GlobalOpt.cpp revision 224145
1//===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass transforms simple global variables that never have their address
11// taken.  If obviously true, it marks read/write globals as constant, deletes
12// variables only stored to, etc.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "globalopt"
17#include "llvm/Transforms/IPO.h"
18#include "llvm/CallingConv.h"
19#include "llvm/Constants.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/Instructions.h"
22#include "llvm/IntrinsicInst.h"
23#include "llvm/Module.h"
24#include "llvm/Operator.h"
25#include "llvm/Pass.h"
26#include "llvm/Analysis/ConstantFolding.h"
27#include "llvm/Analysis/MemoryBuiltins.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/Support/CallSite.h"
30#include "llvm/Support/Debug.h"
31#include "llvm/Support/ErrorHandling.h"
32#include "llvm/Support/GetElementPtrTypeIterator.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Support/raw_ostream.h"
35#include "llvm/ADT/DenseMap.h"
36#include "llvm/ADT/SmallPtrSet.h"
37#include "llvm/ADT/SmallVector.h"
38#include "llvm/ADT/Statistic.h"
39#include "llvm/ADT/STLExtras.h"
40#include <algorithm>
41using namespace llvm;
42
43STATISTIC(NumMarked    , "Number of globals marked constant");
44STATISTIC(NumUnnamed   , "Number of globals marked unnamed_addr");
45STATISTIC(NumSRA       , "Number of aggregate globals broken into scalars");
46STATISTIC(NumHeapSRA   , "Number of heap objects SRA'd");
47STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
48STATISTIC(NumDeleted   , "Number of globals deleted");
49STATISTIC(NumFnDeleted , "Number of functions deleted");
50STATISTIC(NumGlobUses  , "Number of global uses devirtualized");
51STATISTIC(NumLocalized , "Number of globals localized");
52STATISTIC(NumShrunkToBool  , "Number of global vars shrunk to booleans");
53STATISTIC(NumFastCallFns   , "Number of functions converted to fastcc");
54STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
55STATISTIC(NumNestRemoved   , "Number of nest attributes removed");
56STATISTIC(NumAliasesResolved, "Number of global aliases resolved");
57STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated");
58STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed");
59
60namespace {
61  struct GlobalStatus;
62  struct GlobalOpt : public ModulePass {
63    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
64    }
65    static char ID; // Pass identification, replacement for typeid
66    GlobalOpt() : ModulePass(ID) {
67      initializeGlobalOptPass(*PassRegistry::getPassRegistry());
68    }
69
70    bool runOnModule(Module &M);
71
72  private:
73    GlobalVariable *FindGlobalCtors(Module &M);
74    bool OptimizeFunctions(Module &M);
75    bool OptimizeGlobalVars(Module &M);
76    bool OptimizeGlobalAliases(Module &M);
77    bool OptimizeGlobalCtorsList(GlobalVariable *&GCL);
78    bool ProcessGlobal(GlobalVariable *GV,Module::global_iterator &GVI);
79    bool ProcessInternalGlobal(GlobalVariable *GV,Module::global_iterator &GVI,
80                               const SmallPtrSet<const PHINode*, 16> &PHIUsers,
81                               const GlobalStatus &GS);
82    bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn);
83  };
84}
85
86char GlobalOpt::ID = 0;
87INITIALIZE_PASS(GlobalOpt, "globalopt",
88                "Global Variable Optimizer", false, false)
89
90ModulePass *llvm::createGlobalOptimizerPass() { return new GlobalOpt(); }
91
92namespace {
93
94/// GlobalStatus - As we analyze each global, keep track of some information
95/// about it.  If we find out that the address of the global is taken, none of
96/// this info will be accurate.
97struct GlobalStatus {
98  /// isCompared - True if the global's address is used in a comparison.
99  bool isCompared;
100
101  /// isLoaded - True if the global is ever loaded.  If the global isn't ever
102  /// loaded it can be deleted.
103  bool isLoaded;
104
105  /// StoredType - Keep track of what stores to the global look like.
106  ///
107  enum StoredType {
108    /// NotStored - There is no store to this global.  It can thus be marked
109    /// constant.
110    NotStored,
111
112    /// isInitializerStored - This global is stored to, but the only thing
113    /// stored is the constant it was initialized with.  This is only tracked
114    /// for scalar globals.
115    isInitializerStored,
116
117    /// isStoredOnce - This global is stored to, but only its initializer and
118    /// one other value is ever stored to it.  If this global isStoredOnce, we
119    /// track the value stored to it in StoredOnceValue below.  This is only
120    /// tracked for scalar globals.
121    isStoredOnce,
122
123    /// isStored - This global is stored to by multiple values or something else
124    /// that we cannot track.
125    isStored
126  } StoredType;
127
128  /// StoredOnceValue - If only one value (besides the initializer constant) is
129  /// ever stored to this global, keep track of what value it is.
130  Value *StoredOnceValue;
131
132  /// AccessingFunction/HasMultipleAccessingFunctions - These start out
133  /// null/false.  When the first accessing function is noticed, it is recorded.
134  /// When a second different accessing function is noticed,
135  /// HasMultipleAccessingFunctions is set to true.
136  const Function *AccessingFunction;
137  bool HasMultipleAccessingFunctions;
138
139  /// HasNonInstructionUser - Set to true if this global has a user that is not
140  /// an instruction (e.g. a constant expr or GV initializer).
141  bool HasNonInstructionUser;
142
143  /// HasPHIUser - Set to true if this global has a user that is a PHI node.
144  bool HasPHIUser;
145
146  GlobalStatus() : isCompared(false), isLoaded(false), StoredType(NotStored),
147                   StoredOnceValue(0), AccessingFunction(0),
148                   HasMultipleAccessingFunctions(false), HasNonInstructionUser(false),
149                   HasPHIUser(false) {}
150};
151
152}
153
154// SafeToDestroyConstant - It is safe to destroy a constant iff it is only used
155// by constants itself.  Note that constants cannot be cyclic, so this test is
156// pretty easy to implement recursively.
157//
158static bool SafeToDestroyConstant(const Constant *C) {
159  if (isa<GlobalValue>(C)) return false;
160
161  for (Value::const_use_iterator UI = C->use_begin(), E = C->use_end(); UI != E;
162       ++UI)
163    if (const Constant *CU = dyn_cast<Constant>(*UI)) {
164      if (!SafeToDestroyConstant(CU)) return false;
165    } else
166      return false;
167  return true;
168}
169
170
171/// AnalyzeGlobal - Look at all uses of the global and fill in the GlobalStatus
172/// structure.  If the global has its address taken, return true to indicate we
173/// can't do anything with it.
174///
175static bool AnalyzeGlobal(const Value *V, GlobalStatus &GS,
176                          SmallPtrSet<const PHINode*, 16> &PHIUsers) {
177  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;
178       ++UI) {
179    const User *U = *UI;
180    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
181      GS.HasNonInstructionUser = true;
182
183      // If the result of the constantexpr isn't pointer type, then we won't
184      // know to expect it in various places.  Just reject early.
185      if (!isa<PointerType>(CE->getType())) return true;
186
187      if (AnalyzeGlobal(CE, GS, PHIUsers)) return true;
188    } else if (const Instruction *I = dyn_cast<Instruction>(U)) {
189      if (!GS.HasMultipleAccessingFunctions) {
190        const Function *F = I->getParent()->getParent();
191        if (GS.AccessingFunction == 0)
192          GS.AccessingFunction = F;
193        else if (GS.AccessingFunction != F)
194          GS.HasMultipleAccessingFunctions = true;
195      }
196      if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
197        GS.isLoaded = true;
198        if (LI->isVolatile()) return true;  // Don't hack on volatile loads.
199      } else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) {
200        // Don't allow a store OF the address, only stores TO the address.
201        if (SI->getOperand(0) == V) return true;
202
203        if (SI->isVolatile()) return true;  // Don't hack on volatile stores.
204
205        // If this is a direct store to the global (i.e., the global is a scalar
206        // value, not an aggregate), keep more specific information about
207        // stores.
208        if (GS.StoredType != GlobalStatus::isStored) {
209          if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(
210                                                           SI->getOperand(1))) {
211            Value *StoredVal = SI->getOperand(0);
212            if (StoredVal == GV->getInitializer()) {
213              if (GS.StoredType < GlobalStatus::isInitializerStored)
214                GS.StoredType = GlobalStatus::isInitializerStored;
215            } else if (isa<LoadInst>(StoredVal) &&
216                       cast<LoadInst>(StoredVal)->getOperand(0) == GV) {
217              if (GS.StoredType < GlobalStatus::isInitializerStored)
218                GS.StoredType = GlobalStatus::isInitializerStored;
219            } else if (GS.StoredType < GlobalStatus::isStoredOnce) {
220              GS.StoredType = GlobalStatus::isStoredOnce;
221              GS.StoredOnceValue = StoredVal;
222            } else if (GS.StoredType == GlobalStatus::isStoredOnce &&
223                       GS.StoredOnceValue == StoredVal) {
224              // noop.
225            } else {
226              GS.StoredType = GlobalStatus::isStored;
227            }
228          } else {
229            GS.StoredType = GlobalStatus::isStored;
230          }
231        }
232      } else if (isa<GetElementPtrInst>(I)) {
233        if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
234      } else if (isa<SelectInst>(I)) {
235        if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
236      } else if (const PHINode *PN = dyn_cast<PHINode>(I)) {
237        // PHI nodes we can check just like select or GEP instructions, but we
238        // have to be careful about infinite recursion.
239        if (PHIUsers.insert(PN))  // Not already visited.
240          if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
241        GS.HasPHIUser = true;
242      } else if (isa<CmpInst>(I)) {
243        GS.isCompared = true;
244      } else if (const MemTransferInst *MTI = dyn_cast<MemTransferInst>(I)) {
245        if (MTI->isVolatile()) return true;
246        if (MTI->getArgOperand(0) == V)
247          GS.StoredType = GlobalStatus::isStored;
248        if (MTI->getArgOperand(1) == V)
249          GS.isLoaded = true;
250      } else if (const MemSetInst *MSI = dyn_cast<MemSetInst>(I)) {
251        assert(MSI->getArgOperand(0) == V && "Memset only takes one pointer!");
252        if (MSI->isVolatile()) return true;
253        GS.StoredType = GlobalStatus::isStored;
254      } else {
255        return true;  // Any other non-load instruction might take address!
256      }
257    } else if (const Constant *C = dyn_cast<Constant>(U)) {
258      GS.HasNonInstructionUser = true;
259      // We might have a dead and dangling constant hanging off of here.
260      if (!SafeToDestroyConstant(C))
261        return true;
262    } else {
263      GS.HasNonInstructionUser = true;
264      // Otherwise must be some other user.
265      return true;
266    }
267  }
268
269  return false;
270}
271
272static Constant *getAggregateConstantElement(Constant *Agg, Constant *Idx) {
273  ConstantInt *CI = dyn_cast<ConstantInt>(Idx);
274  if (!CI) return 0;
275  unsigned IdxV = CI->getZExtValue();
276
277  if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Agg)) {
278    if (IdxV < CS->getNumOperands()) return CS->getOperand(IdxV);
279  } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Agg)) {
280    if (IdxV < CA->getNumOperands()) return CA->getOperand(IdxV);
281  } else if (ConstantVector *CP = dyn_cast<ConstantVector>(Agg)) {
282    if (IdxV < CP->getNumOperands()) return CP->getOperand(IdxV);
283  } else if (isa<ConstantAggregateZero>(Agg)) {
284    if (const StructType *STy = dyn_cast<StructType>(Agg->getType())) {
285      if (IdxV < STy->getNumElements())
286        return Constant::getNullValue(STy->getElementType(IdxV));
287    } else if (const SequentialType *STy =
288               dyn_cast<SequentialType>(Agg->getType())) {
289      return Constant::getNullValue(STy->getElementType());
290    }
291  } else if (isa<UndefValue>(Agg)) {
292    if (const StructType *STy = dyn_cast<StructType>(Agg->getType())) {
293      if (IdxV < STy->getNumElements())
294        return UndefValue::get(STy->getElementType(IdxV));
295    } else if (const SequentialType *STy =
296               dyn_cast<SequentialType>(Agg->getType())) {
297      return UndefValue::get(STy->getElementType());
298    }
299  }
300  return 0;
301}
302
303
304/// CleanupConstantGlobalUsers - We just marked GV constant.  Loop over all
305/// users of the global, cleaning up the obvious ones.  This is largely just a
306/// quick scan over the use list to clean up the easy and obvious cruft.  This
307/// returns true if it made a change.
308static bool CleanupConstantGlobalUsers(Value *V, Constant *Init) {
309  bool Changed = false;
310  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;) {
311    User *U = *UI++;
312
313    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
314      if (Init) {
315        // Replace the load with the initializer.
316        LI->replaceAllUsesWith(Init);
317        LI->eraseFromParent();
318        Changed = true;
319      }
320    } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
321      // Store must be unreachable or storing Init into the global.
322      SI->eraseFromParent();
323      Changed = true;
324    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
325      if (CE->getOpcode() == Instruction::GetElementPtr) {
326        Constant *SubInit = 0;
327        if (Init)
328          SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
329        Changed |= CleanupConstantGlobalUsers(CE, SubInit);
330      } else if (CE->getOpcode() == Instruction::BitCast &&
331                 CE->getType()->isPointerTy()) {
332        // Pointer cast, delete any stores and memsets to the global.
333        Changed |= CleanupConstantGlobalUsers(CE, 0);
334      }
335
336      if (CE->use_empty()) {
337        CE->destroyConstant();
338        Changed = true;
339      }
340    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
341      // Do not transform "gepinst (gep constexpr (GV))" here, because forming
342      // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold
343      // and will invalidate our notion of what Init is.
344      Constant *SubInit = 0;
345      if (!isa<ConstantExpr>(GEP->getOperand(0))) {
346        ConstantExpr *CE =
347          dyn_cast_or_null<ConstantExpr>(ConstantFoldInstruction(GEP));
348        if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
349          SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
350      }
351      Changed |= CleanupConstantGlobalUsers(GEP, SubInit);
352
353      if (GEP->use_empty()) {
354        GEP->eraseFromParent();
355        Changed = true;
356      }
357    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
358      if (MI->getRawDest() == V) {
359        MI->eraseFromParent();
360        Changed = true;
361      }
362
363    } else if (Constant *C = dyn_cast<Constant>(U)) {
364      // If we have a chain of dead constantexprs or other things dangling from
365      // us, and if they are all dead, nuke them without remorse.
366      if (SafeToDestroyConstant(C)) {
367        C->destroyConstant();
368        // This could have invalidated UI, start over from scratch.
369        CleanupConstantGlobalUsers(V, Init);
370        return true;
371      }
372    }
373  }
374  return Changed;
375}
376
377/// isSafeSROAElementUse - Return true if the specified instruction is a safe
378/// user of a derived expression from a global that we want to SROA.
379static bool isSafeSROAElementUse(Value *V) {
380  // We might have a dead and dangling constant hanging off of here.
381  if (Constant *C = dyn_cast<Constant>(V))
382    return SafeToDestroyConstant(C);
383
384  Instruction *I = dyn_cast<Instruction>(V);
385  if (!I) return false;
386
387  // Loads are ok.
388  if (isa<LoadInst>(I)) return true;
389
390  // Stores *to* the pointer are ok.
391  if (StoreInst *SI = dyn_cast<StoreInst>(I))
392    return SI->getOperand(0) != V;
393
394  // Otherwise, it must be a GEP.
395  GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I);
396  if (GEPI == 0) return false;
397
398  if (GEPI->getNumOperands() < 3 || !isa<Constant>(GEPI->getOperand(1)) ||
399      !cast<Constant>(GEPI->getOperand(1))->isNullValue())
400    return false;
401
402  for (Value::use_iterator I = GEPI->use_begin(), E = GEPI->use_end();
403       I != E; ++I)
404    if (!isSafeSROAElementUse(*I))
405      return false;
406  return true;
407}
408
409
410/// IsUserOfGlobalSafeForSRA - U is a direct user of the specified global value.
411/// Look at it and its uses and decide whether it is safe to SROA this global.
412///
413static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) {
414  // The user of the global must be a GEP Inst or a ConstantExpr GEP.
415  if (!isa<GetElementPtrInst>(U) &&
416      (!isa<ConstantExpr>(U) ||
417       cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr))
418    return false;
419
420  // Check to see if this ConstantExpr GEP is SRA'able.  In particular, we
421  // don't like < 3 operand CE's, and we don't like non-constant integer
422  // indices.  This enforces that all uses are 'gep GV, 0, C, ...' for some
423  // value of C.
424  if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) ||
425      !cast<Constant>(U->getOperand(1))->isNullValue() ||
426      !isa<ConstantInt>(U->getOperand(2)))
427    return false;
428
429  gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U);
430  ++GEPI;  // Skip over the pointer index.
431
432  // If this is a use of an array allocation, do a bit more checking for sanity.
433  if (const ArrayType *AT = dyn_cast<ArrayType>(*GEPI)) {
434    uint64_t NumElements = AT->getNumElements();
435    ConstantInt *Idx = cast<ConstantInt>(U->getOperand(2));
436
437    // Check to make sure that index falls within the array.  If not,
438    // something funny is going on, so we won't do the optimization.
439    //
440    if (Idx->getZExtValue() >= NumElements)
441      return false;
442
443    // We cannot scalar repl this level of the array unless any array
444    // sub-indices are in-range constants.  In particular, consider:
445    // A[0][i].  We cannot know that the user isn't doing invalid things like
446    // allowing i to index an out-of-range subscript that accesses A[1].
447    //
448    // Scalar replacing *just* the outer index of the array is probably not
449    // going to be a win anyway, so just give up.
450    for (++GEPI; // Skip array index.
451         GEPI != E;
452         ++GEPI) {
453      uint64_t NumElements;
454      if (const ArrayType *SubArrayTy = dyn_cast<ArrayType>(*GEPI))
455        NumElements = SubArrayTy->getNumElements();
456      else if (const VectorType *SubVectorTy = dyn_cast<VectorType>(*GEPI))
457        NumElements = SubVectorTy->getNumElements();
458      else {
459        assert((*GEPI)->isStructTy() &&
460               "Indexed GEP type is not array, vector, or struct!");
461        continue;
462      }
463
464      ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand());
465      if (!IdxVal || IdxVal->getZExtValue() >= NumElements)
466        return false;
467    }
468  }
469
470  for (Value::use_iterator I = U->use_begin(), E = U->use_end(); I != E; ++I)
471    if (!isSafeSROAElementUse(*I))
472      return false;
473  return true;
474}
475
476/// GlobalUsersSafeToSRA - Look at all uses of the global and decide whether it
477/// is safe for us to perform this transformation.
478///
479static bool GlobalUsersSafeToSRA(GlobalValue *GV) {
480  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end();
481       UI != E; ++UI) {
482    if (!IsUserOfGlobalSafeForSRA(*UI, GV))
483      return false;
484  }
485  return true;
486}
487
488
489/// SRAGlobal - Perform scalar replacement of aggregates on the specified global
490/// variable.  This opens the door for other optimizations by exposing the
491/// behavior of the program in a more fine-grained way.  We have determined that
492/// this transformation is safe already.  We return the first global variable we
493/// insert so that the caller can reprocess it.
494static GlobalVariable *SRAGlobal(GlobalVariable *GV, const TargetData &TD) {
495  // Make sure this global only has simple uses that we can SRA.
496  if (!GlobalUsersSafeToSRA(GV))
497    return 0;
498
499  assert(GV->hasLocalLinkage() && !GV->isConstant());
500  Constant *Init = GV->getInitializer();
501  const Type *Ty = Init->getType();
502
503  std::vector<GlobalVariable*> NewGlobals;
504  Module::GlobalListType &Globals = GV->getParent()->getGlobalList();
505
506  // Get the alignment of the global, either explicit or target-specific.
507  unsigned StartAlignment = GV->getAlignment();
508  if (StartAlignment == 0)
509    StartAlignment = TD.getABITypeAlignment(GV->getType());
510
511  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
512    NewGlobals.reserve(STy->getNumElements());
513    const StructLayout &Layout = *TD.getStructLayout(STy);
514    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
515      Constant *In = getAggregateConstantElement(Init,
516                    ConstantInt::get(Type::getInt32Ty(STy->getContext()), i));
517      assert(In && "Couldn't get element of initializer?");
518      GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false,
519                                               GlobalVariable::InternalLinkage,
520                                               In, GV->getName()+"."+Twine(i),
521                                               GV->isThreadLocal(),
522                                              GV->getType()->getAddressSpace());
523      Globals.insert(GV, NGV);
524      NewGlobals.push_back(NGV);
525
526      // Calculate the known alignment of the field.  If the original aggregate
527      // had 256 byte alignment for example, something might depend on that:
528      // propagate info to each field.
529      uint64_t FieldOffset = Layout.getElementOffset(i);
530      unsigned NewAlign = (unsigned)MinAlign(StartAlignment, FieldOffset);
531      if (NewAlign > TD.getABITypeAlignment(STy->getElementType(i)))
532        NGV->setAlignment(NewAlign);
533    }
534  } else if (const SequentialType *STy = dyn_cast<SequentialType>(Ty)) {
535    unsigned NumElements = 0;
536    if (const ArrayType *ATy = dyn_cast<ArrayType>(STy))
537      NumElements = ATy->getNumElements();
538    else
539      NumElements = cast<VectorType>(STy)->getNumElements();
540
541    if (NumElements > 16 && GV->hasNUsesOrMore(16))
542      return 0; // It's not worth it.
543    NewGlobals.reserve(NumElements);
544
545    uint64_t EltSize = TD.getTypeAllocSize(STy->getElementType());
546    unsigned EltAlign = TD.getABITypeAlignment(STy->getElementType());
547    for (unsigned i = 0, e = NumElements; i != e; ++i) {
548      Constant *In = getAggregateConstantElement(Init,
549                    ConstantInt::get(Type::getInt32Ty(Init->getContext()), i));
550      assert(In && "Couldn't get element of initializer?");
551
552      GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false,
553                                               GlobalVariable::InternalLinkage,
554                                               In, GV->getName()+"."+Twine(i),
555                                               GV->isThreadLocal(),
556                                              GV->getType()->getAddressSpace());
557      Globals.insert(GV, NGV);
558      NewGlobals.push_back(NGV);
559
560      // Calculate the known alignment of the field.  If the original aggregate
561      // had 256 byte alignment for example, something might depend on that:
562      // propagate info to each field.
563      unsigned NewAlign = (unsigned)MinAlign(StartAlignment, EltSize*i);
564      if (NewAlign > EltAlign)
565        NGV->setAlignment(NewAlign);
566    }
567  }
568
569  if (NewGlobals.empty())
570    return 0;
571
572  DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV);
573
574  Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext()));
575
576  // Loop over all of the uses of the global, replacing the constantexpr geps,
577  // with smaller constantexpr geps or direct references.
578  while (!GV->use_empty()) {
579    User *GEP = GV->use_back();
580    assert(((isa<ConstantExpr>(GEP) &&
581             cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||
582            isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!");
583
584    // Ignore the 1th operand, which has to be zero or else the program is quite
585    // broken (undefined).  Get the 2nd operand, which is the structure or array
586    // index.
587    unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
588    if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access.
589
590    Value *NewPtr = NewGlobals[Val];
591
592    // Form a shorter GEP if needed.
593    if (GEP->getNumOperands() > 3) {
594      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
595        SmallVector<Constant*, 8> Idxs;
596        Idxs.push_back(NullInt);
597        for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
598          Idxs.push_back(CE->getOperand(i));
599        NewPtr = ConstantExpr::getGetElementPtr(cast<Constant>(NewPtr),
600                                                &Idxs[0], Idxs.size());
601      } else {
602        GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
603        SmallVector<Value*, 8> Idxs;
604        Idxs.push_back(NullInt);
605        for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
606          Idxs.push_back(GEPI->getOperand(i));
607        NewPtr = GetElementPtrInst::Create(NewPtr, Idxs.begin(), Idxs.end(),
608                                           GEPI->getName()+"."+Twine(Val),GEPI);
609      }
610    }
611    GEP->replaceAllUsesWith(NewPtr);
612
613    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
614      GEPI->eraseFromParent();
615    else
616      cast<ConstantExpr>(GEP)->destroyConstant();
617  }
618
619  // Delete the old global, now that it is dead.
620  Globals.erase(GV);
621  ++NumSRA;
622
623  // Loop over the new globals array deleting any globals that are obviously
624  // dead.  This can arise due to scalarization of a structure or an array that
625  // has elements that are dead.
626  unsigned FirstGlobal = 0;
627  for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i)
628    if (NewGlobals[i]->use_empty()) {
629      Globals.erase(NewGlobals[i]);
630      if (FirstGlobal == i) ++FirstGlobal;
631    }
632
633  return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : 0;
634}
635
636/// AllUsesOfValueWillTrapIfNull - Return true if all users of the specified
637/// value will trap if the value is dynamically null.  PHIs keeps track of any
638/// phi nodes we've seen to avoid reprocessing them.
639static bool AllUsesOfValueWillTrapIfNull(const Value *V,
640                                         SmallPtrSet<const PHINode*, 8> &PHIs) {
641  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;
642       ++UI) {
643    const User *U = *UI;
644
645    if (isa<LoadInst>(U)) {
646      // Will trap.
647    } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
648      if (SI->getOperand(0) == V) {
649        //cerr << "NONTRAPPING USE: " << *U;
650        return false;  // Storing the value.
651      }
652    } else if (const CallInst *CI = dyn_cast<CallInst>(U)) {
653      if (CI->getCalledValue() != V) {
654        //cerr << "NONTRAPPING USE: " << *U;
655        return false;  // Not calling the ptr
656      }
657    } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) {
658      if (II->getCalledValue() != V) {
659        //cerr << "NONTRAPPING USE: " << *U;
660        return false;  // Not calling the ptr
661      }
662    } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) {
663      if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
664    } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
665      if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
666    } else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
667      // If we've already seen this phi node, ignore it, it has already been
668      // checked.
669      if (PHIs.insert(PN) && !AllUsesOfValueWillTrapIfNull(PN, PHIs))
670        return false;
671    } else if (isa<ICmpInst>(U) &&
672               isa<ConstantPointerNull>(UI->getOperand(1))) {
673      // Ignore icmp X, null
674    } else {
675      //cerr << "NONTRAPPING USE: " << *U;
676      return false;
677    }
678  }
679  return true;
680}
681
682/// AllUsesOfLoadedValueWillTrapIfNull - Return true if all uses of any loads
683/// from GV will trap if the loaded value is null.  Note that this also permits
684/// comparisons of the loaded value against null, as a special case.
685static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) {
686  for (Value::const_use_iterator UI = GV->use_begin(), E = GV->use_end();
687       UI != E; ++UI) {
688    const User *U = *UI;
689
690    if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
691      SmallPtrSet<const PHINode*, 8> PHIs;
692      if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
693        return false;
694    } else if (isa<StoreInst>(U)) {
695      // Ignore stores to the global.
696    } else {
697      // We don't know or understand this user, bail out.
698      //cerr << "UNKNOWN USER OF GLOBAL!: " << *U;
699      return false;
700    }
701  }
702  return true;
703}
704
705static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
706  bool Changed = false;
707  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ) {
708    Instruction *I = cast<Instruction>(*UI++);
709    if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
710      LI->setOperand(0, NewV);
711      Changed = true;
712    } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
713      if (SI->getOperand(1) == V) {
714        SI->setOperand(1, NewV);
715        Changed = true;
716      }
717    } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
718      CallSite CS(I);
719      if (CS.getCalledValue() == V) {
720        // Calling through the pointer!  Turn into a direct call, but be careful
721        // that the pointer is not also being passed as an argument.
722        CS.setCalledFunction(NewV);
723        Changed = true;
724        bool PassedAsArg = false;
725        for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
726          if (CS.getArgument(i) == V) {
727            PassedAsArg = true;
728            CS.setArgument(i, NewV);
729          }
730
731        if (PassedAsArg) {
732          // Being passed as an argument also.  Be careful to not invalidate UI!
733          UI = V->use_begin();
734        }
735      }
736    } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
737      Changed |= OptimizeAwayTrappingUsesOfValue(CI,
738                                ConstantExpr::getCast(CI->getOpcode(),
739                                                      NewV, CI->getType()));
740      if (CI->use_empty()) {
741        Changed = true;
742        CI->eraseFromParent();
743      }
744    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
745      // Should handle GEP here.
746      SmallVector<Constant*, 8> Idxs;
747      Idxs.reserve(GEPI->getNumOperands()-1);
748      for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end();
749           i != e; ++i)
750        if (Constant *C = dyn_cast<Constant>(*i))
751          Idxs.push_back(C);
752        else
753          break;
754      if (Idxs.size() == GEPI->getNumOperands()-1)
755        Changed |= OptimizeAwayTrappingUsesOfValue(GEPI,
756                          ConstantExpr::getGetElementPtr(NewV, &Idxs[0],
757                                                        Idxs.size()));
758      if (GEPI->use_empty()) {
759        Changed = true;
760        GEPI->eraseFromParent();
761      }
762    }
763  }
764
765  return Changed;
766}
767
768
769/// OptimizeAwayTrappingUsesOfLoads - The specified global has only one non-null
770/// value stored into it.  If there are uses of the loaded value that would trap
771/// if the loaded value is dynamically null, then we know that they cannot be
772/// reachable with a null optimize away the load.
773static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV) {
774  bool Changed = false;
775
776  // Keep track of whether we are able to remove all the uses of the global
777  // other than the store that defines it.
778  bool AllNonStoreUsesGone = true;
779
780  // Replace all uses of loads with uses of uses of the stored value.
781  for (Value::use_iterator GUI = GV->use_begin(), E = GV->use_end(); GUI != E;){
782    User *GlobalUser = *GUI++;
783    if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) {
784      Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
785      // If we were able to delete all uses of the loads
786      if (LI->use_empty()) {
787        LI->eraseFromParent();
788        Changed = true;
789      } else {
790        AllNonStoreUsesGone = false;
791      }
792    } else if (isa<StoreInst>(GlobalUser)) {
793      // Ignore the store that stores "LV" to the global.
794      assert(GlobalUser->getOperand(1) == GV &&
795             "Must be storing *to* the global");
796    } else {
797      AllNonStoreUsesGone = false;
798
799      // If we get here we could have other crazy uses that are transitively
800      // loaded.
801      assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) ||
802              isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser)) &&
803             "Only expect load and stores!");
804    }
805  }
806
807  if (Changed) {
808    DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV);
809    ++NumGlobUses;
810  }
811
812  // If we nuked all of the loads, then none of the stores are needed either,
813  // nor is the global.
814  if (AllNonStoreUsesGone) {
815    DEBUG(dbgs() << "  *** GLOBAL NOW DEAD!\n");
816    CleanupConstantGlobalUsers(GV, 0);
817    if (GV->use_empty()) {
818      GV->eraseFromParent();
819      ++NumDeleted;
820    }
821    Changed = true;
822  }
823  return Changed;
824}
825
826/// ConstantPropUsersOf - Walk the use list of V, constant folding all of the
827/// instructions that are foldable.
828static void ConstantPropUsersOf(Value *V) {
829  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; )
830    if (Instruction *I = dyn_cast<Instruction>(*UI++))
831      if (Constant *NewC = ConstantFoldInstruction(I)) {
832        I->replaceAllUsesWith(NewC);
833
834        // Advance UI to the next non-I use to avoid invalidating it!
835        // Instructions could multiply use V.
836        while (UI != E && *UI == I)
837          ++UI;
838        I->eraseFromParent();
839      }
840}
841
842/// OptimizeGlobalAddressOfMalloc - This function takes the specified global
843/// variable, and transforms the program as if it always contained the result of
844/// the specified malloc.  Because it is always the result of the specified
845/// malloc, there is no reason to actually DO the malloc.  Instead, turn the
846/// malloc into a global, and any loads of GV as uses of the new global.
847static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV,
848                                                     CallInst *CI,
849                                                     const Type *AllocTy,
850                                                     ConstantInt *NElements,
851                                                     TargetData* TD) {
852  DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << "  CALL = " << *CI << '\n');
853
854  const Type *GlobalType;
855  if (NElements->getZExtValue() == 1)
856    GlobalType = AllocTy;
857  else
858    // If we have an array allocation, the global variable is of an array.
859    GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue());
860
861  // Create the new global variable.  The contents of the malloc'd memory is
862  // undefined, so initialize with an undef value.
863  GlobalVariable *NewGV = new GlobalVariable(*GV->getParent(),
864                                             GlobalType, false,
865                                             GlobalValue::InternalLinkage,
866                                             UndefValue::get(GlobalType),
867                                             GV->getName()+".body",
868                                             GV,
869                                             GV->isThreadLocal());
870
871  // If there are bitcast users of the malloc (which is typical, usually we have
872  // a malloc + bitcast) then replace them with uses of the new global.  Update
873  // other users to use the global as well.
874  BitCastInst *TheBC = 0;
875  while (!CI->use_empty()) {
876    Instruction *User = cast<Instruction>(CI->use_back());
877    if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
878      if (BCI->getType() == NewGV->getType()) {
879        BCI->replaceAllUsesWith(NewGV);
880        BCI->eraseFromParent();
881      } else {
882        BCI->setOperand(0, NewGV);
883      }
884    } else {
885      if (TheBC == 0)
886        TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI);
887      User->replaceUsesOfWith(CI, TheBC);
888    }
889  }
890
891  Constant *RepValue = NewGV;
892  if (NewGV->getType() != GV->getType()->getElementType())
893    RepValue = ConstantExpr::getBitCast(RepValue,
894                                        GV->getType()->getElementType());
895
896  // If there is a comparison against null, we will insert a global bool to
897  // keep track of whether the global was initialized yet or not.
898  GlobalVariable *InitBool =
899    new GlobalVariable(Type::getInt1Ty(GV->getContext()), false,
900                       GlobalValue::InternalLinkage,
901                       ConstantInt::getFalse(GV->getContext()),
902                       GV->getName()+".init", GV->isThreadLocal());
903  bool InitBoolUsed = false;
904
905  // Loop over all uses of GV, processing them in turn.
906  while (!GV->use_empty()) {
907    if (StoreInst *SI = dyn_cast<StoreInst>(GV->use_back())) {
908      // The global is initialized when the store to it occurs.
909      new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, SI);
910      SI->eraseFromParent();
911      continue;
912    }
913
914    LoadInst *LI = cast<LoadInst>(GV->use_back());
915    while (!LI->use_empty()) {
916      Use &LoadUse = LI->use_begin().getUse();
917      if (!isa<ICmpInst>(LoadUse.getUser())) {
918        LoadUse = RepValue;
919        continue;
920      }
921
922      ICmpInst *ICI = cast<ICmpInst>(LoadUse.getUser());
923      // Replace the cmp X, 0 with a use of the bool value.
924      Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", ICI);
925      InitBoolUsed = true;
926      switch (ICI->getPredicate()) {
927      default: llvm_unreachable("Unknown ICmp Predicate!");
928      case ICmpInst::ICMP_ULT:
929      case ICmpInst::ICMP_SLT:   // X < null -> always false
930        LV = ConstantInt::getFalse(GV->getContext());
931        break;
932      case ICmpInst::ICMP_ULE:
933      case ICmpInst::ICMP_SLE:
934      case ICmpInst::ICMP_EQ:
935        LV = BinaryOperator::CreateNot(LV, "notinit", ICI);
936        break;
937      case ICmpInst::ICMP_NE:
938      case ICmpInst::ICMP_UGE:
939      case ICmpInst::ICMP_SGE:
940      case ICmpInst::ICMP_UGT:
941      case ICmpInst::ICMP_SGT:
942        break;  // no change.
943      }
944      ICI->replaceAllUsesWith(LV);
945      ICI->eraseFromParent();
946    }
947    LI->eraseFromParent();
948  }
949
950  // If the initialization boolean was used, insert it, otherwise delete it.
951  if (!InitBoolUsed) {
952    while (!InitBool->use_empty())  // Delete initializations
953      cast<StoreInst>(InitBool->use_back())->eraseFromParent();
954    delete InitBool;
955  } else
956    GV->getParent()->getGlobalList().insert(GV, InitBool);
957
958  // Now the GV is dead, nuke it and the malloc..
959  GV->eraseFromParent();
960  CI->eraseFromParent();
961
962  // To further other optimizations, loop over all users of NewGV and try to
963  // constant prop them.  This will promote GEP instructions with constant
964  // indices into GEP constant-exprs, which will allow global-opt to hack on it.
965  ConstantPropUsersOf(NewGV);
966  if (RepValue != NewGV)
967    ConstantPropUsersOf(RepValue);
968
969  return NewGV;
970}
971
972/// ValueIsOnlyUsedLocallyOrStoredToOneGlobal - Scan the use-list of V checking
973/// to make sure that there are no complex uses of V.  We permit simple things
974/// like dereferencing the pointer, but not storing through the address, unless
975/// it is to the specified global.
976static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V,
977                                                      const GlobalVariable *GV,
978                                         SmallPtrSet<const PHINode*, 8> &PHIs) {
979  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
980       UI != E; ++UI) {
981    const Instruction *Inst = cast<Instruction>(*UI);
982
983    if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) {
984      continue; // Fine, ignore.
985    }
986
987    if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
988      if (SI->getOperand(0) == V && SI->getOperand(1) != GV)
989        return false;  // Storing the pointer itself... bad.
990      continue; // Otherwise, storing through it, or storing into GV... fine.
991    }
992
993    // Must index into the array and into the struct.
994    if (isa<GetElementPtrInst>(Inst) && Inst->getNumOperands() >= 3) {
995      if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs))
996        return false;
997      continue;
998    }
999
1000    if (const PHINode *PN = dyn_cast<PHINode>(Inst)) {
1001      // PHIs are ok if all uses are ok.  Don't infinitely recurse through PHI
1002      // cycles.
1003      if (PHIs.insert(PN))
1004        if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs))
1005          return false;
1006      continue;
1007    }
1008
1009    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) {
1010      if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs))
1011        return false;
1012      continue;
1013    }
1014
1015    return false;
1016  }
1017  return true;
1018}
1019
1020/// ReplaceUsesOfMallocWithGlobal - The Alloc pointer is stored into GV
1021/// somewhere.  Transform all uses of the allocation into loads from the
1022/// global and uses of the resultant pointer.  Further, delete the store into
1023/// GV.  This assumes that these value pass the
1024/// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate.
1025static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc,
1026                                          GlobalVariable *GV) {
1027  while (!Alloc->use_empty()) {
1028    Instruction *U = cast<Instruction>(*Alloc->use_begin());
1029    Instruction *InsertPt = U;
1030    if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1031      // If this is the store of the allocation into the global, remove it.
1032      if (SI->getOperand(1) == GV) {
1033        SI->eraseFromParent();
1034        continue;
1035      }
1036    } else if (PHINode *PN = dyn_cast<PHINode>(U)) {
1037      // Insert the load in the corresponding predecessor, not right before the
1038      // PHI.
1039      InsertPt = PN->getIncomingBlock(Alloc->use_begin())->getTerminator();
1040    } else if (isa<BitCastInst>(U)) {
1041      // Must be bitcast between the malloc and store to initialize the global.
1042      ReplaceUsesOfMallocWithGlobal(U, GV);
1043      U->eraseFromParent();
1044      continue;
1045    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
1046      // If this is a "GEP bitcast" and the user is a store to the global, then
1047      // just process it as a bitcast.
1048      if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse())
1049        if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->use_back()))
1050          if (SI->getOperand(1) == GV) {
1051            // Must be bitcast GEP between the malloc and store to initialize
1052            // the global.
1053            ReplaceUsesOfMallocWithGlobal(GEPI, GV);
1054            GEPI->eraseFromParent();
1055            continue;
1056          }
1057    }
1058
1059    // Insert a load from the global, and use it instead of the malloc.
1060    Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt);
1061    U->replaceUsesOfWith(Alloc, NL);
1062  }
1063}
1064
1065/// LoadUsesSimpleEnoughForHeapSRA - Verify that all uses of V (a load, or a phi
1066/// of a load) are simple enough to perform heap SRA on.  This permits GEP's
1067/// that index through the array and struct field, icmps of null, and PHIs.
1068static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V,
1069                        SmallPtrSet<const PHINode*, 32> &LoadUsingPHIs,
1070                        SmallPtrSet<const PHINode*, 32> &LoadUsingPHIsPerLoad) {
1071  // We permit two users of the load: setcc comparing against the null
1072  // pointer, and a getelementptr of a specific form.
1073  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;
1074       ++UI) {
1075    const Instruction *User = cast<Instruction>(*UI);
1076
1077    // Comparison against null is ok.
1078    if (const ICmpInst *ICI = dyn_cast<ICmpInst>(User)) {
1079      if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
1080        return false;
1081      continue;
1082    }
1083
1084    // getelementptr is also ok, but only a simple form.
1085    if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1086      // Must index into the array and into the struct.
1087      if (GEPI->getNumOperands() < 3)
1088        return false;
1089
1090      // Otherwise the GEP is ok.
1091      continue;
1092    }
1093
1094    if (const PHINode *PN = dyn_cast<PHINode>(User)) {
1095      if (!LoadUsingPHIsPerLoad.insert(PN))
1096        // This means some phi nodes are dependent on each other.
1097        // Avoid infinite looping!
1098        return false;
1099      if (!LoadUsingPHIs.insert(PN))
1100        // If we have already analyzed this PHI, then it is safe.
1101        continue;
1102
1103      // Make sure all uses of the PHI are simple enough to transform.
1104      if (!LoadUsesSimpleEnoughForHeapSRA(PN,
1105                                          LoadUsingPHIs, LoadUsingPHIsPerLoad))
1106        return false;
1107
1108      continue;
1109    }
1110
1111    // Otherwise we don't know what this is, not ok.
1112    return false;
1113  }
1114
1115  return true;
1116}
1117
1118
1119/// AllGlobalLoadUsesSimpleEnoughForHeapSRA - If all users of values loaded from
1120/// GV are simple enough to perform HeapSRA, return true.
1121static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV,
1122                                                    Instruction *StoredVal) {
1123  SmallPtrSet<const PHINode*, 32> LoadUsingPHIs;
1124  SmallPtrSet<const PHINode*, 32> LoadUsingPHIsPerLoad;
1125  for (Value::const_use_iterator UI = GV->use_begin(), E = GV->use_end();
1126       UI != E; ++UI)
1127    if (const LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
1128      if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs,
1129                                          LoadUsingPHIsPerLoad))
1130        return false;
1131      LoadUsingPHIsPerLoad.clear();
1132    }
1133
1134  // If we reach here, we know that all uses of the loads and transitive uses
1135  // (through PHI nodes) are simple enough to transform.  However, we don't know
1136  // that all inputs the to the PHI nodes are in the same equivalence sets.
1137  // Check to verify that all operands of the PHIs are either PHIS that can be
1138  // transformed, loads from GV, or MI itself.
1139  for (SmallPtrSet<const PHINode*, 32>::const_iterator I = LoadUsingPHIs.begin()
1140       , E = LoadUsingPHIs.end(); I != E; ++I) {
1141    const PHINode *PN = *I;
1142    for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) {
1143      Value *InVal = PN->getIncomingValue(op);
1144
1145      // PHI of the stored value itself is ok.
1146      if (InVal == StoredVal) continue;
1147
1148      if (const PHINode *InPN = dyn_cast<PHINode>(InVal)) {
1149        // One of the PHIs in our set is (optimistically) ok.
1150        if (LoadUsingPHIs.count(InPN))
1151          continue;
1152        return false;
1153      }
1154
1155      // Load from GV is ok.
1156      if (const LoadInst *LI = dyn_cast<LoadInst>(InVal))
1157        if (LI->getOperand(0) == GV)
1158          continue;
1159
1160      // UNDEF? NULL?
1161
1162      // Anything else is rejected.
1163      return false;
1164    }
1165  }
1166
1167  return true;
1168}
1169
1170static Value *GetHeapSROAValue(Value *V, unsigned FieldNo,
1171               DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1172                   std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1173  std::vector<Value*> &FieldVals = InsertedScalarizedValues[V];
1174
1175  if (FieldNo >= FieldVals.size())
1176    FieldVals.resize(FieldNo+1);
1177
1178  // If we already have this value, just reuse the previously scalarized
1179  // version.
1180  if (Value *FieldVal = FieldVals[FieldNo])
1181    return FieldVal;
1182
1183  // Depending on what instruction this is, we have several cases.
1184  Value *Result;
1185  if (LoadInst *LI = dyn_cast<LoadInst>(V)) {
1186    // This is a scalarized version of the load from the global.  Just create
1187    // a new Load of the scalarized global.
1188    Result = new LoadInst(GetHeapSROAValue(LI->getOperand(0), FieldNo,
1189                                           InsertedScalarizedValues,
1190                                           PHIsToRewrite),
1191                          LI->getName()+".f"+Twine(FieldNo), LI);
1192  } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
1193    // PN's type is pointer to struct.  Make a new PHI of pointer to struct
1194    // field.
1195    const StructType *ST =
1196      cast<StructType>(cast<PointerType>(PN->getType())->getElementType());
1197
1198    PHINode *NewPN =
1199     PHINode::Create(PointerType::getUnqual(ST->getElementType(FieldNo)),
1200                     PN->getNumIncomingValues(),
1201                     PN->getName()+".f"+Twine(FieldNo), PN);
1202    Result = NewPN;
1203    PHIsToRewrite.push_back(std::make_pair(PN, FieldNo));
1204  } else {
1205    llvm_unreachable("Unknown usable value");
1206    Result = 0;
1207  }
1208
1209  return FieldVals[FieldNo] = Result;
1210}
1211
1212/// RewriteHeapSROALoadUser - Given a load instruction and a value derived from
1213/// the load, rewrite the derived value to use the HeapSRoA'd load.
1214static void RewriteHeapSROALoadUser(Instruction *LoadUser,
1215             DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1216                   std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1217  // If this is a comparison against null, handle it.
1218  if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) {
1219    assert(isa<ConstantPointerNull>(SCI->getOperand(1)));
1220    // If we have a setcc of the loaded pointer, we can use a setcc of any
1221    // field.
1222    Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0,
1223                                   InsertedScalarizedValues, PHIsToRewrite);
1224
1225    Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr,
1226                              Constant::getNullValue(NPtr->getType()),
1227                              SCI->getName());
1228    SCI->replaceAllUsesWith(New);
1229    SCI->eraseFromParent();
1230    return;
1231  }
1232
1233  // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...'
1234  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) {
1235    assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2))
1236           && "Unexpected GEPI!");
1237
1238    // Load the pointer for this field.
1239    unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
1240    Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo,
1241                                     InsertedScalarizedValues, PHIsToRewrite);
1242
1243    // Create the new GEP idx vector.
1244    SmallVector<Value*, 8> GEPIdx;
1245    GEPIdx.push_back(GEPI->getOperand(1));
1246    GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end());
1247
1248    Value *NGEPI = GetElementPtrInst::Create(NewPtr,
1249                                             GEPIdx.begin(), GEPIdx.end(),
1250                                             GEPI->getName(), GEPI);
1251    GEPI->replaceAllUsesWith(NGEPI);
1252    GEPI->eraseFromParent();
1253    return;
1254  }
1255
1256  // Recursively transform the users of PHI nodes.  This will lazily create the
1257  // PHIs that are needed for individual elements.  Keep track of what PHIs we
1258  // see in InsertedScalarizedValues so that we don't get infinite loops (very
1259  // antisocial).  If the PHI is already in InsertedScalarizedValues, it has
1260  // already been seen first by another load, so its uses have already been
1261  // processed.
1262  PHINode *PN = cast<PHINode>(LoadUser);
1263  bool Inserted;
1264  DenseMap<Value*, std::vector<Value*> >::iterator InsertPos;
1265  tie(InsertPos, Inserted) =
1266    InsertedScalarizedValues.insert(std::make_pair(PN, std::vector<Value*>()));
1267  if (!Inserted) return;
1268
1269  // If this is the first time we've seen this PHI, recursively process all
1270  // users.
1271  for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end(); UI != E; ) {
1272    Instruction *User = cast<Instruction>(*UI++);
1273    RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1274  }
1275}
1276
1277/// RewriteUsesOfLoadForHeapSRoA - We are performing Heap SRoA on a global.  Ptr
1278/// is a value loaded from the global.  Eliminate all uses of Ptr, making them
1279/// use FieldGlobals instead.  All uses of loaded values satisfy
1280/// AllGlobalLoadUsesSimpleEnoughForHeapSRA.
1281static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
1282               DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1283                   std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1284  for (Value::use_iterator UI = Load->use_begin(), E = Load->use_end();
1285       UI != E; ) {
1286    Instruction *User = cast<Instruction>(*UI++);
1287    RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1288  }
1289
1290  if (Load->use_empty()) {
1291    Load->eraseFromParent();
1292    InsertedScalarizedValues.erase(Load);
1293  }
1294}
1295
1296/// PerformHeapAllocSRoA - CI is an allocation of an array of structures.  Break
1297/// it up into multiple allocations of arrays of the fields.
1298static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI,
1299                                            Value* NElems, TargetData *TD) {
1300  DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << "  MALLOC = " << *CI << '\n');
1301  const Type* MAT = getMallocAllocatedType(CI);
1302  const StructType *STy = cast<StructType>(MAT);
1303
1304  // There is guaranteed to be at least one use of the malloc (storing
1305  // it into GV).  If there are other uses, change them to be uses of
1306  // the global to simplify later code.  This also deletes the store
1307  // into GV.
1308  ReplaceUsesOfMallocWithGlobal(CI, GV);
1309
1310  // Okay, at this point, there are no users of the malloc.  Insert N
1311  // new mallocs at the same place as CI, and N globals.
1312  std::vector<Value*> FieldGlobals;
1313  std::vector<Value*> FieldMallocs;
1314
1315  for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){
1316    const Type *FieldTy = STy->getElementType(FieldNo);
1317    const PointerType *PFieldTy = PointerType::getUnqual(FieldTy);
1318
1319    GlobalVariable *NGV =
1320      new GlobalVariable(*GV->getParent(),
1321                         PFieldTy, false, GlobalValue::InternalLinkage,
1322                         Constant::getNullValue(PFieldTy),
1323                         GV->getName() + ".f" + Twine(FieldNo), GV,
1324                         GV->isThreadLocal());
1325    FieldGlobals.push_back(NGV);
1326
1327    unsigned TypeSize = TD->getTypeAllocSize(FieldTy);
1328    if (const StructType *ST = dyn_cast<StructType>(FieldTy))
1329      TypeSize = TD->getStructLayout(ST)->getSizeInBytes();
1330    const Type *IntPtrTy = TD->getIntPtrType(CI->getContext());
1331    Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy,
1332                                        ConstantInt::get(IntPtrTy, TypeSize),
1333                                        NElems, 0,
1334                                        CI->getName() + ".f" + Twine(FieldNo));
1335    FieldMallocs.push_back(NMI);
1336    new StoreInst(NMI, NGV, CI);
1337  }
1338
1339  // The tricky aspect of this transformation is handling the case when malloc
1340  // fails.  In the original code, malloc failing would set the result pointer
1341  // of malloc to null.  In this case, some mallocs could succeed and others
1342  // could fail.  As such, we emit code that looks like this:
1343  //    F0 = malloc(field0)
1344  //    F1 = malloc(field1)
1345  //    F2 = malloc(field2)
1346  //    if (F0 == 0 || F1 == 0 || F2 == 0) {
1347  //      if (F0) { free(F0); F0 = 0; }
1348  //      if (F1) { free(F1); F1 = 0; }
1349  //      if (F2) { free(F2); F2 = 0; }
1350  //    }
1351  // The malloc can also fail if its argument is too large.
1352  Constant *ConstantZero = ConstantInt::get(CI->getArgOperand(0)->getType(), 0);
1353  Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getArgOperand(0),
1354                                  ConstantZero, "isneg");
1355  for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) {
1356    Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i],
1357                             Constant::getNullValue(FieldMallocs[i]->getType()),
1358                               "isnull");
1359    RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI);
1360  }
1361
1362  // Split the basic block at the old malloc.
1363  BasicBlock *OrigBB = CI->getParent();
1364  BasicBlock *ContBB = OrigBB->splitBasicBlock(CI, "malloc_cont");
1365
1366  // Create the block to check the first condition.  Put all these blocks at the
1367  // end of the function as they are unlikely to be executed.
1368  BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(),
1369                                                "malloc_ret_null",
1370                                                OrigBB->getParent());
1371
1372  // Remove the uncond branch from OrigBB to ContBB, turning it into a cond
1373  // branch on RunningOr.
1374  OrigBB->getTerminator()->eraseFromParent();
1375  BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB);
1376
1377  // Within the NullPtrBlock, we need to emit a comparison and branch for each
1378  // pointer, because some may be null while others are not.
1379  for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1380    Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock);
1381    Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal,
1382                              Constant::getNullValue(GVVal->getType()),
1383                              "tmp");
1384    BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it",
1385                                               OrigBB->getParent());
1386    BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next",
1387                                               OrigBB->getParent());
1388    Instruction *BI = BranchInst::Create(FreeBlock, NextBlock,
1389                                         Cmp, NullPtrBlock);
1390
1391    // Fill in FreeBlock.
1392    CallInst::CreateFree(GVVal, BI);
1393    new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i],
1394                  FreeBlock);
1395    BranchInst::Create(NextBlock, FreeBlock);
1396
1397    NullPtrBlock = NextBlock;
1398  }
1399
1400  BranchInst::Create(ContBB, NullPtrBlock);
1401
1402  // CI is no longer needed, remove it.
1403  CI->eraseFromParent();
1404
1405  /// InsertedScalarizedLoads - As we process loads, if we can't immediately
1406  /// update all uses of the load, keep track of what scalarized loads are
1407  /// inserted for a given load.
1408  DenseMap<Value*, std::vector<Value*> > InsertedScalarizedValues;
1409  InsertedScalarizedValues[GV] = FieldGlobals;
1410
1411  std::vector<std::pair<PHINode*, unsigned> > PHIsToRewrite;
1412
1413  // Okay, the malloc site is completely handled.  All of the uses of GV are now
1414  // loads, and all uses of those loads are simple.  Rewrite them to use loads
1415  // of the per-field globals instead.
1416  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI != E;) {
1417    Instruction *User = cast<Instruction>(*UI++);
1418
1419    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1420      RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite);
1421      continue;
1422    }
1423
1424    // Must be a store of null.
1425    StoreInst *SI = cast<StoreInst>(User);
1426    assert(isa<ConstantPointerNull>(SI->getOperand(0)) &&
1427           "Unexpected heap-sra user!");
1428
1429    // Insert a store of null into each global.
1430    for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1431      const PointerType *PT = cast<PointerType>(FieldGlobals[i]->getType());
1432      Constant *Null = Constant::getNullValue(PT->getElementType());
1433      new StoreInst(Null, FieldGlobals[i], SI);
1434    }
1435    // Erase the original store.
1436    SI->eraseFromParent();
1437  }
1438
1439  // While we have PHIs that are interesting to rewrite, do it.
1440  while (!PHIsToRewrite.empty()) {
1441    PHINode *PN = PHIsToRewrite.back().first;
1442    unsigned FieldNo = PHIsToRewrite.back().second;
1443    PHIsToRewrite.pop_back();
1444    PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]);
1445    assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi");
1446
1447    // Add all the incoming values.  This can materialize more phis.
1448    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1449      Value *InVal = PN->getIncomingValue(i);
1450      InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues,
1451                               PHIsToRewrite);
1452      FieldPN->addIncoming(InVal, PN->getIncomingBlock(i));
1453    }
1454  }
1455
1456  // Drop all inter-phi links and any loads that made it this far.
1457  for (DenseMap<Value*, std::vector<Value*> >::iterator
1458       I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1459       I != E; ++I) {
1460    if (PHINode *PN = dyn_cast<PHINode>(I->first))
1461      PN->dropAllReferences();
1462    else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1463      LI->dropAllReferences();
1464  }
1465
1466  // Delete all the phis and loads now that inter-references are dead.
1467  for (DenseMap<Value*, std::vector<Value*> >::iterator
1468       I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1469       I != E; ++I) {
1470    if (PHINode *PN = dyn_cast<PHINode>(I->first))
1471      PN->eraseFromParent();
1472    else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1473      LI->eraseFromParent();
1474  }
1475
1476  // The old global is now dead, remove it.
1477  GV->eraseFromParent();
1478
1479  ++NumHeapSRA;
1480  return cast<GlobalVariable>(FieldGlobals[0]);
1481}
1482
1483/// TryToOptimizeStoreOfMallocToGlobal - This function is called when we see a
1484/// pointer global variable with a single value stored it that is a malloc or
1485/// cast of malloc.
1486static bool TryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV,
1487                                               CallInst *CI,
1488                                               const Type *AllocTy,
1489                                               Module::global_iterator &GVI,
1490                                               TargetData *TD) {
1491  if (!TD)
1492    return false;
1493
1494  // If this is a malloc of an abstract type, don't touch it.
1495  if (!AllocTy->isSized())
1496    return false;
1497
1498  // We can't optimize this global unless all uses of it are *known* to be
1499  // of the malloc value, not of the null initializer value (consider a use
1500  // that compares the global's value against zero to see if the malloc has
1501  // been reached).  To do this, we check to see if all uses of the global
1502  // would trap if the global were null: this proves that they must all
1503  // happen after the malloc.
1504  if (!AllUsesOfLoadedValueWillTrapIfNull(GV))
1505    return false;
1506
1507  // We can't optimize this if the malloc itself is used in a complex way,
1508  // for example, being stored into multiple globals.  This allows the
1509  // malloc to be stored into the specified global, loaded setcc'd, and
1510  // GEP'd.  These are all things we could transform to using the global
1511  // for.
1512  SmallPtrSet<const PHINode*, 8> PHIs;
1513  if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs))
1514    return false;
1515
1516  // If we have a global that is only initialized with a fixed size malloc,
1517  // transform the program to use global memory instead of malloc'd memory.
1518  // This eliminates dynamic allocation, avoids an indirection accessing the
1519  // data, and exposes the resultant global to further GlobalOpt.
1520  // We cannot optimize the malloc if we cannot determine malloc array size.
1521  Value *NElems = getMallocArraySize(CI, TD, true);
1522  if (!NElems)
1523    return false;
1524
1525  if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems))
1526    // Restrict this transformation to only working on small allocations
1527    // (2048 bytes currently), as we don't want to introduce a 16M global or
1528    // something.
1529    if (NElements->getZExtValue() * TD->getTypeAllocSize(AllocTy) < 2048) {
1530      GVI = OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, TD);
1531      return true;
1532    }
1533
1534  // If the allocation is an array of structures, consider transforming this
1535  // into multiple malloc'd arrays, one for each field.  This is basically
1536  // SRoA for malloc'd memory.
1537
1538  // If this is an allocation of a fixed size array of structs, analyze as a
1539  // variable size array.  malloc [100 x struct],1 -> malloc struct, 100
1540  if (NElems == ConstantInt::get(CI->getArgOperand(0)->getType(), 1))
1541    if (const ArrayType *AT = dyn_cast<ArrayType>(AllocTy))
1542      AllocTy = AT->getElementType();
1543
1544  const StructType *AllocSTy = dyn_cast<StructType>(AllocTy);
1545  if (!AllocSTy)
1546    return false;
1547
1548  // This the structure has an unreasonable number of fields, leave it
1549  // alone.
1550  if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 &&
1551      AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) {
1552
1553    // If this is a fixed size array, transform the Malloc to be an alloc of
1554    // structs.  malloc [100 x struct],1 -> malloc struct, 100
1555    if (const ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI))) {
1556      const Type *IntPtrTy = TD->getIntPtrType(CI->getContext());
1557      unsigned TypeSize = TD->getStructLayout(AllocSTy)->getSizeInBytes();
1558      Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize);
1559      Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements());
1560      Instruction *Malloc = CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy,
1561                                                   AllocSize, NumElements,
1562                                                   0, CI->getName());
1563      Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI);
1564      CI->replaceAllUsesWith(Cast);
1565      CI->eraseFromParent();
1566      CI = dyn_cast<BitCastInst>(Malloc) ?
1567        extractMallocCallFromBitCast(Malloc) : cast<CallInst>(Malloc);
1568    }
1569
1570    GVI = PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, TD, true),TD);
1571    return true;
1572  }
1573
1574  return false;
1575}
1576
1577// OptimizeOnceStoredGlobal - Try to optimize globals based on the knowledge
1578// that only one value (besides its initializer) is ever stored to the global.
1579static bool OptimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
1580                                     Module::global_iterator &GVI,
1581                                     TargetData *TD) {
1582  // Ignore no-op GEPs and bitcasts.
1583  StoredOnceVal = StoredOnceVal->stripPointerCasts();
1584
1585  // If we are dealing with a pointer global that is initialized to null and
1586  // only has one (non-null) value stored into it, then we can optimize any
1587  // users of the loaded value (often calls and loads) that would trap if the
1588  // value was null.
1589  if (GV->getInitializer()->getType()->isPointerTy() &&
1590      GV->getInitializer()->isNullValue()) {
1591    if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
1592      if (GV->getInitializer()->getType() != SOVC->getType())
1593        SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
1594
1595      // Optimize away any trapping uses of the loaded value.
1596      if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC))
1597        return true;
1598    } else if (CallInst *CI = extractMallocCall(StoredOnceVal)) {
1599      const Type* MallocType = getMallocAllocatedType(CI);
1600      if (MallocType && TryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType,
1601                                                           GVI, TD))
1602        return true;
1603    }
1604  }
1605
1606  return false;
1607}
1608
1609/// TryToShrinkGlobalToBoolean - At this point, we have learned that the only
1610/// two values ever stored into GV are its initializer and OtherVal.  See if we
1611/// can shrink the global into a boolean and select between the two values
1612/// whenever it is used.  This exposes the values to other scalar optimizations.
1613static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
1614  const Type *GVElType = GV->getType()->getElementType();
1615
1616  // If GVElType is already i1, it is already shrunk.  If the type of the GV is
1617  // an FP value, pointer or vector, don't do this optimization because a select
1618  // between them is very expensive and unlikely to lead to later
1619  // simplification.  In these cases, we typically end up with "cond ? v1 : v2"
1620  // where v1 and v2 both require constant pool loads, a big loss.
1621  if (GVElType == Type::getInt1Ty(GV->getContext()) ||
1622      GVElType->isFloatingPointTy() ||
1623      GVElType->isPointerTy() || GVElType->isVectorTy())
1624    return false;
1625
1626  // Walk the use list of the global seeing if all the uses are load or store.
1627  // If there is anything else, bail out.
1628  for (Value::use_iterator I = GV->use_begin(), E = GV->use_end(); I != E; ++I){
1629    User *U = *I;
1630    if (!isa<LoadInst>(U) && !isa<StoreInst>(U))
1631      return false;
1632  }
1633
1634  DEBUG(dbgs() << "   *** SHRINKING TO BOOL: " << *GV);
1635
1636  // Create the new global, initializing it to false.
1637  GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()),
1638                                             false,
1639                                             GlobalValue::InternalLinkage,
1640                                        ConstantInt::getFalse(GV->getContext()),
1641                                             GV->getName()+".b",
1642                                             GV->isThreadLocal());
1643  GV->getParent()->getGlobalList().insert(GV, NewGV);
1644
1645  Constant *InitVal = GV->getInitializer();
1646  assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) &&
1647         "No reason to shrink to bool!");
1648
1649  // If initialized to zero and storing one into the global, we can use a cast
1650  // instead of a select to synthesize the desired value.
1651  bool IsOneZero = false;
1652  if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal))
1653    IsOneZero = InitVal->isNullValue() && CI->isOne();
1654
1655  while (!GV->use_empty()) {
1656    Instruction *UI = cast<Instruction>(GV->use_back());
1657    if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
1658      // Change the store into a boolean store.
1659      bool StoringOther = SI->getOperand(0) == OtherVal;
1660      // Only do this if we weren't storing a loaded value.
1661      Value *StoreVal;
1662      if (StoringOther || SI->getOperand(0) == InitVal)
1663        StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()),
1664                                    StoringOther);
1665      else {
1666        // Otherwise, we are storing a previously loaded copy.  To do this,
1667        // change the copy from copying the original value to just copying the
1668        // bool.
1669        Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
1670
1671        // If we've already replaced the input, StoredVal will be a cast or
1672        // select instruction.  If not, it will be a load of the original
1673        // global.
1674        if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
1675          assert(LI->getOperand(0) == GV && "Not a copy!");
1676          // Insert a new load, to preserve the saved value.
1677          StoreVal = new LoadInst(NewGV, LI->getName()+".b", LI);
1678        } else {
1679          assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
1680                 "This is not a form that we understand!");
1681          StoreVal = StoredVal->getOperand(0);
1682          assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
1683        }
1684      }
1685      new StoreInst(StoreVal, NewGV, SI);
1686    } else {
1687      // Change the load into a load of bool then a select.
1688      LoadInst *LI = cast<LoadInst>(UI);
1689      LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", LI);
1690      Value *NSI;
1691      if (IsOneZero)
1692        NSI = new ZExtInst(NLI, LI->getType(), "", LI);
1693      else
1694        NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI);
1695      NSI->takeName(LI);
1696      LI->replaceAllUsesWith(NSI);
1697    }
1698    UI->eraseFromParent();
1699  }
1700
1701  GV->eraseFromParent();
1702  return true;
1703}
1704
1705
1706/// ProcessInternalGlobal - Analyze the specified global variable and optimize
1707/// it if possible.  If we make a change, return true.
1708bool GlobalOpt::ProcessGlobal(GlobalVariable *GV,
1709                              Module::global_iterator &GVI) {
1710  if (!GV->hasLocalLinkage())
1711    return false;
1712
1713  // Do more involved optimizations if the global is internal.
1714  GV->removeDeadConstantUsers();
1715
1716  if (GV->use_empty()) {
1717    DEBUG(dbgs() << "GLOBAL DEAD: " << *GV);
1718    GV->eraseFromParent();
1719    ++NumDeleted;
1720    return true;
1721  }
1722
1723  SmallPtrSet<const PHINode*, 16> PHIUsers;
1724  GlobalStatus GS;
1725
1726  if (AnalyzeGlobal(GV, GS, PHIUsers))
1727    return false;
1728
1729  if (!GS.isCompared && !GV->hasUnnamedAddr()) {
1730    GV->setUnnamedAddr(true);
1731    NumUnnamed++;
1732  }
1733
1734  if (GV->isConstant() || !GV->hasInitializer())
1735    return false;
1736
1737  return ProcessInternalGlobal(GV, GVI, PHIUsers, GS);
1738}
1739
1740/// ProcessInternalGlobal - Analyze the specified global variable and optimize
1741/// it if possible.  If we make a change, return true.
1742bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV,
1743                                      Module::global_iterator &GVI,
1744                                      const SmallPtrSet<const PHINode*, 16> &PHIUsers,
1745                                      const GlobalStatus &GS) {
1746  // If this is a first class global and has only one accessing function
1747  // and this function is main (which we know is not recursive we can make
1748  // this global a local variable) we replace the global with a local alloca
1749  // in this function.
1750  //
1751  // NOTE: It doesn't make sense to promote non single-value types since we
1752  // are just replacing static memory to stack memory.
1753  //
1754  // If the global is in different address space, don't bring it to stack.
1755  if (!GS.HasMultipleAccessingFunctions &&
1756      GS.AccessingFunction && !GS.HasNonInstructionUser &&
1757      GV->getType()->getElementType()->isSingleValueType() &&
1758      GS.AccessingFunction->getName() == "main" &&
1759      GS.AccessingFunction->hasExternalLinkage() &&
1760      GV->getType()->getAddressSpace() == 0) {
1761    DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV);
1762    Instruction& FirstI = const_cast<Instruction&>(*GS.AccessingFunction
1763                                                   ->getEntryBlock().begin());
1764    const Type* ElemTy = GV->getType()->getElementType();
1765    // FIXME: Pass Global's alignment when globals have alignment
1766    AllocaInst* Alloca = new AllocaInst(ElemTy, NULL, GV->getName(), &FirstI);
1767    if (!isa<UndefValue>(GV->getInitializer()))
1768      new StoreInst(GV->getInitializer(), Alloca, &FirstI);
1769
1770    GV->replaceAllUsesWith(Alloca);
1771    GV->eraseFromParent();
1772    ++NumLocalized;
1773    return true;
1774  }
1775
1776  // If the global is never loaded (but may be stored to), it is dead.
1777  // Delete it now.
1778  if (!GS.isLoaded) {
1779    DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV);
1780
1781    // Delete any stores we can find to the global.  We may not be able to
1782    // make it completely dead though.
1783    bool Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer());
1784
1785    // If the global is dead now, delete it.
1786    if (GV->use_empty()) {
1787      GV->eraseFromParent();
1788      ++NumDeleted;
1789      Changed = true;
1790    }
1791    return Changed;
1792
1793  } else if (GS.StoredType <= GlobalStatus::isInitializerStored) {
1794    DEBUG(dbgs() << "MARKING CONSTANT: " << *GV);
1795    GV->setConstant(true);
1796
1797    // Clean up any obviously simplifiable users now.
1798    CleanupConstantGlobalUsers(GV, GV->getInitializer());
1799
1800    // If the global is dead now, just nuke it.
1801    if (GV->use_empty()) {
1802      DEBUG(dbgs() << "   *** Marking constant allowed us to simplify "
1803            << "all users and delete global!\n");
1804      GV->eraseFromParent();
1805      ++NumDeleted;
1806    }
1807
1808    ++NumMarked;
1809    return true;
1810  } else if (!GV->getInitializer()->getType()->isSingleValueType()) {
1811    if (TargetData *TD = getAnalysisIfAvailable<TargetData>())
1812      if (GlobalVariable *FirstNewGV = SRAGlobal(GV, *TD)) {
1813        GVI = FirstNewGV;  // Don't skip the newly produced globals!
1814        return true;
1815      }
1816  } else if (GS.StoredType == GlobalStatus::isStoredOnce) {
1817    // If the initial value for the global was an undef value, and if only
1818    // one other value was stored into it, we can just change the
1819    // initializer to be the stored value, then delete all stores to the
1820    // global.  This allows us to mark it constant.
1821    if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
1822      if (isa<UndefValue>(GV->getInitializer())) {
1823        // Change the initial value here.
1824        GV->setInitializer(SOVConstant);
1825
1826        // Clean up any obviously simplifiable users now.
1827        CleanupConstantGlobalUsers(GV, GV->getInitializer());
1828
1829        if (GV->use_empty()) {
1830          DEBUG(dbgs() << "   *** Substituting initializer allowed us to "
1831                << "simplify all users and delete global!\n");
1832          GV->eraseFromParent();
1833          ++NumDeleted;
1834        } else {
1835          GVI = GV;
1836        }
1837        ++NumSubstitute;
1838        return true;
1839      }
1840
1841    // Try to optimize globals based on the knowledge that only one value
1842    // (besides its initializer) is ever stored to the global.
1843    if (OptimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GVI,
1844                                 getAnalysisIfAvailable<TargetData>()))
1845      return true;
1846
1847    // Otherwise, if the global was not a boolean, we can shrink it to be a
1848    // boolean.
1849    if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
1850      if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) {
1851        ++NumShrunkToBool;
1852        return true;
1853      }
1854  }
1855
1856  return false;
1857}
1858
1859/// ChangeCalleesToFastCall - Walk all of the direct calls of the specified
1860/// function, changing them to FastCC.
1861static void ChangeCalleesToFastCall(Function *F) {
1862  for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
1863    CallSite User(cast<Instruction>(*UI));
1864    User.setCallingConv(CallingConv::Fast);
1865  }
1866}
1867
1868static AttrListPtr StripNest(const AttrListPtr &Attrs) {
1869  for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
1870    if ((Attrs.getSlot(i).Attrs & Attribute::Nest) == 0)
1871      continue;
1872
1873    // There can be only one.
1874    return Attrs.removeAttr(Attrs.getSlot(i).Index, Attribute::Nest);
1875  }
1876
1877  return Attrs;
1878}
1879
1880static void RemoveNestAttribute(Function *F) {
1881  F->setAttributes(StripNest(F->getAttributes()));
1882  for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
1883    CallSite User(cast<Instruction>(*UI));
1884    User.setAttributes(StripNest(User.getAttributes()));
1885  }
1886}
1887
1888bool GlobalOpt::OptimizeFunctions(Module &M) {
1889  bool Changed = false;
1890  // Optimize functions.
1891  for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) {
1892    Function *F = FI++;
1893    // Functions without names cannot be referenced outside this module.
1894    if (!F->hasName() && !F->isDeclaration())
1895      F->setLinkage(GlobalValue::InternalLinkage);
1896    F->removeDeadConstantUsers();
1897    if (F->use_empty() && (F->hasLocalLinkage() || F->hasLinkOnceLinkage())) {
1898      F->eraseFromParent();
1899      Changed = true;
1900      ++NumFnDeleted;
1901    } else if (F->hasLocalLinkage()) {
1902      if (F->getCallingConv() == CallingConv::C && !F->isVarArg() &&
1903          !F->hasAddressTaken()) {
1904        // If this function has C calling conventions, is not a varargs
1905        // function, and is only called directly, promote it to use the Fast
1906        // calling convention.
1907        F->setCallingConv(CallingConv::Fast);
1908        ChangeCalleesToFastCall(F);
1909        ++NumFastCallFns;
1910        Changed = true;
1911      }
1912
1913      if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) &&
1914          !F->hasAddressTaken()) {
1915        // The function is not used by a trampoline intrinsic, so it is safe
1916        // to remove the 'nest' attribute.
1917        RemoveNestAttribute(F);
1918        ++NumNestRemoved;
1919        Changed = true;
1920      }
1921    }
1922  }
1923  return Changed;
1924}
1925
1926bool GlobalOpt::OptimizeGlobalVars(Module &M) {
1927  bool Changed = false;
1928  for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
1929       GVI != E; ) {
1930    GlobalVariable *GV = GVI++;
1931    // Global variables without names cannot be referenced outside this module.
1932    if (!GV->hasName() && !GV->isDeclaration())
1933      GV->setLinkage(GlobalValue::InternalLinkage);
1934    // Simplify the initializer.
1935    if (GV->hasInitializer())
1936      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GV->getInitializer())) {
1937        TargetData *TD = getAnalysisIfAvailable<TargetData>();
1938        Constant *New = ConstantFoldConstantExpression(CE, TD);
1939        if (New && New != CE)
1940          GV->setInitializer(New);
1941      }
1942
1943    Changed |= ProcessGlobal(GV, GVI);
1944  }
1945  return Changed;
1946}
1947
1948/// FindGlobalCtors - Find the llvm.global_ctors list, verifying that all
1949/// initializers have an init priority of 65535.
1950GlobalVariable *GlobalOpt::FindGlobalCtors(Module &M) {
1951  GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors");
1952  if (GV == 0) return 0;
1953
1954  // Verify that the initializer is simple enough for us to handle. We are
1955  // only allowed to optimize the initializer if it is unique.
1956  if (!GV->hasUniqueInitializer()) return 0;
1957
1958  if (isa<ConstantAggregateZero>(GV->getInitializer()))
1959    return GV;
1960  ConstantArray *CA = cast<ConstantArray>(GV->getInitializer());
1961
1962  for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i) {
1963    if (isa<ConstantAggregateZero>(*i))
1964      continue;
1965    ConstantStruct *CS = cast<ConstantStruct>(*i);
1966    if (isa<ConstantPointerNull>(CS->getOperand(1)))
1967      continue;
1968
1969    // Must have a function or null ptr.
1970    if (!isa<Function>(CS->getOperand(1)))
1971      return 0;
1972
1973    // Init priority must be standard.
1974    ConstantInt *CI = cast<ConstantInt>(CS->getOperand(0));
1975    if (CI->getZExtValue() != 65535)
1976      return 0;
1977  }
1978
1979  return GV;
1980}
1981
1982/// ParseGlobalCtors - Given a llvm.global_ctors list that we can understand,
1983/// return a list of the functions and null terminator as a vector.
1984static std::vector<Function*> ParseGlobalCtors(GlobalVariable *GV) {
1985  if (GV->getInitializer()->isNullValue())
1986    return std::vector<Function*>();
1987  ConstantArray *CA = cast<ConstantArray>(GV->getInitializer());
1988  std::vector<Function*> Result;
1989  Result.reserve(CA->getNumOperands());
1990  for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i) {
1991    ConstantStruct *CS = cast<ConstantStruct>(*i);
1992    Result.push_back(dyn_cast<Function>(CS->getOperand(1)));
1993  }
1994  return Result;
1995}
1996
1997/// InstallGlobalCtors - Given a specified llvm.global_ctors list, install the
1998/// specified array, returning the new global to use.
1999static GlobalVariable *InstallGlobalCtors(GlobalVariable *GCL,
2000                                          const std::vector<Function*> &Ctors) {
2001  // If we made a change, reassemble the initializer list.
2002  Constant *CSVals[2];
2003  CSVals[0] = ConstantInt::get(Type::getInt32Ty(GCL->getContext()), 65535);
2004  CSVals[1] = 0;
2005
2006  const StructType *StructTy =
2007    cast <StructType>(
2008    cast<ArrayType>(GCL->getType()->getElementType())->getElementType());
2009
2010  // Create the new init list.
2011  std::vector<Constant*> CAList;
2012  for (unsigned i = 0, e = Ctors.size(); i != e; ++i) {
2013    if (Ctors[i]) {
2014      CSVals[1] = Ctors[i];
2015    } else {
2016      const Type *FTy = FunctionType::get(Type::getVoidTy(GCL->getContext()),
2017                                          false);
2018      const PointerType *PFTy = PointerType::getUnqual(FTy);
2019      CSVals[1] = Constant::getNullValue(PFTy);
2020      CSVals[0] = ConstantInt::get(Type::getInt32Ty(GCL->getContext()),
2021                                   0x7fffffff);
2022    }
2023    CAList.push_back(ConstantStruct::get(StructTy, CSVals));
2024  }
2025
2026  // Create the array initializer.
2027  Constant *CA = ConstantArray::get(ArrayType::get(StructTy,
2028                                                   CAList.size()), CAList);
2029
2030  // If we didn't change the number of elements, don't create a new GV.
2031  if (CA->getType() == GCL->getInitializer()->getType()) {
2032    GCL->setInitializer(CA);
2033    return GCL;
2034  }
2035
2036  // Create the new global and insert it next to the existing list.
2037  GlobalVariable *NGV = new GlobalVariable(CA->getType(), GCL->isConstant(),
2038                                           GCL->getLinkage(), CA, "",
2039                                           GCL->isThreadLocal());
2040  GCL->getParent()->getGlobalList().insert(GCL, NGV);
2041  NGV->takeName(GCL);
2042
2043  // Nuke the old list, replacing any uses with the new one.
2044  if (!GCL->use_empty()) {
2045    Constant *V = NGV;
2046    if (V->getType() != GCL->getType())
2047      V = ConstantExpr::getBitCast(V, GCL->getType());
2048    GCL->replaceAllUsesWith(V);
2049  }
2050  GCL->eraseFromParent();
2051
2052  if (Ctors.size())
2053    return NGV;
2054  else
2055    return 0;
2056}
2057
2058
2059static Constant *getVal(DenseMap<Value*, Constant*> &ComputedValues, Value *V) {
2060  if (Constant *CV = dyn_cast<Constant>(V)) return CV;
2061  Constant *R = ComputedValues[V];
2062  assert(R && "Reference to an uncomputed value!");
2063  return R;
2064}
2065
2066static inline bool
2067isSimpleEnoughValueToCommit(Constant *C,
2068                            SmallPtrSet<Constant*, 8> &SimpleConstants);
2069
2070
2071/// isSimpleEnoughValueToCommit - Return true if the specified constant can be
2072/// handled by the code generator.  We don't want to generate something like:
2073///   void *X = &X/42;
2074/// because the code generator doesn't have a relocation that can handle that.
2075///
2076/// This function should be called if C was not found (but just got inserted)
2077/// in SimpleConstants to avoid having to rescan the same constants all the
2078/// time.
2079static bool isSimpleEnoughValueToCommitHelper(Constant *C,
2080                                   SmallPtrSet<Constant*, 8> &SimpleConstants) {
2081  // Simple integer, undef, constant aggregate zero, global addresses, etc are
2082  // all supported.
2083  if (C->getNumOperands() == 0 || isa<BlockAddress>(C) ||
2084      isa<GlobalValue>(C))
2085    return true;
2086
2087  // Aggregate values are safe if all their elements are.
2088  if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
2089      isa<ConstantVector>(C)) {
2090    for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
2091      Constant *Op = cast<Constant>(C->getOperand(i));
2092      if (!isSimpleEnoughValueToCommit(Op, SimpleConstants))
2093        return false;
2094    }
2095    return true;
2096  }
2097
2098  // We don't know exactly what relocations are allowed in constant expressions,
2099  // so we allow &global+constantoffset, which is safe and uniformly supported
2100  // across targets.
2101  ConstantExpr *CE = cast<ConstantExpr>(C);
2102  switch (CE->getOpcode()) {
2103  case Instruction::BitCast:
2104  case Instruction::IntToPtr:
2105  case Instruction::PtrToInt:
2106    // These casts are always fine if the casted value is.
2107    return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants);
2108
2109  // GEP is fine if it is simple + constant offset.
2110  case Instruction::GetElementPtr:
2111    for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
2112      if (!isa<ConstantInt>(CE->getOperand(i)))
2113        return false;
2114    return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants);
2115
2116  case Instruction::Add:
2117    // We allow simple+cst.
2118    if (!isa<ConstantInt>(CE->getOperand(1)))
2119      return false;
2120    return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants);
2121  }
2122  return false;
2123}
2124
2125static inline bool
2126isSimpleEnoughValueToCommit(Constant *C,
2127                            SmallPtrSet<Constant*, 8> &SimpleConstants) {
2128  // If we already checked this constant, we win.
2129  if (!SimpleConstants.insert(C)) return true;
2130  // Check the constant.
2131  return isSimpleEnoughValueToCommitHelper(C, SimpleConstants);
2132}
2133
2134
2135/// isSimpleEnoughPointerToCommit - Return true if this constant is simple
2136/// enough for us to understand.  In particular, if it is a cast to anything
2137/// other than from one pointer type to another pointer type, we punt.
2138/// We basically just support direct accesses to globals and GEP's of
2139/// globals.  This should be kept up to date with CommitValueTo.
2140static bool isSimpleEnoughPointerToCommit(Constant *C) {
2141  // Conservatively, avoid aggregate types. This is because we don't
2142  // want to worry about them partially overlapping other stores.
2143  if (!cast<PointerType>(C->getType())->getElementType()->isSingleValueType())
2144    return false;
2145
2146  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
2147    // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
2148    // external globals.
2149    return GV->hasUniqueInitializer();
2150
2151  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2152    // Handle a constantexpr gep.
2153    if (CE->getOpcode() == Instruction::GetElementPtr &&
2154        isa<GlobalVariable>(CE->getOperand(0)) &&
2155        cast<GEPOperator>(CE)->isInBounds()) {
2156      GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2157      // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
2158      // external globals.
2159      if (!GV->hasUniqueInitializer())
2160        return false;
2161
2162      // The first index must be zero.
2163      ConstantInt *CI = dyn_cast<ConstantInt>(*llvm::next(CE->op_begin()));
2164      if (!CI || !CI->isZero()) return false;
2165
2166      // The remaining indices must be compile-time known integers within the
2167      // notional bounds of the corresponding static array types.
2168      if (!CE->isGEPWithNoNotionalOverIndexing())
2169        return false;
2170
2171      return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
2172
2173    // A constantexpr bitcast from a pointer to another pointer is a no-op,
2174    // and we know how to evaluate it by moving the bitcast from the pointer
2175    // operand to the value operand.
2176    } else if (CE->getOpcode() == Instruction::BitCast &&
2177               isa<GlobalVariable>(CE->getOperand(0))) {
2178      // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
2179      // external globals.
2180      return cast<GlobalVariable>(CE->getOperand(0))->hasUniqueInitializer();
2181    }
2182  }
2183
2184  return false;
2185}
2186
2187/// EvaluateStoreInto - Evaluate a piece of a constantexpr store into a global
2188/// initializer.  This returns 'Init' modified to reflect 'Val' stored into it.
2189/// At this point, the GEP operands of Addr [0, OpNo) have been stepped into.
2190static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
2191                                   ConstantExpr *Addr, unsigned OpNo) {
2192  // Base case of the recursion.
2193  if (OpNo == Addr->getNumOperands()) {
2194    assert(Val->getType() == Init->getType() && "Type mismatch!");
2195    return Val;
2196  }
2197
2198  std::vector<Constant*> Elts;
2199  if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
2200
2201    // Break up the constant into its elements.
2202    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
2203      for (User::op_iterator i = CS->op_begin(), e = CS->op_end(); i != e; ++i)
2204        Elts.push_back(cast<Constant>(*i));
2205    } else if (isa<ConstantAggregateZero>(Init)) {
2206      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
2207        Elts.push_back(Constant::getNullValue(STy->getElementType(i)));
2208    } else if (isa<UndefValue>(Init)) {
2209      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
2210        Elts.push_back(UndefValue::get(STy->getElementType(i)));
2211    } else {
2212      llvm_unreachable("This code is out of sync with "
2213             " ConstantFoldLoadThroughGEPConstantExpr");
2214    }
2215
2216    // Replace the element that we are supposed to.
2217    ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
2218    unsigned Idx = CU->getZExtValue();
2219    assert(Idx < STy->getNumElements() && "Struct index out of range!");
2220    Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1);
2221
2222    // Return the modified struct.
2223    return ConstantStruct::get(STy, Elts);
2224  }
2225
2226  ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
2227  const SequentialType *InitTy = cast<SequentialType>(Init->getType());
2228
2229  uint64_t NumElts;
2230  if (const ArrayType *ATy = dyn_cast<ArrayType>(InitTy))
2231    NumElts = ATy->getNumElements();
2232  else
2233    NumElts = cast<VectorType>(InitTy)->getNumElements();
2234
2235  // Break up the array into elements.
2236  if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
2237    for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i)
2238      Elts.push_back(cast<Constant>(*i));
2239  } else if (ConstantVector *CV = dyn_cast<ConstantVector>(Init)) {
2240    for (User::op_iterator i = CV->op_begin(), e = CV->op_end(); i != e; ++i)
2241      Elts.push_back(cast<Constant>(*i));
2242  } else if (isa<ConstantAggregateZero>(Init)) {
2243    Elts.assign(NumElts, Constant::getNullValue(InitTy->getElementType()));
2244  } else {
2245    assert(isa<UndefValue>(Init) && "This code is out of sync with "
2246           " ConstantFoldLoadThroughGEPConstantExpr");
2247    Elts.assign(NumElts, UndefValue::get(InitTy->getElementType()));
2248  }
2249
2250  assert(CI->getZExtValue() < NumElts);
2251  Elts[CI->getZExtValue()] =
2252    EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1);
2253
2254  if (Init->getType()->isArrayTy())
2255    return ConstantArray::get(cast<ArrayType>(InitTy), Elts);
2256  return ConstantVector::get(Elts);
2257}
2258
2259/// CommitValueTo - We have decided that Addr (which satisfies the predicate
2260/// isSimpleEnoughPointerToCommit) should get Val as its value.  Make it happen.
2261static void CommitValueTo(Constant *Val, Constant *Addr) {
2262  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
2263    assert(GV->hasInitializer());
2264    GV->setInitializer(Val);
2265    return;
2266  }
2267
2268  ConstantExpr *CE = cast<ConstantExpr>(Addr);
2269  GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2270  GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2));
2271}
2272
2273/// ComputeLoadResult - Return the value that would be computed by a load from
2274/// P after the stores reflected by 'memory' have been performed.  If we can't
2275/// decide, return null.
2276static Constant *ComputeLoadResult(Constant *P,
2277                                const DenseMap<Constant*, Constant*> &Memory) {
2278  // If this memory location has been recently stored, use the stored value: it
2279  // is the most up-to-date.
2280  DenseMap<Constant*, Constant*>::const_iterator I = Memory.find(P);
2281  if (I != Memory.end()) return I->second;
2282
2283  // Access it.
2284  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
2285    if (GV->hasDefinitiveInitializer())
2286      return GV->getInitializer();
2287    return 0;
2288  }
2289
2290  // Handle a constantexpr getelementptr.
2291  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P))
2292    if (CE->getOpcode() == Instruction::GetElementPtr &&
2293        isa<GlobalVariable>(CE->getOperand(0))) {
2294      GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2295      if (GV->hasDefinitiveInitializer())
2296        return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
2297    }
2298
2299  return 0;  // don't know how to evaluate.
2300}
2301
2302/// EvaluateFunction - Evaluate a call to function F, returning true if
2303/// successful, false if we can't evaluate it.  ActualArgs contains the formal
2304/// arguments for the function.
2305static bool EvaluateFunction(Function *F, Constant *&RetVal,
2306                             const SmallVectorImpl<Constant*> &ActualArgs,
2307                             std::vector<Function*> &CallStack,
2308                             DenseMap<Constant*, Constant*> &MutatedMemory,
2309                             std::vector<GlobalVariable*> &AllocaTmps,
2310                             SmallPtrSet<Constant*, 8> &SimpleConstants,
2311                             const TargetData *TD) {
2312  // Check to see if this function is already executing (recursion).  If so,
2313  // bail out.  TODO: we might want to accept limited recursion.
2314  if (std::find(CallStack.begin(), CallStack.end(), F) != CallStack.end())
2315    return false;
2316
2317  CallStack.push_back(F);
2318
2319  /// Values - As we compute SSA register values, we store their contents here.
2320  DenseMap<Value*, Constant*> Values;
2321
2322  // Initialize arguments to the incoming values specified.
2323  unsigned ArgNo = 0;
2324  for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
2325       ++AI, ++ArgNo)
2326    Values[AI] = ActualArgs[ArgNo];
2327
2328  /// ExecutedBlocks - We only handle non-looping, non-recursive code.  As such,
2329  /// we can only evaluate any one basic block at most once.  This set keeps
2330  /// track of what we have executed so we can detect recursive cases etc.
2331  SmallPtrSet<BasicBlock*, 32> ExecutedBlocks;
2332
2333  // CurInst - The current instruction we're evaluating.
2334  BasicBlock::iterator CurInst = F->begin()->begin();
2335
2336  // This is the main evaluation loop.
2337  while (1) {
2338    Constant *InstResult = 0;
2339
2340    if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) {
2341      if (SI->isVolatile()) return false;  // no volatile accesses.
2342      Constant *Ptr = getVal(Values, SI->getOperand(1));
2343      if (!isSimpleEnoughPointerToCommit(Ptr))
2344        // If this is too complex for us to commit, reject it.
2345        return false;
2346
2347      Constant *Val = getVal(Values, SI->getOperand(0));
2348
2349      // If this might be too difficult for the backend to handle (e.g. the addr
2350      // of one global variable divided by another) then we can't commit it.
2351      if (!isSimpleEnoughValueToCommit(Val, SimpleConstants))
2352        return false;
2353
2354      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
2355        if (CE->getOpcode() == Instruction::BitCast) {
2356          // If we're evaluating a store through a bitcast, then we need
2357          // to pull the bitcast off the pointer type and push it onto the
2358          // stored value.
2359          Ptr = CE->getOperand(0);
2360
2361          const Type *NewTy=cast<PointerType>(Ptr->getType())->getElementType();
2362
2363          // In order to push the bitcast onto the stored value, a bitcast
2364          // from NewTy to Val's type must be legal.  If it's not, we can try
2365          // introspecting NewTy to find a legal conversion.
2366          while (!Val->getType()->canLosslesslyBitCastTo(NewTy)) {
2367            // If NewTy is a struct, we can convert the pointer to the struct
2368            // into a pointer to its first member.
2369            // FIXME: This could be extended to support arrays as well.
2370            if (const StructType *STy = dyn_cast<StructType>(NewTy)) {
2371              NewTy = STy->getTypeAtIndex(0U);
2372
2373              const IntegerType *IdxTy =IntegerType::get(NewTy->getContext(), 32);
2374              Constant *IdxZero = ConstantInt::get(IdxTy, 0, false);
2375              Constant * const IdxList[] = {IdxZero, IdxZero};
2376
2377              Ptr = ConstantExpr::getGetElementPtr(Ptr, IdxList, 2);
2378
2379            // If we can't improve the situation by introspecting NewTy,
2380            // we have to give up.
2381            } else {
2382              return 0;
2383            }
2384          }
2385
2386          // If we found compatible types, go ahead and push the bitcast
2387          // onto the stored value.
2388          Val = ConstantExpr::getBitCast(Val, NewTy);
2389        }
2390
2391      MutatedMemory[Ptr] = Val;
2392    } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) {
2393      InstResult = ConstantExpr::get(BO->getOpcode(),
2394                                     getVal(Values, BO->getOperand(0)),
2395                                     getVal(Values, BO->getOperand(1)));
2396    } else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) {
2397      InstResult = ConstantExpr::getCompare(CI->getPredicate(),
2398                                            getVal(Values, CI->getOperand(0)),
2399                                            getVal(Values, CI->getOperand(1)));
2400    } else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) {
2401      InstResult = ConstantExpr::getCast(CI->getOpcode(),
2402                                         getVal(Values, CI->getOperand(0)),
2403                                         CI->getType());
2404    } else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) {
2405      InstResult = ConstantExpr::getSelect(getVal(Values, SI->getOperand(0)),
2406                                           getVal(Values, SI->getOperand(1)),
2407                                           getVal(Values, SI->getOperand(2)));
2408    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) {
2409      Constant *P = getVal(Values, GEP->getOperand(0));
2410      SmallVector<Constant*, 8> GEPOps;
2411      for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end();
2412           i != e; ++i)
2413        GEPOps.push_back(getVal(Values, *i));
2414      InstResult = cast<GEPOperator>(GEP)->isInBounds() ?
2415          ConstantExpr::getInBoundsGetElementPtr(P, &GEPOps[0], GEPOps.size()) :
2416          ConstantExpr::getGetElementPtr(P, &GEPOps[0], GEPOps.size());
2417    } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) {
2418      if (LI->isVolatile()) return false;  // no volatile accesses.
2419      InstResult = ComputeLoadResult(getVal(Values, LI->getOperand(0)),
2420                                     MutatedMemory);
2421      if (InstResult == 0) return false; // Could not evaluate load.
2422    } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) {
2423      if (AI->isArrayAllocation()) return false;  // Cannot handle array allocs.
2424      const Type *Ty = AI->getType()->getElementType();
2425      AllocaTmps.push_back(new GlobalVariable(Ty, false,
2426                                              GlobalValue::InternalLinkage,
2427                                              UndefValue::get(Ty),
2428                                              AI->getName()));
2429      InstResult = AllocaTmps.back();
2430    } else if (CallInst *CI = dyn_cast<CallInst>(CurInst)) {
2431
2432      // Debug info can safely be ignored here.
2433      if (isa<DbgInfoIntrinsic>(CI)) {
2434        ++CurInst;
2435        continue;
2436      }
2437
2438      // Cannot handle inline asm.
2439      if (isa<InlineAsm>(CI->getCalledValue())) return false;
2440
2441      if (MemSetInst *MSI = dyn_cast<MemSetInst>(CI)) {
2442        if (MSI->isVolatile()) return false;
2443        Constant *Ptr = getVal(Values, MSI->getDest());
2444        Constant *Val = getVal(Values, MSI->getValue());
2445        Constant *DestVal = ComputeLoadResult(getVal(Values, Ptr),
2446                                              MutatedMemory);
2447        if (Val->isNullValue() && DestVal && DestVal->isNullValue()) {
2448          // This memset is a no-op.
2449          ++CurInst;
2450          continue;
2451        }
2452        return false;
2453      }
2454
2455      // Resolve function pointers.
2456      Function *Callee = dyn_cast<Function>(getVal(Values,
2457                                                   CI->getCalledValue()));
2458      if (!Callee) return false;  // Cannot resolve.
2459
2460      SmallVector<Constant*, 8> Formals;
2461      CallSite CS(CI);
2462      for (User::op_iterator i = CS.arg_begin(), e = CS.arg_end();
2463           i != e; ++i)
2464        Formals.push_back(getVal(Values, *i));
2465
2466      if (Callee->isDeclaration()) {
2467        // If this is a function we can constant fold, do it.
2468        if (Constant *C = ConstantFoldCall(Callee, Formals.data(),
2469                                           Formals.size())) {
2470          InstResult = C;
2471        } else {
2472          return false;
2473        }
2474      } else {
2475        if (Callee->getFunctionType()->isVarArg())
2476          return false;
2477
2478        Constant *RetVal;
2479        // Execute the call, if successful, use the return value.
2480        if (!EvaluateFunction(Callee, RetVal, Formals, CallStack,
2481                              MutatedMemory, AllocaTmps, SimpleConstants, TD))
2482          return false;
2483        InstResult = RetVal;
2484      }
2485    } else if (isa<TerminatorInst>(CurInst)) {
2486      BasicBlock *NewBB = 0;
2487      if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) {
2488        if (BI->isUnconditional()) {
2489          NewBB = BI->getSuccessor(0);
2490        } else {
2491          ConstantInt *Cond =
2492            dyn_cast<ConstantInt>(getVal(Values, BI->getCondition()));
2493          if (!Cond) return false;  // Cannot determine.
2494
2495          NewBB = BI->getSuccessor(!Cond->getZExtValue());
2496        }
2497      } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) {
2498        ConstantInt *Val =
2499          dyn_cast<ConstantInt>(getVal(Values, SI->getCondition()));
2500        if (!Val) return false;  // Cannot determine.
2501        NewBB = SI->getSuccessor(SI->findCaseValue(Val));
2502      } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(CurInst)) {
2503        Value *Val = getVal(Values, IBI->getAddress())->stripPointerCasts();
2504        if (BlockAddress *BA = dyn_cast<BlockAddress>(Val))
2505          NewBB = BA->getBasicBlock();
2506        else
2507          return false;  // Cannot determine.
2508      } else if (ReturnInst *RI = dyn_cast<ReturnInst>(CurInst)) {
2509        if (RI->getNumOperands())
2510          RetVal = getVal(Values, RI->getOperand(0));
2511
2512        CallStack.pop_back();  // return from fn.
2513        return true;  // We succeeded at evaluating this ctor!
2514      } else {
2515        // invoke, unwind, unreachable.
2516        return false;  // Cannot handle this terminator.
2517      }
2518
2519      // Okay, we succeeded in evaluating this control flow.  See if we have
2520      // executed the new block before.  If so, we have a looping function,
2521      // which we cannot evaluate in reasonable time.
2522      if (!ExecutedBlocks.insert(NewBB))
2523        return false;  // looped!
2524
2525      // Okay, we have never been in this block before.  Check to see if there
2526      // are any PHI nodes.  If so, evaluate them with information about where
2527      // we came from.
2528      BasicBlock *OldBB = CurInst->getParent();
2529      CurInst = NewBB->begin();
2530      PHINode *PN;
2531      for (; (PN = dyn_cast<PHINode>(CurInst)); ++CurInst)
2532        Values[PN] = getVal(Values, PN->getIncomingValueForBlock(OldBB));
2533
2534      // Do NOT increment CurInst.  We know that the terminator had no value.
2535      continue;
2536    } else {
2537      // Did not know how to evaluate this!
2538      return false;
2539    }
2540
2541    if (!CurInst->use_empty()) {
2542      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(InstResult))
2543        InstResult = ConstantFoldConstantExpression(CE, TD);
2544
2545      Values[CurInst] = InstResult;
2546    }
2547
2548    // Advance program counter.
2549    ++CurInst;
2550  }
2551}
2552
2553/// EvaluateStaticConstructor - Evaluate static constructors in the function, if
2554/// we can.  Return true if we can, false otherwise.
2555static bool EvaluateStaticConstructor(Function *F, const TargetData *TD) {
2556  /// MutatedMemory - For each store we execute, we update this map.  Loads
2557  /// check this to get the most up-to-date value.  If evaluation is successful,
2558  /// this state is committed to the process.
2559  DenseMap<Constant*, Constant*> MutatedMemory;
2560
2561  /// AllocaTmps - To 'execute' an alloca, we create a temporary global variable
2562  /// to represent its body.  This vector is needed so we can delete the
2563  /// temporary globals when we are done.
2564  std::vector<GlobalVariable*> AllocaTmps;
2565
2566  /// CallStack - This is used to detect recursion.  In pathological situations
2567  /// we could hit exponential behavior, but at least there is nothing
2568  /// unbounded.
2569  std::vector<Function*> CallStack;
2570
2571  /// SimpleConstants - These are constants we have checked and know to be
2572  /// simple enough to live in a static initializer of a global.
2573  SmallPtrSet<Constant*, 8> SimpleConstants;
2574
2575  // Call the function.
2576  Constant *RetValDummy;
2577  bool EvalSuccess = EvaluateFunction(F, RetValDummy,
2578                                      SmallVector<Constant*, 0>(), CallStack,
2579                                      MutatedMemory, AllocaTmps,
2580                                      SimpleConstants, TD);
2581
2582  if (EvalSuccess) {
2583    // We succeeded at evaluation: commit the result.
2584    DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
2585          << F->getName() << "' to " << MutatedMemory.size()
2586          << " stores.\n");
2587    for (DenseMap<Constant*, Constant*>::iterator I = MutatedMemory.begin(),
2588         E = MutatedMemory.end(); I != E; ++I)
2589      CommitValueTo(I->second, I->first);
2590  }
2591
2592  // At this point, we are done interpreting.  If we created any 'alloca'
2593  // temporaries, release them now.
2594  while (!AllocaTmps.empty()) {
2595    GlobalVariable *Tmp = AllocaTmps.back();
2596    AllocaTmps.pop_back();
2597
2598    // If there are still users of the alloca, the program is doing something
2599    // silly, e.g. storing the address of the alloca somewhere and using it
2600    // later.  Since this is undefined, we'll just make it be null.
2601    if (!Tmp->use_empty())
2602      Tmp->replaceAllUsesWith(Constant::getNullValue(Tmp->getType()));
2603    delete Tmp;
2604  }
2605
2606  return EvalSuccess;
2607}
2608
2609
2610
2611/// OptimizeGlobalCtorsList - Simplify and evaluation global ctors if possible.
2612/// Return true if anything changed.
2613bool GlobalOpt::OptimizeGlobalCtorsList(GlobalVariable *&GCL) {
2614  std::vector<Function*> Ctors = ParseGlobalCtors(GCL);
2615  bool MadeChange = false;
2616  if (Ctors.empty()) return false;
2617
2618  const TargetData *TD = getAnalysisIfAvailable<TargetData>();
2619  // Loop over global ctors, optimizing them when we can.
2620  for (unsigned i = 0; i != Ctors.size(); ++i) {
2621    Function *F = Ctors[i];
2622    // Found a null terminator in the middle of the list, prune off the rest of
2623    // the list.
2624    if (F == 0) {
2625      if (i != Ctors.size()-1) {
2626        Ctors.resize(i+1);
2627        MadeChange = true;
2628      }
2629      break;
2630    }
2631
2632    // We cannot simplify external ctor functions.
2633    if (F->empty()) continue;
2634
2635    // If we can evaluate the ctor at compile time, do.
2636    if (EvaluateStaticConstructor(F, TD)) {
2637      Ctors.erase(Ctors.begin()+i);
2638      MadeChange = true;
2639      --i;
2640      ++NumCtorsEvaluated;
2641      continue;
2642    }
2643  }
2644
2645  if (!MadeChange) return false;
2646
2647  GCL = InstallGlobalCtors(GCL, Ctors);
2648  return true;
2649}
2650
2651bool GlobalOpt::OptimizeGlobalAliases(Module &M) {
2652  bool Changed = false;
2653
2654  for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
2655       I != E;) {
2656    Module::alias_iterator J = I++;
2657    // Aliases without names cannot be referenced outside this module.
2658    if (!J->hasName() && !J->isDeclaration())
2659      J->setLinkage(GlobalValue::InternalLinkage);
2660    // If the aliasee may change at link time, nothing can be done - bail out.
2661    if (J->mayBeOverridden())
2662      continue;
2663
2664    Constant *Aliasee = J->getAliasee();
2665    GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts());
2666    Target->removeDeadConstantUsers();
2667    bool hasOneUse = Target->hasOneUse() && Aliasee->hasOneUse();
2668
2669    // Make all users of the alias use the aliasee instead.
2670    if (!J->use_empty()) {
2671      J->replaceAllUsesWith(Aliasee);
2672      ++NumAliasesResolved;
2673      Changed = true;
2674    }
2675
2676    // If the alias is externally visible, we may still be able to simplify it.
2677    if (!J->hasLocalLinkage()) {
2678      // If the aliasee has internal linkage, give it the name and linkage
2679      // of the alias, and delete the alias.  This turns:
2680      //   define internal ... @f(...)
2681      //   @a = alias ... @f
2682      // into:
2683      //   define ... @a(...)
2684      if (!Target->hasLocalLinkage())
2685        continue;
2686
2687      // Do not perform the transform if multiple aliases potentially target the
2688      // aliasee. This check also ensures that it is safe to replace the section
2689      // and other attributes of the aliasee with those of the alias.
2690      if (!hasOneUse)
2691        continue;
2692
2693      // Give the aliasee the name, linkage and other attributes of the alias.
2694      Target->takeName(J);
2695      Target->setLinkage(J->getLinkage());
2696      Target->GlobalValue::copyAttributesFrom(J);
2697    }
2698
2699    // Delete the alias.
2700    M.getAliasList().erase(J);
2701    ++NumAliasesRemoved;
2702    Changed = true;
2703  }
2704
2705  return Changed;
2706}
2707
2708static Function *FindCXAAtExit(Module &M) {
2709  Function *Fn = M.getFunction("__cxa_atexit");
2710
2711  if (!Fn)
2712    return 0;
2713
2714  const FunctionType *FTy = Fn->getFunctionType();
2715
2716  // Checking that the function has the right return type, the right number of
2717  // parameters and that they all have pointer types should be enough.
2718  if (!FTy->getReturnType()->isIntegerTy() ||
2719      FTy->getNumParams() != 3 ||
2720      !FTy->getParamType(0)->isPointerTy() ||
2721      !FTy->getParamType(1)->isPointerTy() ||
2722      !FTy->getParamType(2)->isPointerTy())
2723    return 0;
2724
2725  return Fn;
2726}
2727
2728/// cxxDtorIsEmpty - Returns whether the given function is an empty C++
2729/// destructor and can therefore be eliminated.
2730/// Note that we assume that other optimization passes have already simplified
2731/// the code so we only look for a function with a single basic block, where
2732/// the only allowed instructions are 'ret' or 'call' to empty C++ dtor.
2733static bool cxxDtorIsEmpty(const Function &Fn,
2734                           SmallPtrSet<const Function *, 8> &CalledFunctions) {
2735  // FIXME: We could eliminate C++ destructors if they're readonly/readnone and
2736  // nounwind, but that doesn't seem worth doing.
2737  if (Fn.isDeclaration())
2738    return false;
2739
2740  if (++Fn.begin() != Fn.end())
2741    return false;
2742
2743  const BasicBlock &EntryBlock = Fn.getEntryBlock();
2744  for (BasicBlock::const_iterator I = EntryBlock.begin(), E = EntryBlock.end();
2745       I != E; ++I) {
2746    if (const CallInst *CI = dyn_cast<CallInst>(I)) {
2747      // Ignore debug intrinsics.
2748      if (isa<DbgInfoIntrinsic>(CI))
2749        continue;
2750
2751      const Function *CalledFn = CI->getCalledFunction();
2752
2753      if (!CalledFn)
2754        return false;
2755
2756      SmallPtrSet<const Function *, 8> NewCalledFunctions(CalledFunctions);
2757
2758      // Don't treat recursive functions as empty.
2759      if (!NewCalledFunctions.insert(CalledFn))
2760        return false;
2761
2762      if (!cxxDtorIsEmpty(*CalledFn, NewCalledFunctions))
2763        return false;
2764    } else if (isa<ReturnInst>(*I))
2765      return true;
2766    else
2767      return false;
2768  }
2769
2770  return false;
2771}
2772
2773bool GlobalOpt::OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) {
2774  /// Itanium C++ ABI p3.3.5:
2775  ///
2776  ///   After constructing a global (or local static) object, that will require
2777  ///   destruction on exit, a termination function is registered as follows:
2778  ///
2779  ///   extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d );
2780  ///
2781  ///   This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the
2782  ///   call f(p) when DSO d is unloaded, before all such termination calls
2783  ///   registered before this one. It returns zero if registration is
2784  ///   successful, nonzero on failure.
2785
2786  // This pass will look for calls to __cxa_atexit where the function is trivial
2787  // and remove them.
2788  bool Changed = false;
2789
2790  for (Function::use_iterator I = CXAAtExitFn->use_begin(),
2791       E = CXAAtExitFn->use_end(); I != E;) {
2792    // We're only interested in calls. Theoretically, we could handle invoke
2793    // instructions as well, but neither llvm-gcc nor clang generate invokes
2794    // to __cxa_atexit.
2795    CallInst *CI = dyn_cast<CallInst>(*I++);
2796    if (!CI)
2797      continue;
2798
2799    Function *DtorFn =
2800      dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts());
2801    if (!DtorFn)
2802      continue;
2803
2804    SmallPtrSet<const Function *, 8> CalledFunctions;
2805    if (!cxxDtorIsEmpty(*DtorFn, CalledFunctions))
2806      continue;
2807
2808    // Just remove the call.
2809    CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
2810    CI->eraseFromParent();
2811
2812    ++NumCXXDtorsRemoved;
2813
2814    Changed |= true;
2815  }
2816
2817  return Changed;
2818}
2819
2820bool GlobalOpt::runOnModule(Module &M) {
2821  bool Changed = false;
2822
2823  // Try to find the llvm.globalctors list.
2824  GlobalVariable *GlobalCtors = FindGlobalCtors(M);
2825
2826  Function *CXAAtExitFn = FindCXAAtExit(M);
2827
2828  bool LocalChange = true;
2829  while (LocalChange) {
2830    LocalChange = false;
2831
2832    // Delete functions that are trivially dead, ccc -> fastcc
2833    LocalChange |= OptimizeFunctions(M);
2834
2835    // Optimize global_ctors list.
2836    if (GlobalCtors)
2837      LocalChange |= OptimizeGlobalCtorsList(GlobalCtors);
2838
2839    // Optimize non-address-taken globals.
2840    LocalChange |= OptimizeGlobalVars(M);
2841
2842    // Resolve aliases, when possible.
2843    LocalChange |= OptimizeGlobalAliases(M);
2844
2845    // Try to remove trivial global destructors.
2846    if (CXAAtExitFn)
2847      LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn);
2848
2849    Changed |= LocalChange;
2850  }
2851
2852  // TODO: Move all global ctors functions to the end of the module for code
2853  // layout.
2854
2855  return Changed;
2856}
2857