GlobalOpt.cpp revision 210299
1206084Srdivacky//===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
2198092Srdivacky//
3198092Srdivacky//                     The LLVM Compiler Infrastructure
4198092Srdivacky//
5198092Srdivacky// This file is distributed under the University of Illinois Open Source
6198092Srdivacky// License. See LICENSE.TXT for details.
7198092Srdivacky//
8198092Srdivacky//===----------------------------------------------------------------------===//
9198092Srdivacky//
10206084Srdivacky// This pass transforms simple global variables that never have their address
11198092Srdivacky// taken.  If obviously true, it marks read/write globals as constant, deletes
12198092Srdivacky// variables only stored to, etc.
13198092Srdivacky//
14206084Srdivacky//===----------------------------------------------------------------------===//
15249423Sdim
16249423Sdim#define DEBUG_TYPE "globalopt"
17198092Srdivacky#include "llvm/Transforms/IPO.h"
18198092Srdivacky#include "llvm/CallingConv.h"
19218893Sdim#include "llvm/Constants.h"
20198092Srdivacky#include "llvm/DerivedTypes.h"
21198092Srdivacky#include "llvm/Instructions.h"
22198092Srdivacky#include "llvm/IntrinsicInst.h"
23224145Sdim#include "llvm/Module.h"
24249423Sdim#include "llvm/Pass.h"
25249423Sdim#include "llvm/Analysis/ConstantFolding.h"
26249423Sdim#include "llvm/Analysis/MemoryBuiltins.h"
27207619Srdivacky#include "llvm/Target/TargetData.h"
28207619Srdivacky#include "llvm/Support/CallSite.h"
29198092Srdivacky#include "llvm/Support/Debug.h"
30198092Srdivacky#include "llvm/Support/ErrorHandling.h"
31198092Srdivacky#include "llvm/Support/GetElementPtrTypeIterator.h"
32218893Sdim#include "llvm/Support/MathExtras.h"
33206084Srdivacky#include "llvm/Support/raw_ostream.h"
34206084Srdivacky#include "llvm/ADT/DenseMap.h"
35206084Srdivacky#include "llvm/ADT/SmallPtrSet.h"
36206084Srdivacky#include "llvm/ADT/SmallVector.h"
37218893Sdim#include "llvm/ADT/Statistic.h"
38226633Sdim#include "llvm/ADT/STLExtras.h"
39206084Srdivacky#include <algorithm>
40218893Sdimusing namespace llvm;
41218893Sdim
42218893SdimSTATISTIC(NumMarked    , "Number of globals marked constant");
43218893SdimSTATISTIC(NumSRA       , "Number of aggregate globals broken into scalars");
44218893SdimSTATISTIC(NumHeapSRA   , "Number of heap objects SRA'd");
45218893SdimSTATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
46218893SdimSTATISTIC(NumDeleted   , "Number of globals deleted");
47218893SdimSTATISTIC(NumFnDeleted , "Number of functions deleted");
48218893SdimSTATISTIC(NumGlobUses  , "Number of global uses devirtualized");
49218893SdimSTATISTIC(NumLocalized , "Number of globals localized");
50218893SdimSTATISTIC(NumShrunkToBool  , "Number of global vars shrunk to booleans");
51218893SdimSTATISTIC(NumFastCallFns   , "Number of functions converted to fastcc");
52218893SdimSTATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
53218893SdimSTATISTIC(NumNestRemoved   , "Number of nest attributes removed");
54218893SdimSTATISTIC(NumAliasesResolved, "Number of global aliases resolved");
55224145SdimSTATISTIC(NumAliasesRemoved, "Number of global aliases eliminated");
56206084Srdivacky
57218893Sdimnamespace {
58218893Sdim  struct GlobalOpt : public ModulePass {
59206084Srdivacky    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
60218893Sdim    }
61218893Sdim    static char ID; // Pass identification, replacement for typeid
62218893Sdim    GlobalOpt() : ModulePass(&ID) {}
63218893Sdim
64218893Sdim    bool runOnModule(Module &M);
65218893Sdim
66218893Sdim  private:
67218893Sdim    GlobalVariable *FindGlobalCtors(Module &M);
68218893Sdim    bool OptimizeFunctions(Module &M);
69218893Sdim    bool OptimizeGlobalVars(Module &M);
70218893Sdim    bool OptimizeGlobalAliases(Module &M);
71218893Sdim    bool OptimizeGlobalCtorsList(GlobalVariable *&GCL);
72218893Sdim    bool ProcessInternalGlobal(GlobalVariable *GV,Module::global_iterator &GVI);
73208600Srdivacky  };
74212904Sdim}
75212904Sdim
76212904Sdimchar GlobalOpt::ID = 0;
77218893Sdimstatic RegisterPass<GlobalOpt> X("globalopt", "Global Variable Optimizer");
78206084Srdivacky
79206084SrdivackyModulePass *llvm::createGlobalOptimizerPass() { return new GlobalOpt(); }
80206084Srdivacky
81221345Sdimnamespace {
82221345Sdim
83221345Sdim/// GlobalStatus - As we analyze each global, keep track of some information
84206084Srdivacky/// about it.  If we find out that the address of the global is taken, none of
85206084Srdivacky/// this info will be accurate.
86206084Srdivackystruct GlobalStatus {
87206084Srdivacky  /// isLoaded - True if the global is ever loaded.  If the global isn't ever
88221345Sdim  /// loaded it can be deleted.
89221345Sdim  bool isLoaded;
90221345Sdim
91221345Sdim  /// StoredType - Keep track of what stores to the global look like.
92221345Sdim  ///
93221345Sdim  enum StoredType {
94221345Sdim    /// NotStored - There is no store to this global.  It can thus be marked
95221345Sdim    /// constant.
96221345Sdim    NotStored,
97221345Sdim
98221345Sdim    /// isInitializerStored - This global is stored to, but the only thing
99221345Sdim    /// stored is the constant it was initialized with.  This is only tracked
100206084Srdivacky    /// for scalar globals.
101218893Sdim    isInitializerStored,
102206084Srdivacky
103218893Sdim    /// isStoredOnce - This global is stored to, but only its initializer and
104218893Sdim    /// one other value is ever stored to it.  If this global isStoredOnce, we
105206084Srdivacky    /// track the value stored to it in StoredOnceValue below.  This is only
106207619Srdivacky    /// tracked for scalar globals.
107207619Srdivacky    isStoredOnce,
108224145Sdim
109224145Sdim    /// isStored - This global is stored to by multiple values or something else
110207619Srdivacky    /// that we cannot track.
111206084Srdivacky    isStored
112206084Srdivacky  } StoredType;
113206084Srdivacky
114249423Sdim  /// StoredOnceValue - If only one value (besides the initializer constant) is
115249423Sdim  /// ever stored to this global, keep track of what value it is.
116249423Sdim  Value *StoredOnceValue;
117249423Sdim
118249423Sdim  /// AccessingFunction/HasMultipleAccessingFunctions - These start out
119249423Sdim  /// null/false.  When the first accessing function is noticed, it is recorded.
120206084Srdivacky  /// When a second different accessing function is noticed,
121206084Srdivacky  /// HasMultipleAccessingFunctions is set to true.
122206084Srdivacky  const Function *AccessingFunction;
123206084Srdivacky  bool HasMultipleAccessingFunctions;
124218893Sdim
125234353Sdim  /// HasNonInstructionUser - Set to true if this global has a user that is not
126218893Sdim  /// an instruction (e.g. a constant expr or GV initializer).
127218893Sdim  bool HasNonInstructionUser;
128218893Sdim
129218893Sdim  /// HasPHIUser - Set to true if this global has a user that is a PHI node.
130234353Sdim  bool HasPHIUser;
131218893Sdim
132218893Sdim  GlobalStatus() : isLoaded(false), StoredType(NotStored), StoredOnceValue(0),
133218893Sdim                   AccessingFunction(0), HasMultipleAccessingFunctions(false),
134234353Sdim                   HasNonInstructionUser(false), HasPHIUser(false) {}
135218893Sdim};
136234353Sdim
137234353Sdim}
138234353Sdim
139234353Sdim// SafeToDestroyConstant - It is safe to destroy a constant iff it is only used
140234353Sdim// by constants itself.  Note that constants cannot be cyclic, so this test is
141218893Sdim// pretty easy to implement recursively.
142208600Srdivacky//
143234353Sdimstatic bool SafeToDestroyConstant(const Constant *C) {
144218893Sdim  if (isa<GlobalValue>(C)) return false;
145208600Srdivacky
146218893Sdim  for (Value::const_use_iterator UI = C->use_begin(), E = C->use_end(); UI != E;
147234353Sdim       ++UI)
148208600Srdivacky    if (const Constant *CU = dyn_cast<Constant>(*UI)) {
149206084Srdivacky      if (!SafeToDestroyConstant(CU)) return false;
150218893Sdim    } else
151218893Sdim      return false;
152218893Sdim  return true;
153206084Srdivacky}
154206084Srdivacky
155206084Srdivacky
156206084Srdivacky/// AnalyzeGlobal - Look at all uses of the global and fill in the GlobalStatus
157206084Srdivacky/// structure.  If the global has its address taken, return true to indicate we
158206084Srdivacky/// can't do anything with it.
159206084Srdivacky///
160206084Srdivackystatic bool AnalyzeGlobal(const Value *V, GlobalStatus &GS,
161224145Sdim                          SmallPtrSet<const PHINode*, 16> &PHIUsers) {
162206084Srdivacky  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;
163206084Srdivacky       ++UI) {
164206084Srdivacky    const User *U = *UI;
165218893Sdim    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
166206084Srdivacky      GS.HasNonInstructionUser = true;
167221345Sdim      if (AnalyzeGlobal(CE, GS, PHIUsers)) return true;
168221345Sdim    } else if (const Instruction *I = dyn_cast<Instruction>(U)) {
169221345Sdim      if (!GS.HasMultipleAccessingFunctions) {
170221345Sdim        const Function *F = I->getParent()->getParent();
171221345Sdim        if (GS.AccessingFunction == 0)
172221345Sdim          GS.AccessingFunction = F;
173218893Sdim        else if (GS.AccessingFunction != F)
174218893Sdim          GS.HasMultipleAccessingFunctions = true;
175224145Sdim      }
176218893Sdim      if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
177206084Srdivacky        GS.isLoaded = true;
178218893Sdim        if (LI->isVolatile()) return true;  // Don't hack on volatile loads.
179206084Srdivacky      } else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) {
180206084Srdivacky        // Don't allow a store OF the address, only stores TO the address.
181206084Srdivacky        if (SI->getOperand(0) == V) return true;
182221345Sdim
183206084Srdivacky        if (SI->isVolatile()) return true;  // Don't hack on volatile stores.
184226633Sdim
185206084Srdivacky        // If this is a direct store to the global (i.e., the global is a scalar
186218893Sdim        // value, not an aggregate), keep more specific information about
187218893Sdim        // stores.
188218893Sdim        if (GS.StoredType != GlobalStatus::isStored) {
189218893Sdim          if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(
190212904Sdim                                                           SI->getOperand(1))) {
191206084Srdivacky            Value *StoredVal = SI->getOperand(0);
192212904Sdim            if (StoredVal == GV->getInitializer()) {
193206084Srdivacky              if (GS.StoredType < GlobalStatus::isInitializerStored)
194206084Srdivacky                GS.StoredType = GlobalStatus::isInitializerStored;
195206084Srdivacky            } else if (isa<LoadInst>(StoredVal) &&
196218893Sdim                       cast<LoadInst>(StoredVal)->getOperand(0) == GV) {
197218893Sdim              if (GS.StoredType < GlobalStatus::isInitializerStored)
198221345Sdim                GS.StoredType = GlobalStatus::isInitializerStored;
199249423Sdim            } else if (GS.StoredType < GlobalStatus::isStoredOnce) {
200206084Srdivacky              GS.StoredType = GlobalStatus::isStoredOnce;
201206084Srdivacky              GS.StoredOnceValue = StoredVal;
202206084Srdivacky            } else if (GS.StoredType == GlobalStatus::isStoredOnce &&
203206084Srdivacky                       GS.StoredOnceValue == StoredVal) {
204206084Srdivacky              // noop.
205206084Srdivacky            } else {
206206084Srdivacky              GS.StoredType = GlobalStatus::isStored;
207198092Srdivacky            }
208218893Sdim          } else {
209198092Srdivacky            GS.StoredType = GlobalStatus::isStored;
210221345Sdim          }
211243830Sdim        }
212198092Srdivacky      } else if (isa<GetElementPtrInst>(I)) {
213198092Srdivacky        if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
214198092Srdivacky      } else if (isa<SelectInst>(I)) {
215198092Srdivacky        if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
216198092Srdivacky      } else if (const PHINode *PN = dyn_cast<PHINode>(I)) {
217198092Srdivacky        // PHI nodes we can check just like select or GEP instructions, but we
218198092Srdivacky        // have to be careful about infinite recursion.
219198092Srdivacky        if (PHIUsers.insert(PN))  // Not already visited.
220198092Srdivacky          if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
221198092Srdivacky        GS.HasPHIUser = true;
222198092Srdivacky      } else if (isa<CmpInst>(I)) {
223221345Sdim        // Nothing to analyse.
224218893Sdim      } else if (isa<MemTransferInst>(I)) {
225198092Srdivacky        const MemTransferInst *MTI = cast<MemTransferInst>(I);
226218893Sdim        if (MTI->getArgOperand(0) == V)
227218893Sdim          GS.StoredType = GlobalStatus::isStored;
228218893Sdim        if (MTI->getArgOperand(1) == V)
229218893Sdim          GS.isLoaded = true;
230198092Srdivacky      } else if (isa<MemSetInst>(I)) {
231198092Srdivacky        assert(cast<MemSetInst>(I)->getArgOperand(0) == V &&
232198092Srdivacky               "Memset only takes one pointer!");
233198092Srdivacky        GS.StoredType = GlobalStatus::isStored;
234212904Sdim      } else {
235249423Sdim        return true;  // Any other non-load instruction might take address!
236249423Sdim      }
237249423Sdim    } else if (const Constant *C = dyn_cast<Constant>(U)) {
238249423Sdim      GS.HasNonInstructionUser = true;
239226633Sdim      // We might have a dead and dangling constant hanging off of here.
240219077Sdim      if (!SafeToDestroyConstant(C))
241243830Sdim        return true;
242219077Sdim    } else {
243207619Srdivacky      GS.HasNonInstructionUser = true;
244223017Sdim      // Otherwise must be some other user.
245207619Srdivacky      return true;
246249423Sdim    }
247207619Srdivacky  }
248207619Srdivacky
249207619Srdivacky  return false;
250207619Srdivacky}
251207619Srdivacky
252207619Srdivackystatic Constant *getAggregateConstantElement(Constant *Agg, Constant *Idx) {
253207619Srdivacky  ConstantInt *CI = dyn_cast<ConstantInt>(Idx);
254207619Srdivacky  if (!CI) return 0;
255207619Srdivacky  unsigned IdxV = CI->getZExtValue();
256249423Sdim
257207619Srdivacky  if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Agg)) {
258207619Srdivacky    if (IdxV < CS->getNumOperands()) return CS->getOperand(IdxV);
259249423Sdim  } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Agg)) {
260249423Sdim    if (IdxV < CA->getNumOperands()) return CA->getOperand(IdxV);
261249423Sdim  } else if (ConstantVector *CP = dyn_cast<ConstantVector>(Agg)) {
262249423Sdim    if (IdxV < CP->getNumOperands()) return CP->getOperand(IdxV);
263243830Sdim  } else if (isa<ConstantAggregateZero>(Agg)) {
264249423Sdim    if (const StructType *STy = dyn_cast<StructType>(Agg->getType())) {
265218893Sdim      if (IdxV < STy->getNumElements())
266218893Sdim        return Constant::getNullValue(STy->getElementType(IdxV));
267249423Sdim    } else if (const SequentialType *STy =
268249423Sdim               dyn_cast<SequentialType>(Agg->getType())) {
269207619Srdivacky      return Constant::getNullValue(STy->getElementType());
270249423Sdim    }
271249423Sdim  } else if (isa<UndefValue>(Agg)) {
272249423Sdim    if (const StructType *STy = dyn_cast<StructType>(Agg->getType())) {
273249423Sdim      if (IdxV < STy->getNumElements())
274249423Sdim        return UndefValue::get(STy->getElementType(IdxV));
275249423Sdim    } else if (const SequentialType *STy =
276249423Sdim               dyn_cast<SequentialType>(Agg->getType())) {
277249423Sdim      return UndefValue::get(STy->getElementType());
278224145Sdim    }
279251662Sdim  }
280249423Sdim  return 0;
281249423Sdim}
282249423Sdim
283249423Sdim
284207619Srdivacky/// CleanupConstantGlobalUsers - We just marked GV constant.  Loop over all
285249423Sdim/// users of the global, cleaning up the obvious ones.  This is largely just a
286249423Sdim/// quick scan over the use list to clean up the easy and obvious cruft.  This
287249423Sdim/// returns true if it made a change.
288207619Srdivackystatic bool CleanupConstantGlobalUsers(Value *V, Constant *Init) {
289249423Sdim  bool Changed = false;
290249423Sdim  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;) {
291249423Sdim    User *U = *UI++;
292207619Srdivacky
293249423Sdim    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
294249423Sdim      if (Init) {
295249423Sdim        // Replace the load with the initializer.
296249423Sdim        LI->replaceAllUsesWith(Init);
297207619Srdivacky        LI->eraseFromParent();
298249423Sdim        Changed = true;
299249423Sdim      }
300249423Sdim    } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
301207619Srdivacky      // Store must be unreachable or storing Init into the global.
302249423Sdim      SI->eraseFromParent();
303249423Sdim      Changed = true;
304249423Sdim    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
305218893Sdim      if (CE->getOpcode() == Instruction::GetElementPtr) {
306249423Sdim        Constant *SubInit = 0;
307249423Sdim        if (Init)
308249423Sdim          SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
309249423Sdim        Changed |= CleanupConstantGlobalUsers(CE, SubInit);
310249423Sdim      } else if (CE->getOpcode() == Instruction::BitCast &&
311249423Sdim                 CE->getType()->isPointerTy()) {
312249423Sdim        // Pointer cast, delete any stores and memsets to the global.
313249423Sdim        Changed |= CleanupConstantGlobalUsers(CE, 0);
314249423Sdim      }
315249423Sdim
316207619Srdivacky      if (CE->use_empty()) {
317249423Sdim        CE->destroyConstant();
318249423Sdim        Changed = true;
319249423Sdim      }
320249423Sdim    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
321207619Srdivacky      // Do not transform "gepinst (gep constexpr (GV))" here, because forming
322249423Sdim      // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold
323249423Sdim      // and will invalidate our notion of what Init is.
324249423Sdim      Constant *SubInit = 0;
325249423Sdim      if (!isa<ConstantExpr>(GEP->getOperand(0))) {
326207619Srdivacky        ConstantExpr *CE =
327249423Sdim          dyn_cast_or_null<ConstantExpr>(ConstantFoldInstruction(GEP));
328249423Sdim        if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
329249423Sdim          SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
330249423Sdim      }
331249423Sdim      Changed |= CleanupConstantGlobalUsers(GEP, SubInit);
332249423Sdim
333249423Sdim      if (GEP->use_empty()) {
334249423Sdim        GEP->eraseFromParent();
335207619Srdivacky        Changed = true;
336249423Sdim      }
337249423Sdim    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
338249423Sdim      if (MI->getRawDest() == V) {
339249423Sdim        MI->eraseFromParent();
340249423Sdim        Changed = true;
341249423Sdim      }
342249423Sdim
343249423Sdim    } else if (Constant *C = dyn_cast<Constant>(U)) {
344249423Sdim      // If we have a chain of dead constantexprs or other things dangling from
345249423Sdim      // us, and if they are all dead, nuke them without remorse.
346249423Sdim      if (SafeToDestroyConstant(C)) {
347249423Sdim        C->destroyConstant();
348249423Sdim        // This could have invalidated UI, start over from scratch.
349249423Sdim        CleanupConstantGlobalUsers(V, Init);
350249423Sdim        return true;
351249423Sdim      }
352249423Sdim    }
353249423Sdim  }
354249423Sdim  return Changed;
355251662Sdim}
356249423Sdim
357249423Sdim/// isSafeSROAElementUse - Return true if the specified instruction is a safe
358249423Sdim/// user of a derived expression from a global that we want to SROA.
359249423Sdimstatic bool isSafeSROAElementUse(Value *V) {
360249423Sdim  // We might have a dead and dangling constant hanging off of here.
361249423Sdim  if (Constant *C = dyn_cast<Constant>(V))
362249423Sdim    return SafeToDestroyConstant(C);
363221345Sdim
364221345Sdim  Instruction *I = dyn_cast<Instruction>(V);
365249423Sdim  if (!I) return false;
366249423Sdim
367198092Srdivacky  // Loads are ok.
368249423Sdim  if (isa<LoadInst>(I)) return true;
369249423Sdim
370249423Sdim  // Stores *to* the pointer are ok.
371249423Sdim  if (StoreInst *SI = dyn_cast<StoreInst>(I))
372249423Sdim    return SI->getOperand(0) != V;
373249423Sdim
374249423Sdim  // Otherwise, it must be a GEP.
375249423Sdim  GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I);
376249423Sdim  if (GEPI == 0) return false;
377249423Sdim
378198092Srdivacky  if (GEPI->getNumOperands() < 3 || !isa<Constant>(GEPI->getOperand(1)) ||
379249423Sdim      !cast<Constant>(GEPI->getOperand(1))->isNullValue())
380249423Sdim    return false;
381198092Srdivacky
382198092Srdivacky  for (Value::use_iterator I = GEPI->use_begin(), E = GEPI->use_end();
383198092Srdivacky       I != E; ++I)
384218893Sdim    if (!isSafeSROAElementUse(*I))
385198092Srdivacky      return false;
386198092Srdivacky  return true;
387198092Srdivacky}
388198092Srdivacky
389249423Sdim
390198092Srdivacky/// IsUserOfGlobalSafeForSRA - U is a direct user of the specified global value.
391212904Sdim/// Look at it and its uses and decide whether it is safe to SROA this global.
392206084Srdivacky///
393219077Sdimstatic bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) {
394219077Sdim  // The user of the global must be a GEP Inst or a ConstantExpr GEP.
395219077Sdim  if (!isa<GetElementPtrInst>(U) &&
396219077Sdim      (!isa<ConstantExpr>(U) ||
397198092Srdivacky       cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr))
398224145Sdim    return false;
399218893Sdim
400198092Srdivacky  // Check to see if this ConstantExpr GEP is SRA'able.  In particular, we
401198092Srdivacky  // don't like < 3 operand CE's, and we don't like non-constant integer
402198092Srdivacky  // indices.  This enforces that all uses are 'gep GV, 0, C, ...' for some
403218893Sdim  // value of C.
404198092Srdivacky  if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) ||
405198092Srdivacky      !cast<Constant>(U->getOperand(1))->isNullValue() ||
406198092Srdivacky      !isa<ConstantInt>(U->getOperand(2)))
407198092Srdivacky    return false;
408218893Sdim
409218893Sdim  gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U);
410218893Sdim  ++GEPI;  // Skip over the pointer index.
411218893Sdim
412218893Sdim  // If this is a use of an array allocation, do a bit more checking for sanity.
413219077Sdim  if (const ArrayType *AT = dyn_cast<ArrayType>(*GEPI)) {
414218893Sdim    uint64_t NumElements = AT->getNumElements();
415218893Sdim    ConstantInt *Idx = cast<ConstantInt>(U->getOperand(2));
416198092Srdivacky
417198092Srdivacky    // Check to make sure that index falls within the array.  If not,
418198092Srdivacky    // something funny is going on, so we won't do the optimization.
419198092Srdivacky    //
420218893Sdim    if (Idx->getZExtValue() >= NumElements)
421218893Sdim      return false;
422198092Srdivacky
423218893Sdim    // We cannot scalar repl this level of the array unless any array
424221345Sdim    // sub-indices are in-range constants.  In particular, consider:
425221345Sdim    // A[0][i].  We cannot know that the user isn't doing invalid things like
426221345Sdim    // allowing i to index an out-of-range subscript that accesses A[1].
427221345Sdim    //
428221345Sdim    // Scalar replacing *just* the outer index of the array is probably not
429221345Sdim    // going to be a win anyway, so just give up.
430221345Sdim    for (++GEPI; // Skip array index.
431221345Sdim         GEPI != E;
432198092Srdivacky         ++GEPI) {
433198092Srdivacky      uint64_t NumElements;
434198092Srdivacky      if (const ArrayType *SubArrayTy = dyn_cast<ArrayType>(*GEPI))
435198092Srdivacky        NumElements = SubArrayTy->getNumElements();
436218893Sdim      else if (const VectorType *SubVectorTy = dyn_cast<VectorType>(*GEPI))
437198092Srdivacky        NumElements = SubVectorTy->getNumElements();
438198092Srdivacky      else {
439218893Sdim        assert((*GEPI)->isStructTy() &&
440218893Sdim               "Indexed GEP type is not array, vector, or struct!");
441198092Srdivacky        continue;
442221345Sdim      }
443198092Srdivacky
444198092Srdivacky      ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand());
445198092Srdivacky      if (!IdxVal || IdxVal->getZExtValue() >= NumElements)
446224145Sdim        return false;
447207619Srdivacky    }
448207619Srdivacky  }
449249423Sdim
450207619Srdivacky  for (Value::use_iterator I = U->use_begin(), E = U->use_end(); I != E; ++I)
451226633Sdim    if (!isSafeSROAElementUse(*I))
452207619Srdivacky      return false;
453207619Srdivacky  return true;
454207619Srdivacky}
455207619Srdivacky
456207619Srdivacky/// GlobalUsersSafeToSRA - Look at all uses of the global and decide whether it
457249423Sdim/// is safe for us to perform this transformation.
458251662Sdim///
459249423Sdimstatic bool GlobalUsersSafeToSRA(GlobalValue *GV) {
460249423Sdim  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end();
461249423Sdim       UI != E; ++UI) {
462224145Sdim    if (!IsUserOfGlobalSafeForSRA(*UI, GV))
463221345Sdim      return false;
464221345Sdim  }
465207619Srdivacky  return true;
466207619Srdivacky}
467249423Sdim
468249423Sdim
469249423Sdim/// SRAGlobal - Perform scalar replacement of aggregates on the specified global
470207619Srdivacky/// variable.  This opens the door for other optimizations by exposing the
471207619Srdivacky/// behavior of the program in a more fine-grained way.  We have determined that
472207619Srdivacky/// this transformation is safe already.  We return the first global variable we
473207619Srdivacky/// insert so that the caller can reprocess it.
474224145Sdimstatic GlobalVariable *SRAGlobal(GlobalVariable *GV, const TargetData &TD) {
475207619Srdivacky  // Make sure this global only has simple uses that we can SRA.
476207619Srdivacky  if (!GlobalUsersSafeToSRA(GV))
477198092Srdivacky    return 0;
478198092Srdivacky
479198092Srdivacky  assert(GV->hasLocalLinkage() && !GV->isConstant());
480218893Sdim  Constant *Init = GV->getInitializer();
481198092Srdivacky  const Type *Ty = Init->getType();
482224145Sdim
483218893Sdim  std::vector<GlobalVariable*> NewGlobals;
484218893Sdim  Module::GlobalListType &Globals = GV->getParent()->getGlobalList();
485198092Srdivacky
486218893Sdim  // Get the alignment of the global, either explicit or target-specific.
487234353Sdim  unsigned StartAlignment = GV->getAlignment();
488206084Srdivacky  if (StartAlignment == 0)
489218893Sdim    StartAlignment = TD.getABITypeAlignment(GV->getType());
490218893Sdim
491218893Sdim  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
492218893Sdim    NewGlobals.reserve(STy->getNumElements());
493198092Srdivacky    const StructLayout &Layout = *TD.getStructLayout(STy);
494224145Sdim    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
495198092Srdivacky      Constant *In = getAggregateConstantElement(Init,
496218893Sdim                    ConstantInt::get(Type::getInt32Ty(STy->getContext()), i));
497207619Srdivacky      assert(In && "Couldn't get element of initializer?");
498198092Srdivacky      GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false,
499234353Sdim                                               GlobalVariable::InternalLinkage,
500234353Sdim                                               In, GV->getName()+"."+Twine(i),
501234353Sdim                                               GV->isThreadLocal(),
502234353Sdim                                              GV->getType()->getAddressSpace());
503234353Sdim      Globals.insert(GV, NGV);
504218893Sdim      NewGlobals.push_back(NGV);
505206084Srdivacky
506218893Sdim      // Calculate the known alignment of the field.  If the original aggregate
507243830Sdim      // had 256 byte alignment for example, something might depend on that:
508218893Sdim      // propagate info to each field.
509243830Sdim      uint64_t FieldOffset = Layout.getElementOffset(i);
510198092Srdivacky      unsigned NewAlign = (unsigned)MinAlign(StartAlignment, FieldOffset);
511218893Sdim      if (NewAlign > TD.getABITypeAlignment(STy->getElementType(i)))
512198092Srdivacky        NGV->setAlignment(NewAlign);
513198092Srdivacky    }
514218893Sdim  } else if (const SequentialType *STy = dyn_cast<SequentialType>(Ty)) {
515218893Sdim    unsigned NumElements = 0;
516218893Sdim    if (const ArrayType *ATy = dyn_cast<ArrayType>(STy))
517218893Sdim      NumElements = ATy->getNumElements();
518198092Srdivacky    else
519198092Srdivacky      NumElements = cast<VectorType>(STy)->getNumElements();
520198092Srdivacky
521198092Srdivacky    if (NumElements > 16 && GV->hasNUsesOrMore(16))
522218893Sdim      return 0; // It's not worth it.
523218893Sdim    NewGlobals.reserve(NumElements);
524198092Srdivacky
525218893Sdim    uint64_t EltSize = TD.getTypeAllocSize(STy->getElementType());
526198092Srdivacky    unsigned EltAlign = TD.getABITypeAlignment(STy->getElementType());
527198092Srdivacky    for (unsigned i = 0, e = NumElements; i != e; ++i) {
528218893Sdim      Constant *In = getAggregateConstantElement(Init,
529198092Srdivacky                    ConstantInt::get(Type::getInt32Ty(Init->getContext()), i));
530198092Srdivacky      assert(In && "Couldn't get element of initializer?");
531218893Sdim
532234353Sdim      GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false,
533218893Sdim                                               GlobalVariable::InternalLinkage,
534203955Srdivacky                                               In, GV->getName()+"."+Twine(i),
535218893Sdim                                               GV->isThreadLocal(),
536199482Srdivacky                                              GV->getType()->getAddressSpace());
537206084Srdivacky      Globals.insert(GV, NGV);
538198092Srdivacky      NewGlobals.push_back(NGV);
539218893Sdim
540218893Sdim      // Calculate the known alignment of the field.  If the original aggregate
541218893Sdim      // had 256 byte alignment for example, something might depend on that:
542198092Srdivacky      // propagate info to each field.
543198092Srdivacky      unsigned NewAlign = (unsigned)MinAlign(StartAlignment, EltSize*i);
544234353Sdim      if (NewAlign > EltAlign)
545218893Sdim        NGV->setAlignment(NewAlign);
546218893Sdim    }
547221345Sdim  }
548221345Sdim
549218893Sdim  if (NewGlobals.empty())
550208600Srdivacky    return 0;
551218893Sdim
552218893Sdim  DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV);
553208600Srdivacky
554221345Sdim  Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext()));
555221345Sdim
556221345Sdim  // Loop over all of the uses of the global, replacing the constantexpr geps,
557234353Sdim  // with smaller constantexpr geps or direct references.
558234353Sdim  while (!GV->use_empty()) {
559234353Sdim    User *GEP = GV->use_back();
560218893Sdim    assert(((isa<ConstantExpr>(GEP) &&
561221345Sdim             cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||
562234353Sdim            isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!");
563218893Sdim
564218893Sdim    // Ignore the 1th operand, which has to be zero or else the program is quite
565234353Sdim    // broken (undefined).  Get the 2nd operand, which is the structure or array
566218893Sdim    // index.
567218893Sdim    unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
568234353Sdim    if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access.
569218893Sdim
570218893Sdim    Value *NewPtr = NewGlobals[Val];
571218893Sdim
572218893Sdim    // Form a shorter GEP if needed.
573218893Sdim    if (GEP->getNumOperands() > 3) {
574218893Sdim      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
575218893Sdim        SmallVector<Constant*, 8> Idxs;
576218893Sdim        Idxs.push_back(NullInt);
577208600Srdivacky        for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
578208600Srdivacky          Idxs.push_back(CE->getOperand(i));
579234353Sdim        NewPtr = ConstantExpr::getGetElementPtr(cast<Constant>(NewPtr),
580234353Sdim                                                &Idxs[0], Idxs.size());
581218893Sdim      } else {
582234353Sdim        GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
583218893Sdim        SmallVector<Value*, 8> Idxs;
584208600Srdivacky        Idxs.push_back(NullInt);
585234353Sdim        for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
586218893Sdim          Idxs.push_back(GEPI->getOperand(i));
587218893Sdim        NewPtr = GetElementPtrInst::Create(NewPtr, Idxs.begin(), Idxs.end(),
588218893Sdim                                           GEPI->getName()+"."+Twine(Val),GEPI);
589234353Sdim      }
590208600Srdivacky    }
591218893Sdim    GEP->replaceAllUsesWith(NewPtr);
592218893Sdim
593218893Sdim    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
594218893Sdim      GEPI->eraseFromParent();
595234353Sdim    else
596234353Sdim      cast<ConstantExpr>(GEP)->destroyConstant();
597218893Sdim  }
598234353Sdim
599208600Srdivacky  // Delete the old global, now that it is dead.
600208600Srdivacky  Globals.erase(GV);
601234353Sdim  ++NumSRA;
602234353Sdim
603234353Sdim  // Loop over the new globals array deleting any globals that are obviously
604234353Sdim  // dead.  This can arise due to scalarization of a structure or an array that
605234353Sdim  // has elements that are dead.
606234353Sdim  unsigned FirstGlobal = 0;
607234353Sdim  for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i)
608234353Sdim    if (NewGlobals[i]->use_empty()) {
609234353Sdim      Globals.erase(NewGlobals[i]);
610234353Sdim      if (FirstGlobal == i) ++FirstGlobal;
611234353Sdim    }
612234353Sdim
613234353Sdim  return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : 0;
614234353Sdim}
615234353Sdim
616234353Sdim/// AllUsesOfValueWillTrapIfNull - Return true if all users of the specified
617234353Sdim/// value will trap if the value is dynamically null.  PHIs keeps track of any
618234353Sdim/// phi nodes we've seen to avoid reprocessing them.
619234353Sdimstatic bool AllUsesOfValueWillTrapIfNull(const Value *V,
620234353Sdim                                         SmallPtrSet<const PHINode*, 8> &PHIs) {
621234353Sdim  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;
622218893Sdim       ++UI) {
623234353Sdim    const User *U = *UI;
624218893Sdim
625218893Sdim    if (isa<LoadInst>(U)) {
626218893Sdim      // Will trap.
627218893Sdim    } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
628218893Sdim      if (SI->getOperand(0) == V) {
629218893Sdim        //cerr << "NONTRAPPING USE: " << *U;
630218893Sdim        return false;  // Storing the value.
631218893Sdim      }
632218893Sdim    } else if (const CallInst *CI = dyn_cast<CallInst>(U)) {
633218893Sdim      if (CI->getCalledValue() != V) {
634218893Sdim        //cerr << "NONTRAPPING USE: " << *U;
635218893Sdim        return false;  // Not calling the ptr
636218893Sdim      }
637218893Sdim    } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) {
638218893Sdim      if (II->getCalledValue() != V) {
639234353Sdim        //cerr << "NONTRAPPING USE: " << *U;
640234353Sdim        return false;  // Not calling the ptr
641218893Sdim      }
642218893Sdim    } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) {
643218893Sdim      if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
644218893Sdim    } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
645218893Sdim      if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
646218893Sdim    } else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
647218893Sdim      // If we've already seen this phi node, ignore it, it has already been
648234353Sdim      // checked.
649234353Sdim      if (PHIs.insert(PN) && !AllUsesOfValueWillTrapIfNull(PN, PHIs))
650218893Sdim        return false;
651234353Sdim    } else if (isa<ICmpInst>(U) &&
652218893Sdim               isa<ConstantPointerNull>(UI->getOperand(1))) {
653218893Sdim      // Ignore icmp X, null
654234353Sdim    } else {
655208600Srdivacky      //cerr << "NONTRAPPING USE: " << *U;
656208600Srdivacky      return false;
657208600Srdivacky    }
658208600Srdivacky  }
659234353Sdim  return true;
660234353Sdim}
661234353Sdim
662234353Sdim/// AllUsesOfLoadedValueWillTrapIfNull - Return true if all uses of any loads
663234353Sdim/// from GV will trap if the loaded value is null.  Note that this also permits
664208600Srdivacky/// comparisons of the loaded value against null, as a special case.
665234353Sdimstatic bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) {
666234353Sdim  for (Value::const_use_iterator UI = GV->use_begin(), E = GV->use_end();
667208600Srdivacky       UI != E; ++UI) {
668234353Sdim    const User *U = *UI;
669234353Sdim
670239462Sdim    if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
671234353Sdim      SmallPtrSet<const PHINode*, 8> PHIs;
672234353Sdim      if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
673234353Sdim        return false;
674234353Sdim    } else if (isa<StoreInst>(U)) {
675239462Sdim      // Ignore stores to the global.
676239462Sdim    } else {
677239462Sdim      // We don't know or understand this user, bail out.
678239462Sdim      //cerr << "UNKNOWN USER OF GLOBAL!: " << *U;
679239462Sdim      return false;
680239462Sdim    }
681239462Sdim  }
682234353Sdim  return true;
683234353Sdim}
684234353Sdim
685201361Srdivackystatic bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
686208600Srdivacky  bool Changed = false;
687208600Srdivacky  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ) {
688208600Srdivacky    Instruction *I = cast<Instruction>(*UI++);
689208600Srdivacky    if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
690208600Srdivacky      LI->setOperand(0, NewV);
691208600Srdivacky      Changed = true;
692208600Srdivacky    } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
693208600Srdivacky      if (SI->getOperand(1) == V) {
694208600Srdivacky        SI->setOperand(1, NewV);
695208600Srdivacky        Changed = true;
696208600Srdivacky      }
697218893Sdim    } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
698208600Srdivacky      CallSite CS(I);
699208600Srdivacky      if (CS.getCalledValue() == V) {
700234353Sdim        // Calling through the pointer!  Turn into a direct call, but be careful
701234353Sdim        // that the pointer is not also being passed as an argument.
702208600Srdivacky        CS.setCalledFunction(NewV);
703234353Sdim        Changed = true;
704234353Sdim        bool PassedAsArg = false;
705234353Sdim        for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
706234353Sdim          if (CS.getArgument(i) == V) {
707234353Sdim            PassedAsArg = true;
708234353Sdim            CS.setArgument(i, NewV);
709234353Sdim          }
710234353Sdim
711234353Sdim        if (PassedAsArg) {
712234353Sdim          // Being passed as an argument also.  Be careful to not invalidate UI!
713201361Srdivacky          UI = V->use_begin();
714201361Srdivacky        }
715218893Sdim      }
716218893Sdim    } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
717218893Sdim      Changed |= OptimizeAwayTrappingUsesOfValue(CI,
718218893Sdim                                ConstantExpr::getCast(CI->getOpcode(),
719218893Sdim                                                      NewV, CI->getType()));
720218893Sdim      if (CI->use_empty()) {
721218893Sdim        Changed = true;
722218893Sdim        CI->eraseFromParent();
723218893Sdim      }
724218893Sdim    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
725218893Sdim      // Should handle GEP here.
726218893Sdim      SmallVector<Constant*, 8> Idxs;
727218893Sdim      Idxs.reserve(GEPI->getNumOperands()-1);
728218893Sdim      for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end();
729218893Sdim           i != e; ++i)
730218893Sdim        if (Constant *C = dyn_cast<Constant>(*i))
731218893Sdim          Idxs.push_back(C);
732218893Sdim        else
733218893Sdim          break;
734218893Sdim      if (Idxs.size() == GEPI->getNumOperands()-1)
735218893Sdim        Changed |= OptimizeAwayTrappingUsesOfValue(GEPI,
736218893Sdim                          ConstantExpr::getGetElementPtr(NewV, &Idxs[0],
737218893Sdim                                                        Idxs.size()));
738218893Sdim      if (GEPI->use_empty()) {
739218893Sdim        Changed = true;
740218893Sdim        GEPI->eraseFromParent();
741218893Sdim      }
742218893Sdim    }
743224145Sdim  }
744226633Sdim
745226633Sdim  return Changed;
746224145Sdim}
747218893Sdim
748224145Sdim
749224145Sdim/// OptimizeAwayTrappingUsesOfLoads - The specified global has only one non-null
750218893Sdim/// value stored into it.  If there are uses of the loaded value that would trap
751218893Sdim/// if the loaded value is dynamically null, then we know that they cannot be
752218893Sdim/// reachable with a null optimize away the load.
753218893Sdimstatic bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV) {
754218893Sdim  bool Changed = false;
755198092Srdivacky
756198092Srdivacky  // Keep track of whether we are able to remove all the uses of the global
757218893Sdim  // other than the store that defines it.
758198092Srdivacky  bool AllNonStoreUsesGone = true;
759198092Srdivacky
760198092Srdivacky  // Replace all uses of loads with uses of uses of the stored value.
761218893Sdim  for (Value::use_iterator GUI = GV->use_begin(), E = GV->use_end(); GUI != E;){
762218893Sdim    User *GlobalUser = *GUI++;
763234353Sdim    if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) {
764234353Sdim      Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
765206084Srdivacky      // If we were able to delete all uses of the loads
766198092Srdivacky      if (LI->use_empty()) {
767221345Sdim        LI->eraseFromParent();
768221345Sdim        Changed = true;
769249423Sdim      } else {
770249423Sdim        AllNonStoreUsesGone = false;
771249423Sdim      }
772221345Sdim    } else if (isa<StoreInst>(GlobalUser)) {
773221345Sdim      // Ignore the store that stores "LV" to the global.
774221345Sdim      assert(GlobalUser->getOperand(1) == GV &&
775223017Sdim             "Must be storing *to* the global");
776221345Sdim    } else {
777221345Sdim      AllNonStoreUsesGone = false;
778221345Sdim
779221345Sdim      // If we get here we could have other crazy uses that are transitively
780221345Sdim      // loaded.
781249423Sdim      assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) ||
782249423Sdim              isa<ConstantExpr>(GlobalUser)) && "Only expect load and stores!");
783249423Sdim    }
784249423Sdim  }
785249423Sdim
786249423Sdim  if (Changed) {
787249423Sdim    DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV);
788249423Sdim    ++NumGlobUses;
789249423Sdim  }
790249423Sdim
791249423Sdim  // If we nuked all of the loads, then none of the stores are needed either,
792249423Sdim  // nor is the global.
793249423Sdim  if (AllNonStoreUsesGone) {
794249423Sdim    DEBUG(dbgs() << "  *** GLOBAL NOW DEAD!\n");
795249423Sdim    CleanupConstantGlobalUsers(GV, 0);
796249423Sdim    if (GV->use_empty()) {
797249423Sdim      GV->eraseFromParent();
798249423Sdim      ++NumDeleted;
799249423Sdim    }
800249423Sdim    Changed = true;
801198092Srdivacky  }
802198092Srdivacky  return Changed;
803198092Srdivacky}
804198092Srdivacky
805198092Srdivacky/// ConstantPropUsersOf - Walk the use list of V, constant folding all of the
806198092Srdivacky/// instructions that are foldable.
807218893Sdimstatic void ConstantPropUsersOf(Value *V) {
808218893Sdim  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; )
809218893Sdim    if (Instruction *I = dyn_cast<Instruction>(*UI++))
810218893Sdim      if (Constant *NewC = ConstantFoldInstruction(I)) {
811218893Sdim        I->replaceAllUsesWith(NewC);
812218893Sdim
813218893Sdim        // Advance UI to the next non-I use to avoid invalidating it!
814218893Sdim        // Instructions could multiply use V.
815234353Sdim        while (UI != E && *UI == I)
816234353Sdim          ++UI;
817251662Sdim        I->eraseFromParent();
818234353Sdim      }
819234353Sdim}
820234353Sdim
821234353Sdim/// OptimizeGlobalAddressOfMalloc - This function takes the specified global
822234353Sdim/// variable, and transforms the program as if it always contained the result of
823234353Sdim/// the specified malloc.  Because it is always the result of the specified
824234353Sdim/// malloc, there is no reason to actually DO the malloc.  Instead, turn the
825234353Sdim/// malloc into a global, and any loads of GV as uses of the new global.
826234353Sdimstatic GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV,
827234353Sdim                                                     CallInst *CI,
828218893Sdim                                                     const Type *AllocTy,
829218893Sdim                                                     ConstantInt *NElements,
830198092Srdivacky                                                     TargetData* TD) {
831221345Sdim  DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << "  CALL = " << *CI << '\n');
832198092Srdivacky
833198092Srdivacky  const Type *GlobalType;
834198092Srdivacky  if (NElements->getZExtValue() == 1)
835198092Srdivacky    GlobalType = AllocTy;
836221345Sdim  else
837221345Sdim    // If we have an array allocation, the global variable is of an array.
838198092Srdivacky    GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue());
839221345Sdim
840198092Srdivacky  // Create the new global variable.  The contents of the malloc'd memory is
841218893Sdim  // undefined, so initialize with an undef value.
842218893Sdim  GlobalVariable *NewGV = new GlobalVariable(*GV->getParent(),
843200583Srdivacky                                             GlobalType, false,
844221345Sdim                                             GlobalValue::InternalLinkage,
845200583Srdivacky                                             UndefValue::get(GlobalType),
846200583Srdivacky                                             GV->getName()+".body",
847200583Srdivacky                                             GV,
848206084Srdivacky                                             GV->isThreadLocal());
849221345Sdim
850198092Srdivacky  // If there are bitcast users of the malloc (which is typical, usually we have
851198092Srdivacky  // a malloc + bitcast) then replace them with uses of the new global.  Update
852198092Srdivacky  // other users to use the global as well.
853218893Sdim  BitCastInst *TheBC = 0;
854224145Sdim  while (!CI->use_empty()) {
855218893Sdim    Instruction *User = cast<Instruction>(CI->use_back());
856243830Sdim    if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
857198092Srdivacky      if (BCI->getType() == NewGV->getType()) {
858218893Sdim        BCI->replaceAllUsesWith(NewGV);
859198092Srdivacky        BCI->eraseFromParent();
860218893Sdim      } else {
861198092Srdivacky        BCI->setOperand(0, NewGV);
862198092Srdivacky      }
863218893Sdim    } else {
864218893Sdim      if (TheBC == 0)
865218893Sdim        TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI);
866198092Srdivacky      User->replaceUsesOfWith(CI, TheBC);
867198092Srdivacky    }
868234353Sdim  }
869234353Sdim
870198092Srdivacky  Constant *RepValue = NewGV;
871234353Sdim  if (NewGV->getType() != GV->getType()->getElementType())
872234353Sdim    RepValue = ConstantExpr::getBitCast(RepValue,
873234353Sdim                                        GV->getType()->getElementType());
874234353Sdim
875234353Sdim  // If there is a comparison against null, we will insert a global bool to
876234353Sdim  // keep track of whether the global was initialized yet or not.
877234353Sdim  GlobalVariable *InitBool =
878198092Srdivacky    new GlobalVariable(Type::getInt1Ty(GV->getContext()), false,
879234353Sdim                       GlobalValue::InternalLinkage,
880234353Sdim                       ConstantInt::getFalse(GV->getContext()),
881198092Srdivacky                       GV->getName()+".init", GV->isThreadLocal());
882234353Sdim  bool InitBoolUsed = false;
883234353Sdim
884234353Sdim  // Loop over all uses of GV, processing them in turn.
885234353Sdim  while (!GV->use_empty()) {
886198092Srdivacky    if (StoreInst *SI = dyn_cast<StoreInst>(GV->use_back())) {
887198092Srdivacky      // The global is initialized when the store to it occurs.
888221345Sdim      new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, SI);
889221345Sdim      SI->eraseFromParent();
890221345Sdim      continue;
891221345Sdim    }
892221345Sdim
893221345Sdim    LoadInst *LI = cast<LoadInst>(GV->use_back());
894221345Sdim    while (!LI->use_empty()) {
895221345Sdim      Use &LoadUse = LI->use_begin().getUse();
896221345Sdim      if (!isa<ICmpInst>(LoadUse.getUser())) {
897221345Sdim        LoadUse = RepValue;
898221345Sdim        continue;
899221345Sdim      }
900221345Sdim
901221345Sdim      ICmpInst *ICI = cast<ICmpInst>(LoadUse.getUser());
902221345Sdim      // Replace the cmp X, 0 with a use of the bool value.
903221345Sdim      Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", ICI);
904221345Sdim      InitBoolUsed = true;
905221345Sdim      switch (ICI->getPredicate()) {
906224145Sdim      default: llvm_unreachable("Unknown ICmp Predicate!");
907218893Sdim      case ICmpInst::ICMP_ULT:
908198092Srdivacky      case ICmpInst::ICMP_SLT:   // X < null -> always false
909224145Sdim        LV = ConstantInt::getFalse(GV->getContext());
910218893Sdim        break;
911218893Sdim      case ICmpInst::ICMP_ULE:
912198092Srdivacky      case ICmpInst::ICMP_SLE:
913218893Sdim      case ICmpInst::ICMP_EQ:
914218893Sdim        LV = BinaryOperator::CreateNot(LV, "notinit", ICI);
915218893Sdim        break;
916218893Sdim      case ICmpInst::ICMP_NE:
917218893Sdim      case ICmpInst::ICMP_UGE:
918218893Sdim      case ICmpInst::ICMP_SGE:
919218893Sdim      case ICmpInst::ICMP_UGT:
920198092Srdivacky      case ICmpInst::ICMP_SGT:
921218893Sdim        break;  // no change.
922198092Srdivacky      }
923198092Srdivacky      ICI->replaceAllUsesWith(LV);
924226633Sdim      ICI->eraseFromParent();
925198092Srdivacky    }
926218893Sdim    LI->eraseFromParent();
927198092Srdivacky  }
928243830Sdim
929198092Srdivacky  // If the initialization boolean was used, insert it, otherwise delete it.
930198092Srdivacky  if (!InitBoolUsed) {
931218893Sdim    while (!InitBool->use_empty())  // Delete initializations
932218893Sdim      cast<StoreInst>(InitBool->use_back())->eraseFromParent();
933218893Sdim    delete InitBool;
934218893Sdim  } else
935218893Sdim    GV->getParent()->getGlobalList().insert(GV, InitBool);
936218893Sdim
937218893Sdim  // Now the GV is dead, nuke it and the malloc..
938218893Sdim  GV->eraseFromParent();
939218893Sdim  CI->eraseFromParent();
940218893Sdim
941218893Sdim  // To further other optimizations, loop over all users of NewGV and try to
942218893Sdim  // constant prop them.  This will promote GEP instructions with constant
943212904Sdim  // indices into GEP constant-exprs, which will allow global-opt to hack on it.
944198092Srdivacky  ConstantPropUsersOf(NewGV);
945218893Sdim  if (RepValue != NewGV)
946198092Srdivacky    ConstantPropUsersOf(RepValue);
947198092Srdivacky
948198092Srdivacky  return NewGV;
949234353Sdim}
950198092Srdivacky
951198092Srdivacky/// ValueIsOnlyUsedLocallyOrStoredToOneGlobal - Scan the use-list of V checking
952218893Sdim/// to make sure that there are no complex uses of V.  We permit simple things
953198092Srdivacky/// like dereferencing the pointer, but not storing through the address, unless
954218893Sdim/// it is to the specified global.
955212904Sdimstatic bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V,
956218893Sdim                                                      const GlobalVariable *GV,
957218893Sdim                                         SmallPtrSet<const PHINode*, 8> &PHIs) {
958203955Srdivacky  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
959218893Sdim       UI != E; ++UI) {
960218893Sdim    const Instruction *Inst = cast<Instruction>(*UI);
961218893Sdim
962208600Srdivacky    if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) {
963208600Srdivacky      continue; // Fine, ignore.
964206084Srdivacky    }
965224145Sdim
966224145Sdim    if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
967206084Srdivacky      if (SI->getOperand(0) == V && SI->getOperand(1) != GV)
968198092Srdivacky        return false;  // Storing the pointer itself... bad.
969198092Srdivacky      continue; // Otherwise, storing through it, or storing into GV... fine.
970198092Srdivacky    }
971224145Sdim
972198092Srdivacky    // Must index into the array and into the struct.
973218893Sdim    if (isa<GetElementPtrInst>(Inst) && Inst->getNumOperands() >= 3) {
974224145Sdim      if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs))
975234353Sdim        return false;
976218893Sdim      continue;
977218893Sdim    }
978218893Sdim
979218893Sdim    if (const PHINode *PN = dyn_cast<PHINode>(Inst)) {
980206084Srdivacky      // PHIs are ok if all uses are ok.  Don't infinitely recurse through PHI
981218893Sdim      // cycles.
982218893Sdim      if (PHIs.insert(PN))
983206084Srdivacky        if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs))
984218893Sdim          return false;
985218893Sdim      continue;
986208600Srdivacky    }
987198092Srdivacky
988218893Sdim    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) {
989198092Srdivacky      if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs))
990198092Srdivacky        return false;
991218893Sdim      continue;
992198092Srdivacky    }
993207619Srdivacky
994234353Sdim    return false;
995207619Srdivacky  }
996207619Srdivacky  return true;
997207619Srdivacky}
998207619Srdivacky
999207619Srdivacky/// ReplaceUsesOfMallocWithGlobal - The Alloc pointer is stored into GV
1000207619Srdivacky/// somewhere.  Transform all uses of the allocation into loads from the
1001207619Srdivacky/// global and uses of the resultant pointer.  Further, delete the store into
1002207619Srdivacky/// GV.  This assumes that these value pass the
1003207619Srdivacky/// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate.
1004218893Sdimstatic void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc,
1005218893Sdim                                          GlobalVariable *GV) {
1006218893Sdim  while (!Alloc->use_empty()) {
1007243830Sdim    Instruction *U = cast<Instruction>(*Alloc->use_begin());
1008207619Srdivacky    Instruction *InsertPt = U;
1009207619Srdivacky    if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1010218893Sdim      // If this is the store of the allocation into the global, remove it.
1011218893Sdim      if (SI->getOperand(1) == GV) {
1012218893Sdim        SI->eraseFromParent();
1013218893Sdim        continue;
1014218893Sdim      }
1015218893Sdim    } else if (PHINode *PN = dyn_cast<PHINode>(U)) {
1016218893Sdim      // Insert the load in the corresponding predecessor, not right before the
1017218893Sdim      // PHI.
1018218893Sdim      InsertPt = PN->getIncomingBlock(Alloc->use_begin())->getTerminator();
1019218893Sdim    } else if (isa<BitCastInst>(U)) {
1020243830Sdim      // Must be bitcast between the malloc and store to initialize the global.
1021218893Sdim      ReplaceUsesOfMallocWithGlobal(U, GV);
1022218893Sdim      U->eraseFromParent();
1023218893Sdim      continue;
1024207619Srdivacky    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
1025226633Sdim      // If this is a "GEP bitcast" and the user is a store to the global, then
1026207619Srdivacky      // just process it as a bitcast.
1027243830Sdim      if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse())
1028207619Srdivacky        if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->use_back()))
1029207619Srdivacky          if (SI->getOperand(1) == GV) {
1030207619Srdivacky            // Must be bitcast GEP between the malloc and store to initialize
1031221345Sdim            // the global.
1032243830Sdim            ReplaceUsesOfMallocWithGlobal(GEPI, GV);
1033207619Srdivacky            GEPI->eraseFromParent();
1034207619Srdivacky            continue;
1035207619Srdivacky          }
1036207619Srdivacky    }
1037207619Srdivacky
1038207619Srdivacky    // Insert a load from the global, and use it instead of the malloc.
1039207619Srdivacky    Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt);
1040207619Srdivacky    U->replaceUsesOfWith(Alloc, NL);
1041207619Srdivacky  }
1042221345Sdim}
1043207619Srdivacky
1044207619Srdivacky/// LoadUsesSimpleEnoughForHeapSRA - Verify that all uses of V (a load, or a phi
1045207619Srdivacky/// of a load) are simple enough to perform heap SRA on.  This permits GEP's
1046221345Sdim/// that index through the array and struct field, icmps of null, and PHIs.
1047221345Sdimstatic bool LoadUsesSimpleEnoughForHeapSRA(const Value *V,
1048221345Sdim                        SmallPtrSet<const PHINode*, 32> &LoadUsingPHIs,
1049223017Sdim                        SmallPtrSet<const PHINode*, 32> &LoadUsingPHIsPerLoad) {
1050221345Sdim  // We permit two users of the load: setcc comparing against the null
1051221345Sdim  // pointer, and a getelementptr of a specific form.
1052221345Sdim  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;
1053221345Sdim       ++UI) {
1054221345Sdim    const Instruction *User = cast<Instruction>(*UI);
1055221345Sdim
1056207619Srdivacky    // Comparison against null is ok.
1057221345Sdim    if (const ICmpInst *ICI = dyn_cast<ICmpInst>(User)) {
1058221345Sdim      if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
1059207619Srdivacky        return false;
1060221345Sdim      continue;
1061249423Sdim    }
1062249423Sdim
1063249423Sdim    // getelementptr is also ok, but only a simple form.
1064249423Sdim    if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1065249423Sdim      // Must index into the array and into the struct.
1066207619Srdivacky      if (GEPI->getNumOperands() < 3)
1067249423Sdim        return false;
1068207619Srdivacky
1069249423Sdim      // Otherwise the GEP is ok.
1070249423Sdim      continue;
1071249423Sdim    }
1072249423Sdim
1073249423Sdim    if (const PHINode *PN = dyn_cast<PHINode>(User)) {
1074249423Sdim      if (!LoadUsingPHIsPerLoad.insert(PN))
1075249423Sdim        // This means some phi nodes are dependent on each other.
1076249423Sdim        // Avoid infinite looping!
1077249423Sdim        return false;
1078249423Sdim      if (!LoadUsingPHIs.insert(PN))
1079249423Sdim        // If we have already analyzed this PHI, then it is safe.
1080249423Sdim        continue;
1081249423Sdim
1082249423Sdim      // Make sure all uses of the PHI are simple enough to transform.
1083249423Sdim      if (!LoadUsesSimpleEnoughForHeapSRA(PN,
1084249423Sdim                                          LoadUsingPHIs, LoadUsingPHIsPerLoad))
1085249423Sdim        return false;
1086249423Sdim
1087249423Sdim      continue;
1088249423Sdim    }
1089249423Sdim
1090207619Srdivacky    // Otherwise we don't know what this is, not ok.
1091249423Sdim    return false;
1092249423Sdim  }
1093249423Sdim
1094207619Srdivacky  return true;
1095207619Srdivacky}
1096207619Srdivacky
1097206084Srdivacky
1098198092Srdivacky/// AllGlobalLoadUsesSimpleEnoughForHeapSRA - If all users of values loaded from
1099207619Srdivacky/// GV are simple enough to perform HeapSRA, return true.
1100226633Sdimstatic bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV,
1101207619Srdivacky                                                    Instruction *StoredVal) {
1102218893Sdim  SmallPtrSet<const PHINode*, 32> LoadUsingPHIs;
1103218893Sdim  SmallPtrSet<const PHINode*, 32> LoadUsingPHIsPerLoad;
1104218893Sdim  for (Value::const_use_iterator UI = GV->use_begin(), E = GV->use_end();
1105212904Sdim       UI != E; ++UI)
1106207619Srdivacky    if (const LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
1107207619Srdivacky      if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs,
1108207619Srdivacky                                          LoadUsingPHIsPerLoad))
1109207619Srdivacky        return false;
1110207619Srdivacky      LoadUsingPHIsPerLoad.clear();
1111207619Srdivacky    }
1112207619Srdivacky
1113207619Srdivacky  // If we reach here, we know that all uses of the loads and transitive uses
1114207619Srdivacky  // (through PHI nodes) are simple enough to transform.  However, we don't know
1115207619Srdivacky  // that all inputs the to the PHI nodes are in the same equivalence sets.
1116207619Srdivacky  // Check to verify that all operands of the PHIs are either PHIS that can be
1117207619Srdivacky  // transformed, loads from GV, or MI itself.
1118207619Srdivacky  for (SmallPtrSet<const PHINode*, 32>::const_iterator I = LoadUsingPHIs.begin()
1119207619Srdivacky       , E = LoadUsingPHIs.end(); I != E; ++I) {
1120207619Srdivacky    const PHINode *PN = *I;
1121207619Srdivacky    for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) {
1122207619Srdivacky      Value *InVal = PN->getIncomingValue(op);
1123207619Srdivacky
1124207619Srdivacky      // PHI of the stored value itself is ok.
1125207619Srdivacky      if (InVal == StoredVal) continue;
1126207619Srdivacky
1127207619Srdivacky      if (const PHINode *InPN = dyn_cast<PHINode>(InVal)) {
1128207619Srdivacky        // One of the PHIs in our set is (optimistically) ok.
1129207619Srdivacky        if (LoadUsingPHIs.count(InPN))
1130207619Srdivacky          continue;
1131207619Srdivacky        return false;
1132207619Srdivacky      }
1133207619Srdivacky
1134226633Sdim      // Load from GV is ok.
1135249423Sdim      if (const LoadInst *LI = dyn_cast<LoadInst>(InVal))
1136249423Sdim        if (LI->getOperand(0) == GV)
1137249423Sdim          continue;
1138249423Sdim
1139249423Sdim      // UNDEF? NULL?
1140249423Sdim
1141207619Srdivacky      // Anything else is rejected.
1142207619Srdivacky      return false;
1143207619Srdivacky    }
1144207619Srdivacky  }
1145207619Srdivacky
1146  return true;
1147}
1148
1149static Value *GetHeapSROAValue(Value *V, unsigned FieldNo,
1150               DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1151                   std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1152  std::vector<Value*> &FieldVals = InsertedScalarizedValues[V];
1153
1154  if (FieldNo >= FieldVals.size())
1155    FieldVals.resize(FieldNo+1);
1156
1157  // If we already have this value, just reuse the previously scalarized
1158  // version.
1159  if (Value *FieldVal = FieldVals[FieldNo])
1160    return FieldVal;
1161
1162  // Depending on what instruction this is, we have several cases.
1163  Value *Result;
1164  if (LoadInst *LI = dyn_cast<LoadInst>(V)) {
1165    // This is a scalarized version of the load from the global.  Just create
1166    // a new Load of the scalarized global.
1167    Result = new LoadInst(GetHeapSROAValue(LI->getOperand(0), FieldNo,
1168                                           InsertedScalarizedValues,
1169                                           PHIsToRewrite),
1170                          LI->getName()+".f"+Twine(FieldNo), LI);
1171  } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
1172    // PN's type is pointer to struct.  Make a new PHI of pointer to struct
1173    // field.
1174    const StructType *ST =
1175      cast<StructType>(cast<PointerType>(PN->getType())->getElementType());
1176
1177    Result =
1178     PHINode::Create(PointerType::getUnqual(ST->getElementType(FieldNo)),
1179                     PN->getName()+".f"+Twine(FieldNo), PN);
1180    PHIsToRewrite.push_back(std::make_pair(PN, FieldNo));
1181  } else {
1182    llvm_unreachable("Unknown usable value");
1183    Result = 0;
1184  }
1185
1186  return FieldVals[FieldNo] = Result;
1187}
1188
1189/// RewriteHeapSROALoadUser - Given a load instruction and a value derived from
1190/// the load, rewrite the derived value to use the HeapSRoA'd load.
1191static void RewriteHeapSROALoadUser(Instruction *LoadUser,
1192             DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1193                   std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1194  // If this is a comparison against null, handle it.
1195  if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) {
1196    assert(isa<ConstantPointerNull>(SCI->getOperand(1)));
1197    // If we have a setcc of the loaded pointer, we can use a setcc of any
1198    // field.
1199    Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0,
1200                                   InsertedScalarizedValues, PHIsToRewrite);
1201
1202    Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr,
1203                              Constant::getNullValue(NPtr->getType()),
1204                              SCI->getName());
1205    SCI->replaceAllUsesWith(New);
1206    SCI->eraseFromParent();
1207    return;
1208  }
1209
1210  // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...'
1211  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) {
1212    assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2))
1213           && "Unexpected GEPI!");
1214
1215    // Load the pointer for this field.
1216    unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
1217    Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo,
1218                                     InsertedScalarizedValues, PHIsToRewrite);
1219
1220    // Create the new GEP idx vector.
1221    SmallVector<Value*, 8> GEPIdx;
1222    GEPIdx.push_back(GEPI->getOperand(1));
1223    GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end());
1224
1225    Value *NGEPI = GetElementPtrInst::Create(NewPtr,
1226                                             GEPIdx.begin(), GEPIdx.end(),
1227                                             GEPI->getName(), GEPI);
1228    GEPI->replaceAllUsesWith(NGEPI);
1229    GEPI->eraseFromParent();
1230    return;
1231  }
1232
1233  // Recursively transform the users of PHI nodes.  This will lazily create the
1234  // PHIs that are needed for individual elements.  Keep track of what PHIs we
1235  // see in InsertedScalarizedValues so that we don't get infinite loops (very
1236  // antisocial).  If the PHI is already in InsertedScalarizedValues, it has
1237  // already been seen first by another load, so its uses have already been
1238  // processed.
1239  PHINode *PN = cast<PHINode>(LoadUser);
1240  bool Inserted;
1241  DenseMap<Value*, std::vector<Value*> >::iterator InsertPos;
1242  tie(InsertPos, Inserted) =
1243    InsertedScalarizedValues.insert(std::make_pair(PN, std::vector<Value*>()));
1244  if (!Inserted) return;
1245
1246  // If this is the first time we've seen this PHI, recursively process all
1247  // users.
1248  for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end(); UI != E; ) {
1249    Instruction *User = cast<Instruction>(*UI++);
1250    RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1251  }
1252}
1253
1254/// RewriteUsesOfLoadForHeapSRoA - We are performing Heap SRoA on a global.  Ptr
1255/// is a value loaded from the global.  Eliminate all uses of Ptr, making them
1256/// use FieldGlobals instead.  All uses of loaded values satisfy
1257/// AllGlobalLoadUsesSimpleEnoughForHeapSRA.
1258static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
1259               DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1260                   std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1261  for (Value::use_iterator UI = Load->use_begin(), E = Load->use_end();
1262       UI != E; ) {
1263    Instruction *User = cast<Instruction>(*UI++);
1264    RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1265  }
1266
1267  if (Load->use_empty()) {
1268    Load->eraseFromParent();
1269    InsertedScalarizedValues.erase(Load);
1270  }
1271}
1272
1273/// PerformHeapAllocSRoA - CI is an allocation of an array of structures.  Break
1274/// it up into multiple allocations of arrays of the fields.
1275static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI,
1276                                            Value* NElems, TargetData *TD) {
1277  DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << "  MALLOC = " << *CI << '\n');
1278  const Type* MAT = getMallocAllocatedType(CI);
1279  const StructType *STy = cast<StructType>(MAT);
1280
1281  // There is guaranteed to be at least one use of the malloc (storing
1282  // it into GV).  If there are other uses, change them to be uses of
1283  // the global to simplify later code.  This also deletes the store
1284  // into GV.
1285  ReplaceUsesOfMallocWithGlobal(CI, GV);
1286
1287  // Okay, at this point, there are no users of the malloc.  Insert N
1288  // new mallocs at the same place as CI, and N globals.
1289  std::vector<Value*> FieldGlobals;
1290  std::vector<Value*> FieldMallocs;
1291
1292  for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){
1293    const Type *FieldTy = STy->getElementType(FieldNo);
1294    const PointerType *PFieldTy = PointerType::getUnqual(FieldTy);
1295
1296    GlobalVariable *NGV =
1297      new GlobalVariable(*GV->getParent(),
1298                         PFieldTy, false, GlobalValue::InternalLinkage,
1299                         Constant::getNullValue(PFieldTy),
1300                         GV->getName() + ".f" + Twine(FieldNo), GV,
1301                         GV->isThreadLocal());
1302    FieldGlobals.push_back(NGV);
1303
1304    unsigned TypeSize = TD->getTypeAllocSize(FieldTy);
1305    if (const StructType *ST = dyn_cast<StructType>(FieldTy))
1306      TypeSize = TD->getStructLayout(ST)->getSizeInBytes();
1307    const Type *IntPtrTy = TD->getIntPtrType(CI->getContext());
1308    Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy,
1309                                        ConstantInt::get(IntPtrTy, TypeSize),
1310                                        NElems, 0,
1311                                        CI->getName() + ".f" + Twine(FieldNo));
1312    FieldMallocs.push_back(NMI);
1313    new StoreInst(NMI, NGV, CI);
1314  }
1315
1316  // The tricky aspect of this transformation is handling the case when malloc
1317  // fails.  In the original code, malloc failing would set the result pointer
1318  // of malloc to null.  In this case, some mallocs could succeed and others
1319  // could fail.  As such, we emit code that looks like this:
1320  //    F0 = malloc(field0)
1321  //    F1 = malloc(field1)
1322  //    F2 = malloc(field2)
1323  //    if (F0 == 0 || F1 == 0 || F2 == 0) {
1324  //      if (F0) { free(F0); F0 = 0; }
1325  //      if (F1) { free(F1); F1 = 0; }
1326  //      if (F2) { free(F2); F2 = 0; }
1327  //    }
1328  // The malloc can also fail if its argument is too large.
1329  Constant *ConstantZero = ConstantInt::get(CI->getArgOperand(0)->getType(), 0);
1330  Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getArgOperand(0),
1331                                  ConstantZero, "isneg");
1332  for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) {
1333    Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i],
1334                             Constant::getNullValue(FieldMallocs[i]->getType()),
1335                               "isnull");
1336    RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI);
1337  }
1338
1339  // Split the basic block at the old malloc.
1340  BasicBlock *OrigBB = CI->getParent();
1341  BasicBlock *ContBB = OrigBB->splitBasicBlock(CI, "malloc_cont");
1342
1343  // Create the block to check the first condition.  Put all these blocks at the
1344  // end of the function as they are unlikely to be executed.
1345  BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(),
1346                                                "malloc_ret_null",
1347                                                OrigBB->getParent());
1348
1349  // Remove the uncond branch from OrigBB to ContBB, turning it into a cond
1350  // branch on RunningOr.
1351  OrigBB->getTerminator()->eraseFromParent();
1352  BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB);
1353
1354  // Within the NullPtrBlock, we need to emit a comparison and branch for each
1355  // pointer, because some may be null while others are not.
1356  for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1357    Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock);
1358    Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal,
1359                              Constant::getNullValue(GVVal->getType()),
1360                              "tmp");
1361    BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it",
1362                                               OrigBB->getParent());
1363    BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next",
1364                                               OrigBB->getParent());
1365    Instruction *BI = BranchInst::Create(FreeBlock, NextBlock,
1366                                         Cmp, NullPtrBlock);
1367
1368    // Fill in FreeBlock.
1369    CallInst::CreateFree(GVVal, BI);
1370    new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i],
1371                  FreeBlock);
1372    BranchInst::Create(NextBlock, FreeBlock);
1373
1374    NullPtrBlock = NextBlock;
1375  }
1376
1377  BranchInst::Create(ContBB, NullPtrBlock);
1378
1379  // CI is no longer needed, remove it.
1380  CI->eraseFromParent();
1381
1382  /// InsertedScalarizedLoads - As we process loads, if we can't immediately
1383  /// update all uses of the load, keep track of what scalarized loads are
1384  /// inserted for a given load.
1385  DenseMap<Value*, std::vector<Value*> > InsertedScalarizedValues;
1386  InsertedScalarizedValues[GV] = FieldGlobals;
1387
1388  std::vector<std::pair<PHINode*, unsigned> > PHIsToRewrite;
1389
1390  // Okay, the malloc site is completely handled.  All of the uses of GV are now
1391  // loads, and all uses of those loads are simple.  Rewrite them to use loads
1392  // of the per-field globals instead.
1393  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI != E;) {
1394    Instruction *User = cast<Instruction>(*UI++);
1395
1396    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1397      RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite);
1398      continue;
1399    }
1400
1401    // Must be a store of null.
1402    StoreInst *SI = cast<StoreInst>(User);
1403    assert(isa<ConstantPointerNull>(SI->getOperand(0)) &&
1404           "Unexpected heap-sra user!");
1405
1406    // Insert a store of null into each global.
1407    for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1408      const PointerType *PT = cast<PointerType>(FieldGlobals[i]->getType());
1409      Constant *Null = Constant::getNullValue(PT->getElementType());
1410      new StoreInst(Null, FieldGlobals[i], SI);
1411    }
1412    // Erase the original store.
1413    SI->eraseFromParent();
1414  }
1415
1416  // While we have PHIs that are interesting to rewrite, do it.
1417  while (!PHIsToRewrite.empty()) {
1418    PHINode *PN = PHIsToRewrite.back().first;
1419    unsigned FieldNo = PHIsToRewrite.back().second;
1420    PHIsToRewrite.pop_back();
1421    PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]);
1422    assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi");
1423
1424    // Add all the incoming values.  This can materialize more phis.
1425    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1426      Value *InVal = PN->getIncomingValue(i);
1427      InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues,
1428                               PHIsToRewrite);
1429      FieldPN->addIncoming(InVal, PN->getIncomingBlock(i));
1430    }
1431  }
1432
1433  // Drop all inter-phi links and any loads that made it this far.
1434  for (DenseMap<Value*, std::vector<Value*> >::iterator
1435       I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1436       I != E; ++I) {
1437    if (PHINode *PN = dyn_cast<PHINode>(I->first))
1438      PN->dropAllReferences();
1439    else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1440      LI->dropAllReferences();
1441  }
1442
1443  // Delete all the phis and loads now that inter-references are dead.
1444  for (DenseMap<Value*, std::vector<Value*> >::iterator
1445       I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1446       I != E; ++I) {
1447    if (PHINode *PN = dyn_cast<PHINode>(I->first))
1448      PN->eraseFromParent();
1449    else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1450      LI->eraseFromParent();
1451  }
1452
1453  // The old global is now dead, remove it.
1454  GV->eraseFromParent();
1455
1456  ++NumHeapSRA;
1457  return cast<GlobalVariable>(FieldGlobals[0]);
1458}
1459
1460/// TryToOptimizeStoreOfMallocToGlobal - This function is called when we see a
1461/// pointer global variable with a single value stored it that is a malloc or
1462/// cast of malloc.
1463static bool TryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV,
1464                                               CallInst *CI,
1465                                               const Type *AllocTy,
1466                                               Module::global_iterator &GVI,
1467                                               TargetData *TD) {
1468  if (!TD)
1469    return false;
1470
1471  // If this is a malloc of an abstract type, don't touch it.
1472  if (!AllocTy->isSized())
1473    return false;
1474
1475  // We can't optimize this global unless all uses of it are *known* to be
1476  // of the malloc value, not of the null initializer value (consider a use
1477  // that compares the global's value against zero to see if the malloc has
1478  // been reached).  To do this, we check to see if all uses of the global
1479  // would trap if the global were null: this proves that they must all
1480  // happen after the malloc.
1481  if (!AllUsesOfLoadedValueWillTrapIfNull(GV))
1482    return false;
1483
1484  // We can't optimize this if the malloc itself is used in a complex way,
1485  // for example, being stored into multiple globals.  This allows the
1486  // malloc to be stored into the specified global, loaded setcc'd, and
1487  // GEP'd.  These are all things we could transform to using the global
1488  // for.
1489  SmallPtrSet<const PHINode*, 8> PHIs;
1490  if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs))
1491    return false;
1492
1493  // If we have a global that is only initialized with a fixed size malloc,
1494  // transform the program to use global memory instead of malloc'd memory.
1495  // This eliminates dynamic allocation, avoids an indirection accessing the
1496  // data, and exposes the resultant global to further GlobalOpt.
1497  // We cannot optimize the malloc if we cannot determine malloc array size.
1498  Value *NElems = getMallocArraySize(CI, TD, true);
1499  if (!NElems)
1500    return false;
1501
1502  if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems))
1503    // Restrict this transformation to only working on small allocations
1504    // (2048 bytes currently), as we don't want to introduce a 16M global or
1505    // something.
1506    if (NElements->getZExtValue() * TD->getTypeAllocSize(AllocTy) < 2048) {
1507      GVI = OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, TD);
1508      return true;
1509    }
1510
1511  // If the allocation is an array of structures, consider transforming this
1512  // into multiple malloc'd arrays, one for each field.  This is basically
1513  // SRoA for malloc'd memory.
1514
1515  // If this is an allocation of a fixed size array of structs, analyze as a
1516  // variable size array.  malloc [100 x struct],1 -> malloc struct, 100
1517  if (NElems == ConstantInt::get(CI->getArgOperand(0)->getType(), 1))
1518    if (const ArrayType *AT = dyn_cast<ArrayType>(AllocTy))
1519      AllocTy = AT->getElementType();
1520
1521  const StructType *AllocSTy = dyn_cast<StructType>(AllocTy);
1522  if (!AllocSTy)
1523    return false;
1524
1525  // This the structure has an unreasonable number of fields, leave it
1526  // alone.
1527  if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 &&
1528      AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) {
1529
1530    // If this is a fixed size array, transform the Malloc to be an alloc of
1531    // structs.  malloc [100 x struct],1 -> malloc struct, 100
1532    if (const ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI))) {
1533      const Type *IntPtrTy = TD->getIntPtrType(CI->getContext());
1534      unsigned TypeSize = TD->getStructLayout(AllocSTy)->getSizeInBytes();
1535      Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize);
1536      Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements());
1537      Instruction *Malloc = CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy,
1538                                                   AllocSize, NumElements,
1539                                                   0, CI->getName());
1540      Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI);
1541      CI->replaceAllUsesWith(Cast);
1542      CI->eraseFromParent();
1543      CI = dyn_cast<BitCastInst>(Malloc) ?
1544        extractMallocCallFromBitCast(Malloc) : cast<CallInst>(Malloc);
1545    }
1546
1547    GVI = PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, TD, true),TD);
1548    return true;
1549  }
1550
1551  return false;
1552}
1553
1554// OptimizeOnceStoredGlobal - Try to optimize globals based on the knowledge
1555// that only one value (besides its initializer) is ever stored to the global.
1556static bool OptimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
1557                                     Module::global_iterator &GVI,
1558                                     TargetData *TD) {
1559  // Ignore no-op GEPs and bitcasts.
1560  StoredOnceVal = StoredOnceVal->stripPointerCasts();
1561
1562  // If we are dealing with a pointer global that is initialized to null and
1563  // only has one (non-null) value stored into it, then we can optimize any
1564  // users of the loaded value (often calls and loads) that would trap if the
1565  // value was null.
1566  if (GV->getInitializer()->getType()->isPointerTy() &&
1567      GV->getInitializer()->isNullValue()) {
1568    if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
1569      if (GV->getInitializer()->getType() != SOVC->getType())
1570        SOVC =
1571         ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
1572
1573      // Optimize away any trapping uses of the loaded value.
1574      if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC))
1575        return true;
1576    } else if (CallInst *CI = extractMallocCall(StoredOnceVal)) {
1577      const Type* MallocType = getMallocAllocatedType(CI);
1578      if (MallocType && TryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType,
1579                                                           GVI, TD))
1580        return true;
1581    }
1582  }
1583
1584  return false;
1585}
1586
1587/// TryToShrinkGlobalToBoolean - At this point, we have learned that the only
1588/// two values ever stored into GV are its initializer and OtherVal.  See if we
1589/// can shrink the global into a boolean and select between the two values
1590/// whenever it is used.  This exposes the values to other scalar optimizations.
1591static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
1592  const Type *GVElType = GV->getType()->getElementType();
1593
1594  // If GVElType is already i1, it is already shrunk.  If the type of the GV is
1595  // an FP value, pointer or vector, don't do this optimization because a select
1596  // between them is very expensive and unlikely to lead to later
1597  // simplification.  In these cases, we typically end up with "cond ? v1 : v2"
1598  // where v1 and v2 both require constant pool loads, a big loss.
1599  if (GVElType == Type::getInt1Ty(GV->getContext()) ||
1600      GVElType->isFloatingPointTy() ||
1601      GVElType->isPointerTy() || GVElType->isVectorTy())
1602    return false;
1603
1604  // Walk the use list of the global seeing if all the uses are load or store.
1605  // If there is anything else, bail out.
1606  for (Value::use_iterator I = GV->use_begin(), E = GV->use_end(); I != E; ++I){
1607    User *U = *I;
1608    if (!isa<LoadInst>(U) && !isa<StoreInst>(U))
1609      return false;
1610  }
1611
1612  DEBUG(dbgs() << "   *** SHRINKING TO BOOL: " << *GV);
1613
1614  // Create the new global, initializing it to false.
1615  GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()),
1616                                             false,
1617                                             GlobalValue::InternalLinkage,
1618                                        ConstantInt::getFalse(GV->getContext()),
1619                                             GV->getName()+".b",
1620                                             GV->isThreadLocal());
1621  GV->getParent()->getGlobalList().insert(GV, NewGV);
1622
1623  Constant *InitVal = GV->getInitializer();
1624  assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) &&
1625         "No reason to shrink to bool!");
1626
1627  // If initialized to zero and storing one into the global, we can use a cast
1628  // instead of a select to synthesize the desired value.
1629  bool IsOneZero = false;
1630  if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal))
1631    IsOneZero = InitVal->isNullValue() && CI->isOne();
1632
1633  while (!GV->use_empty()) {
1634    Instruction *UI = cast<Instruction>(GV->use_back());
1635    if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
1636      // Change the store into a boolean store.
1637      bool StoringOther = SI->getOperand(0) == OtherVal;
1638      // Only do this if we weren't storing a loaded value.
1639      Value *StoreVal;
1640      if (StoringOther || SI->getOperand(0) == InitVal)
1641        StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()),
1642                                    StoringOther);
1643      else {
1644        // Otherwise, we are storing a previously loaded copy.  To do this,
1645        // change the copy from copying the original value to just copying the
1646        // bool.
1647        Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
1648
1649        // If we've already replaced the input, StoredVal will be a cast or
1650        // select instruction.  If not, it will be a load of the original
1651        // global.
1652        if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
1653          assert(LI->getOperand(0) == GV && "Not a copy!");
1654          // Insert a new load, to preserve the saved value.
1655          StoreVal = new LoadInst(NewGV, LI->getName()+".b", LI);
1656        } else {
1657          assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
1658                 "This is not a form that we understand!");
1659          StoreVal = StoredVal->getOperand(0);
1660          assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
1661        }
1662      }
1663      new StoreInst(StoreVal, NewGV, SI);
1664    } else {
1665      // Change the load into a load of bool then a select.
1666      LoadInst *LI = cast<LoadInst>(UI);
1667      LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", LI);
1668      Value *NSI;
1669      if (IsOneZero)
1670        NSI = new ZExtInst(NLI, LI->getType(), "", LI);
1671      else
1672        NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI);
1673      NSI->takeName(LI);
1674      LI->replaceAllUsesWith(NSI);
1675    }
1676    UI->eraseFromParent();
1677  }
1678
1679  GV->eraseFromParent();
1680  return true;
1681}
1682
1683
1684/// ProcessInternalGlobal - Analyze the specified global variable and optimize
1685/// it if possible.  If we make a change, return true.
1686bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV,
1687                                      Module::global_iterator &GVI) {
1688  SmallPtrSet<const PHINode*, 16> PHIUsers;
1689  GlobalStatus GS;
1690  GV->removeDeadConstantUsers();
1691
1692  if (GV->use_empty()) {
1693    DEBUG(dbgs() << "GLOBAL DEAD: " << *GV);
1694    GV->eraseFromParent();
1695    ++NumDeleted;
1696    return true;
1697  }
1698
1699  if (!AnalyzeGlobal(GV, GS, PHIUsers)) {
1700#if 0
1701    DEBUG(dbgs() << "Global: " << *GV);
1702    DEBUG(dbgs() << "  isLoaded = " << GS.isLoaded << "\n");
1703    DEBUG(dbgs() << "  StoredType = ");
1704    switch (GS.StoredType) {
1705    case GlobalStatus::NotStored: DEBUG(dbgs() << "NEVER STORED\n"); break;
1706    case GlobalStatus::isInitializerStored: DEBUG(dbgs() << "INIT STORED\n");
1707                                            break;
1708    case GlobalStatus::isStoredOnce: DEBUG(dbgs() << "STORED ONCE\n"); break;
1709    case GlobalStatus::isStored: DEBUG(dbgs() << "stored\n"); break;
1710    }
1711    if (GS.StoredType == GlobalStatus::isStoredOnce && GS.StoredOnceValue)
1712      DEBUG(dbgs() << "  StoredOnceValue = " << *GS.StoredOnceValue << "\n");
1713    if (GS.AccessingFunction && !GS.HasMultipleAccessingFunctions)
1714      DEBUG(dbgs() << "  AccessingFunction = "
1715                   << GS.AccessingFunction->getName() << "\n");
1716    DEBUG(dbgs() << "  HasMultipleAccessingFunctions =  "
1717                 << GS.HasMultipleAccessingFunctions << "\n");
1718    DEBUG(dbgs() << "  HasNonInstructionUser = "
1719                 << GS.HasNonInstructionUser<<"\n");
1720    DEBUG(dbgs() << "\n");
1721#endif
1722
1723    // If this is a first class global and has only one accessing function
1724    // and this function is main (which we know is not recursive we can make
1725    // this global a local variable) we replace the global with a local alloca
1726    // in this function.
1727    //
1728    // NOTE: It doesn't make sense to promote non single-value types since we
1729    // are just replacing static memory to stack memory.
1730    //
1731    // If the global is in different address space, don't bring it to stack.
1732    if (!GS.HasMultipleAccessingFunctions &&
1733        GS.AccessingFunction && !GS.HasNonInstructionUser &&
1734        GV->getType()->getElementType()->isSingleValueType() &&
1735        GS.AccessingFunction->getName() == "main" &&
1736        GS.AccessingFunction->hasExternalLinkage() &&
1737        GV->getType()->getAddressSpace() == 0) {
1738      DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV);
1739      Instruction& FirstI = const_cast<Instruction&>(*GS.AccessingFunction
1740                                                     ->getEntryBlock().begin());
1741      const Type* ElemTy = GV->getType()->getElementType();
1742      // FIXME: Pass Global's alignment when globals have alignment
1743      AllocaInst* Alloca = new AllocaInst(ElemTy, NULL, GV->getName(), &FirstI);
1744      if (!isa<UndefValue>(GV->getInitializer()))
1745        new StoreInst(GV->getInitializer(), Alloca, &FirstI);
1746
1747      GV->replaceAllUsesWith(Alloca);
1748      GV->eraseFromParent();
1749      ++NumLocalized;
1750      return true;
1751    }
1752
1753    // If the global is never loaded (but may be stored to), it is dead.
1754    // Delete it now.
1755    if (!GS.isLoaded) {
1756      DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV);
1757
1758      // Delete any stores we can find to the global.  We may not be able to
1759      // make it completely dead though.
1760      bool Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer());
1761
1762      // If the global is dead now, delete it.
1763      if (GV->use_empty()) {
1764        GV->eraseFromParent();
1765        ++NumDeleted;
1766        Changed = true;
1767      }
1768      return Changed;
1769
1770    } else if (GS.StoredType <= GlobalStatus::isInitializerStored) {
1771      DEBUG(dbgs() << "MARKING CONSTANT: " << *GV);
1772      GV->setConstant(true);
1773
1774      // Clean up any obviously simplifiable users now.
1775      CleanupConstantGlobalUsers(GV, GV->getInitializer());
1776
1777      // If the global is dead now, just nuke it.
1778      if (GV->use_empty()) {
1779        DEBUG(dbgs() << "   *** Marking constant allowed us to simplify "
1780                     << "all users and delete global!\n");
1781        GV->eraseFromParent();
1782        ++NumDeleted;
1783      }
1784
1785      ++NumMarked;
1786      return true;
1787    } else if (!GV->getInitializer()->getType()->isSingleValueType()) {
1788      if (TargetData *TD = getAnalysisIfAvailable<TargetData>())
1789        if (GlobalVariable *FirstNewGV = SRAGlobal(GV, *TD)) {
1790          GVI = FirstNewGV;  // Don't skip the newly produced globals!
1791          return true;
1792        }
1793    } else if (GS.StoredType == GlobalStatus::isStoredOnce) {
1794      // If the initial value for the global was an undef value, and if only
1795      // one other value was stored into it, we can just change the
1796      // initializer to be the stored value, then delete all stores to the
1797      // global.  This allows us to mark it constant.
1798      if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
1799        if (isa<UndefValue>(GV->getInitializer())) {
1800          // Change the initial value here.
1801          GV->setInitializer(SOVConstant);
1802
1803          // Clean up any obviously simplifiable users now.
1804          CleanupConstantGlobalUsers(GV, GV->getInitializer());
1805
1806          if (GV->use_empty()) {
1807            DEBUG(dbgs() << "   *** Substituting initializer allowed us to "
1808                         << "simplify all users and delete global!\n");
1809            GV->eraseFromParent();
1810            ++NumDeleted;
1811          } else {
1812            GVI = GV;
1813          }
1814          ++NumSubstitute;
1815          return true;
1816        }
1817
1818      // Try to optimize globals based on the knowledge that only one value
1819      // (besides its initializer) is ever stored to the global.
1820      if (OptimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GVI,
1821                                   getAnalysisIfAvailable<TargetData>()))
1822        return true;
1823
1824      // Otherwise, if the global was not a boolean, we can shrink it to be a
1825      // boolean.
1826      if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
1827        if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) {
1828          ++NumShrunkToBool;
1829          return true;
1830        }
1831    }
1832  }
1833  return false;
1834}
1835
1836/// ChangeCalleesToFastCall - Walk all of the direct calls of the specified
1837/// function, changing them to FastCC.
1838static void ChangeCalleesToFastCall(Function *F) {
1839  for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
1840    CallSite User(cast<Instruction>(*UI));
1841    User.setCallingConv(CallingConv::Fast);
1842  }
1843}
1844
1845static AttrListPtr StripNest(const AttrListPtr &Attrs) {
1846  for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
1847    if ((Attrs.getSlot(i).Attrs & Attribute::Nest) == 0)
1848      continue;
1849
1850    // There can be only one.
1851    return Attrs.removeAttr(Attrs.getSlot(i).Index, Attribute::Nest);
1852  }
1853
1854  return Attrs;
1855}
1856
1857static void RemoveNestAttribute(Function *F) {
1858  F->setAttributes(StripNest(F->getAttributes()));
1859  for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
1860    CallSite User(cast<Instruction>(*UI));
1861    User.setAttributes(StripNest(User.getAttributes()));
1862  }
1863}
1864
1865bool GlobalOpt::OptimizeFunctions(Module &M) {
1866  bool Changed = false;
1867  // Optimize functions.
1868  for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) {
1869    Function *F = FI++;
1870    // Functions without names cannot be referenced outside this module.
1871    if (!F->hasName() && !F->isDeclaration())
1872      F->setLinkage(GlobalValue::InternalLinkage);
1873    F->removeDeadConstantUsers();
1874    if (F->use_empty() && (F->hasLocalLinkage() || F->hasLinkOnceLinkage())) {
1875      F->eraseFromParent();
1876      Changed = true;
1877      ++NumFnDeleted;
1878    } else if (F->hasLocalLinkage()) {
1879      if (F->getCallingConv() == CallingConv::C && !F->isVarArg() &&
1880          !F->hasAddressTaken()) {
1881        // If this function has C calling conventions, is not a varargs
1882        // function, and is only called directly, promote it to use the Fast
1883        // calling convention.
1884        F->setCallingConv(CallingConv::Fast);
1885        ChangeCalleesToFastCall(F);
1886        ++NumFastCallFns;
1887        Changed = true;
1888      }
1889
1890      if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) &&
1891          !F->hasAddressTaken()) {
1892        // The function is not used by a trampoline intrinsic, so it is safe
1893        // to remove the 'nest' attribute.
1894        RemoveNestAttribute(F);
1895        ++NumNestRemoved;
1896        Changed = true;
1897      }
1898    }
1899  }
1900  return Changed;
1901}
1902
1903bool GlobalOpt::OptimizeGlobalVars(Module &M) {
1904  bool Changed = false;
1905  for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
1906       GVI != E; ) {
1907    GlobalVariable *GV = GVI++;
1908    // Global variables without names cannot be referenced outside this module.
1909    if (!GV->hasName() && !GV->isDeclaration())
1910      GV->setLinkage(GlobalValue::InternalLinkage);
1911    // Simplify the initializer.
1912    if (GV->hasInitializer())
1913      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GV->getInitializer())) {
1914        TargetData *TD = getAnalysisIfAvailable<TargetData>();
1915        Constant *New = ConstantFoldConstantExpression(CE, TD);
1916        if (New && New != CE)
1917          GV->setInitializer(New);
1918      }
1919    // Do more involved optimizations if the global is internal.
1920    if (!GV->isConstant() && GV->hasLocalLinkage() &&
1921        GV->hasInitializer())
1922      Changed |= ProcessInternalGlobal(GV, GVI);
1923  }
1924  return Changed;
1925}
1926
1927/// FindGlobalCtors - Find the llvm.globalctors list, verifying that all
1928/// initializers have an init priority of 65535.
1929GlobalVariable *GlobalOpt::FindGlobalCtors(Module &M) {
1930  for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1931       I != E; ++I)
1932    if (I->getName() == "llvm.global_ctors") {
1933      // Found it, verify it's an array of { int, void()* }.
1934      const ArrayType *ATy =dyn_cast<ArrayType>(I->getType()->getElementType());
1935      if (!ATy) return 0;
1936      const StructType *STy = dyn_cast<StructType>(ATy->getElementType());
1937      if (!STy || STy->getNumElements() != 2 ||
1938          !STy->getElementType(0)->isIntegerTy(32)) return 0;
1939      const PointerType *PFTy = dyn_cast<PointerType>(STy->getElementType(1));
1940      if (!PFTy) return 0;
1941      const FunctionType *FTy = dyn_cast<FunctionType>(PFTy->getElementType());
1942      if (!FTy || !FTy->getReturnType()->isVoidTy() ||
1943          FTy->isVarArg() || FTy->getNumParams() != 0)
1944        return 0;
1945
1946      // Verify that the initializer is simple enough for us to handle.
1947      if (!I->hasDefinitiveInitializer()) return 0;
1948      ConstantArray *CA = dyn_cast<ConstantArray>(I->getInitializer());
1949      if (!CA) return 0;
1950      for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i)
1951        if (ConstantStruct *CS = dyn_cast<ConstantStruct>(*i)) {
1952          if (isa<ConstantPointerNull>(CS->getOperand(1)))
1953            continue;
1954
1955          // Must have a function or null ptr.
1956          if (!isa<Function>(CS->getOperand(1)))
1957            return 0;
1958
1959          // Init priority must be standard.
1960          ConstantInt *CI = dyn_cast<ConstantInt>(CS->getOperand(0));
1961          if (!CI || CI->getZExtValue() != 65535)
1962            return 0;
1963        } else {
1964          return 0;
1965        }
1966
1967      return I;
1968    }
1969  return 0;
1970}
1971
1972/// ParseGlobalCtors - Given a llvm.global_ctors list that we can understand,
1973/// return a list of the functions and null terminator as a vector.
1974static std::vector<Function*> ParseGlobalCtors(GlobalVariable *GV) {
1975  ConstantArray *CA = cast<ConstantArray>(GV->getInitializer());
1976  std::vector<Function*> Result;
1977  Result.reserve(CA->getNumOperands());
1978  for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i) {
1979    ConstantStruct *CS = cast<ConstantStruct>(*i);
1980    Result.push_back(dyn_cast<Function>(CS->getOperand(1)));
1981  }
1982  return Result;
1983}
1984
1985/// InstallGlobalCtors - Given a specified llvm.global_ctors list, install the
1986/// specified array, returning the new global to use.
1987static GlobalVariable *InstallGlobalCtors(GlobalVariable *GCL,
1988                                          const std::vector<Function*> &Ctors) {
1989  // If we made a change, reassemble the initializer list.
1990  std::vector<Constant*> CSVals;
1991  CSVals.push_back(ConstantInt::get(Type::getInt32Ty(GCL->getContext()),65535));
1992  CSVals.push_back(0);
1993
1994  // Create the new init list.
1995  std::vector<Constant*> CAList;
1996  for (unsigned i = 0, e = Ctors.size(); i != e; ++i) {
1997    if (Ctors[i]) {
1998      CSVals[1] = Ctors[i];
1999    } else {
2000      const Type *FTy = FunctionType::get(Type::getVoidTy(GCL->getContext()),
2001                                          false);
2002      const PointerType *PFTy = PointerType::getUnqual(FTy);
2003      CSVals[1] = Constant::getNullValue(PFTy);
2004      CSVals[0] = ConstantInt::get(Type::getInt32Ty(GCL->getContext()),
2005                                   2147483647);
2006    }
2007    CAList.push_back(ConstantStruct::get(GCL->getContext(), CSVals, false));
2008  }
2009
2010  // Create the array initializer.
2011  const Type *StructTy =
2012      cast<ArrayType>(GCL->getType()->getElementType())->getElementType();
2013  Constant *CA = ConstantArray::get(ArrayType::get(StructTy,
2014                                                   CAList.size()), CAList);
2015
2016  // If we didn't change the number of elements, don't create a new GV.
2017  if (CA->getType() == GCL->getInitializer()->getType()) {
2018    GCL->setInitializer(CA);
2019    return GCL;
2020  }
2021
2022  // Create the new global and insert it next to the existing list.
2023  GlobalVariable *NGV = new GlobalVariable(CA->getType(), GCL->isConstant(),
2024                                           GCL->getLinkage(), CA, "",
2025                                           GCL->isThreadLocal());
2026  GCL->getParent()->getGlobalList().insert(GCL, NGV);
2027  NGV->takeName(GCL);
2028
2029  // Nuke the old list, replacing any uses with the new one.
2030  if (!GCL->use_empty()) {
2031    Constant *V = NGV;
2032    if (V->getType() != GCL->getType())
2033      V = ConstantExpr::getBitCast(V, GCL->getType());
2034    GCL->replaceAllUsesWith(V);
2035  }
2036  GCL->eraseFromParent();
2037
2038  if (Ctors.size())
2039    return NGV;
2040  else
2041    return 0;
2042}
2043
2044
2045static Constant *getVal(DenseMap<Value*, Constant*> &ComputedValues,
2046                        Value *V) {
2047  if (Constant *CV = dyn_cast<Constant>(V)) return CV;
2048  Constant *R = ComputedValues[V];
2049  assert(R && "Reference to an uncomputed value!");
2050  return R;
2051}
2052
2053/// isSimpleEnoughPointerToCommit - Return true if this constant is simple
2054/// enough for us to understand.  In particular, if it is a cast of something,
2055/// we punt.  We basically just support direct accesses to globals and GEP's of
2056/// globals.  This should be kept up to date with CommitValueTo.
2057static bool isSimpleEnoughPointerToCommit(Constant *C) {
2058  // Conservatively, avoid aggregate types. This is because we don't
2059  // want to worry about them partially overlapping other stores.
2060  if (!cast<PointerType>(C->getType())->getElementType()->isSingleValueType())
2061    return false;
2062
2063  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
2064    // Do not allow weak/linkonce/dllimport/dllexport linkage or
2065    // external globals.
2066    return GV->hasDefinitiveInitializer();
2067
2068  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2069    // Handle a constantexpr gep.
2070    if (CE->getOpcode() == Instruction::GetElementPtr &&
2071        isa<GlobalVariable>(CE->getOperand(0)) &&
2072        cast<GEPOperator>(CE)->isInBounds()) {
2073      GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2074      // Do not allow weak/linkonce/dllimport/dllexport linkage or
2075      // external globals.
2076      if (!GV->hasDefinitiveInitializer())
2077        return false;
2078
2079      // The first index must be zero.
2080      ConstantInt *CI = dyn_cast<ConstantInt>(*next(CE->op_begin()));
2081      if (!CI || !CI->isZero()) return false;
2082
2083      // The remaining indices must be compile-time known integers within the
2084      // notional bounds of the corresponding static array types.
2085      if (!CE->isGEPWithNoNotionalOverIndexing())
2086        return false;
2087
2088      return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
2089    }
2090  return false;
2091}
2092
2093/// EvaluateStoreInto - Evaluate a piece of a constantexpr store into a global
2094/// initializer.  This returns 'Init' modified to reflect 'Val' stored into it.
2095/// At this point, the GEP operands of Addr [0, OpNo) have been stepped into.
2096static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
2097                                   ConstantExpr *Addr, unsigned OpNo) {
2098  // Base case of the recursion.
2099  if (OpNo == Addr->getNumOperands()) {
2100    assert(Val->getType() == Init->getType() && "Type mismatch!");
2101    return Val;
2102  }
2103
2104  std::vector<Constant*> Elts;
2105  if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
2106
2107    // Break up the constant into its elements.
2108    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
2109      for (User::op_iterator i = CS->op_begin(), e = CS->op_end(); i != e; ++i)
2110        Elts.push_back(cast<Constant>(*i));
2111    } else if (isa<ConstantAggregateZero>(Init)) {
2112      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
2113        Elts.push_back(Constant::getNullValue(STy->getElementType(i)));
2114    } else if (isa<UndefValue>(Init)) {
2115      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
2116        Elts.push_back(UndefValue::get(STy->getElementType(i)));
2117    } else {
2118      llvm_unreachable("This code is out of sync with "
2119             " ConstantFoldLoadThroughGEPConstantExpr");
2120    }
2121
2122    // Replace the element that we are supposed to.
2123    ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
2124    unsigned Idx = CU->getZExtValue();
2125    assert(Idx < STy->getNumElements() && "Struct index out of range!");
2126    Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1);
2127
2128    // Return the modified struct.
2129    return ConstantStruct::get(Init->getContext(), &Elts[0], Elts.size(),
2130                               STy->isPacked());
2131  } else {
2132    ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
2133    const SequentialType *InitTy = cast<SequentialType>(Init->getType());
2134
2135    uint64_t NumElts;
2136    if (const ArrayType *ATy = dyn_cast<ArrayType>(InitTy))
2137      NumElts = ATy->getNumElements();
2138    else
2139      NumElts = cast<VectorType>(InitTy)->getNumElements();
2140
2141
2142    // Break up the array into elements.
2143    if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
2144      for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i)
2145        Elts.push_back(cast<Constant>(*i));
2146    } else if (ConstantVector *CV = dyn_cast<ConstantVector>(Init)) {
2147      for (User::op_iterator i = CV->op_begin(), e = CV->op_end(); i != e; ++i)
2148        Elts.push_back(cast<Constant>(*i));
2149    } else if (isa<ConstantAggregateZero>(Init)) {
2150      Elts.assign(NumElts, Constant::getNullValue(InitTy->getElementType()));
2151    } else {
2152      assert(isa<UndefValue>(Init) && "This code is out of sync with "
2153             " ConstantFoldLoadThroughGEPConstantExpr");
2154      Elts.assign(NumElts, UndefValue::get(InitTy->getElementType()));
2155    }
2156
2157    assert(CI->getZExtValue() < NumElts);
2158    Elts[CI->getZExtValue()] =
2159      EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1);
2160
2161    if (Init->getType()->isArrayTy())
2162      return ConstantArray::get(cast<ArrayType>(InitTy), Elts);
2163    else
2164      return ConstantVector::get(&Elts[0], Elts.size());
2165  }
2166}
2167
2168/// CommitValueTo - We have decided that Addr (which satisfies the predicate
2169/// isSimpleEnoughPointerToCommit) should get Val as its value.  Make it happen.
2170static void CommitValueTo(Constant *Val, Constant *Addr) {
2171  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
2172    assert(GV->hasInitializer());
2173    GV->setInitializer(Val);
2174    return;
2175  }
2176
2177  ConstantExpr *CE = cast<ConstantExpr>(Addr);
2178  GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2179  GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2));
2180}
2181
2182/// ComputeLoadResult - Return the value that would be computed by a load from
2183/// P after the stores reflected by 'memory' have been performed.  If we can't
2184/// decide, return null.
2185static Constant *ComputeLoadResult(Constant *P,
2186                                const DenseMap<Constant*, Constant*> &Memory) {
2187  // If this memory location has been recently stored, use the stored value: it
2188  // is the most up-to-date.
2189  DenseMap<Constant*, Constant*>::const_iterator I = Memory.find(P);
2190  if (I != Memory.end()) return I->second;
2191
2192  // Access it.
2193  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
2194    if (GV->hasDefinitiveInitializer())
2195      return GV->getInitializer();
2196    return 0;
2197  }
2198
2199  // Handle a constantexpr getelementptr.
2200  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P))
2201    if (CE->getOpcode() == Instruction::GetElementPtr &&
2202        isa<GlobalVariable>(CE->getOperand(0))) {
2203      GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2204      if (GV->hasDefinitiveInitializer())
2205        return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
2206    }
2207
2208  return 0;  // don't know how to evaluate.
2209}
2210
2211/// EvaluateFunction - Evaluate a call to function F, returning true if
2212/// successful, false if we can't evaluate it.  ActualArgs contains the formal
2213/// arguments for the function.
2214static bool EvaluateFunction(Function *F, Constant *&RetVal,
2215                             const SmallVectorImpl<Constant*> &ActualArgs,
2216                             std::vector<Function*> &CallStack,
2217                             DenseMap<Constant*, Constant*> &MutatedMemory,
2218                             std::vector<GlobalVariable*> &AllocaTmps) {
2219  // Check to see if this function is already executing (recursion).  If so,
2220  // bail out.  TODO: we might want to accept limited recursion.
2221  if (std::find(CallStack.begin(), CallStack.end(), F) != CallStack.end())
2222    return false;
2223
2224  CallStack.push_back(F);
2225
2226  /// Values - As we compute SSA register values, we store their contents here.
2227  DenseMap<Value*, Constant*> Values;
2228
2229  // Initialize arguments to the incoming values specified.
2230  unsigned ArgNo = 0;
2231  for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
2232       ++AI, ++ArgNo)
2233    Values[AI] = ActualArgs[ArgNo];
2234
2235  /// ExecutedBlocks - We only handle non-looping, non-recursive code.  As such,
2236  /// we can only evaluate any one basic block at most once.  This set keeps
2237  /// track of what we have executed so we can detect recursive cases etc.
2238  SmallPtrSet<BasicBlock*, 32> ExecutedBlocks;
2239
2240  // CurInst - The current instruction we're evaluating.
2241  BasicBlock::iterator CurInst = F->begin()->begin();
2242
2243  // This is the main evaluation loop.
2244  while (1) {
2245    Constant *InstResult = 0;
2246
2247    if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) {
2248      if (SI->isVolatile()) return false;  // no volatile accesses.
2249      Constant *Ptr = getVal(Values, SI->getOperand(1));
2250      if (!isSimpleEnoughPointerToCommit(Ptr))
2251        // If this is too complex for us to commit, reject it.
2252        return false;
2253      Constant *Val = getVal(Values, SI->getOperand(0));
2254      MutatedMemory[Ptr] = Val;
2255    } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) {
2256      InstResult = ConstantExpr::get(BO->getOpcode(),
2257                                     getVal(Values, BO->getOperand(0)),
2258                                     getVal(Values, BO->getOperand(1)));
2259    } else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) {
2260      InstResult = ConstantExpr::getCompare(CI->getPredicate(),
2261                                            getVal(Values, CI->getOperand(0)),
2262                                            getVal(Values, CI->getOperand(1)));
2263    } else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) {
2264      InstResult = ConstantExpr::getCast(CI->getOpcode(),
2265                                         getVal(Values, CI->getOperand(0)),
2266                                         CI->getType());
2267    } else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) {
2268      InstResult = ConstantExpr::getSelect(getVal(Values, SI->getOperand(0)),
2269                                           getVal(Values, SI->getOperand(1)),
2270                                           getVal(Values, SI->getOperand(2)));
2271    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) {
2272      Constant *P = getVal(Values, GEP->getOperand(0));
2273      SmallVector<Constant*, 8> GEPOps;
2274      for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end();
2275           i != e; ++i)
2276        GEPOps.push_back(getVal(Values, *i));
2277      InstResult = cast<GEPOperator>(GEP)->isInBounds() ?
2278          ConstantExpr::getInBoundsGetElementPtr(P, &GEPOps[0], GEPOps.size()) :
2279          ConstantExpr::getGetElementPtr(P, &GEPOps[0], GEPOps.size());
2280    } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) {
2281      if (LI->isVolatile()) return false;  // no volatile accesses.
2282      InstResult = ComputeLoadResult(getVal(Values, LI->getOperand(0)),
2283                                     MutatedMemory);
2284      if (InstResult == 0) return false; // Could not evaluate load.
2285    } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) {
2286      if (AI->isArrayAllocation()) return false;  // Cannot handle array allocs.
2287      const Type *Ty = AI->getType()->getElementType();
2288      AllocaTmps.push_back(new GlobalVariable(Ty, false,
2289                                              GlobalValue::InternalLinkage,
2290                                              UndefValue::get(Ty),
2291                                              AI->getName()));
2292      InstResult = AllocaTmps.back();
2293    } else if (CallInst *CI = dyn_cast<CallInst>(CurInst)) {
2294
2295      // Debug info can safely be ignored here.
2296      if (isa<DbgInfoIntrinsic>(CI)) {
2297        ++CurInst;
2298        continue;
2299      }
2300
2301      // Cannot handle inline asm.
2302      if (isa<InlineAsm>(CI->getCalledValue())) return false;
2303
2304      // Resolve function pointers.
2305      Function *Callee = dyn_cast<Function>(getVal(Values, CI->getCalledValue()));
2306      if (!Callee) return false;  // Cannot resolve.
2307
2308      SmallVector<Constant*, 8> Formals;
2309      CallSite CS(CI);
2310      for (User::op_iterator i = CS.arg_begin(), e = CS.arg_end();
2311           i != e; ++i)
2312        Formals.push_back(getVal(Values, *i));
2313
2314      if (Callee->isDeclaration()) {
2315        // If this is a function we can constant fold, do it.
2316        if (Constant *C = ConstantFoldCall(Callee, Formals.data(),
2317                                           Formals.size())) {
2318          InstResult = C;
2319        } else {
2320          return false;
2321        }
2322      } else {
2323        if (Callee->getFunctionType()->isVarArg())
2324          return false;
2325
2326        Constant *RetVal;
2327        // Execute the call, if successful, use the return value.
2328        if (!EvaluateFunction(Callee, RetVal, Formals, CallStack,
2329                              MutatedMemory, AllocaTmps))
2330          return false;
2331        InstResult = RetVal;
2332      }
2333    } else if (isa<TerminatorInst>(CurInst)) {
2334      BasicBlock *NewBB = 0;
2335      if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) {
2336        if (BI->isUnconditional()) {
2337          NewBB = BI->getSuccessor(0);
2338        } else {
2339          ConstantInt *Cond =
2340            dyn_cast<ConstantInt>(getVal(Values, BI->getCondition()));
2341          if (!Cond) return false;  // Cannot determine.
2342
2343          NewBB = BI->getSuccessor(!Cond->getZExtValue());
2344        }
2345      } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) {
2346        ConstantInt *Val =
2347          dyn_cast<ConstantInt>(getVal(Values, SI->getCondition()));
2348        if (!Val) return false;  // Cannot determine.
2349        NewBB = SI->getSuccessor(SI->findCaseValue(Val));
2350      } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(CurInst)) {
2351        Value *Val = getVal(Values, IBI->getAddress())->stripPointerCasts();
2352        if (BlockAddress *BA = dyn_cast<BlockAddress>(Val))
2353          NewBB = BA->getBasicBlock();
2354        else
2355          return false;  // Cannot determine.
2356      } else if (ReturnInst *RI = dyn_cast<ReturnInst>(CurInst)) {
2357        if (RI->getNumOperands())
2358          RetVal = getVal(Values, RI->getOperand(0));
2359
2360        CallStack.pop_back();  // return from fn.
2361        return true;  // We succeeded at evaluating this ctor!
2362      } else {
2363        // invoke, unwind, unreachable.
2364        return false;  // Cannot handle this terminator.
2365      }
2366
2367      // Okay, we succeeded in evaluating this control flow.  See if we have
2368      // executed the new block before.  If so, we have a looping function,
2369      // which we cannot evaluate in reasonable time.
2370      if (!ExecutedBlocks.insert(NewBB))
2371        return false;  // looped!
2372
2373      // Okay, we have never been in this block before.  Check to see if there
2374      // are any PHI nodes.  If so, evaluate them with information about where
2375      // we came from.
2376      BasicBlock *OldBB = CurInst->getParent();
2377      CurInst = NewBB->begin();
2378      PHINode *PN;
2379      for (; (PN = dyn_cast<PHINode>(CurInst)); ++CurInst)
2380        Values[PN] = getVal(Values, PN->getIncomingValueForBlock(OldBB));
2381
2382      // Do NOT increment CurInst.  We know that the terminator had no value.
2383      continue;
2384    } else {
2385      // Did not know how to evaluate this!
2386      return false;
2387    }
2388
2389    if (!CurInst->use_empty())
2390      Values[CurInst] = InstResult;
2391
2392    // Advance program counter.
2393    ++CurInst;
2394  }
2395}
2396
2397/// EvaluateStaticConstructor - Evaluate static constructors in the function, if
2398/// we can.  Return true if we can, false otherwise.
2399static bool EvaluateStaticConstructor(Function *F) {
2400  /// MutatedMemory - For each store we execute, we update this map.  Loads
2401  /// check this to get the most up-to-date value.  If evaluation is successful,
2402  /// this state is committed to the process.
2403  DenseMap<Constant*, Constant*> MutatedMemory;
2404
2405  /// AllocaTmps - To 'execute' an alloca, we create a temporary global variable
2406  /// to represent its body.  This vector is needed so we can delete the
2407  /// temporary globals when we are done.
2408  std::vector<GlobalVariable*> AllocaTmps;
2409
2410  /// CallStack - This is used to detect recursion.  In pathological situations
2411  /// we could hit exponential behavior, but at least there is nothing
2412  /// unbounded.
2413  std::vector<Function*> CallStack;
2414
2415  // Call the function.
2416  Constant *RetValDummy;
2417  bool EvalSuccess = EvaluateFunction(F, RetValDummy,
2418                                      SmallVector<Constant*, 0>(), CallStack,
2419                                      MutatedMemory, AllocaTmps);
2420  if (EvalSuccess) {
2421    // We succeeded at evaluation: commit the result.
2422    DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
2423          << F->getName() << "' to " << MutatedMemory.size()
2424          << " stores.\n");
2425    for (DenseMap<Constant*, Constant*>::iterator I = MutatedMemory.begin(),
2426         E = MutatedMemory.end(); I != E; ++I)
2427      CommitValueTo(I->second, I->first);
2428  }
2429
2430  // At this point, we are done interpreting.  If we created any 'alloca'
2431  // temporaries, release them now.
2432  while (!AllocaTmps.empty()) {
2433    GlobalVariable *Tmp = AllocaTmps.back();
2434    AllocaTmps.pop_back();
2435
2436    // If there are still users of the alloca, the program is doing something
2437    // silly, e.g. storing the address of the alloca somewhere and using it
2438    // later.  Since this is undefined, we'll just make it be null.
2439    if (!Tmp->use_empty())
2440      Tmp->replaceAllUsesWith(Constant::getNullValue(Tmp->getType()));
2441    delete Tmp;
2442  }
2443
2444  return EvalSuccess;
2445}
2446
2447
2448
2449/// OptimizeGlobalCtorsList - Simplify and evaluation global ctors if possible.
2450/// Return true if anything changed.
2451bool GlobalOpt::OptimizeGlobalCtorsList(GlobalVariable *&GCL) {
2452  std::vector<Function*> Ctors = ParseGlobalCtors(GCL);
2453  bool MadeChange = false;
2454  if (Ctors.empty()) return false;
2455
2456  // Loop over global ctors, optimizing them when we can.
2457  for (unsigned i = 0; i != Ctors.size(); ++i) {
2458    Function *F = Ctors[i];
2459    // Found a null terminator in the middle of the list, prune off the rest of
2460    // the list.
2461    if (F == 0) {
2462      if (i != Ctors.size()-1) {
2463        Ctors.resize(i+1);
2464        MadeChange = true;
2465      }
2466      break;
2467    }
2468
2469    // We cannot simplify external ctor functions.
2470    if (F->empty()) continue;
2471
2472    // If we can evaluate the ctor at compile time, do.
2473    if (EvaluateStaticConstructor(F)) {
2474      Ctors.erase(Ctors.begin()+i);
2475      MadeChange = true;
2476      --i;
2477      ++NumCtorsEvaluated;
2478      continue;
2479    }
2480  }
2481
2482  if (!MadeChange) return false;
2483
2484  GCL = InstallGlobalCtors(GCL, Ctors);
2485  return true;
2486}
2487
2488bool GlobalOpt::OptimizeGlobalAliases(Module &M) {
2489  bool Changed = false;
2490
2491  for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
2492       I != E;) {
2493    Module::alias_iterator J = I++;
2494    // Aliases without names cannot be referenced outside this module.
2495    if (!J->hasName() && !J->isDeclaration())
2496      J->setLinkage(GlobalValue::InternalLinkage);
2497    // If the aliasee may change at link time, nothing can be done - bail out.
2498    if (J->mayBeOverridden())
2499      continue;
2500
2501    Constant *Aliasee = J->getAliasee();
2502    GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts());
2503    Target->removeDeadConstantUsers();
2504    bool hasOneUse = Target->hasOneUse() && Aliasee->hasOneUse();
2505
2506    // Make all users of the alias use the aliasee instead.
2507    if (!J->use_empty()) {
2508      J->replaceAllUsesWith(Aliasee);
2509      ++NumAliasesResolved;
2510      Changed = true;
2511    }
2512
2513    // If the alias is externally visible, we may still be able to simplify it.
2514    if (!J->hasLocalLinkage()) {
2515      // If the aliasee has internal linkage, give it the name and linkage
2516      // of the alias, and delete the alias.  This turns:
2517      //   define internal ... @f(...)
2518      //   @a = alias ... @f
2519      // into:
2520      //   define ... @a(...)
2521      if (!Target->hasLocalLinkage())
2522        continue;
2523
2524      // Do not perform the transform if multiple aliases potentially target the
2525      // aliasee. This check also ensures that it is safe to replace the section
2526      // and other attributes of the aliasee with those of the alias.
2527      if (!hasOneUse)
2528        continue;
2529
2530      // Give the aliasee the name, linkage and other attributes of the alias.
2531      Target->takeName(J);
2532      Target->setLinkage(J->getLinkage());
2533      Target->GlobalValue::copyAttributesFrom(J);
2534    }
2535
2536    // Delete the alias.
2537    M.getAliasList().erase(J);
2538    ++NumAliasesRemoved;
2539    Changed = true;
2540  }
2541
2542  return Changed;
2543}
2544
2545bool GlobalOpt::runOnModule(Module &M) {
2546  bool Changed = false;
2547
2548  // Try to find the llvm.globalctors list.
2549  GlobalVariable *GlobalCtors = FindGlobalCtors(M);
2550
2551  bool LocalChange = true;
2552  while (LocalChange) {
2553    LocalChange = false;
2554
2555    // Delete functions that are trivially dead, ccc -> fastcc
2556    LocalChange |= OptimizeFunctions(M);
2557
2558    // Optimize global_ctors list.
2559    if (GlobalCtors)
2560      LocalChange |= OptimizeGlobalCtorsList(GlobalCtors);
2561
2562    // Optimize non-address-taken globals.
2563    LocalChange |= OptimizeGlobalVars(M);
2564
2565    // Resolve aliases, when possible.
2566    LocalChange |= OptimizeGlobalAliases(M);
2567    Changed |= LocalChange;
2568  }
2569
2570  // TODO: Move all global ctors functions to the end of the module for code
2571  // layout.
2572
2573  return Changed;
2574}
2575