InstCombineShifts.cpp revision 226633
1//===- InstCombineShifts.cpp ----------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visitShl, visitLShr, and visitAShr functions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/IntrinsicInst.h"
16#include "llvm/Analysis/ConstantFolding.h"
17#include "llvm/Analysis/InstructionSimplify.h"
18#include "llvm/Support/PatternMatch.h"
19using namespace llvm;
20using namespace PatternMatch;
21
22Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) {
23  assert(I.getOperand(1)->getType() == I.getOperand(0)->getType());
24  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
25
26  // See if we can fold away this shift.
27  if (SimplifyDemandedInstructionBits(I))
28    return &I;
29
30  // Try to fold constant and into select arguments.
31  if (isa<Constant>(Op0))
32    if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
33      if (Instruction *R = FoldOpIntoSelect(I, SI))
34        return R;
35
36  if (ConstantInt *CUI = dyn_cast<ConstantInt>(Op1))
37    if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I))
38      return Res;
39
40  // X shift (A srem B) -> X shift (A and B-1) iff B is a power of 2.
41  // Because shifts by negative values (which could occur if A were negative)
42  // are undefined.
43  Value *A; const APInt *B;
44  if (Op1->hasOneUse() && match(Op1, m_SRem(m_Value(A), m_Power2(B)))) {
45    // FIXME: Should this get moved into SimplifyDemandedBits by saying we don't
46    // demand the sign bit (and many others) here??
47    Value *Rem = Builder->CreateAnd(A, ConstantInt::get(I.getType(), *B-1),
48                                    Op1->getName());
49    I.setOperand(1, Rem);
50    return &I;
51  }
52
53  return 0;
54}
55
56/// CanEvaluateShifted - See if we can compute the specified value, but shifted
57/// logically to the left or right by some number of bits.  This should return
58/// true if the expression can be computed for the same cost as the current
59/// expression tree.  This is used to eliminate extraneous shifting from things
60/// like:
61///      %C = shl i128 %A, 64
62///      %D = shl i128 %B, 96
63///      %E = or i128 %C, %D
64///      %F = lshr i128 %E, 64
65/// where the client will ask if E can be computed shifted right by 64-bits.  If
66/// this succeeds, the GetShiftedValue function will be called to produce the
67/// value.
68static bool CanEvaluateShifted(Value *V, unsigned NumBits, bool isLeftShift,
69                               InstCombiner &IC) {
70  // We can always evaluate constants shifted.
71  if (isa<Constant>(V))
72    return true;
73
74  Instruction *I = dyn_cast<Instruction>(V);
75  if (!I) return false;
76
77  // If this is the opposite shift, we can directly reuse the input of the shift
78  // if the needed bits are already zero in the input.  This allows us to reuse
79  // the value which means that we don't care if the shift has multiple uses.
80  //  TODO:  Handle opposite shift by exact value.
81  ConstantInt *CI = 0;
82  if ((isLeftShift && match(I, m_LShr(m_Value(), m_ConstantInt(CI)))) ||
83      (!isLeftShift && match(I, m_Shl(m_Value(), m_ConstantInt(CI))))) {
84    if (CI->getZExtValue() == NumBits) {
85      // TODO: Check that the input bits are already zero with MaskedValueIsZero
86#if 0
87      // If this is a truncate of a logical shr, we can truncate it to a smaller
88      // lshr iff we know that the bits we would otherwise be shifting in are
89      // already zeros.
90      uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
91      uint32_t BitWidth = Ty->getScalarSizeInBits();
92      if (MaskedValueIsZero(I->getOperand(0),
93            APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
94          CI->getLimitedValue(BitWidth) < BitWidth) {
95        return CanEvaluateTruncated(I->getOperand(0), Ty);
96      }
97#endif
98
99    }
100  }
101
102  // We can't mutate something that has multiple uses: doing so would
103  // require duplicating the instruction in general, which isn't profitable.
104  if (!I->hasOneUse()) return false;
105
106  switch (I->getOpcode()) {
107  default: return false;
108  case Instruction::And:
109  case Instruction::Or:
110  case Instruction::Xor:
111    // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
112    return CanEvaluateShifted(I->getOperand(0), NumBits, isLeftShift, IC) &&
113           CanEvaluateShifted(I->getOperand(1), NumBits, isLeftShift, IC);
114
115  case Instruction::Shl: {
116    // We can often fold the shift into shifts-by-a-constant.
117    CI = dyn_cast<ConstantInt>(I->getOperand(1));
118    if (CI == 0) return false;
119
120    // We can always fold shl(c1)+shl(c2) -> shl(c1+c2).
121    if (isLeftShift) return true;
122
123    // We can always turn shl(c)+shr(c) -> and(c2).
124    if (CI->getValue() == NumBits) return true;
125
126    unsigned TypeWidth = I->getType()->getScalarSizeInBits();
127
128    // We can turn shl(c1)+shr(c2) -> shl(c3)+and(c4), but it isn't
129    // profitable unless we know the and'd out bits are already zero.
130    if (CI->getZExtValue() > NumBits) {
131      unsigned LowBits = TypeWidth - CI->getZExtValue();
132      if (MaskedValueIsZero(I->getOperand(0),
133                       APInt::getLowBitsSet(TypeWidth, NumBits) << LowBits))
134        return true;
135    }
136
137    return false;
138  }
139  case Instruction::LShr: {
140    // We can often fold the shift into shifts-by-a-constant.
141    CI = dyn_cast<ConstantInt>(I->getOperand(1));
142    if (CI == 0) return false;
143
144    // We can always fold lshr(c1)+lshr(c2) -> lshr(c1+c2).
145    if (!isLeftShift) return true;
146
147    // We can always turn lshr(c)+shl(c) -> and(c2).
148    if (CI->getValue() == NumBits) return true;
149
150    unsigned TypeWidth = I->getType()->getScalarSizeInBits();
151
152    // We can always turn lshr(c1)+shl(c2) -> lshr(c3)+and(c4), but it isn't
153    // profitable unless we know the and'd out bits are already zero.
154    if (CI->getZExtValue() > NumBits) {
155      unsigned LowBits = CI->getZExtValue() - NumBits;
156      if (MaskedValueIsZero(I->getOperand(0),
157                          APInt::getLowBitsSet(TypeWidth, NumBits) << LowBits))
158        return true;
159    }
160
161    return false;
162  }
163  case Instruction::Select: {
164    SelectInst *SI = cast<SelectInst>(I);
165    return CanEvaluateShifted(SI->getTrueValue(), NumBits, isLeftShift, IC) &&
166           CanEvaluateShifted(SI->getFalseValue(), NumBits, isLeftShift, IC);
167  }
168  case Instruction::PHI: {
169    // We can change a phi if we can change all operands.  Note that we never
170    // get into trouble with cyclic PHIs here because we only consider
171    // instructions with a single use.
172    PHINode *PN = cast<PHINode>(I);
173    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
174      if (!CanEvaluateShifted(PN->getIncomingValue(i), NumBits, isLeftShift,IC))
175        return false;
176    return true;
177  }
178  }
179}
180
181/// GetShiftedValue - When CanEvaluateShifted returned true for an expression,
182/// this value inserts the new computation that produces the shifted value.
183static Value *GetShiftedValue(Value *V, unsigned NumBits, bool isLeftShift,
184                              InstCombiner &IC) {
185  // We can always evaluate constants shifted.
186  if (Constant *C = dyn_cast<Constant>(V)) {
187    if (isLeftShift)
188      V = IC.Builder->CreateShl(C, NumBits);
189    else
190      V = IC.Builder->CreateLShr(C, NumBits);
191    // If we got a constantexpr back, try to simplify it with TD info.
192    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
193      V = ConstantFoldConstantExpression(CE, IC.getTargetData());
194    return V;
195  }
196
197  Instruction *I = cast<Instruction>(V);
198  IC.Worklist.Add(I);
199
200  switch (I->getOpcode()) {
201  default: assert(0 && "Inconsistency with CanEvaluateShifted");
202  case Instruction::And:
203  case Instruction::Or:
204  case Instruction::Xor:
205    // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
206    I->setOperand(0, GetShiftedValue(I->getOperand(0), NumBits,isLeftShift,IC));
207    I->setOperand(1, GetShiftedValue(I->getOperand(1), NumBits,isLeftShift,IC));
208    return I;
209
210  case Instruction::Shl: {
211    BinaryOperator *BO = cast<BinaryOperator>(I);
212    unsigned TypeWidth = BO->getType()->getScalarSizeInBits();
213
214    // We only accept shifts-by-a-constant in CanEvaluateShifted.
215    ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
216
217    // We can always fold shl(c1)+shl(c2) -> shl(c1+c2).
218    if (isLeftShift) {
219      // If this is oversized composite shift, then unsigned shifts get 0.
220      unsigned NewShAmt = NumBits+CI->getZExtValue();
221      if (NewShAmt >= TypeWidth)
222        return Constant::getNullValue(I->getType());
223
224      BO->setOperand(1, ConstantInt::get(BO->getType(), NewShAmt));
225      BO->setHasNoUnsignedWrap(false);
226      BO->setHasNoSignedWrap(false);
227      return I;
228    }
229
230    // We turn shl(c)+lshr(c) -> and(c2) if the input doesn't already have
231    // zeros.
232    if (CI->getValue() == NumBits) {
233      APInt Mask(APInt::getLowBitsSet(TypeWidth, TypeWidth - NumBits));
234      V = IC.Builder->CreateAnd(BO->getOperand(0),
235                                ConstantInt::get(BO->getContext(), Mask));
236      if (Instruction *VI = dyn_cast<Instruction>(V)) {
237        VI->moveBefore(BO);
238        VI->takeName(BO);
239      }
240      return V;
241    }
242
243    // We turn shl(c1)+shr(c2) -> shl(c3)+and(c4), but only when we know that
244    // the and won't be needed.
245    assert(CI->getZExtValue() > NumBits);
246    BO->setOperand(1, ConstantInt::get(BO->getType(),
247                                       CI->getZExtValue() - NumBits));
248    BO->setHasNoUnsignedWrap(false);
249    BO->setHasNoSignedWrap(false);
250    return BO;
251  }
252  case Instruction::LShr: {
253    BinaryOperator *BO = cast<BinaryOperator>(I);
254    unsigned TypeWidth = BO->getType()->getScalarSizeInBits();
255    // We only accept shifts-by-a-constant in CanEvaluateShifted.
256    ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
257
258    // We can always fold lshr(c1)+lshr(c2) -> lshr(c1+c2).
259    if (!isLeftShift) {
260      // If this is oversized composite shift, then unsigned shifts get 0.
261      unsigned NewShAmt = NumBits+CI->getZExtValue();
262      if (NewShAmt >= TypeWidth)
263        return Constant::getNullValue(BO->getType());
264
265      BO->setOperand(1, ConstantInt::get(BO->getType(), NewShAmt));
266      BO->setIsExact(false);
267      return I;
268    }
269
270    // We turn lshr(c)+shl(c) -> and(c2) if the input doesn't already have
271    // zeros.
272    if (CI->getValue() == NumBits) {
273      APInt Mask(APInt::getHighBitsSet(TypeWidth, TypeWidth - NumBits));
274      V = IC.Builder->CreateAnd(I->getOperand(0),
275                                ConstantInt::get(BO->getContext(), Mask));
276      if (Instruction *VI = dyn_cast<Instruction>(V)) {
277        VI->moveBefore(I);
278        VI->takeName(I);
279      }
280      return V;
281    }
282
283    // We turn lshr(c1)+shl(c2) -> lshr(c3)+and(c4), but only when we know that
284    // the and won't be needed.
285    assert(CI->getZExtValue() > NumBits);
286    BO->setOperand(1, ConstantInt::get(BO->getType(),
287                                       CI->getZExtValue() - NumBits));
288    BO->setIsExact(false);
289    return BO;
290  }
291
292  case Instruction::Select:
293    I->setOperand(1, GetShiftedValue(I->getOperand(1), NumBits,isLeftShift,IC));
294    I->setOperand(2, GetShiftedValue(I->getOperand(2), NumBits,isLeftShift,IC));
295    return I;
296  case Instruction::PHI: {
297    // We can change a phi if we can change all operands.  Note that we never
298    // get into trouble with cyclic PHIs here because we only consider
299    // instructions with a single use.
300    PHINode *PN = cast<PHINode>(I);
301    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
302      PN->setIncomingValue(i, GetShiftedValue(PN->getIncomingValue(i),
303                                              NumBits, isLeftShift, IC));
304    return PN;
305  }
306  }
307}
308
309
310
311Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
312                                               BinaryOperator &I) {
313  bool isLeftShift = I.getOpcode() == Instruction::Shl;
314
315
316  // See if we can propagate this shift into the input, this covers the trivial
317  // cast of lshr(shl(x,c1),c2) as well as other more complex cases.
318  if (I.getOpcode() != Instruction::AShr &&
319      CanEvaluateShifted(Op0, Op1->getZExtValue(), isLeftShift, *this)) {
320    DEBUG(dbgs() << "ICE: GetShiftedValue propagating shift through expression"
321              " to eliminate shift:\n  IN: " << *Op0 << "\n  SH: " << I <<"\n");
322
323    return ReplaceInstUsesWith(I,
324                 GetShiftedValue(Op0, Op1->getZExtValue(), isLeftShift, *this));
325  }
326
327
328  // See if we can simplify any instructions used by the instruction whose sole
329  // purpose is to compute bits we don't care about.
330  uint32_t TypeBits = Op0->getType()->getScalarSizeInBits();
331
332  // shl i32 X, 32 = 0 and srl i8 Y, 9 = 0, ... just don't eliminate
333  // a signed shift.
334  //
335  if (Op1->uge(TypeBits)) {
336    if (I.getOpcode() != Instruction::AShr)
337      return ReplaceInstUsesWith(I, Constant::getNullValue(Op0->getType()));
338    // ashr i32 X, 32 --> ashr i32 X, 31
339    I.setOperand(1, ConstantInt::get(I.getType(), TypeBits-1));
340    return &I;
341  }
342
343  // ((X*C1) << C2) == (X * (C1 << C2))
344  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0))
345    if (BO->getOpcode() == Instruction::Mul && isLeftShift)
346      if (Constant *BOOp = dyn_cast<Constant>(BO->getOperand(1)))
347        return BinaryOperator::CreateMul(BO->getOperand(0),
348                                        ConstantExpr::getShl(BOOp, Op1));
349
350  // Try to fold constant and into select arguments.
351  if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
352    if (Instruction *R = FoldOpIntoSelect(I, SI))
353      return R;
354  if (isa<PHINode>(Op0))
355    if (Instruction *NV = FoldOpIntoPhi(I))
356      return NV;
357
358  // Fold shift2(trunc(shift1(x,c1)), c2) -> trunc(shift2(shift1(x,c1),c2))
359  if (TruncInst *TI = dyn_cast<TruncInst>(Op0)) {
360    Instruction *TrOp = dyn_cast<Instruction>(TI->getOperand(0));
361    // If 'shift2' is an ashr, we would have to get the sign bit into a funny
362    // place.  Don't try to do this transformation in this case.  Also, we
363    // require that the input operand is a shift-by-constant so that we have
364    // confidence that the shifts will get folded together.  We could do this
365    // xform in more cases, but it is unlikely to be profitable.
366    if (TrOp && I.isLogicalShift() && TrOp->isShift() &&
367        isa<ConstantInt>(TrOp->getOperand(1))) {
368      // Okay, we'll do this xform.  Make the shift of shift.
369      Constant *ShAmt = ConstantExpr::getZExt(Op1, TrOp->getType());
370      // (shift2 (shift1 & 0x00FF), c2)
371      Value *NSh = Builder->CreateBinOp(I.getOpcode(), TrOp, ShAmt,I.getName());
372
373      // For logical shifts, the truncation has the effect of making the high
374      // part of the register be zeros.  Emulate this by inserting an AND to
375      // clear the top bits as needed.  This 'and' will usually be zapped by
376      // other xforms later if dead.
377      unsigned SrcSize = TrOp->getType()->getScalarSizeInBits();
378      unsigned DstSize = TI->getType()->getScalarSizeInBits();
379      APInt MaskV(APInt::getLowBitsSet(SrcSize, DstSize));
380
381      // The mask we constructed says what the trunc would do if occurring
382      // between the shifts.  We want to know the effect *after* the second
383      // shift.  We know that it is a logical shift by a constant, so adjust the
384      // mask as appropriate.
385      if (I.getOpcode() == Instruction::Shl)
386        MaskV <<= Op1->getZExtValue();
387      else {
388        assert(I.getOpcode() == Instruction::LShr && "Unknown logical shift");
389        MaskV = MaskV.lshr(Op1->getZExtValue());
390      }
391
392      // shift1 & 0x00FF
393      Value *And = Builder->CreateAnd(NSh,
394                                      ConstantInt::get(I.getContext(), MaskV),
395                                      TI->getName());
396
397      // Return the value truncated to the interesting size.
398      return new TruncInst(And, I.getType());
399    }
400  }
401
402  if (Op0->hasOneUse()) {
403    if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
404      // Turn ((X >> C) + Y) << C  ->  (X + (Y << C)) & (~0 << C)
405      Value *V1, *V2;
406      ConstantInt *CC;
407      switch (Op0BO->getOpcode()) {
408      default: break;
409      case Instruction::Add:
410      case Instruction::And:
411      case Instruction::Or:
412      case Instruction::Xor: {
413        // These operators commute.
414        // Turn (Y + (X >> C)) << C  ->  (X + (Y << C)) & (~0 << C)
415        if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() &&
416            match(Op0BO->getOperand(1), m_Shr(m_Value(V1),
417                  m_Specific(Op1)))) {
418          Value *YS =         // (Y << C)
419            Builder->CreateShl(Op0BO->getOperand(0), Op1, Op0BO->getName());
420          // (X + (Y << C))
421          Value *X = Builder->CreateBinOp(Op0BO->getOpcode(), YS, V1,
422                                          Op0BO->getOperand(1)->getName());
423          uint32_t Op1Val = Op1->getLimitedValue(TypeBits);
424          return BinaryOperator::CreateAnd(X, ConstantInt::get(I.getContext(),
425                     APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
426        }
427
428        // Turn (Y + ((X >> C) & CC)) << C  ->  ((X & (CC << C)) + (Y << C))
429        Value *Op0BOOp1 = Op0BO->getOperand(1);
430        if (isLeftShift && Op0BOOp1->hasOneUse() &&
431            match(Op0BOOp1,
432                  m_And(m_Shr(m_Value(V1), m_Specific(Op1)),
433                        m_ConstantInt(CC))) &&
434            cast<BinaryOperator>(Op0BOOp1)->getOperand(0)->hasOneUse()) {
435          Value *YS =   // (Y << C)
436            Builder->CreateShl(Op0BO->getOperand(0), Op1,
437                                         Op0BO->getName());
438          // X & (CC << C)
439          Value *XM = Builder->CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
440                                         V1->getName()+".mask");
441          return BinaryOperator::Create(Op0BO->getOpcode(), YS, XM);
442        }
443      }
444
445      // FALL THROUGH.
446      case Instruction::Sub: {
447        // Turn ((X >> C) + Y) << C  ->  (X + (Y << C)) & (~0 << C)
448        if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
449            match(Op0BO->getOperand(0), m_Shr(m_Value(V1),
450                  m_Specific(Op1)))) {
451          Value *YS =  // (Y << C)
452            Builder->CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName());
453          // (X + (Y << C))
454          Value *X = Builder->CreateBinOp(Op0BO->getOpcode(), V1, YS,
455                                          Op0BO->getOperand(0)->getName());
456          uint32_t Op1Val = Op1->getLimitedValue(TypeBits);
457          return BinaryOperator::CreateAnd(X, ConstantInt::get(I.getContext(),
458                     APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
459        }
460
461        // Turn (((X >> C)&CC) + Y) << C  ->  (X + (Y << C)) & (CC << C)
462        if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
463            match(Op0BO->getOperand(0),
464                  m_And(m_Shr(m_Value(V1), m_Value(V2)),
465                        m_ConstantInt(CC))) && V2 == Op1 &&
466            cast<BinaryOperator>(Op0BO->getOperand(0))
467                ->getOperand(0)->hasOneUse()) {
468          Value *YS = // (Y << C)
469            Builder->CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName());
470          // X & (CC << C)
471          Value *XM = Builder->CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
472                                         V1->getName()+".mask");
473
474          return BinaryOperator::Create(Op0BO->getOpcode(), XM, YS);
475        }
476
477        break;
478      }
479      }
480
481
482      // If the operand is an bitwise operator with a constant RHS, and the
483      // shift is the only use, we can pull it out of the shift.
484      if (ConstantInt *Op0C = dyn_cast<ConstantInt>(Op0BO->getOperand(1))) {
485        bool isValid = true;     // Valid only for And, Or, Xor
486        bool highBitSet = false; // Transform if high bit of constant set?
487
488        switch (Op0BO->getOpcode()) {
489        default: isValid = false; break;   // Do not perform transform!
490        case Instruction::Add:
491          isValid = isLeftShift;
492          break;
493        case Instruction::Or:
494        case Instruction::Xor:
495          highBitSet = false;
496          break;
497        case Instruction::And:
498          highBitSet = true;
499          break;
500        }
501
502        // If this is a signed shift right, and the high bit is modified
503        // by the logical operation, do not perform the transformation.
504        // The highBitSet boolean indicates the value of the high bit of
505        // the constant which would cause it to be modified for this
506        // operation.
507        //
508        if (isValid && I.getOpcode() == Instruction::AShr)
509          isValid = Op0C->getValue()[TypeBits-1] == highBitSet;
510
511        if (isValid) {
512          Constant *NewRHS = ConstantExpr::get(I.getOpcode(), Op0C, Op1);
513
514          Value *NewShift =
515            Builder->CreateBinOp(I.getOpcode(), Op0BO->getOperand(0), Op1);
516          NewShift->takeName(Op0BO);
517
518          return BinaryOperator::Create(Op0BO->getOpcode(), NewShift,
519                                        NewRHS);
520        }
521      }
522    }
523  }
524
525  // Find out if this is a shift of a shift by a constant.
526  BinaryOperator *ShiftOp = dyn_cast<BinaryOperator>(Op0);
527  if (ShiftOp && !ShiftOp->isShift())
528    ShiftOp = 0;
529
530  if (ShiftOp && isa<ConstantInt>(ShiftOp->getOperand(1))) {
531    ConstantInt *ShiftAmt1C = cast<ConstantInt>(ShiftOp->getOperand(1));
532    uint32_t ShiftAmt1 = ShiftAmt1C->getLimitedValue(TypeBits);
533    uint32_t ShiftAmt2 = Op1->getLimitedValue(TypeBits);
534    assert(ShiftAmt2 != 0 && "Should have been simplified earlier");
535    if (ShiftAmt1 == 0) return 0;  // Will be simplified in the future.
536    Value *X = ShiftOp->getOperand(0);
537
538    uint32_t AmtSum = ShiftAmt1+ShiftAmt2;   // Fold into one big shift.
539
540    IntegerType *Ty = cast<IntegerType>(I.getType());
541
542    // Check for (X << c1) << c2  and  (X >> c1) >> c2
543    if (I.getOpcode() == ShiftOp->getOpcode()) {
544      // If this is oversized composite shift, then unsigned shifts get 0, ashr
545      // saturates.
546      if (AmtSum >= TypeBits) {
547        if (I.getOpcode() != Instruction::AShr)
548          return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
549        AmtSum = TypeBits-1;  // Saturate to 31 for i32 ashr.
550      }
551
552      return BinaryOperator::Create(I.getOpcode(), X,
553                                    ConstantInt::get(Ty, AmtSum));
554    }
555
556    if (ShiftAmt1 == ShiftAmt2) {
557      // If we have ((X >>? C) << C), turn this into X & (-1 << C).
558      if (I.getOpcode() == Instruction::Shl &&
559          ShiftOp->getOpcode() != Instruction::Shl) {
560        APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt1));
561        return BinaryOperator::CreateAnd(X,
562                                         ConstantInt::get(I.getContext(),Mask));
563      }
564      // If we have ((X << C) >>u C), turn this into X & (-1 >>u C).
565      if (I.getOpcode() == Instruction::LShr &&
566          ShiftOp->getOpcode() == Instruction::Shl) {
567        APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt1));
568        return BinaryOperator::CreateAnd(X,
569                                        ConstantInt::get(I.getContext(), Mask));
570      }
571    } else if (ShiftAmt1 < ShiftAmt2) {
572      uint32_t ShiftDiff = ShiftAmt2-ShiftAmt1;
573
574      // (X >>? C1) << C2 --> X << (C2-C1) & (-1 << C2)
575      if (I.getOpcode() == Instruction::Shl &&
576          ShiftOp->getOpcode() != Instruction::Shl) {
577        assert(ShiftOp->getOpcode() == Instruction::LShr ||
578               ShiftOp->getOpcode() == Instruction::AShr);
579        Value *Shift = Builder->CreateShl(X, ConstantInt::get(Ty, ShiftDiff));
580
581        APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2));
582        return BinaryOperator::CreateAnd(Shift,
583                                         ConstantInt::get(I.getContext(),Mask));
584      }
585
586      // (X << C1) >>u C2  --> X >>u (C2-C1) & (-1 >> C2)
587      if (I.getOpcode() == Instruction::LShr &&
588          ShiftOp->getOpcode() == Instruction::Shl) {
589        assert(ShiftOp->getOpcode() == Instruction::Shl);
590        Value *Shift = Builder->CreateLShr(X, ConstantInt::get(Ty, ShiftDiff));
591
592        APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
593        return BinaryOperator::CreateAnd(Shift,
594                                         ConstantInt::get(I.getContext(),Mask));
595      }
596
597      // We can't handle (X << C1) >>s C2, it shifts arbitrary bits in.
598    } else {
599      assert(ShiftAmt2 < ShiftAmt1);
600      uint32_t ShiftDiff = ShiftAmt1-ShiftAmt2;
601
602      // (X >>? C1) << C2 --> X >>? (C1-C2) & (-1 << C2)
603      if (I.getOpcode() == Instruction::Shl &&
604          ShiftOp->getOpcode() != Instruction::Shl) {
605        Value *Shift = Builder->CreateBinOp(ShiftOp->getOpcode(), X,
606                                            ConstantInt::get(Ty, ShiftDiff));
607
608        APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2));
609        return BinaryOperator::CreateAnd(Shift,
610                                         ConstantInt::get(I.getContext(),Mask));
611      }
612
613      // (X << C1) >>u C2  --> X << (C1-C2) & (-1 >> C2)
614      if (I.getOpcode() == Instruction::LShr &&
615          ShiftOp->getOpcode() == Instruction::Shl) {
616        Value *Shift = Builder->CreateShl(X, ConstantInt::get(Ty, ShiftDiff));
617
618        APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
619        return BinaryOperator::CreateAnd(Shift,
620                                         ConstantInt::get(I.getContext(),Mask));
621      }
622
623      // We can't handle (X << C1) >>a C2, it shifts arbitrary bits in.
624    }
625  }
626  return 0;
627}
628
629Instruction *InstCombiner::visitShl(BinaryOperator &I) {
630  if (Value *V = SimplifyShlInst(I.getOperand(0), I.getOperand(1),
631                                 I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
632                                 TD))
633    return ReplaceInstUsesWith(I, V);
634
635  if (Instruction *V = commonShiftTransforms(I))
636    return V;
637
638  if (ConstantInt *Op1C = dyn_cast<ConstantInt>(I.getOperand(1))) {
639    unsigned ShAmt = Op1C->getZExtValue();
640
641    // If the shifted-out value is known-zero, then this is a NUW shift.
642    if (!I.hasNoUnsignedWrap() &&
643        MaskedValueIsZero(I.getOperand(0),
644                          APInt::getHighBitsSet(Op1C->getBitWidth(), ShAmt))) {
645          I.setHasNoUnsignedWrap();
646          return &I;
647        }
648
649    // If the shifted out value is all signbits, this is a NSW shift.
650    if (!I.hasNoSignedWrap() &&
651        ComputeNumSignBits(I.getOperand(0)) > ShAmt) {
652      I.setHasNoSignedWrap();
653      return &I;
654    }
655  }
656
657  // (C1 << A) << C2 -> (C1 << C2) << A
658  Constant *C1, *C2;
659  Value *A;
660  if (match(I.getOperand(0), m_OneUse(m_Shl(m_Constant(C1), m_Value(A)))) &&
661      match(I.getOperand(1), m_Constant(C2)))
662    return BinaryOperator::CreateShl(ConstantExpr::getShl(C1, C2), A);
663
664  return 0;
665}
666
667Instruction *InstCombiner::visitLShr(BinaryOperator &I) {
668  if (Value *V = SimplifyLShrInst(I.getOperand(0), I.getOperand(1),
669                                  I.isExact(), TD))
670    return ReplaceInstUsesWith(I, V);
671
672  if (Instruction *R = commonShiftTransforms(I))
673    return R;
674
675  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
676
677  if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
678    unsigned ShAmt = Op1C->getZExtValue();
679
680    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Op0)) {
681      unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
682      // ctlz.i32(x)>>5  --> zext(x == 0)
683      // cttz.i32(x)>>5  --> zext(x == 0)
684      // ctpop.i32(x)>>5 --> zext(x == -1)
685      if ((II->getIntrinsicID() == Intrinsic::ctlz ||
686           II->getIntrinsicID() == Intrinsic::cttz ||
687           II->getIntrinsicID() == Intrinsic::ctpop) &&
688          isPowerOf2_32(BitWidth) && Log2_32(BitWidth) == ShAmt) {
689        bool isCtPop = II->getIntrinsicID() == Intrinsic::ctpop;
690        Constant *RHS = ConstantInt::getSigned(Op0->getType(), isCtPop ? -1:0);
691        Value *Cmp = Builder->CreateICmpEQ(II->getArgOperand(0), RHS);
692        return new ZExtInst(Cmp, II->getType());
693      }
694    }
695
696    // If the shifted-out value is known-zero, then this is an exact shift.
697    if (!I.isExact() &&
698        MaskedValueIsZero(Op0,APInt::getLowBitsSet(Op1C->getBitWidth(),ShAmt))){
699      I.setIsExact();
700      return &I;
701    }
702  }
703
704  return 0;
705}
706
707Instruction *InstCombiner::visitAShr(BinaryOperator &I) {
708  if (Value *V = SimplifyAShrInst(I.getOperand(0), I.getOperand(1),
709                                  I.isExact(), TD))
710    return ReplaceInstUsesWith(I, V);
711
712  if (Instruction *R = commonShiftTransforms(I))
713    return R;
714
715  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
716
717  if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
718    unsigned ShAmt = Op1C->getZExtValue();
719
720    // If the input is a SHL by the same constant (ashr (shl X, C), C), then we
721    // have a sign-extend idiom.
722    Value *X;
723    if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1)))) {
724      // If the left shift is just shifting out partial signbits, delete the
725      // extension.
726      if (cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap())
727        return ReplaceInstUsesWith(I, X);
728
729      // If the input is an extension from the shifted amount value, e.g.
730      //   %x = zext i8 %A to i32
731      //   %y = shl i32 %x, 24
732      //   %z = ashr %y, 24
733      // then turn this into "z = sext i8 A to i32".
734      if (ZExtInst *ZI = dyn_cast<ZExtInst>(X)) {
735        uint32_t SrcBits = ZI->getOperand(0)->getType()->getScalarSizeInBits();
736        uint32_t DestBits = ZI->getType()->getScalarSizeInBits();
737        if (Op1C->getZExtValue() == DestBits-SrcBits)
738          return new SExtInst(ZI->getOperand(0), ZI->getType());
739      }
740    }
741
742    // If the shifted-out value is known-zero, then this is an exact shift.
743    if (!I.isExact() &&
744        MaskedValueIsZero(Op0,APInt::getLowBitsSet(Op1C->getBitWidth(),ShAmt))){
745      I.setIsExact();
746      return &I;
747    }
748  }
749
750  // See if we can turn a signed shr into an unsigned shr.
751  if (MaskedValueIsZero(Op0,
752                        APInt::getSignBit(I.getType()->getScalarSizeInBits())))
753    return BinaryOperator::CreateLShr(Op0, Op1);
754
755  // Arithmetic shifting an all-sign-bit value is a no-op.
756  unsigned NumSignBits = ComputeNumSignBits(Op0);
757  if (NumSignBits == Op0->getType()->getScalarSizeInBits())
758    return ReplaceInstUsesWith(I, Op0);
759
760  return 0;
761}
762
763