      Value *GEP = Builder->CreateInBoundsGEP(L->getPointerOperand(),
1317                                              Indices.begin(), Indices.end());
1318      // Returning the load directly will cause the main loop to insert it in
1319      // the wrong spot, so use ReplaceInstUsesWith().
1320      return ReplaceInstUsesWith(EV, Builder->CreateLoad(GEP));
1321    }
1322  // We could simplify extracts from other values. Note that nested extracts may
1323  // already be simplified implicitly by the above: extract (extract (insert) )
1324  // will be translated into extract ( insert ( extract ) ) first and then just
1325  // the value inserted, if appropriate. Similarly for extracts from single-use
1326  // loads: extract (extract (load)) will be translated to extract (load (gep))
1327  // and if again single-use then via load (gep (gep)) to load (gep).
1328  // However, double extracts from e.g. function arguments or return values
1329  // aren't handled yet.
1330  return 0;
1331}
1332
1333
1334
1335
1336/// TryToSinkInstruction - Try to move the specified instruction from its
1337/// current block into the beginning of DestBlock, which can only happen if it's
1338/// safe to move the instruction past all of the instructions between it and the
1339/// end of its block.
1340static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
1341  assert(I->hasOneUse() && "Invariants didn't hold!");
1342
1343  // Cannot move control-flow-involving, volatile loads, vaarg, etc.
1344  if (isa<PHINode>(I) || I->mayHaveSideEffects() || isa<TerminatorInst>(I))
1345    return false;
1346
1347  // Do not sink alloca instructions out of the entry block.
1348  if (isa<AllocaInst>(I) && I->getParent() ==
1349        &DestBlock->getParent()->getEntryBlock())
1350    return false;
1351
1352  // We can only sink load instructions if there is nothing between the load and
1353  // the end of block that could change the value.
1354  if (I->mayReadFromMemory()) {
1355    for (BasicBlock::iterator Scan = I, E = I->getParent()->end();
1356         Scan != E; ++Scan)
1357      if (Scan->mayWriteToMemory())
1358        return false;
1359  }
1360
1361  BasicBlock::iterator InsertPos = DestBlock->getFirstNonPHI();
1362
1363  I->moveBefore(InsertPos);
1364  ++NumSunkInst;
1365  return true;
1366}
1367
1368
1369/// AddReachableCodeToWorklist - Walk the function in depth-first order, adding
1370/// all reachable code to the worklist.
1371///
1372/// This has a couple of tricks to make the code faster and more powerful.  In
1373/// particular, we constant fold and DCE instructions as we go, to avoid adding
1374/// them to the worklist (this significantly speeds up instcombine on code where
1375/// many instructions are dead or constant).  Additionally, if we find a branch
1376/// whose condition is a known constant, we only visit the reachable successors.
1377///
1378static bool AddReachableCodeToWorklist(BasicBlock *BB,
1379                                       SmallPtrSet<BasicBlock*, 64> &Visited,
1380                                       InstCombiner &IC,
1381                                       const TargetData *TD) {
1382  bool MadeIRChange = false;
1383  SmallVector<BasicBlock*, 256> Worklist;
1384  Worklist.push_back(BB);
1385
1386  SmallVector<Instruction*, 128> InstrsForInstCombineWorklist;
1387  SmallPtrSet<ConstantExpr*, 64> FoldedConstants;
1388
1389  do {
1390    BB = Worklist.pop_back_val();
1391
1392    // We have now visited this block!  If we've already been here, ignore it.
1393    if (!Visited.insert(BB)) continue;
1394
1395    for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
1396      Instruction *Inst = BBI++;
1397
1398      // DCE instruction if trivially dead.
1399      if (isInstructionTriviallyDead(Inst)) {
1400        ++NumDeadInst;
1401        DEBUG(errs() << "IC: DCE: " << *Inst << '\n');
1402        Inst->eraseFromParent();
1403        continue;
1404      }
1405
1406      // ConstantProp instruction if trivially constant.
1407      if (!Inst->use_empty() && isa<Constant>(Inst->getOperand(0)))
1408        if (Constant *C = ConstantFoldInstruction(Inst, TD)) {
1409          DEBUG(errs() << "IC: ConstFold to: " << *C << " from: "
1410                       << *Inst << '\n');
1411          Inst->replaceAllUsesWith(C);
1412          ++NumConstProp;
1413          Inst->eraseFromParent();
1414          continue;
1415        }
1416
1417      if (TD) {
1418        // See if we can constant fold its operands.
1419        for (User::op_iterator i = Inst->op_begin(), e = Inst->op_end();
1420             i != e; ++i) {
1421          ConstantExpr *CE = dyn_cast<ConstantExpr>(i);
1422          if (CE == 0) continue;
1423
1424          // If we already folded this constant, don't try again.
1425          if (!FoldedConstants.insert(CE))
1426            continue;
1427
1428          Constant *NewC = ConstantFoldConstantExpression(CE, TD);
1429          if (NewC && NewC != CE) {
1430            *i = NewC;
1431            MadeIRChange = true;
1432          }
1433        }
1434      }
1435
1436      InstrsForInstCombineWorklist.push_back(Inst);
1437    }
1438
1439    // Recursively visit successors.  If this is a branch or switch on a
1440    // constant, only visit the reachable successor.
1441    TerminatorInst *TI = BB->getTerminator();
1442    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1443      if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
1444        bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
1445        BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
1446        Worklist.push_back(ReachableBB);
1447        continue;
1448      }
1449    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
1450      if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
1451        // See if this is an explicit destination.
1452        for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i)
1453          if (SI->getCaseValue(i) == Cond) {
1454            BasicBlock *ReachableBB = SI->getSuccessor(i);
1455            Worklist.push_back(ReachableBB);
1456            continue;
1457          }
1458
1459        // Otherwise it is the default destination.
1460        Worklist.push_back(SI->getSuccessor(0));
1461        continue;
1462      }
1463    }
1464
1465    for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
1466      Worklist.push_back(TI->getSuccessor(i));
1467  } while (!Worklist.empty());
1468
1469  // Once we've found all of the instructions to add to instcombine's worklist,
1470  // add them in reverse order.  This way instcombine will visit from the top
1471  // of the function down.  This jives well with the way that it adds all uses
1472  // of instructions to the worklist after doing a transformation, thus avoiding
1473  // some N^2 behavior in pathological cases.
1474  IC.Worklist.AddInitialGroup(&InstrsForInstCombineWorklist[0],
1475                              InstrsForInstCombineWorklist.size());
1476
1477  return MadeIRChange;
1478}
1479
1480bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
1481  MadeIRChange = false;
1482
1483  DEBUG(errs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
1484        << F.getNameStr() << "\n");
1485
1486  {
1487    // Do a depth-first traversal of the function, populate the worklist with
1488    // the reachable instructions.  Ignore blocks that are not reachable.  Keep
1489    // track of which blocks we visit.
1490    SmallPtrSet<BasicBlock*, 64> Visited;
1491    MadeIRChange |= AddReachableCodeToWorklist(F.begin(), Visited, *this, TD);
1492
1493    // Do a quick scan over the function.  If we find any blocks that are
1494    // unreachable, remove any instructions inside of them.  This prevents
1495    // the instcombine code from having to deal with some bad special cases.
1496    for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1497      if (!Visited.count(BB)) {
1498        Instruction *Term = BB->getTerminator();
1499        while (Term != BB->begin()) {   // Remove instrs bottom-up
1500          BasicBlock::iterator I = Term; --I;
1501
1502          DEBUG(errs() << "IC: DCE: " << *I << '\n');
1503          // A debug intrinsic shouldn't force another iteration if we weren't
1504          // going to do one without it.
1505          if (!isa<DbgInfoIntrinsic>(I)) {
1506            ++NumDeadInst;
1507            MadeIRChange = true;
1508          }
1509
1510          // If I is not void type then replaceAllUsesWith undef.
1511          // This allows ValueHandlers and custom metadata to adjust itself.
1512          if (!I->getType()->isVoidTy())
1513            I->replaceAllUsesWith(UndefValue::get(I->getType()));
1514          I->eraseFromParent();
1515        }
1516      }
1517  }
1518
1519  while (!Worklist.isEmpty()) {
1520    Instruction *I = Worklist.RemoveOne();
1521    if (I == 0) continue;  // skip null values.
1522
1523    // Check to see if we can DCE the instruction.
1524    if (isInstructionTriviallyDead(I)) {
1525      DEBUG(errs() << "IC: DCE: " << *I << '\n');
1526      EraseInstFromFunction(*I);
1527      ++NumDeadInst;
1528      MadeIRChange = true;
1529      continue;
1530    }
1531
1532    // Instruction isn't dead, see if we can constant propagate it.
1533    if (!I->use_empty() && isa<Constant>(I->getOperand(0)))
1534      if (Constant *C = ConstantFoldInstruction(I, TD)) {
1535        DEBUG(errs() << "IC: ConstFold to: " << *C << " from: " << *I << '\n');
1536
1537        // Add operands to the worklist.
1538        ReplaceInstUsesWith(*I, C);
1539        ++NumConstProp;
1540        EraseInstFromFunction(*I);
1541        MadeIRChange = true;
1542        continue;
1543      }
1544
1545    // See if we can trivially sink this instruction to a successor basic block.
1546    if (I->hasOneUse()) {
1547      BasicBlock *BB = I->getParent();
1548      Instruction *UserInst = cast<Instruction>(I->use_back());
1549      BasicBlock *UserParent;
1550
1551      // Get the block the use occurs in.
1552      if (PHINode *PN = dyn_cast<PHINode>(UserInst))
1553        UserParent = PN->getIncomingBlock(I->use_begin().getUse());
1554      else
1555        UserParent = UserInst->getParent();
1556
1557      if (UserParent != BB) {
1558        bool UserIsSuccessor = false;
1559        // See if the user is one of our successors.
1560        for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
1561          if (*SI == UserParent) {
1562            UserIsSuccessor = true;
1563            break;
1564          }
1565
1566        // If the user is one of our immediate successors, and if that successor
1567        // only has us as a predecessors (we'd have to split the critical edge
1568        // otherwise), we can keep going.
1569        if (UserIsSuccessor && UserParent->getSinglePredecessor())
1570          // Okay, the CFG is simple enough, try to sink this instruction.
1571          MadeIRChange |= TryToSinkInstruction(I, UserParent);
1572      }
1573    }
1574
1575    // Now that we have an instruction, try combining it to simplify it.
1576    Builder->SetInsertPoint(I->getParent(), I);
1577
1578#ifndef NDEBUG
1579    std::string OrigI;
1580#endif
1581    DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
1582    DEBUG(errs() << "IC: Visiting: " << OrigI << '\n');
1583
1584    if (Instruction *Result = visit(*I)) {
1585      ++NumCombined;
1586      // Should we replace the old instruction with a new one?
1587      if (Result != I) {
1588        DEBUG(errs() << "IC: Old = " << *I << '\n'
1589                     << "    New = " << *Result << '\n');
1590
1591        Result->setDebugLoc(I->getDebugLoc());
1592        // Everything uses the new instruction now.
1593        I->replaceAllUsesWith(Result);
1594
1595        // Push the new instruction and any users onto the worklist.
1596        Worklist.Add(Result);
1597        Worklist.AddUsersToWorkList(*Result);
1598
1599        // Move the name to the new instruction first.
1600        Result->takeName(I);
1601
1602        // Insert the new instruction into the basic block...
1603        BasicBlock *InstParent = I->getParent();
1604        BasicBlock::iterator InsertPos = I;
1605
1606        if (!isa<PHINode>(Result))        // If combining a PHI, don't insert
1607          while (isa<PHINode>(InsertPos)) // middle of a block of PHIs.
1608            ++InsertPos;
1609
1610        InstParent->getInstList().insert(InsertPos, Result);
1611
1612        EraseInstFromFunction(*I);
1613      } else {
1614#ifndef NDEBUG
1615        DEBUG(errs() << "IC: Mod = " << OrigI << '\n'
1616                     << "    New = " << *I << '\n');
1617#endif
1618
1619        // If the instruction was modified, it's possible that it is now dead.
1620        // if so, remove it.
1621        if (isInstructionTriviallyDead(I)) {
1622          EraseInstFromFunction(*I);
1623        } else {
1624          Worklist.Add(I);
1625          Worklist.AddUsersToWorkList(*I);
1626        }
1627      }
1628      MadeIRChange = true;
1629    }
1630  }
1631
1632  Worklist.Zap();
1633  return MadeIRChange;
1634}
1635
1636
1637bool InstCombiner::runOnFunction(Function &F) {
1638  MustPreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
1639  TD = getAnalysisIfAvailable<TargetData>();
1640
1641
1642  /// Builder - This is an IRBuilder that automatically inserts new
1643  /// instructions into the worklist when they are created.
1644  IRBuilder<true, TargetFolder, InstCombineIRInserter>
1645    TheBuilder(F.getContext(), TargetFolder(TD),
1646               InstCombineIRInserter(Worklist));
1647  Builder = &TheBuilder;
1648
1649  bool EverMadeChange = false;
1650
1651  // Iterate while there is work to do.
1652  unsigned Iteration = 0;
1653  while (DoOneIteration(F, Iteration++))
1654    EverMadeChange = true;
1655
1656  Builder = 0;
1657  return EverMadeChange;
1658}
1659
1660FunctionPass *llvm::createInstructionCombiningPass() {
1661  return new InstCombiner();
1662}
1663