InstCombineAddSub.cpp revision 251662
1//===- InstCombineAddSub.cpp ----------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visit functions for add, fadd, sub, and fsub.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/Analysis/InstructionSimplify.h"
16#include "llvm/IR/DataLayout.h"
17#include "llvm/Support/GetElementPtrTypeIterator.h"
18#include "llvm/Support/PatternMatch.h"
19using namespace llvm;
20using namespace PatternMatch;
21
22namespace {
23
24  /// Class representing coefficient of floating-point addend.
25  /// This class needs to be highly efficient, which is especially true for
26  /// the constructor. As of I write this comment, the cost of the default
27  /// constructor is merely 4-byte-store-zero (Assuming compiler is able to
28  /// perform write-merging).
29  ///
30  class FAddendCoef {
31  public:
32    // The constructor has to initialize a APFloat, which is uncessary for
33    // most addends which have coefficient either 1 or -1. So, the constructor
34    // is expensive. In order to avoid the cost of the constructor, we should
35    // reuse some instances whenever possible. The pre-created instances
36    // FAddCombine::Add[0-5] embodies this idea.
37    //
38    FAddendCoef() : IsFp(false), BufHasFpVal(false), IntVal(0) {}
39    ~FAddendCoef();
40
41    void set(short C) {
42      assert(!insaneIntVal(C) && "Insane coefficient");
43      IsFp = false; IntVal = C;
44    }
45
46    void set(const APFloat& C);
47
48    void negate();
49
50    bool isZero() const { return isInt() ? !IntVal : getFpVal().isZero(); }
51    Value *getValue(Type *) const;
52
53    // If possible, don't define operator+/operator- etc because these
54    // operators inevitably call FAddendCoef's constructor which is not cheap.
55    void operator=(const FAddendCoef &A);
56    void operator+=(const FAddendCoef &A);
57    void operator-=(const FAddendCoef &A);
58    void operator*=(const FAddendCoef &S);
59
60    bool isOne() const { return isInt() && IntVal == 1; }
61    bool isTwo() const { return isInt() && IntVal == 2; }
62    bool isMinusOne() const { return isInt() && IntVal == -1; }
63    bool isMinusTwo() const { return isInt() && IntVal == -2; }
64
65  private:
66    bool insaneIntVal(int V) { return V > 4 || V < -4; }
67    APFloat *getFpValPtr(void)
68      { return reinterpret_cast<APFloat*>(&FpValBuf.buffer[0]); }
69    const APFloat *getFpValPtr(void) const
70      { return reinterpret_cast<const APFloat*>(&FpValBuf.buffer[0]); }
71
72    const APFloat &getFpVal(void) const {
73      assert(IsFp && BufHasFpVal && "Incorret state");
74      return *getFpValPtr();
75    }
76
77    APFloat &getFpVal(void) {
78      assert(IsFp && BufHasFpVal && "Incorret state");
79      return *getFpValPtr();
80    }
81
82    bool isInt() const { return !IsFp; }
83
84    // If the coefficient is represented by an integer, promote it to a
85    // floating point.
86    void convertToFpType(const fltSemantics &Sem);
87
88    // Construct an APFloat from a signed integer.
89    // TODO: We should get rid of this function when APFloat can be constructed
90    //       from an *SIGNED* integer.
91    APFloat createAPFloatFromInt(const fltSemantics &Sem, int Val);
92  private:
93
94    bool IsFp;
95
96    // True iff FpValBuf contains an instance of APFloat.
97    bool BufHasFpVal;
98
99    // The integer coefficient of an individual addend is either 1 or -1,
100    // and we try to simplify at most 4 addends from neighboring at most
101    // two instructions. So the range of <IntVal> falls in [-4, 4]. APInt
102    // is overkill of this end.
103    short IntVal;
104
105    AlignedCharArrayUnion<APFloat> FpValBuf;
106  };
107
108  /// FAddend is used to represent floating-point addend. An addend is
109  /// represented as <C, V>, where the V is a symbolic value, and C is a
110  /// constant coefficient. A constant addend is represented as <C, 0>.
111  ///
112  class FAddend {
113  public:
114    FAddend() { Val = 0; }
115
116    Value *getSymVal (void) const { return Val; }
117    const FAddendCoef &getCoef(void) const { return Coeff; }
118
119    bool isConstant() const { return Val == 0; }
120    bool isZero() const { return Coeff.isZero(); }
121
122    void set(short Coefficient, Value *V) { Coeff.set(Coefficient), Val = V; }
123    void set(const APFloat& Coefficient, Value *V)
124      { Coeff.set(Coefficient); Val = V; }
125    void set(const ConstantFP* Coefficient, Value *V)
126      { Coeff.set(Coefficient->getValueAPF()); Val = V; }
127
128    void negate() { Coeff.negate(); }
129
130    /// Drill down the U-D chain one step to find the definition of V, and
131    /// try to break the definition into one or two addends.
132    static unsigned drillValueDownOneStep(Value* V, FAddend &A0, FAddend &A1);
133
134    /// Similar to FAddend::drillDownOneStep() except that the value being
135    /// splitted is the addend itself.
136    unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1) const;
137
138    void operator+=(const FAddend &T) {
139      assert((Val == T.Val) && "Symbolic-values disagree");
140      Coeff += T.Coeff;
141    }
142
143  private:
144    void Scale(const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; }
145
146    // This addend has the value of "Coeff * Val".
147    Value *Val;
148    FAddendCoef Coeff;
149  };
150
151  /// FAddCombine is the class for optimizing an unsafe fadd/fsub along
152  /// with its neighboring at most two instructions.
153  ///
154  class FAddCombine {
155  public:
156    FAddCombine(InstCombiner::BuilderTy *B) : Builder(B), Instr(0) {}
157    Value *simplify(Instruction *FAdd);
158
159  private:
160    typedef SmallVector<const FAddend*, 4> AddendVect;
161
162    Value *simplifyFAdd(AddendVect& V, unsigned InstrQuota);
163
164    Value *performFactorization(Instruction *I);
165
166    /// Convert given addend to a Value
167    Value *createAddendVal(const FAddend &A, bool& NeedNeg);
168
169    /// Return the number of instructions needed to emit the N-ary addition.
170    unsigned calcInstrNumber(const AddendVect& Vect);
171    Value *createFSub(Value *Opnd0, Value *Opnd1);
172    Value *createFAdd(Value *Opnd0, Value *Opnd1);
173    Value *createFMul(Value *Opnd0, Value *Opnd1);
174    Value *createFDiv(Value *Opnd0, Value *Opnd1);
175    Value *createFNeg(Value *V);
176    Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota);
177    void createInstPostProc(Instruction *NewInst);
178
179    InstCombiner::BuilderTy *Builder;
180    Instruction *Instr;
181
182  private:
183     // Debugging stuff are clustered here.
184    #ifndef NDEBUG
185      unsigned CreateInstrNum;
186      void initCreateInstNum() { CreateInstrNum = 0; }
187      void incCreateInstNum() { CreateInstrNum++; }
188    #else
189      void initCreateInstNum() {}
190      void incCreateInstNum() {}
191    #endif
192  };
193}
194
195//===----------------------------------------------------------------------===//
196//
197// Implementation of
198//    {FAddendCoef, FAddend, FAddition, FAddCombine}.
199//
200//===----------------------------------------------------------------------===//
201FAddendCoef::~FAddendCoef() {
202  if (BufHasFpVal)
203    getFpValPtr()->~APFloat();
204}
205
206void FAddendCoef::set(const APFloat& C) {
207  APFloat *P = getFpValPtr();
208
209  if (isInt()) {
210    // As the buffer is meanless byte stream, we cannot call
211    // APFloat::operator=().
212    new(P) APFloat(C);
213  } else
214    *P = C;
215
216  IsFp = BufHasFpVal = true;
217}
218
219void FAddendCoef::convertToFpType(const fltSemantics &Sem) {
220  if (!isInt())
221    return;
222
223  APFloat *P = getFpValPtr();
224  if (IntVal > 0)
225    new(P) APFloat(Sem, IntVal);
226  else {
227    new(P) APFloat(Sem, 0 - IntVal);
228    P->changeSign();
229  }
230  IsFp = BufHasFpVal = true;
231}
232
233APFloat FAddendCoef::createAPFloatFromInt(const fltSemantics &Sem, int Val) {
234  if (Val >= 0)
235    return APFloat(Sem, Val);
236
237  APFloat T(Sem, 0 - Val);
238  T.changeSign();
239
240  return T;
241}
242
243void FAddendCoef::operator=(const FAddendCoef &That) {
244  if (That.isInt())
245    set(That.IntVal);
246  else
247    set(That.getFpVal());
248}
249
250void FAddendCoef::operator+=(const FAddendCoef &That) {
251  enum APFloat::roundingMode RndMode = APFloat::rmNearestTiesToEven;
252  if (isInt() == That.isInt()) {
253    if (isInt())
254      IntVal += That.IntVal;
255    else
256      getFpVal().add(That.getFpVal(), RndMode);
257    return;
258  }
259
260  if (isInt()) {
261    const APFloat &T = That.getFpVal();
262    convertToFpType(T.getSemantics());
263    getFpVal().add(T, RndMode);
264    return;
265  }
266
267  APFloat &T = getFpVal();
268  T.add(createAPFloatFromInt(T.getSemantics(), That.IntVal), RndMode);
269}
270
271void FAddendCoef::operator-=(const FAddendCoef &That) {
272  enum APFloat::roundingMode RndMode = APFloat::rmNearestTiesToEven;
273  if (isInt() == That.isInt()) {
274    if (isInt())
275      IntVal -= That.IntVal;
276    else
277      getFpVal().subtract(That.getFpVal(), RndMode);
278    return;
279  }
280
281  if (isInt()) {
282    const APFloat &T = That.getFpVal();
283    convertToFpType(T.getSemantics());
284    getFpVal().subtract(T, RndMode);
285    return;
286  }
287
288  APFloat &T = getFpVal();
289  T.subtract(createAPFloatFromInt(T.getSemantics(), IntVal), RndMode);
290}
291
292void FAddendCoef::operator*=(const FAddendCoef &That) {
293  if (That.isOne())
294    return;
295
296  if (That.isMinusOne()) {
297    negate();
298    return;
299  }
300
301  if (isInt() && That.isInt()) {
302    int Res = IntVal * (int)That.IntVal;
303    assert(!insaneIntVal(Res) && "Insane int value");
304    IntVal = Res;
305    return;
306  }
307
308  const fltSemantics &Semantic =
309    isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics();
310
311  if (isInt())
312    convertToFpType(Semantic);
313  APFloat &F0 = getFpVal();
314
315  if (That.isInt())
316    F0.multiply(createAPFloatFromInt(Semantic, That.IntVal),
317                APFloat::rmNearestTiesToEven);
318  else
319    F0.multiply(That.getFpVal(), APFloat::rmNearestTiesToEven);
320
321  return;
322}
323
324void FAddendCoef::negate() {
325  if (isInt())
326    IntVal = 0 - IntVal;
327  else
328    getFpVal().changeSign();
329}
330
331Value *FAddendCoef::getValue(Type *Ty) const {
332  return isInt() ?
333    ConstantFP::get(Ty, float(IntVal)) :
334    ConstantFP::get(Ty->getContext(), getFpVal());
335}
336
337// The definition of <Val>     Addends
338// =========================================
339//  A + B                     <1, A>, <1,B>
340//  A - B                     <1, A>, <1,B>
341//  0 - B                     <-1, B>
342//  C * A,                    <C, A>
343//  A + C                     <1, A> <C, NULL>
344//  0 +/- 0                   <0, NULL> (corner case)
345//
346// Legend: A and B are not constant, C is constant
347//
348unsigned FAddend::drillValueDownOneStep
349  (Value *Val, FAddend &Addend0, FAddend &Addend1) {
350  Instruction *I = 0;
351  if (Val == 0 || !(I = dyn_cast<Instruction>(Val)))
352    return 0;
353
354  unsigned Opcode = I->getOpcode();
355
356  if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) {
357    ConstantFP *C0, *C1;
358    Value *Opnd0 = I->getOperand(0);
359    Value *Opnd1 = I->getOperand(1);
360    if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->isZero())
361      Opnd0 = 0;
362
363    if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->isZero())
364      Opnd1 = 0;
365
366    if (Opnd0) {
367      if (!C0)
368        Addend0.set(1, Opnd0);
369      else
370        Addend0.set(C0, 0);
371    }
372
373    if (Opnd1) {
374      FAddend &Addend = Opnd0 ? Addend1 : Addend0;
375      if (!C1)
376        Addend.set(1, Opnd1);
377      else
378        Addend.set(C1, 0);
379      if (Opcode == Instruction::FSub)
380        Addend.negate();
381    }
382
383    if (Opnd0 || Opnd1)
384      return Opnd0 && Opnd1 ? 2 : 1;
385
386    // Both operands are zero. Weird!
387    Addend0.set(APFloat(C0->getValueAPF().getSemantics()), 0);
388    return 1;
389  }
390
391  if (I->getOpcode() == Instruction::FMul) {
392    Value *V0 = I->getOperand(0);
393    Value *V1 = I->getOperand(1);
394    if (ConstantFP *C = dyn_cast<ConstantFP>(V0)) {
395      Addend0.set(C, V1);
396      return 1;
397    }
398
399    if (ConstantFP *C = dyn_cast<ConstantFP>(V1)) {
400      Addend0.set(C, V0);
401      return 1;
402    }
403  }
404
405  return 0;
406}
407
408// Try to break *this* addend into two addends. e.g. Suppose this addend is
409// <2.3, V>, and V = X + Y, by calling this function, we obtain two addends,
410// i.e. <2.3, X> and <2.3, Y>.
411//
412unsigned FAddend::drillAddendDownOneStep
413  (FAddend &Addend0, FAddend &Addend1) const {
414  if (isConstant())
415    return 0;
416
417  unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1);
418  if (!BreakNum || Coeff.isOne())
419    return BreakNum;
420
421  Addend0.Scale(Coeff);
422
423  if (BreakNum == 2)
424    Addend1.Scale(Coeff);
425
426  return BreakNum;
427}
428
429// Try to perform following optimization on the input instruction I. Return the
430// simplified expression if was successful; otherwise, return 0.
431//
432//   Instruction "I" is                Simplified into
433// -------------------------------------------------------
434//   (x * y) +/- (x * z)               x * (y +/- z)
435//   (y / x) +/- (z / x)               (y +/- z) / x
436//
437Value *FAddCombine::performFactorization(Instruction *I) {
438  assert((I->getOpcode() == Instruction::FAdd ||
439          I->getOpcode() == Instruction::FSub) && "Expect add/sub");
440
441  Instruction *I0 = dyn_cast<Instruction>(I->getOperand(0));
442  Instruction *I1 = dyn_cast<Instruction>(I->getOperand(1));
443
444  if (!I0 || !I1 || I0->getOpcode() != I1->getOpcode())
445    return 0;
446
447  bool isMpy = false;
448  if (I0->getOpcode() == Instruction::FMul)
449    isMpy = true;
450  else if (I0->getOpcode() != Instruction::FDiv)
451    return 0;
452
453  Value *Opnd0_0 = I0->getOperand(0);
454  Value *Opnd0_1 = I0->getOperand(1);
455  Value *Opnd1_0 = I1->getOperand(0);
456  Value *Opnd1_1 = I1->getOperand(1);
457
458  //  Input Instr I       Factor   AddSub0  AddSub1
459  //  ----------------------------------------------
460  // (x*y) +/- (x*z)        x        y         z
461  // (y/x) +/- (z/x)        x        y         z
462  //
463  Value *Factor = 0;
464  Value *AddSub0 = 0, *AddSub1 = 0;
465
466  if (isMpy) {
467    if (Opnd0_0 == Opnd1_0 || Opnd0_0 == Opnd1_1)
468      Factor = Opnd0_0;
469    else if (Opnd0_1 == Opnd1_0 || Opnd0_1 == Opnd1_1)
470      Factor = Opnd0_1;
471
472    if (Factor) {
473      AddSub0 = (Factor == Opnd0_0) ? Opnd0_1 : Opnd0_0;
474      AddSub1 = (Factor == Opnd1_0) ? Opnd1_1 : Opnd1_0;
475    }
476  } else if (Opnd0_1 == Opnd1_1) {
477    Factor = Opnd0_1;
478    AddSub0 = Opnd0_0;
479    AddSub1 = Opnd1_0;
480  }
481
482  if (!Factor)
483    return 0;
484
485  // Create expression "NewAddSub = AddSub0 +/- AddsSub1"
486  Value *NewAddSub = (I->getOpcode() == Instruction::FAdd) ?
487                      createFAdd(AddSub0, AddSub1) :
488                      createFSub(AddSub0, AddSub1);
489  if (ConstantFP *CFP = dyn_cast<ConstantFP>(NewAddSub)) {
490    const APFloat &F = CFP->getValueAPF();
491    if (!F.isNormal() || F.isDenormal())
492      return 0;
493  }
494
495  if (isMpy)
496    return createFMul(Factor, NewAddSub);
497
498  return createFDiv(NewAddSub, Factor);
499}
500
501Value *FAddCombine::simplify(Instruction *I) {
502  assert(I->hasUnsafeAlgebra() && "Should be in unsafe mode");
503
504  // Currently we are not able to handle vector type.
505  if (I->getType()->isVectorTy())
506    return 0;
507
508  assert((I->getOpcode() == Instruction::FAdd ||
509          I->getOpcode() == Instruction::FSub) && "Expect add/sub");
510
511  // Save the instruction before calling other member-functions.
512  Instr = I;
513
514  FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1;
515
516  unsigned OpndNum = FAddend::drillValueDownOneStep(I, Opnd0, Opnd1);
517
518  // Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1.
519  unsigned Opnd0_ExpNum = 0;
520  unsigned Opnd1_ExpNum = 0;
521
522  if (!Opnd0.isConstant())
523    Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1);
524
525  // Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1.
526  if (OpndNum == 2 && !Opnd1.isConstant())
527    Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1);
528
529  // Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1
530  if (Opnd0_ExpNum && Opnd1_ExpNum) {
531    AddendVect AllOpnds;
532    AllOpnds.push_back(&Opnd0_0);
533    AllOpnds.push_back(&Opnd1_0);
534    if (Opnd0_ExpNum == 2)
535      AllOpnds.push_back(&Opnd0_1);
536    if (Opnd1_ExpNum == 2)
537      AllOpnds.push_back(&Opnd1_1);
538
539    // Compute instruction quota. We should save at least one instruction.
540    unsigned InstQuota = 0;
541
542    Value *V0 = I->getOperand(0);
543    Value *V1 = I->getOperand(1);
544    InstQuota = ((!isa<Constant>(V0) && V0->hasOneUse()) &&
545                 (!isa<Constant>(V1) && V1->hasOneUse())) ? 2 : 1;
546
547    if (Value *R = simplifyFAdd(AllOpnds, InstQuota))
548      return R;
549  }
550
551  if (OpndNum != 2) {
552    // The input instruction is : "I=0.0 +/- V". If the "V" were able to be
553    // splitted into two addends, say "V = X - Y", the instruction would have
554    // been optimized into "I = Y - X" in the previous steps.
555    //
556    const FAddendCoef &CE = Opnd0.getCoef();
557    return CE.isOne() ? Opnd0.getSymVal() : 0;
558  }
559
560  // step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1]
561  if (Opnd1_ExpNum) {
562    AddendVect AllOpnds;
563    AllOpnds.push_back(&Opnd0);
564    AllOpnds.push_back(&Opnd1_0);
565    if (Opnd1_ExpNum == 2)
566      AllOpnds.push_back(&Opnd1_1);
567
568    if (Value *R = simplifyFAdd(AllOpnds, 1))
569      return R;
570  }
571
572  // step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1]
573  if (Opnd0_ExpNum) {
574    AddendVect AllOpnds;
575    AllOpnds.push_back(&Opnd1);
576    AllOpnds.push_back(&Opnd0_0);
577    if (Opnd0_ExpNum == 2)
578      AllOpnds.push_back(&Opnd0_1);
579
580    if (Value *R = simplifyFAdd(AllOpnds, 1))
581      return R;
582  }
583
584  // step 6: Try factorization as the last resort,
585  return performFactorization(I);
586}
587
588Value *FAddCombine::simplifyFAdd(AddendVect& Addends, unsigned InstrQuota) {
589
590  unsigned AddendNum = Addends.size();
591  assert(AddendNum <= 4 && "Too many addends");
592
593  // For saving intermediate results;
594  unsigned NextTmpIdx = 0;
595  FAddend TmpResult[3];
596
597  // Points to the constant addend of the resulting simplified expression.
598  // If the resulting expr has constant-addend, this constant-addend is
599  // desirable to reside at the top of the resulting expression tree. Placing
600  // constant close to supper-expr(s) will potentially reveal some optimization
601  // opportunities in super-expr(s).
602  //
603  const FAddend *ConstAdd = 0;
604
605  // Simplified addends are placed <SimpVect>.
606  AddendVect SimpVect;
607
608  // The outer loop works on one symbolic-value at a time. Suppose the input
609  // addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ...
610  // The symbolic-values will be processed in this order: x, y, z.
611  //
612  for (unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) {
613
614    const FAddend *ThisAddend = Addends[SymIdx];
615    if (!ThisAddend) {
616      // This addend was processed before.
617      continue;
618    }
619
620    Value *Val = ThisAddend->getSymVal();
621    unsigned StartIdx = SimpVect.size();
622    SimpVect.push_back(ThisAddend);
623
624    // The inner loop collects addends sharing same symbolic-value, and these
625    // addends will be later on folded into a single addend. Following above
626    // example, if the symbolic value "y" is being processed, the inner loop
627    // will collect two addends "<b1,y>" and "<b2,Y>". These two addends will
628    // be later on folded into "<b1+b2, y>".
629    //
630    for (unsigned SameSymIdx = SymIdx + 1;
631         SameSymIdx < AddendNum; SameSymIdx++) {
632      const FAddend *T = Addends[SameSymIdx];
633      if (T && T->getSymVal() == Val) {
634        // Set null such that next iteration of the outer loop will not process
635        // this addend again.
636        Addends[SameSymIdx] = 0;
637        SimpVect.push_back(T);
638      }
639    }
640
641    // If multiple addends share same symbolic value, fold them together.
642    if (StartIdx + 1 != SimpVect.size()) {
643      FAddend &R = TmpResult[NextTmpIdx ++];
644      R = *SimpVect[StartIdx];
645      for (unsigned Idx = StartIdx + 1; Idx < SimpVect.size(); Idx++)
646        R += *SimpVect[Idx];
647
648      // Pop all addends being folded and push the resulting folded addend.
649      SimpVect.resize(StartIdx);
650      if (Val != 0) {
651        if (!R.isZero()) {
652          SimpVect.push_back(&R);
653        }
654      } else {
655        // Don't push constant addend at this time. It will be the last element
656        // of <SimpVect>.
657        ConstAdd = &R;
658      }
659    }
660  }
661
662  assert((NextTmpIdx <= sizeof(TmpResult)/sizeof(TmpResult[0]) + 1) &&
663         "out-of-bound access");
664
665  if (ConstAdd)
666    SimpVect.push_back(ConstAdd);
667
668  Value *Result;
669  if (!SimpVect.empty())
670    Result = createNaryFAdd(SimpVect, InstrQuota);
671  else {
672    // The addition is folded to 0.0.
673    Result = ConstantFP::get(Instr->getType(), 0.0);
674  }
675
676  return Result;
677}
678
679Value *FAddCombine::createNaryFAdd
680  (const AddendVect &Opnds, unsigned InstrQuota) {
681  assert(!Opnds.empty() && "Expect at least one addend");
682
683  // Step 1: Check if the # of instructions needed exceeds the quota.
684  //
685  unsigned InstrNeeded = calcInstrNumber(Opnds);
686  if (InstrNeeded > InstrQuota)
687    return 0;
688
689  initCreateInstNum();
690
691  // step 2: Emit the N-ary addition.
692  // Note that at most three instructions are involved in Fadd-InstCombine: the
693  // addition in question, and at most two neighboring instructions.
694  // The resulting optimized addition should have at least one less instruction
695  // than the original addition expression tree. This implies that the resulting
696  // N-ary addition has at most two instructions, and we don't need to worry
697  // about tree-height when constructing the N-ary addition.
698
699  Value *LastVal = 0;
700  bool LastValNeedNeg = false;
701
702  // Iterate the addends, creating fadd/fsub using adjacent two addends.
703  for (AddendVect::const_iterator I = Opnds.begin(), E = Opnds.end();
704       I != E; I++) {
705    bool NeedNeg;
706    Value *V = createAddendVal(**I, NeedNeg);
707    if (!LastVal) {
708      LastVal = V;
709      LastValNeedNeg = NeedNeg;
710      continue;
711    }
712
713    if (LastValNeedNeg == NeedNeg) {
714      LastVal = createFAdd(LastVal, V);
715      continue;
716    }
717
718    if (LastValNeedNeg)
719      LastVal = createFSub(V, LastVal);
720    else
721      LastVal = createFSub(LastVal, V);
722
723    LastValNeedNeg = false;
724  }
725
726  if (LastValNeedNeg) {
727    LastVal = createFNeg(LastVal);
728  }
729
730  #ifndef NDEBUG
731    assert(CreateInstrNum == InstrNeeded &&
732           "Inconsistent in instruction numbers");
733  #endif
734
735  return LastVal;
736}
737
738Value *FAddCombine::createFSub
739  (Value *Opnd0, Value *Opnd1) {
740  Value *V = Builder->CreateFSub(Opnd0, Opnd1);
741  if (Instruction *I = dyn_cast<Instruction>(V))
742    createInstPostProc(I);
743  return V;
744}
745
746Value *FAddCombine::createFNeg(Value *V) {
747  Value *Zero = cast<Value>(ConstantFP::get(V->getType(), 0.0));
748  return createFSub(Zero, V);
749}
750
751Value *FAddCombine::createFAdd
752  (Value *Opnd0, Value *Opnd1) {
753  Value *V = Builder->CreateFAdd(Opnd0, Opnd1);
754  if (Instruction *I = dyn_cast<Instruction>(V))
755    createInstPostProc(I);
756  return V;
757}
758
759Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) {
760  Value *V = Builder->CreateFMul(Opnd0, Opnd1);
761  if (Instruction *I = dyn_cast<Instruction>(V))
762    createInstPostProc(I);
763  return V;
764}
765
766Value *FAddCombine::createFDiv(Value *Opnd0, Value *Opnd1) {
767  Value *V = Builder->CreateFDiv(Opnd0, Opnd1);
768  if (Instruction *I = dyn_cast<Instruction>(V))
769    createInstPostProc(I);
770  return V;
771}
772
773void FAddCombine::createInstPostProc(Instruction *NewInstr) {
774  NewInstr->setDebugLoc(Instr->getDebugLoc());
775
776  // Keep track of the number of instruction created.
777  incCreateInstNum();
778
779  // Propagate fast-math flags
780  NewInstr->setFastMathFlags(Instr->getFastMathFlags());
781}
782
783// Return the number of instruction needed to emit the N-ary addition.
784// NOTE: Keep this function in sync with createAddendVal().
785unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) {
786  unsigned OpndNum = Opnds.size();
787  unsigned InstrNeeded = OpndNum - 1;
788
789  // The number of addends in the form of "(-1)*x".
790  unsigned NegOpndNum = 0;
791
792  // Adjust the number of instructions needed to emit the N-ary add.
793  for (AddendVect::const_iterator I = Opnds.begin(), E = Opnds.end();
794       I != E; I++) {
795    const FAddend *Opnd = *I;
796    if (Opnd->isConstant())
797      continue;
798
799    const FAddendCoef &CE = Opnd->getCoef();
800    if (CE.isMinusOne() || CE.isMinusTwo())
801      NegOpndNum++;
802
803    // Let the addend be "c * x". If "c == +/-1", the value of the addend
804    // is immediately available; otherwise, it needs exactly one instruction
805    // to evaluate the value.
806    if (!CE.isMinusOne() && !CE.isOne())
807      InstrNeeded++;
808  }
809  if (NegOpndNum == OpndNum)
810    InstrNeeded++;
811  return InstrNeeded;
812}
813
814// Input Addend        Value           NeedNeg(output)
815// ================================================================
816// Constant C          C               false
817// <+/-1, V>           V               coefficient is -1
818// <2/-2, V>          "fadd V, V"      coefficient is -2
819// <C, V>             "fmul V, C"      false
820//
821// NOTE: Keep this function in sync with FAddCombine::calcInstrNumber.
822Value *FAddCombine::createAddendVal
823  (const FAddend &Opnd, bool &NeedNeg) {
824  const FAddendCoef &Coeff = Opnd.getCoef();
825
826  if (Opnd.isConstant()) {
827    NeedNeg = false;
828    return Coeff.getValue(Instr->getType());
829  }
830
831  Value *OpndVal = Opnd.getSymVal();
832
833  if (Coeff.isMinusOne() || Coeff.isOne()) {
834    NeedNeg = Coeff.isMinusOne();
835    return OpndVal;
836  }
837
838  if (Coeff.isTwo() || Coeff.isMinusTwo()) {
839    NeedNeg = Coeff.isMinusTwo();
840    return createFAdd(OpndVal, OpndVal);
841  }
842
843  NeedNeg = false;
844  return createFMul(OpndVal, Coeff.getValue(Instr->getType()));
845}
846
847/// AddOne - Add one to a ConstantInt.
848static Constant *AddOne(Constant *C) {
849  return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
850}
851
852/// SubOne - Subtract one from a ConstantInt.
853static Constant *SubOne(ConstantInt *C) {
854  return ConstantInt::get(C->getContext(), C->getValue()-1);
855}
856
857
858// dyn_castFoldableMul - If this value is a multiply that can be folded into
859// other computations (because it has a constant operand), return the
860// non-constant operand of the multiply, and set CST to point to the multiplier.
861// Otherwise, return null.
862//
863static inline Value *dyn_castFoldableMul(Value *V, ConstantInt *&CST) {
864  if (!V->hasOneUse() || !V->getType()->isIntegerTy())
865    return 0;
866
867  Instruction *I = dyn_cast<Instruction>(V);
868  if (I == 0) return 0;
869
870  if (I->getOpcode() == Instruction::Mul)
871    if ((CST = dyn_cast<ConstantInt>(I->getOperand(1))))
872      return I->getOperand(0);
873  if (I->getOpcode() == Instruction::Shl)
874    if ((CST = dyn_cast<ConstantInt>(I->getOperand(1)))) {
875      // The multiplier is really 1 << CST.
876      uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
877      uint32_t CSTVal = CST->getLimitedValue(BitWidth);
878      CST = ConstantInt::get(V->getType()->getContext(),
879                             APInt(BitWidth, 1).shl(CSTVal));
880      return I->getOperand(0);
881    }
882  return 0;
883}
884
885
886/// WillNotOverflowSignedAdd - Return true if we can prove that:
887///    (sext (add LHS, RHS))  === (add (sext LHS), (sext RHS))
888/// This basically requires proving that the add in the original type would not
889/// overflow to change the sign bit or have a carry out.
890bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS) {
891  // There are different heuristics we can use for this.  Here are some simple
892  // ones.
893
894  // Add has the property that adding any two 2's complement numbers can only
895  // have one carry bit which can change a sign.  As such, if LHS and RHS each
896  // have at least two sign bits, we know that the addition of the two values
897  // will sign extend fine.
898  if (ComputeNumSignBits(LHS) > 1 && ComputeNumSignBits(RHS) > 1)
899    return true;
900
901
902  // If one of the operands only has one non-zero bit, and if the other operand
903  // has a known-zero bit in a more significant place than it (not including the
904  // sign bit) the ripple may go up to and fill the zero, but won't change the
905  // sign.  For example, (X & ~4) + 1.
906
907  // TODO: Implement.
908
909  return false;
910}
911
912Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
913  bool Changed = SimplifyAssociativeOrCommutative(I);
914  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
915
916  if (Value *V = SimplifyAddInst(LHS, RHS, I.hasNoSignedWrap(),
917                                 I.hasNoUnsignedWrap(), TD))
918    return ReplaceInstUsesWith(I, V);
919
920  // (A*B)+(A*C) -> A*(B+C) etc
921  if (Value *V = SimplifyUsingDistributiveLaws(I))
922    return ReplaceInstUsesWith(I, V);
923
924  if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
925    // X + (signbit) --> X ^ signbit
926    const APInt &Val = CI->getValue();
927    if (Val.isSignBit())
928      return BinaryOperator::CreateXor(LHS, RHS);
929
930    // See if SimplifyDemandedBits can simplify this.  This handles stuff like
931    // (X & 254)+1 -> (X&254)|1
932    if (SimplifyDemandedInstructionBits(I))
933      return &I;
934
935    // zext(bool) + C -> bool ? C + 1 : C
936    if (ZExtInst *ZI = dyn_cast<ZExtInst>(LHS))
937      if (ZI->getSrcTy()->isIntegerTy(1))
938        return SelectInst::Create(ZI->getOperand(0), AddOne(CI), CI);
939
940    Value *XorLHS = 0; ConstantInt *XorRHS = 0;
941    if (match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
942      uint32_t TySizeBits = I.getType()->getScalarSizeInBits();
943      const APInt &RHSVal = CI->getValue();
944      unsigned ExtendAmt = 0;
945      // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
946      // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
947      if (XorRHS->getValue() == -RHSVal) {
948        if (RHSVal.isPowerOf2())
949          ExtendAmt = TySizeBits - RHSVal.logBase2() - 1;
950        else if (XorRHS->getValue().isPowerOf2())
951          ExtendAmt = TySizeBits - XorRHS->getValue().logBase2() - 1;
952      }
953
954      if (ExtendAmt) {
955        APInt Mask = APInt::getHighBitsSet(TySizeBits, ExtendAmt);
956        if (!MaskedValueIsZero(XorLHS, Mask))
957          ExtendAmt = 0;
958      }
959
960      if (ExtendAmt) {
961        Constant *ShAmt = ConstantInt::get(I.getType(), ExtendAmt);
962        Value *NewShl = Builder->CreateShl(XorLHS, ShAmt, "sext");
963        return BinaryOperator::CreateAShr(NewShl, ShAmt);
964      }
965
966      // If this is a xor that was canonicalized from a sub, turn it back into
967      // a sub and fuse this add with it.
968      if (LHS->hasOneUse() && (XorRHS->getValue()+1).isPowerOf2()) {
969        IntegerType *IT = cast<IntegerType>(I.getType());
970        APInt LHSKnownOne(IT->getBitWidth(), 0);
971        APInt LHSKnownZero(IT->getBitWidth(), 0);
972        ComputeMaskedBits(XorLHS, LHSKnownZero, LHSKnownOne);
973        if ((XorRHS->getValue() | LHSKnownZero).isAllOnesValue())
974          return BinaryOperator::CreateSub(ConstantExpr::getAdd(XorRHS, CI),
975                                           XorLHS);
976      }
977      // (X + signbit) + C could have gotten canonicalized to (X ^ signbit) + C,
978      // transform them into (X + (signbit ^ C))
979      if (XorRHS->getValue().isSignBit())
980          return BinaryOperator::CreateAdd(XorLHS,
981                                           ConstantExpr::getXor(XorRHS, CI));
982    }
983  }
984
985  if (isa<Constant>(RHS) && isa<PHINode>(LHS))
986    if (Instruction *NV = FoldOpIntoPhi(I))
987      return NV;
988
989  if (I.getType()->isIntegerTy(1))
990    return BinaryOperator::CreateXor(LHS, RHS);
991
992  // X + X --> X << 1
993  if (LHS == RHS) {
994    BinaryOperator *New =
995      BinaryOperator::CreateShl(LHS, ConstantInt::get(I.getType(), 1));
996    New->setHasNoSignedWrap(I.hasNoSignedWrap());
997    New->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
998    return New;
999  }
1000
1001  // -A + B  -->  B - A
1002  // -A + -B  -->  -(A + B)
1003  if (Value *LHSV = dyn_castNegVal(LHS)) {
1004    if (!isa<Constant>(RHS))
1005      if (Value *RHSV = dyn_castNegVal(RHS)) {
1006        Value *NewAdd = Builder->CreateAdd(LHSV, RHSV, "sum");
1007        return BinaryOperator::CreateNeg(NewAdd);
1008      }
1009
1010    return BinaryOperator::CreateSub(RHS, LHSV);
1011  }
1012
1013  // A + -B  -->  A - B
1014  if (!isa<Constant>(RHS))
1015    if (Value *V = dyn_castNegVal(RHS))
1016      return BinaryOperator::CreateSub(LHS, V);
1017
1018
1019  ConstantInt *C2;
1020  if (Value *X = dyn_castFoldableMul(LHS, C2)) {
1021    if (X == RHS)   // X*C + X --> X * (C+1)
1022      return BinaryOperator::CreateMul(RHS, AddOne(C2));
1023
1024    // X*C1 + X*C2 --> X * (C1+C2)
1025    ConstantInt *C1;
1026    if (X == dyn_castFoldableMul(RHS, C1))
1027      return BinaryOperator::CreateMul(X, ConstantExpr::getAdd(C1, C2));
1028  }
1029
1030  // X + X*C --> X * (C+1)
1031  if (dyn_castFoldableMul(RHS, C2) == LHS)
1032    return BinaryOperator::CreateMul(LHS, AddOne(C2));
1033
1034  // A+B --> A|B iff A and B have no bits set in common.
1035  if (IntegerType *IT = dyn_cast<IntegerType>(I.getType())) {
1036    APInt LHSKnownOne(IT->getBitWidth(), 0);
1037    APInt LHSKnownZero(IT->getBitWidth(), 0);
1038    ComputeMaskedBits(LHS, LHSKnownZero, LHSKnownOne);
1039    if (LHSKnownZero != 0) {
1040      APInt RHSKnownOne(IT->getBitWidth(), 0);
1041      APInt RHSKnownZero(IT->getBitWidth(), 0);
1042      ComputeMaskedBits(RHS, RHSKnownZero, RHSKnownOne);
1043
1044      // No bits in common -> bitwise or.
1045      if ((LHSKnownZero|RHSKnownZero).isAllOnesValue())
1046        return BinaryOperator::CreateOr(LHS, RHS);
1047    }
1048  }
1049
1050  // W*X + Y*Z --> W * (X+Z)  iff W == Y
1051  {
1052    Value *W, *X, *Y, *Z;
1053    if (match(LHS, m_Mul(m_Value(W), m_Value(X))) &&
1054        match(RHS, m_Mul(m_Value(Y), m_Value(Z)))) {
1055      if (W != Y) {
1056        if (W == Z) {
1057          std::swap(Y, Z);
1058        } else if (Y == X) {
1059          std::swap(W, X);
1060        } else if (X == Z) {
1061          std::swap(Y, Z);
1062          std::swap(W, X);
1063        }
1064      }
1065
1066      if (W == Y) {
1067        Value *NewAdd = Builder->CreateAdd(X, Z, LHS->getName());
1068        return BinaryOperator::CreateMul(W, NewAdd);
1069      }
1070    }
1071  }
1072
1073  if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
1074    Value *X = 0;
1075    if (match(LHS, m_Not(m_Value(X))))    // ~X + C --> (C-1) - X
1076      return BinaryOperator::CreateSub(SubOne(CRHS), X);
1077
1078    // (X & FF00) + xx00  -> (X+xx00) & FF00
1079    if (LHS->hasOneUse() &&
1080        match(LHS, m_And(m_Value(X), m_ConstantInt(C2))) &&
1081        CRHS->getValue() == (CRHS->getValue() & C2->getValue())) {
1082      // See if all bits from the first bit set in the Add RHS up are included
1083      // in the mask.  First, get the rightmost bit.
1084      const APInt &AddRHSV = CRHS->getValue();
1085
1086      // Form a mask of all bits from the lowest bit added through the top.
1087      APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1));
1088
1089      // See if the and mask includes all of these bits.
1090      APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue());
1091
1092      if (AddRHSHighBits == AddRHSHighBitsAnd) {
1093        // Okay, the xform is safe.  Insert the new add pronto.
1094        Value *NewAdd = Builder->CreateAdd(X, CRHS, LHS->getName());
1095        return BinaryOperator::CreateAnd(NewAdd, C2);
1096      }
1097    }
1098
1099    // Try to fold constant add into select arguments.
1100    if (SelectInst *SI = dyn_cast<SelectInst>(LHS))
1101      if (Instruction *R = FoldOpIntoSelect(I, SI))
1102        return R;
1103  }
1104
1105  // add (select X 0 (sub n A)) A  -->  select X A n
1106  {
1107    SelectInst *SI = dyn_cast<SelectInst>(LHS);
1108    Value *A = RHS;
1109    if (!SI) {
1110      SI = dyn_cast<SelectInst>(RHS);
1111      A = LHS;
1112    }
1113    if (SI && SI->hasOneUse()) {
1114      Value *TV = SI->getTrueValue();
1115      Value *FV = SI->getFalseValue();
1116      Value *N;
1117
1118      // Can we fold the add into the argument of the select?
1119      // We check both true and false select arguments for a matching subtract.
1120      if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A))))
1121        // Fold the add into the true select value.
1122        return SelectInst::Create(SI->getCondition(), N, A);
1123
1124      if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A))))
1125        // Fold the add into the false select value.
1126        return SelectInst::Create(SI->getCondition(), A, N);
1127    }
1128  }
1129
1130  // Check for (add (sext x), y), see if we can merge this into an
1131  // integer add followed by a sext.
1132  if (SExtInst *LHSConv = dyn_cast<SExtInst>(LHS)) {
1133    // (add (sext x), cst) --> (sext (add x, cst'))
1134    if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
1135      Constant *CI =
1136        ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType());
1137      if (LHSConv->hasOneUse() &&
1138          ConstantExpr::getSExt(CI, I.getType()) == RHSC &&
1139          WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
1140        // Insert the new, smaller add.
1141        Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
1142                                              CI, "addconv");
1143        return new SExtInst(NewAdd, I.getType());
1144      }
1145    }
1146
1147    // (add (sext x), (sext y)) --> (sext (add int x, y))
1148    if (SExtInst *RHSConv = dyn_cast<SExtInst>(RHS)) {
1149      // Only do this if x/y have the same type, if at last one of them has a
1150      // single use (so we don't increase the number of sexts), and if the
1151      // integer add will not overflow.
1152      if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
1153          (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
1154          WillNotOverflowSignedAdd(LHSConv->getOperand(0),
1155                                   RHSConv->getOperand(0))) {
1156        // Insert the new integer add.
1157        Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
1158                                             RHSConv->getOperand(0), "addconv");
1159        return new SExtInst(NewAdd, I.getType());
1160      }
1161    }
1162  }
1163
1164  // Check for (x & y) + (x ^ y)
1165  {
1166    Value *A = 0, *B = 0;
1167    if (match(RHS, m_Xor(m_Value(A), m_Value(B))) &&
1168        (match(LHS, m_And(m_Specific(A), m_Specific(B))) ||
1169         match(LHS, m_And(m_Specific(B), m_Specific(A)))))
1170      return BinaryOperator::CreateOr(A, B);
1171
1172    if (match(LHS, m_Xor(m_Value(A), m_Value(B))) &&
1173        (match(RHS, m_And(m_Specific(A), m_Specific(B))) ||
1174         match(RHS, m_And(m_Specific(B), m_Specific(A)))))
1175      return BinaryOperator::CreateOr(A, B);
1176  }
1177
1178  return Changed ? &I : 0;
1179}
1180
1181Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
1182  bool Changed = SimplifyAssociativeOrCommutative(I);
1183  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1184
1185  if (Value *V = SimplifyFAddInst(LHS, RHS, I.getFastMathFlags(), TD))
1186    return ReplaceInstUsesWith(I, V);
1187
1188  if (isa<Constant>(RHS) && isa<PHINode>(LHS))
1189    if (Instruction *NV = FoldOpIntoPhi(I))
1190      return NV;
1191
1192  // -A + B  -->  B - A
1193  // -A + -B  -->  -(A + B)
1194  if (Value *LHSV = dyn_castFNegVal(LHS))
1195    return BinaryOperator::CreateFSub(RHS, LHSV);
1196
1197  // A + -B  -->  A - B
1198  if (!isa<Constant>(RHS))
1199    if (Value *V = dyn_castFNegVal(RHS))
1200      return BinaryOperator::CreateFSub(LHS, V);
1201
1202  // Check for (fadd double (sitofp x), y), see if we can merge this into an
1203  // integer add followed by a promotion.
1204  if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
1205    // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
1206    // ... if the constant fits in the integer value.  This is useful for things
1207    // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
1208    // requires a constant pool load, and generally allows the add to be better
1209    // instcombined.
1210    if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) {
1211      Constant *CI =
1212      ConstantExpr::getFPToSI(CFP, LHSConv->getOperand(0)->getType());
1213      if (LHSConv->hasOneUse() &&
1214          ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
1215          WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
1216        // Insert the new integer add.
1217        Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
1218                                              CI, "addconv");
1219        return new SIToFPInst(NewAdd, I.getType());
1220      }
1221    }
1222
1223    // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
1224    if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
1225      // Only do this if x/y have the same type, if at last one of them has a
1226      // single use (so we don't increase the number of int->fp conversions),
1227      // and if the integer add will not overflow.
1228      if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
1229          (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
1230          WillNotOverflowSignedAdd(LHSConv->getOperand(0),
1231                                   RHSConv->getOperand(0))) {
1232        // Insert the new integer add.
1233        Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
1234                                              RHSConv->getOperand(0),"addconv");
1235        return new SIToFPInst(NewAdd, I.getType());
1236      }
1237    }
1238  }
1239
1240  // select C, 0, B + select C, A, 0 -> select C, A, B
1241  {
1242    Value *A1, *B1, *C1, *A2, *B2, *C2;
1243    if (match(LHS, m_Select(m_Value(C1), m_Value(A1), m_Value(B1))) &&
1244        match(RHS, m_Select(m_Value(C2), m_Value(A2), m_Value(B2)))) {
1245      if (C1 == C2) {
1246        Constant *Z1=0, *Z2=0;
1247        Value *A, *B, *C=C1;
1248        if (match(A1, m_AnyZero()) && match(B2, m_AnyZero())) {
1249            Z1 = dyn_cast<Constant>(A1); A = A2;
1250            Z2 = dyn_cast<Constant>(B2); B = B1;
1251        } else if (match(B1, m_AnyZero()) && match(A2, m_AnyZero())) {
1252            Z1 = dyn_cast<Constant>(B1); B = B2;
1253            Z2 = dyn_cast<Constant>(A2); A = A1;
1254        }
1255
1256        if (Z1 && Z2 &&
1257            (I.hasNoSignedZeros() ||
1258             (Z1->isNegativeZeroValue() && Z2->isNegativeZeroValue()))) {
1259          return SelectInst::Create(C, A, B);
1260        }
1261      }
1262    }
1263  }
1264
1265  if (I.hasUnsafeAlgebra()) {
1266    if (Value *V = FAddCombine(Builder).simplify(&I))
1267      return ReplaceInstUsesWith(I, V);
1268  }
1269
1270  return Changed ? &I : 0;
1271}
1272
1273
1274/// Optimize pointer differences into the same array into a size.  Consider:
1275///  &A[10] - &A[0]: we should compile this to "10".  LHS/RHS are the pointer
1276/// operands to the ptrtoint instructions for the LHS/RHS of the subtract.
1277///
1278Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS,
1279                                               Type *Ty) {
1280  assert(TD && "Must have target data info for this");
1281
1282  // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize
1283  // this.
1284  bool Swapped = false;
1285  GEPOperator *GEP1 = 0, *GEP2 = 0;
1286
1287  // For now we require one side to be the base pointer "A" or a constant
1288  // GEP derived from it.
1289  if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
1290    // (gep X, ...) - X
1291    if (LHSGEP->getOperand(0) == RHS) {
1292      GEP1 = LHSGEP;
1293      Swapped = false;
1294    } else if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
1295      // (gep X, ...) - (gep X, ...)
1296      if (LHSGEP->getOperand(0)->stripPointerCasts() ==
1297            RHSGEP->getOperand(0)->stripPointerCasts()) {
1298        GEP2 = RHSGEP;
1299        GEP1 = LHSGEP;
1300        Swapped = false;
1301      }
1302    }
1303  }
1304
1305  if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
1306    // X - (gep X, ...)
1307    if (RHSGEP->getOperand(0) == LHS) {
1308      GEP1 = RHSGEP;
1309      Swapped = true;
1310    } else if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
1311      // (gep X, ...) - (gep X, ...)
1312      if (RHSGEP->getOperand(0)->stripPointerCasts() ==
1313            LHSGEP->getOperand(0)->stripPointerCasts()) {
1314        GEP2 = LHSGEP;
1315        GEP1 = RHSGEP;
1316        Swapped = true;
1317      }
1318    }
1319  }
1320
1321  // Avoid duplicating the arithmetic if GEP2 has non-constant indices and
1322  // multiple users.
1323  if (GEP1 == 0 ||
1324      (GEP2 != 0 && !GEP2->hasAllConstantIndices() && !GEP2->hasOneUse()))
1325    return 0;
1326
1327  // Emit the offset of the GEP and an intptr_t.
1328  Value *Result = EmitGEPOffset(GEP1);
1329
1330  // If we had a constant expression GEP on the other side offsetting the
1331  // pointer, subtract it from the offset we have.
1332  if (GEP2) {
1333    Value *Offset = EmitGEPOffset(GEP2);
1334    Result = Builder->CreateSub(Result, Offset);
1335  }
1336
1337  // If we have p - gep(p, ...)  then we have to negate the result.
1338  if (Swapped)
1339    Result = Builder->CreateNeg(Result, "diff.neg");
1340
1341  return Builder->CreateIntCast(Result, Ty, true);
1342}
1343
1344
1345Instruction *InstCombiner::visitSub(BinaryOperator &I) {
1346  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1347
1348  if (Value *V = SimplifySubInst(Op0, Op1, I.hasNoSignedWrap(),
1349                                 I.hasNoUnsignedWrap(), TD))
1350    return ReplaceInstUsesWith(I, V);
1351
1352  // (A*B)-(A*C) -> A*(B-C) etc
1353  if (Value *V = SimplifyUsingDistributiveLaws(I))
1354    return ReplaceInstUsesWith(I, V);
1355
1356  // If this is a 'B = x-(-A)', change to B = x+A.  This preserves NSW/NUW.
1357  if (Value *V = dyn_castNegVal(Op1)) {
1358    BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V);
1359    Res->setHasNoSignedWrap(I.hasNoSignedWrap());
1360    Res->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
1361    return Res;
1362  }
1363
1364  if (I.getType()->isIntegerTy(1))
1365    return BinaryOperator::CreateXor(Op0, Op1);
1366
1367  // Replace (-1 - A) with (~A).
1368  if (match(Op0, m_AllOnes()))
1369    return BinaryOperator::CreateNot(Op1);
1370
1371  if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) {
1372    // C - ~X == X + (1+C)
1373    Value *X = 0;
1374    if (match(Op1, m_Not(m_Value(X))))
1375      return BinaryOperator::CreateAdd(X, AddOne(C));
1376
1377    // -(X >>u 31) -> (X >>s 31)
1378    // -(X >>s 31) -> (X >>u 31)
1379    if (C->isZero()) {
1380      Value *X; ConstantInt *CI;
1381      if (match(Op1, m_LShr(m_Value(X), m_ConstantInt(CI))) &&
1382          // Verify we are shifting out everything but the sign bit.
1383          CI->getValue() == I.getType()->getPrimitiveSizeInBits()-1)
1384        return BinaryOperator::CreateAShr(X, CI);
1385
1386      if (match(Op1, m_AShr(m_Value(X), m_ConstantInt(CI))) &&
1387          // Verify we are shifting out everything but the sign bit.
1388          CI->getValue() == I.getType()->getPrimitiveSizeInBits()-1)
1389        return BinaryOperator::CreateLShr(X, CI);
1390    }
1391
1392    // Try to fold constant sub into select arguments.
1393    if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1394      if (Instruction *R = FoldOpIntoSelect(I, SI))
1395        return R;
1396
1397    // C-(X+C2) --> (C-C2)-X
1398    ConstantInt *C2;
1399    if (match(Op1, m_Add(m_Value(X), m_ConstantInt(C2))))
1400      return BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X);
1401
1402    if (SimplifyDemandedInstructionBits(I))
1403      return &I;
1404
1405    // Fold (sub 0, (zext bool to B)) --> (sext bool to B)
1406    if (C->isZero() && match(Op1, m_ZExt(m_Value(X))))
1407      if (X->getType()->isIntegerTy(1))
1408        return CastInst::CreateSExtOrBitCast(X, Op1->getType());
1409
1410    // Fold (sub 0, (sext bool to B)) --> (zext bool to B)
1411    if (C->isZero() && match(Op1, m_SExt(m_Value(X))))
1412      if (X->getType()->isIntegerTy(1))
1413        return CastInst::CreateZExtOrBitCast(X, Op1->getType());
1414  }
1415
1416
1417  { Value *Y;
1418    // X-(X+Y) == -Y    X-(Y+X) == -Y
1419    if (match(Op1, m_Add(m_Specific(Op0), m_Value(Y))) ||
1420        match(Op1, m_Add(m_Value(Y), m_Specific(Op0))))
1421      return BinaryOperator::CreateNeg(Y);
1422
1423    // (X-Y)-X == -Y
1424    if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y))))
1425      return BinaryOperator::CreateNeg(Y);
1426  }
1427
1428  if (Op1->hasOneUse()) {
1429    Value *X = 0, *Y = 0, *Z = 0;
1430    Constant *C = 0;
1431    ConstantInt *CI = 0;
1432
1433    // (X - (Y - Z))  -->  (X + (Z - Y)).
1434    if (match(Op1, m_Sub(m_Value(Y), m_Value(Z))))
1435      return BinaryOperator::CreateAdd(Op0,
1436                                      Builder->CreateSub(Z, Y, Op1->getName()));
1437
1438    // (X - (X & Y))   -->   (X & ~Y)
1439    //
1440    if (match(Op1, m_And(m_Value(Y), m_Specific(Op0))) ||
1441        match(Op1, m_And(m_Specific(Op0), m_Value(Y))))
1442      return BinaryOperator::CreateAnd(Op0,
1443                                  Builder->CreateNot(Y, Y->getName() + ".not"));
1444
1445    // 0 - (X sdiv C)  -> (X sdiv -C)
1446    if (match(Op1, m_SDiv(m_Value(X), m_Constant(C))) &&
1447        match(Op0, m_Zero()))
1448      return BinaryOperator::CreateSDiv(X, ConstantExpr::getNeg(C));
1449
1450    // 0 - (X << Y)  -> (-X << Y)   when X is freely negatable.
1451    if (match(Op1, m_Shl(m_Value(X), m_Value(Y))) && match(Op0, m_Zero()))
1452      if (Value *XNeg = dyn_castNegVal(X))
1453        return BinaryOperator::CreateShl(XNeg, Y);
1454
1455    // X - X*C --> X * (1-C)
1456    if (match(Op1, m_Mul(m_Specific(Op0), m_ConstantInt(CI)))) {
1457      Constant *CP1 = ConstantExpr::getSub(ConstantInt::get(I.getType(),1), CI);
1458      return BinaryOperator::CreateMul(Op0, CP1);
1459    }
1460
1461    // X - X<<C --> X * (1-(1<<C))
1462    if (match(Op1, m_Shl(m_Specific(Op0), m_ConstantInt(CI)))) {
1463      Constant *One = ConstantInt::get(I.getType(), 1);
1464      C = ConstantExpr::getSub(One, ConstantExpr::getShl(One, CI));
1465      return BinaryOperator::CreateMul(Op0, C);
1466    }
1467
1468    // X - A*-B -> X + A*B
1469    // X - -A*B -> X + A*B
1470    Value *A, *B;
1471    if (match(Op1, m_Mul(m_Value(A), m_Neg(m_Value(B)))) ||
1472        match(Op1, m_Mul(m_Neg(m_Value(A)), m_Value(B))))
1473      return BinaryOperator::CreateAdd(Op0, Builder->CreateMul(A, B));
1474
1475    // X - A*CI -> X + A*-CI
1476    // X - CI*A -> X + A*-CI
1477    if (match(Op1, m_Mul(m_Value(A), m_ConstantInt(CI))) ||
1478        match(Op1, m_Mul(m_ConstantInt(CI), m_Value(A)))) {
1479      Value *NewMul = Builder->CreateMul(A, ConstantExpr::getNeg(CI));
1480      return BinaryOperator::CreateAdd(Op0, NewMul);
1481    }
1482  }
1483
1484  ConstantInt *C1;
1485  if (Value *X = dyn_castFoldableMul(Op0, C1)) {
1486    if (X == Op1)  // X*C - X --> X * (C-1)
1487      return BinaryOperator::CreateMul(Op1, SubOne(C1));
1488
1489    ConstantInt *C2;   // X*C1 - X*C2 -> X * (C1-C2)
1490    if (X == dyn_castFoldableMul(Op1, C2))
1491      return BinaryOperator::CreateMul(X, ConstantExpr::getSub(C1, C2));
1492  }
1493
1494  // Optimize pointer differences into the same array into a size.  Consider:
1495  //  &A[10] - &A[0]: we should compile this to "10".
1496  if (TD) {
1497    Value *LHSOp, *RHSOp;
1498    if (match(Op0, m_PtrToInt(m_Value(LHSOp))) &&
1499        match(Op1, m_PtrToInt(m_Value(RHSOp))))
1500      if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
1501        return ReplaceInstUsesWith(I, Res);
1502
1503    // trunc(p)-trunc(q) -> trunc(p-q)
1504    if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) &&
1505        match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp)))))
1506      if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
1507        return ReplaceInstUsesWith(I, Res);
1508  }
1509
1510  return 0;
1511}
1512
1513Instruction *InstCombiner::visitFSub(BinaryOperator &I) {
1514  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1515
1516  if (Value *V = SimplifyFSubInst(Op0, Op1, I.getFastMathFlags(), TD))
1517    return ReplaceInstUsesWith(I, V);
1518
1519  // If this is a 'B = x-(-A)', change to B = x+A...
1520  if (Value *V = dyn_castFNegVal(Op1))
1521    return BinaryOperator::CreateFAdd(Op0, V);
1522
1523  if (I.hasUnsafeAlgebra()) {
1524    if (Value *V = FAddCombine(Builder).simplify(&I))
1525      return ReplaceInstUsesWith(I, V);
1526  }
1527
1528  return 0;
1529}
1530