GlobalOpt.cpp revision 239462
1//===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass transforms simple global variables that never have their address
11// taken.  If obviously true, it marks read/write globals as constant, deletes
12// variables only stored to, etc.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "globalopt"
17#include "llvm/Transforms/IPO.h"
18#include "llvm/CallingConv.h"
19#include "llvm/Constants.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/Instructions.h"
22#include "llvm/IntrinsicInst.h"
23#include "llvm/Module.h"
24#include "llvm/Operator.h"
25#include "llvm/Pass.h"
26#include "llvm/Analysis/ConstantFolding.h"
27#include "llvm/Analysis/MemoryBuiltins.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/Target/TargetLibraryInfo.h"
30#include "llvm/Support/CallSite.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/Support/ErrorHandling.h"
33#include "llvm/Support/GetElementPtrTypeIterator.h"
34#include "llvm/Support/MathExtras.h"
35#include "llvm/Support/raw_ostream.h"
36#include "llvm/ADT/DenseMap.h"
37#include "llvm/ADT/SmallPtrSet.h"
38#include "llvm/ADT/SmallVector.h"
39#include "llvm/ADT/Statistic.h"
40#include "llvm/ADT/STLExtras.h"
41#include <algorithm>
42using namespace llvm;
43
44STATISTIC(NumMarked    , "Number of globals marked constant");
45STATISTIC(NumUnnamed   , "Number of globals marked unnamed_addr");
46STATISTIC(NumSRA       , "Number of aggregate globals broken into scalars");
47STATISTIC(NumHeapSRA   , "Number of heap objects SRA'd");
48STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
49STATISTIC(NumDeleted   , "Number of globals deleted");
50STATISTIC(NumFnDeleted , "Number of functions deleted");
51STATISTIC(NumGlobUses  , "Number of global uses devirtualized");
52STATISTIC(NumLocalized , "Number of globals localized");
53STATISTIC(NumShrunkToBool  , "Number of global vars shrunk to booleans");
54STATISTIC(NumFastCallFns   , "Number of functions converted to fastcc");
55STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
56STATISTIC(NumNestRemoved   , "Number of nest attributes removed");
57STATISTIC(NumAliasesResolved, "Number of global aliases resolved");
58STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated");
59STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed");
60
61namespace {
62  struct GlobalStatus;
63  struct GlobalOpt : public ModulePass {
64    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
65      AU.addRequired<TargetLibraryInfo>();
66    }
67    static char ID; // Pass identification, replacement for typeid
68    GlobalOpt() : ModulePass(ID) {
69      initializeGlobalOptPass(*PassRegistry::getPassRegistry());
70    }
71
72    bool runOnModule(Module &M);
73
74  private:
75    GlobalVariable *FindGlobalCtors(Module &M);
76    bool OptimizeFunctions(Module &M);
77    bool OptimizeGlobalVars(Module &M);
78    bool OptimizeGlobalAliases(Module &M);
79    bool OptimizeGlobalCtorsList(GlobalVariable *&GCL);
80    bool ProcessGlobal(GlobalVariable *GV,Module::global_iterator &GVI);
81    bool ProcessInternalGlobal(GlobalVariable *GV,Module::global_iterator &GVI,
82                               const SmallPtrSet<const PHINode*, 16> &PHIUsers,
83                               const GlobalStatus &GS);
84    bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn);
85
86    TargetData *TD;
87    TargetLibraryInfo *TLI;
88  };
89}
90
91char GlobalOpt::ID = 0;
92INITIALIZE_PASS_BEGIN(GlobalOpt, "globalopt",
93                "Global Variable Optimizer", false, false)
94INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
95INITIALIZE_PASS_END(GlobalOpt, "globalopt",
96                "Global Variable Optimizer", false, false)
97
98ModulePass *llvm::createGlobalOptimizerPass() { return new GlobalOpt(); }
99
100namespace {
101
102/// GlobalStatus - As we analyze each global, keep track of some information
103/// about it.  If we find out that the address of the global is taken, none of
104/// this info will be accurate.
105struct GlobalStatus {
106  /// isCompared - True if the global's address is used in a comparison.
107  bool isCompared;
108
109  /// isLoaded - True if the global is ever loaded.  If the global isn't ever
110  /// loaded it can be deleted.
111  bool isLoaded;
112
113  /// StoredType - Keep track of what stores to the global look like.
114  ///
115  enum StoredType {
116    /// NotStored - There is no store to this global.  It can thus be marked
117    /// constant.
118    NotStored,
119
120    /// isInitializerStored - This global is stored to, but the only thing
121    /// stored is the constant it was initialized with.  This is only tracked
122    /// for scalar globals.
123    isInitializerStored,
124
125    /// isStoredOnce - This global is stored to, but only its initializer and
126    /// one other value is ever stored to it.  If this global isStoredOnce, we
127    /// track the value stored to it in StoredOnceValue below.  This is only
128    /// tracked for scalar globals.
129    isStoredOnce,
130
131    /// isStored - This global is stored to by multiple values or something else
132    /// that we cannot track.
133    isStored
134  } StoredType;
135
136  /// StoredOnceValue - If only one value (besides the initializer constant) is
137  /// ever stored to this global, keep track of what value it is.
138  Value *StoredOnceValue;
139
140  /// AccessingFunction/HasMultipleAccessingFunctions - These start out
141  /// null/false.  When the first accessing function is noticed, it is recorded.
142  /// When a second different accessing function is noticed,
143  /// HasMultipleAccessingFunctions is set to true.
144  const Function *AccessingFunction;
145  bool HasMultipleAccessingFunctions;
146
147  /// HasNonInstructionUser - Set to true if this global has a user that is not
148  /// an instruction (e.g. a constant expr or GV initializer).
149  bool HasNonInstructionUser;
150
151  /// HasPHIUser - Set to true if this global has a user that is a PHI node.
152  bool HasPHIUser;
153
154  /// AtomicOrdering - Set to the strongest atomic ordering requirement.
155  AtomicOrdering Ordering;
156
157  GlobalStatus() : isCompared(false), isLoaded(false), StoredType(NotStored),
158                   StoredOnceValue(0), AccessingFunction(0),
159                   HasMultipleAccessingFunctions(false),
160                   HasNonInstructionUser(false), HasPHIUser(false),
161                   Ordering(NotAtomic) {}
162};
163
164}
165
166/// StrongerOrdering - Return the stronger of the two ordering. If the two
167/// orderings are acquire and release, then return AcquireRelease.
168///
169static AtomicOrdering StrongerOrdering(AtomicOrdering X, AtomicOrdering Y) {
170  if (X == Acquire && Y == Release) return AcquireRelease;
171  if (Y == Acquire && X == Release) return AcquireRelease;
172  return (AtomicOrdering)std::max(X, Y);
173}
174
175/// SafeToDestroyConstant - It is safe to destroy a constant iff it is only used
176/// by constants itself.  Note that constants cannot be cyclic, so this test is
177/// pretty easy to implement recursively.
178///
179static bool SafeToDestroyConstant(const Constant *C) {
180  if (isa<GlobalValue>(C)) return false;
181
182  for (Value::const_use_iterator UI = C->use_begin(), E = C->use_end(); UI != E;
183       ++UI)
184    if (const Constant *CU = dyn_cast<Constant>(*UI)) {
185      if (!SafeToDestroyConstant(CU)) return false;
186    } else
187      return false;
188  return true;
189}
190
191
192/// AnalyzeGlobal - Look at all uses of the global and fill in the GlobalStatus
193/// structure.  If the global has its address taken, return true to indicate we
194/// can't do anything with it.
195///
196static bool AnalyzeGlobal(const Value *V, GlobalStatus &GS,
197                          SmallPtrSet<const PHINode*, 16> &PHIUsers) {
198  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;
199       ++UI) {
200    const User *U = *UI;
201    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
202      GS.HasNonInstructionUser = true;
203
204      // If the result of the constantexpr isn't pointer type, then we won't
205      // know to expect it in various places.  Just reject early.
206      if (!isa<PointerType>(CE->getType())) return true;
207
208      if (AnalyzeGlobal(CE, GS, PHIUsers)) return true;
209    } else if (const Instruction *I = dyn_cast<Instruction>(U)) {
210      if (!GS.HasMultipleAccessingFunctions) {
211        const Function *F = I->getParent()->getParent();
212        if (GS.AccessingFunction == 0)
213          GS.AccessingFunction = F;
214        else if (GS.AccessingFunction != F)
215          GS.HasMultipleAccessingFunctions = true;
216      }
217      if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
218        GS.isLoaded = true;
219        // Don't hack on volatile loads.
220        if (LI->isVolatile()) return true;
221        GS.Ordering = StrongerOrdering(GS.Ordering, LI->getOrdering());
222      } else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) {
223        // Don't allow a store OF the address, only stores TO the address.
224        if (SI->getOperand(0) == V) return true;
225
226        // Don't hack on volatile stores.
227        if (SI->isVolatile()) return true;
228        GS.Ordering = StrongerOrdering(GS.Ordering, SI->getOrdering());
229
230        // If this is a direct store to the global (i.e., the global is a scalar
231        // value, not an aggregate), keep more specific information about
232        // stores.
233        if (GS.StoredType != GlobalStatus::isStored) {
234          if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(
235                                                           SI->getOperand(1))) {
236            Value *StoredVal = SI->getOperand(0);
237            if (StoredVal == GV->getInitializer()) {
238              if (GS.StoredType < GlobalStatus::isInitializerStored)
239                GS.StoredType = GlobalStatus::isInitializerStored;
240            } else if (isa<LoadInst>(StoredVal) &&
241                       cast<LoadInst>(StoredVal)->getOperand(0) == GV) {
242              if (GS.StoredType < GlobalStatus::isInitializerStored)
243                GS.StoredType = GlobalStatus::isInitializerStored;
244            } else if (GS.StoredType < GlobalStatus::isStoredOnce) {
245              GS.StoredType = GlobalStatus::isStoredOnce;
246              GS.StoredOnceValue = StoredVal;
247            } else if (GS.StoredType == GlobalStatus::isStoredOnce &&
248                       GS.StoredOnceValue == StoredVal) {
249              // noop.
250            } else {
251              GS.StoredType = GlobalStatus::isStored;
252            }
253          } else {
254            GS.StoredType = GlobalStatus::isStored;
255          }
256        }
257      } else if (isa<BitCastInst>(I)) {
258        if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
259      } else if (isa<GetElementPtrInst>(I)) {
260        if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
261      } else if (isa<SelectInst>(I)) {
262        if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
263      } else if (const PHINode *PN = dyn_cast<PHINode>(I)) {
264        // PHI nodes we can check just like select or GEP instructions, but we
265        // have to be careful about infinite recursion.
266        if (PHIUsers.insert(PN))  // Not already visited.
267          if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
268        GS.HasPHIUser = true;
269      } else if (isa<CmpInst>(I)) {
270        GS.isCompared = true;
271      } else if (const MemTransferInst *MTI = dyn_cast<MemTransferInst>(I)) {
272        if (MTI->isVolatile()) return true;
273        if (MTI->getArgOperand(0) == V)
274          GS.StoredType = GlobalStatus::isStored;
275        if (MTI->getArgOperand(1) == V)
276          GS.isLoaded = true;
277      } else if (const MemSetInst *MSI = dyn_cast<MemSetInst>(I)) {
278        assert(MSI->getArgOperand(0) == V && "Memset only takes one pointer!");
279        if (MSI->isVolatile()) return true;
280        GS.StoredType = GlobalStatus::isStored;
281      } else {
282        return true;  // Any other non-load instruction might take address!
283      }
284    } else if (const Constant *C = dyn_cast<Constant>(U)) {
285      GS.HasNonInstructionUser = true;
286      // We might have a dead and dangling constant hanging off of here.
287      if (!SafeToDestroyConstant(C))
288        return true;
289    } else {
290      GS.HasNonInstructionUser = true;
291      // Otherwise must be some other user.
292      return true;
293    }
294  }
295
296  return false;
297}
298
299/// isLeakCheckerRoot - Is this global variable possibly used by a leak checker
300/// as a root?  If so, we might not really want to eliminate the stores to it.
301static bool isLeakCheckerRoot(GlobalVariable *GV) {
302  // A global variable is a root if it is a pointer, or could plausibly contain
303  // a pointer.  There are two challenges; one is that we could have a struct
304  // the has an inner member which is a pointer.  We recurse through the type to
305  // detect these (up to a point).  The other is that we may actually be a union
306  // of a pointer and another type, and so our LLVM type is an integer which
307  // gets converted into a pointer, or our type is an [i8 x #] with a pointer
308  // potentially contained here.
309
310  if (GV->hasPrivateLinkage())
311    return false;
312
313  SmallVector<Type *, 4> Types;
314  Types.push_back(cast<PointerType>(GV->getType())->getElementType());
315
316  unsigned Limit = 20;
317  do {
318    Type *Ty = Types.pop_back_val();
319    switch (Ty->getTypeID()) {
320      default: break;
321      case Type::PointerTyID: return true;
322      case Type::ArrayTyID:
323      case Type::VectorTyID: {
324        SequentialType *STy = cast<SequentialType>(Ty);
325        Types.push_back(STy->getElementType());
326        break;
327      }
328      case Type::StructTyID: {
329        StructType *STy = cast<StructType>(Ty);
330        if (STy->isOpaque()) return true;
331        for (StructType::element_iterator I = STy->element_begin(),
332                 E = STy->element_end(); I != E; ++I) {
333          Type *InnerTy = *I;
334          if (isa<PointerType>(InnerTy)) return true;
335          if (isa<CompositeType>(InnerTy))
336            Types.push_back(InnerTy);
337        }
338        break;
339      }
340    }
341    if (--Limit == 0) return true;
342  } while (!Types.empty());
343  return false;
344}
345
346/// Given a value that is stored to a global but never read, determine whether
347/// it's safe to remove the store and the chain of computation that feeds the
348/// store.
349static bool IsSafeComputationToRemove(Value *V) {
350  do {
351    if (isa<Constant>(V))
352      return true;
353    if (!V->hasOneUse())
354      return false;
355    if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) ||
356        isa<GlobalValue>(V))
357      return false;
358    if (isAllocationFn(V))
359      return true;
360
361    Instruction *I = cast<Instruction>(V);
362    if (I->mayHaveSideEffects())
363      return false;
364    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
365      if (!GEP->hasAllConstantIndices())
366        return false;
367    } else if (I->getNumOperands() != 1) {
368      return false;
369    }
370
371    V = I->getOperand(0);
372  } while (1);
373}
374
375/// CleanupPointerRootUsers - This GV is a pointer root.  Loop over all users
376/// of the global and clean up any that obviously don't assign the global a
377/// value that isn't dynamically allocated.
378///
379static bool CleanupPointerRootUsers(GlobalVariable *GV) {
380  // A brief explanation of leak checkers.  The goal is to find bugs where
381  // pointers are forgotten, causing an accumulating growth in memory
382  // usage over time.  The common strategy for leak checkers is to whitelist the
383  // memory pointed to by globals at exit.  This is popular because it also
384  // solves another problem where the main thread of a C++ program may shut down
385  // before other threads that are still expecting to use those globals.  To
386  // handle that case, we expect the program may create a singleton and never
387  // destroy it.
388
389  bool Changed = false;
390
391  // If Dead[n].first is the only use of a malloc result, we can delete its
392  // chain of computation and the store to the global in Dead[n].second.
393  SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead;
394
395  // Constants can't be pointers to dynamically allocated memory.
396  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end();
397       UI != E;) {
398    User *U = *UI++;
399    if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
400      Value *V = SI->getValueOperand();
401      if (isa<Constant>(V)) {
402        Changed = true;
403        SI->eraseFromParent();
404      } else if (Instruction *I = dyn_cast<Instruction>(V)) {
405        if (I->hasOneUse())
406          Dead.push_back(std::make_pair(I, SI));
407      }
408    } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) {
409      if (isa<Constant>(MSI->getValue())) {
410        Changed = true;
411        MSI->eraseFromParent();
412      } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) {
413        if (I->hasOneUse())
414          Dead.push_back(std::make_pair(I, MSI));
415      }
416    } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) {
417      GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource());
418      if (MemSrc && MemSrc->isConstant()) {
419        Changed = true;
420        MTI->eraseFromParent();
421      } else if (Instruction *I = dyn_cast<Instruction>(MemSrc)) {
422        if (I->hasOneUse())
423          Dead.push_back(std::make_pair(I, MTI));
424      }
425    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
426      if (CE->use_empty()) {
427        CE->destroyConstant();
428        Changed = true;
429      }
430    } else if (Constant *C = dyn_cast<Constant>(U)) {
431      if (SafeToDestroyConstant(C)) {
432        C->destroyConstant();
433        // This could have invalidated UI, start over from scratch.
434        Dead.clear();
435        CleanupPointerRootUsers(GV);
436        return true;
437      }
438    }
439  }
440
441  for (int i = 0, e = Dead.size(); i != e; ++i) {
442    if (IsSafeComputationToRemove(Dead[i].first)) {
443      Dead[i].second->eraseFromParent();
444      Instruction *I = Dead[i].first;
445      do {
446	if (isAllocationFn(I))
447	  break;
448        Instruction *J = dyn_cast<Instruction>(I->getOperand(0));
449        if (!J)
450          break;
451        I->eraseFromParent();
452        I = J;
453      } while (1);
454      I->eraseFromParent();
455    }
456  }
457
458  return Changed;
459}
460
461/// CleanupConstantGlobalUsers - We just marked GV constant.  Loop over all
462/// users of the global, cleaning up the obvious ones.  This is largely just a
463/// quick scan over the use list to clean up the easy and obvious cruft.  This
464/// returns true if it made a change.
465static bool CleanupConstantGlobalUsers(Value *V, Constant *Init,
466                                       TargetData *TD, TargetLibraryInfo *TLI) {
467  bool Changed = false;
468  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;) {
469    User *U = *UI++;
470
471    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
472      if (Init) {
473        // Replace the load with the initializer.
474        LI->replaceAllUsesWith(Init);
475        LI->eraseFromParent();
476        Changed = true;
477      }
478    } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
479      // Store must be unreachable or storing Init into the global.
480      SI->eraseFromParent();
481      Changed = true;
482    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
483      if (CE->getOpcode() == Instruction::GetElementPtr) {
484        Constant *SubInit = 0;
485        if (Init)
486          SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
487        Changed |= CleanupConstantGlobalUsers(CE, SubInit, TD, TLI);
488      } else if (CE->getOpcode() == Instruction::BitCast &&
489                 CE->getType()->isPointerTy()) {
490        // Pointer cast, delete any stores and memsets to the global.
491        Changed |= CleanupConstantGlobalUsers(CE, 0, TD, TLI);
492      }
493
494      if (CE->use_empty()) {
495        CE->destroyConstant();
496        Changed = true;
497      }
498    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
499      // Do not transform "gepinst (gep constexpr (GV))" here, because forming
500      // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold
501      // and will invalidate our notion of what Init is.
502      Constant *SubInit = 0;
503      if (!isa<ConstantExpr>(GEP->getOperand(0))) {
504        ConstantExpr *CE =
505          dyn_cast_or_null<ConstantExpr>(ConstantFoldInstruction(GEP, TD, TLI));
506        if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
507          SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
508
509        // If the initializer is an all-null value and we have an inbounds GEP,
510        // we already know what the result of any load from that GEP is.
511        // TODO: Handle splats.
512        if (Init && isa<ConstantAggregateZero>(Init) && GEP->isInBounds())
513          SubInit = Constant::getNullValue(GEP->getType()->getElementType());
514      }
515      Changed |= CleanupConstantGlobalUsers(GEP, SubInit, TD, TLI);
516
517      if (GEP->use_empty()) {
518        GEP->eraseFromParent();
519        Changed = true;
520      }
521    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
522      if (MI->getRawDest() == V) {
523        MI->eraseFromParent();
524        Changed = true;
525      }
526
527    } else if (Constant *C = dyn_cast<Constant>(U)) {
528      // If we have a chain of dead constantexprs or other things dangling from
529      // us, and if they are all dead, nuke them without remorse.
530      if (SafeToDestroyConstant(C)) {
531        C->destroyConstant();
532        // This could have invalidated UI, start over from scratch.
533        CleanupConstantGlobalUsers(V, Init, TD, TLI);
534        return true;
535      }
536    }
537  }
538  return Changed;
539}
540
541/// isSafeSROAElementUse - Return true if the specified instruction is a safe
542/// user of a derived expression from a global that we want to SROA.
543static bool isSafeSROAElementUse(Value *V) {
544  // We might have a dead and dangling constant hanging off of here.
545  if (Constant *C = dyn_cast<Constant>(V))
546    return SafeToDestroyConstant(C);
547
548  Instruction *I = dyn_cast<Instruction>(V);
549  if (!I) return false;
550
551  // Loads are ok.
552  if (isa<LoadInst>(I)) return true;
553
554  // Stores *to* the pointer are ok.
555  if (StoreInst *SI = dyn_cast<StoreInst>(I))
556    return SI->getOperand(0) != V;
557
558  // Otherwise, it must be a GEP.
559  GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I);
560  if (GEPI == 0) return false;
561
562  if (GEPI->getNumOperands() < 3 || !isa<Constant>(GEPI->getOperand(1)) ||
563      !cast<Constant>(GEPI->getOperand(1))->isNullValue())
564    return false;
565
566  for (Value::use_iterator I = GEPI->use_begin(), E = GEPI->use_end();
567       I != E; ++I)
568    if (!isSafeSROAElementUse(*I))
569      return false;
570  return true;
571}
572
573
574/// IsUserOfGlobalSafeForSRA - U is a direct user of the specified global value.
575/// Look at it and its uses and decide whether it is safe to SROA this global.
576///
577static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) {
578  // The user of the global must be a GEP Inst or a ConstantExpr GEP.
579  if (!isa<GetElementPtrInst>(U) &&
580      (!isa<ConstantExpr>(U) ||
581       cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr))
582    return false;
583
584  // Check to see if this ConstantExpr GEP is SRA'able.  In particular, we
585  // don't like < 3 operand CE's, and we don't like non-constant integer
586  // indices.  This enforces that all uses are 'gep GV, 0, C, ...' for some
587  // value of C.
588  if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) ||
589      !cast<Constant>(U->getOperand(1))->isNullValue() ||
590      !isa<ConstantInt>(U->getOperand(2)))
591    return false;
592
593  gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U);
594  ++GEPI;  // Skip over the pointer index.
595
596  // If this is a use of an array allocation, do a bit more checking for sanity.
597  if (ArrayType *AT = dyn_cast<ArrayType>(*GEPI)) {
598    uint64_t NumElements = AT->getNumElements();
599    ConstantInt *Idx = cast<ConstantInt>(U->getOperand(2));
600
601    // Check to make sure that index falls within the array.  If not,
602    // something funny is going on, so we won't do the optimization.
603    //
604    if (Idx->getZExtValue() >= NumElements)
605      return false;
606
607    // We cannot scalar repl this level of the array unless any array
608    // sub-indices are in-range constants.  In particular, consider:
609    // A[0][i].  We cannot know that the user isn't doing invalid things like
610    // allowing i to index an out-of-range subscript that accesses A[1].
611    //
612    // Scalar replacing *just* the outer index of the array is probably not
613    // going to be a win anyway, so just give up.
614    for (++GEPI; // Skip array index.
615         GEPI != E;
616         ++GEPI) {
617      uint64_t NumElements;
618      if (ArrayType *SubArrayTy = dyn_cast<ArrayType>(*GEPI))
619        NumElements = SubArrayTy->getNumElements();
620      else if (VectorType *SubVectorTy = dyn_cast<VectorType>(*GEPI))
621        NumElements = SubVectorTy->getNumElements();
622      else {
623        assert((*GEPI)->isStructTy() &&
624               "Indexed GEP type is not array, vector, or struct!");
625        continue;
626      }
627
628      ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand());
629      if (!IdxVal || IdxVal->getZExtValue() >= NumElements)
630        return false;
631    }
632  }
633
634  for (Value::use_iterator I = U->use_begin(), E = U->use_end(); I != E; ++I)
635    if (!isSafeSROAElementUse(*I))
636      return false;
637  return true;
638}
639
640/// GlobalUsersSafeToSRA - Look at all uses of the global and decide whether it
641/// is safe for us to perform this transformation.
642///
643static bool GlobalUsersSafeToSRA(GlobalValue *GV) {
644  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end();
645       UI != E; ++UI) {
646    if (!IsUserOfGlobalSafeForSRA(*UI, GV))
647      return false;
648  }
649  return true;
650}
651
652
653/// SRAGlobal - Perform scalar replacement of aggregates on the specified global
654/// variable.  This opens the door for other optimizations by exposing the
655/// behavior of the program in a more fine-grained way.  We have determined that
656/// this transformation is safe already.  We return the first global variable we
657/// insert so that the caller can reprocess it.
658static GlobalVariable *SRAGlobal(GlobalVariable *GV, const TargetData &TD) {
659  // Make sure this global only has simple uses that we can SRA.
660  if (!GlobalUsersSafeToSRA(GV))
661    return 0;
662
663  assert(GV->hasLocalLinkage() && !GV->isConstant());
664  Constant *Init = GV->getInitializer();
665  Type *Ty = Init->getType();
666
667  std::vector<GlobalVariable*> NewGlobals;
668  Module::GlobalListType &Globals = GV->getParent()->getGlobalList();
669
670  // Get the alignment of the global, either explicit or target-specific.
671  unsigned StartAlignment = GV->getAlignment();
672  if (StartAlignment == 0)
673    StartAlignment = TD.getABITypeAlignment(GV->getType());
674
675  if (StructType *STy = dyn_cast<StructType>(Ty)) {
676    NewGlobals.reserve(STy->getNumElements());
677    const StructLayout &Layout = *TD.getStructLayout(STy);
678    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
679      Constant *In = Init->getAggregateElement(i);
680      assert(In && "Couldn't get element of initializer?");
681      GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false,
682                                               GlobalVariable::InternalLinkage,
683                                               In, GV->getName()+"."+Twine(i),
684                                               GV->getThreadLocalMode(),
685                                              GV->getType()->getAddressSpace());
686      Globals.insert(GV, NGV);
687      NewGlobals.push_back(NGV);
688
689      // Calculate the known alignment of the field.  If the original aggregate
690      // had 256 byte alignment for example, something might depend on that:
691      // propagate info to each field.
692      uint64_t FieldOffset = Layout.getElementOffset(i);
693      unsigned NewAlign = (unsigned)MinAlign(StartAlignment, FieldOffset);
694      if (NewAlign > TD.getABITypeAlignment(STy->getElementType(i)))
695        NGV->setAlignment(NewAlign);
696    }
697  } else if (SequentialType *STy = dyn_cast<SequentialType>(Ty)) {
698    unsigned NumElements = 0;
699    if (ArrayType *ATy = dyn_cast<ArrayType>(STy))
700      NumElements = ATy->getNumElements();
701    else
702      NumElements = cast<VectorType>(STy)->getNumElements();
703
704    if (NumElements > 16 && GV->hasNUsesOrMore(16))
705      return 0; // It's not worth it.
706    NewGlobals.reserve(NumElements);
707
708    uint64_t EltSize = TD.getTypeAllocSize(STy->getElementType());
709    unsigned EltAlign = TD.getABITypeAlignment(STy->getElementType());
710    for (unsigned i = 0, e = NumElements; i != e; ++i) {
711      Constant *In = Init->getAggregateElement(i);
712      assert(In && "Couldn't get element of initializer?");
713
714      GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false,
715                                               GlobalVariable::InternalLinkage,
716                                               In, GV->getName()+"."+Twine(i),
717                                               GV->getThreadLocalMode(),
718                                              GV->getType()->getAddressSpace());
719      Globals.insert(GV, NGV);
720      NewGlobals.push_back(NGV);
721
722      // Calculate the known alignment of the field.  If the original aggregate
723      // had 256 byte alignment for example, something might depend on that:
724      // propagate info to each field.
725      unsigned NewAlign = (unsigned)MinAlign(StartAlignment, EltSize*i);
726      if (NewAlign > EltAlign)
727        NGV->setAlignment(NewAlign);
728    }
729  }
730
731  if (NewGlobals.empty())
732    return 0;
733
734  DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV);
735
736  Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext()));
737
738  // Loop over all of the uses of the global, replacing the constantexpr geps,
739  // with smaller constantexpr geps or direct references.
740  while (!GV->use_empty()) {
741    User *GEP = GV->use_back();
742    assert(((isa<ConstantExpr>(GEP) &&
743             cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||
744            isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!");
745
746    // Ignore the 1th operand, which has to be zero or else the program is quite
747    // broken (undefined).  Get the 2nd operand, which is the structure or array
748    // index.
749    unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
750    if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access.
751
752    Value *NewPtr = NewGlobals[Val];
753
754    // Form a shorter GEP if needed.
755    if (GEP->getNumOperands() > 3) {
756      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
757        SmallVector<Constant*, 8> Idxs;
758        Idxs.push_back(NullInt);
759        for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
760          Idxs.push_back(CE->getOperand(i));
761        NewPtr = ConstantExpr::getGetElementPtr(cast<Constant>(NewPtr), Idxs);
762      } else {
763        GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
764        SmallVector<Value*, 8> Idxs;
765        Idxs.push_back(NullInt);
766        for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
767          Idxs.push_back(GEPI->getOperand(i));
768        NewPtr = GetElementPtrInst::Create(NewPtr, Idxs,
769                                           GEPI->getName()+"."+Twine(Val),GEPI);
770      }
771    }
772    GEP->replaceAllUsesWith(NewPtr);
773
774    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
775      GEPI->eraseFromParent();
776    else
777      cast<ConstantExpr>(GEP)->destroyConstant();
778  }
779
780  // Delete the old global, now that it is dead.
781  Globals.erase(GV);
782  ++NumSRA;
783
784  // Loop over the new globals array deleting any globals that are obviously
785  // dead.  This can arise due to scalarization of a structure or an array that
786  // has elements that are dead.
787  unsigned FirstGlobal = 0;
788  for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i)
789    if (NewGlobals[i]->use_empty()) {
790      Globals.erase(NewGlobals[i]);
791      if (FirstGlobal == i) ++FirstGlobal;
792    }
793
794  return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : 0;
795}
796
797/// AllUsesOfValueWillTrapIfNull - Return true if all users of the specified
798/// value will trap if the value is dynamically null.  PHIs keeps track of any
799/// phi nodes we've seen to avoid reprocessing them.
800static bool AllUsesOfValueWillTrapIfNull(const Value *V,
801                                         SmallPtrSet<const PHINode*, 8> &PHIs) {
802  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;
803       ++UI) {
804    const User *U = *UI;
805
806    if (isa<LoadInst>(U)) {
807      // Will trap.
808    } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
809      if (SI->getOperand(0) == V) {
810        //cerr << "NONTRAPPING USE: " << *U;
811        return false;  // Storing the value.
812      }
813    } else if (const CallInst *CI = dyn_cast<CallInst>(U)) {
814      if (CI->getCalledValue() != V) {
815        //cerr << "NONTRAPPING USE: " << *U;
816        return false;  // Not calling the ptr
817      }
818    } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) {
819      if (II->getCalledValue() != V) {
820        //cerr << "NONTRAPPING USE: " << *U;
821        return false;  // Not calling the ptr
822      }
823    } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) {
824      if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
825    } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
826      if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
827    } else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
828      // If we've already seen this phi node, ignore it, it has already been
829      // checked.
830      if (PHIs.insert(PN) && !AllUsesOfValueWillTrapIfNull(PN, PHIs))
831        return false;
832    } else if (isa<ICmpInst>(U) &&
833               isa<ConstantPointerNull>(UI->getOperand(1))) {
834      // Ignore icmp X, null
835    } else {
836      //cerr << "NONTRAPPING USE: " << *U;
837      return false;
838    }
839  }
840  return true;
841}
842
843/// AllUsesOfLoadedValueWillTrapIfNull - Return true if all uses of any loads
844/// from GV will trap if the loaded value is null.  Note that this also permits
845/// comparisons of the loaded value against null, as a special case.
846static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) {
847  for (Value::const_use_iterator UI = GV->use_begin(), E = GV->use_end();
848       UI != E; ++UI) {
849    const User *U = *UI;
850
851    if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
852      SmallPtrSet<const PHINode*, 8> PHIs;
853      if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
854        return false;
855    } else if (isa<StoreInst>(U)) {
856      // Ignore stores to the global.
857    } else {
858      // We don't know or understand this user, bail out.
859      //cerr << "UNKNOWN USER OF GLOBAL!: " << *U;
860      return false;
861    }
862  }
863  return true;
864}
865
866static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
867  bool Changed = false;
868  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ) {
869    Instruction *I = cast<Instruction>(*UI++);
870    if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
871      LI->setOperand(0, NewV);
872      Changed = true;
873    } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
874      if (SI->getOperand(1) == V) {
875        SI->setOperand(1, NewV);
876        Changed = true;
877      }
878    } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
879      CallSite CS(I);
880      if (CS.getCalledValue() == V) {
881        // Calling through the pointer!  Turn into a direct call, but be careful
882        // that the pointer is not also being passed as an argument.
883        CS.setCalledFunction(NewV);
884        Changed = true;
885        bool PassedAsArg = false;
886        for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
887          if (CS.getArgument(i) == V) {
888            PassedAsArg = true;
889            CS.setArgument(i, NewV);
890          }
891
892        if (PassedAsArg) {
893          // Being passed as an argument also.  Be careful to not invalidate UI!
894          UI = V->use_begin();
895        }
896      }
897    } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
898      Changed |= OptimizeAwayTrappingUsesOfValue(CI,
899                                ConstantExpr::getCast(CI->getOpcode(),
900                                                      NewV, CI->getType()));
901      if (CI->use_empty()) {
902        Changed = true;
903        CI->eraseFromParent();
904      }
905    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
906      // Should handle GEP here.
907      SmallVector<Constant*, 8> Idxs;
908      Idxs.reserve(GEPI->getNumOperands()-1);
909      for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end();
910           i != e; ++i)
911        if (Constant *C = dyn_cast<Constant>(*i))
912          Idxs.push_back(C);
913        else
914          break;
915      if (Idxs.size() == GEPI->getNumOperands()-1)
916        Changed |= OptimizeAwayTrappingUsesOfValue(GEPI,
917                          ConstantExpr::getGetElementPtr(NewV, Idxs));
918      if (GEPI->use_empty()) {
919        Changed = true;
920        GEPI->eraseFromParent();
921      }
922    }
923  }
924
925  return Changed;
926}
927
928
929/// OptimizeAwayTrappingUsesOfLoads - The specified global has only one non-null
930/// value stored into it.  If there are uses of the loaded value that would trap
931/// if the loaded value is dynamically null, then we know that they cannot be
932/// reachable with a null optimize away the load.
933static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV,
934                                            TargetData *TD,
935                                            TargetLibraryInfo *TLI) {
936  bool Changed = false;
937
938  // Keep track of whether we are able to remove all the uses of the global
939  // other than the store that defines it.
940  bool AllNonStoreUsesGone = true;
941
942  // Replace all uses of loads with uses of uses of the stored value.
943  for (Value::use_iterator GUI = GV->use_begin(), E = GV->use_end(); GUI != E;){
944    User *GlobalUser = *GUI++;
945    if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) {
946      Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
947      // If we were able to delete all uses of the loads
948      if (LI->use_empty()) {
949        LI->eraseFromParent();
950        Changed = true;
951      } else {
952        AllNonStoreUsesGone = false;
953      }
954    } else if (isa<StoreInst>(GlobalUser)) {
955      // Ignore the store that stores "LV" to the global.
956      assert(GlobalUser->getOperand(1) == GV &&
957             "Must be storing *to* the global");
958    } else {
959      AllNonStoreUsesGone = false;
960
961      // If we get here we could have other crazy uses that are transitively
962      // loaded.
963      assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) ||
964              isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser)) &&
965             "Only expect load and stores!");
966    }
967  }
968
969  if (Changed) {
970    DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV);
971    ++NumGlobUses;
972  }
973
974  // If we nuked all of the loads, then none of the stores are needed either,
975  // nor is the global.
976  if (AllNonStoreUsesGone) {
977    if (isLeakCheckerRoot(GV)) {
978      Changed |= CleanupPointerRootUsers(GV);
979    } else {
980      Changed = true;
981      CleanupConstantGlobalUsers(GV, 0, TD, TLI);
982    }
983    if (GV->use_empty()) {
984      DEBUG(dbgs() << "  *** GLOBAL NOW DEAD!\n");
985      Changed = true;
986      GV->eraseFromParent();
987      ++NumDeleted;
988    }
989  }
990  return Changed;
991}
992
993/// ConstantPropUsersOf - Walk the use list of V, constant folding all of the
994/// instructions that are foldable.
995static void ConstantPropUsersOf(Value *V,
996                                TargetData *TD, TargetLibraryInfo *TLI) {
997  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; )
998    if (Instruction *I = dyn_cast<Instruction>(*UI++))
999      if (Constant *NewC = ConstantFoldInstruction(I, TD, TLI)) {
1000        I->replaceAllUsesWith(NewC);
1001
1002        // Advance UI to the next non-I use to avoid invalidating it!
1003        // Instructions could multiply use V.
1004        while (UI != E && *UI == I)
1005          ++UI;
1006        I->eraseFromParent();
1007      }
1008}
1009
1010/// OptimizeGlobalAddressOfMalloc - This function takes the specified global
1011/// variable, and transforms the program as if it always contained the result of
1012/// the specified malloc.  Because it is always the result of the specified
1013/// malloc, there is no reason to actually DO the malloc.  Instead, turn the
1014/// malloc into a global, and any loads of GV as uses of the new global.
1015static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV,
1016                                                     CallInst *CI,
1017                                                     Type *AllocTy,
1018                                                     ConstantInt *NElements,
1019                                                     TargetData *TD,
1020                                                     TargetLibraryInfo *TLI) {
1021  DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << "  CALL = " << *CI << '\n');
1022
1023  Type *GlobalType;
1024  if (NElements->getZExtValue() == 1)
1025    GlobalType = AllocTy;
1026  else
1027    // If we have an array allocation, the global variable is of an array.
1028    GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue());
1029
1030  // Create the new global variable.  The contents of the malloc'd memory is
1031  // undefined, so initialize with an undef value.
1032  GlobalVariable *NewGV = new GlobalVariable(*GV->getParent(),
1033                                             GlobalType, false,
1034                                             GlobalValue::InternalLinkage,
1035                                             UndefValue::get(GlobalType),
1036                                             GV->getName()+".body",
1037                                             GV,
1038                                             GV->getThreadLocalMode());
1039
1040  // If there are bitcast users of the malloc (which is typical, usually we have
1041  // a malloc + bitcast) then replace them with uses of the new global.  Update
1042  // other users to use the global as well.
1043  BitCastInst *TheBC = 0;
1044  while (!CI->use_empty()) {
1045    Instruction *User = cast<Instruction>(CI->use_back());
1046    if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
1047      if (BCI->getType() == NewGV->getType()) {
1048        BCI->replaceAllUsesWith(NewGV);
1049        BCI->eraseFromParent();
1050      } else {
1051        BCI->setOperand(0, NewGV);
1052      }
1053    } else {
1054      if (TheBC == 0)
1055        TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI);
1056      User->replaceUsesOfWith(CI, TheBC);
1057    }
1058  }
1059
1060  Constant *RepValue = NewGV;
1061  if (NewGV->getType() != GV->getType()->getElementType())
1062    RepValue = ConstantExpr::getBitCast(RepValue,
1063                                        GV->getType()->getElementType());
1064
1065  // If there is a comparison against null, we will insert a global bool to
1066  // keep track of whether the global was initialized yet or not.
1067  GlobalVariable *InitBool =
1068    new GlobalVariable(Type::getInt1Ty(GV->getContext()), false,
1069                       GlobalValue::InternalLinkage,
1070                       ConstantInt::getFalse(GV->getContext()),
1071                       GV->getName()+".init", GV->getThreadLocalMode());
1072  bool InitBoolUsed = false;
1073
1074  // Loop over all uses of GV, processing them in turn.
1075  while (!GV->use_empty()) {
1076    if (StoreInst *SI = dyn_cast<StoreInst>(GV->use_back())) {
1077      // The global is initialized when the store to it occurs.
1078      new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, false, 0,
1079                    SI->getOrdering(), SI->getSynchScope(), SI);
1080      SI->eraseFromParent();
1081      continue;
1082    }
1083
1084    LoadInst *LI = cast<LoadInst>(GV->use_back());
1085    while (!LI->use_empty()) {
1086      Use &LoadUse = LI->use_begin().getUse();
1087      if (!isa<ICmpInst>(LoadUse.getUser())) {
1088        LoadUse = RepValue;
1089        continue;
1090      }
1091
1092      ICmpInst *ICI = cast<ICmpInst>(LoadUse.getUser());
1093      // Replace the cmp X, 0 with a use of the bool value.
1094      // Sink the load to where the compare was, if atomic rules allow us to.
1095      Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", false, 0,
1096                               LI->getOrdering(), LI->getSynchScope(),
1097                               LI->isUnordered() ? (Instruction*)ICI : LI);
1098      InitBoolUsed = true;
1099      switch (ICI->getPredicate()) {
1100      default: llvm_unreachable("Unknown ICmp Predicate!");
1101      case ICmpInst::ICMP_ULT:
1102      case ICmpInst::ICMP_SLT:   // X < null -> always false
1103        LV = ConstantInt::getFalse(GV->getContext());
1104        break;
1105      case ICmpInst::ICMP_ULE:
1106      case ICmpInst::ICMP_SLE:
1107      case ICmpInst::ICMP_EQ:
1108        LV = BinaryOperator::CreateNot(LV, "notinit", ICI);
1109        break;
1110      case ICmpInst::ICMP_NE:
1111      case ICmpInst::ICMP_UGE:
1112      case ICmpInst::ICMP_SGE:
1113      case ICmpInst::ICMP_UGT:
1114      case ICmpInst::ICMP_SGT:
1115        break;  // no change.
1116      }
1117      ICI->replaceAllUsesWith(LV);
1118      ICI->eraseFromParent();
1119    }
1120    LI->eraseFromParent();
1121  }
1122
1123  // If the initialization boolean was used, insert it, otherwise delete it.
1124  if (!InitBoolUsed) {
1125    while (!InitBool->use_empty())  // Delete initializations
1126      cast<StoreInst>(InitBool->use_back())->eraseFromParent();
1127    delete InitBool;
1128  } else
1129    GV->getParent()->getGlobalList().insert(GV, InitBool);
1130
1131  // Now the GV is dead, nuke it and the malloc..
1132  GV->eraseFromParent();
1133  CI->eraseFromParent();
1134
1135  // To further other optimizations, loop over all users of NewGV and try to
1136  // constant prop them.  This will promote GEP instructions with constant
1137  // indices into GEP constant-exprs, which will allow global-opt to hack on it.
1138  ConstantPropUsersOf(NewGV, TD, TLI);
1139  if (RepValue != NewGV)
1140    ConstantPropUsersOf(RepValue, TD, TLI);
1141
1142  return NewGV;
1143}
1144
1145/// ValueIsOnlyUsedLocallyOrStoredToOneGlobal - Scan the use-list of V checking
1146/// to make sure that there are no complex uses of V.  We permit simple things
1147/// like dereferencing the pointer, but not storing through the address, unless
1148/// it is to the specified global.
1149static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V,
1150                                                      const GlobalVariable *GV,
1151                                         SmallPtrSet<const PHINode*, 8> &PHIs) {
1152  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
1153       UI != E; ++UI) {
1154    const Instruction *Inst = cast<Instruction>(*UI);
1155
1156    if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) {
1157      continue; // Fine, ignore.
1158    }
1159
1160    if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
1161      if (SI->getOperand(0) == V && SI->getOperand(1) != GV)
1162        return false;  // Storing the pointer itself... bad.
1163      continue; // Otherwise, storing through it, or storing into GV... fine.
1164    }
1165
1166    // Must index into the array and into the struct.
1167    if (isa<GetElementPtrInst>(Inst) && Inst->getNumOperands() >= 3) {
1168      if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs))
1169        return false;
1170      continue;
1171    }
1172
1173    if (const PHINode *PN = dyn_cast<PHINode>(Inst)) {
1174      // PHIs are ok if all uses are ok.  Don't infinitely recurse through PHI
1175      // cycles.
1176      if (PHIs.insert(PN))
1177        if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs))
1178          return false;
1179      continue;
1180    }
1181
1182    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) {
1183      if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs))
1184        return false;
1185      continue;
1186    }
1187
1188    return false;
1189  }
1190  return true;
1191}
1192
1193/// ReplaceUsesOfMallocWithGlobal - The Alloc pointer is stored into GV
1194/// somewhere.  Transform all uses of the allocation into loads from the
1195/// global and uses of the resultant pointer.  Further, delete the store into
1196/// GV.  This assumes that these value pass the
1197/// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate.
1198static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc,
1199                                          GlobalVariable *GV) {
1200  while (!Alloc->use_empty()) {
1201    Instruction *U = cast<Instruction>(*Alloc->use_begin());
1202    Instruction *InsertPt = U;
1203    if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1204      // If this is the store of the allocation into the global, remove it.
1205      if (SI->getOperand(1) == GV) {
1206        SI->eraseFromParent();
1207        continue;
1208      }
1209    } else if (PHINode *PN = dyn_cast<PHINode>(U)) {
1210      // Insert the load in the corresponding predecessor, not right before the
1211      // PHI.
1212      InsertPt = PN->getIncomingBlock(Alloc->use_begin())->getTerminator();
1213    } else if (isa<BitCastInst>(U)) {
1214      // Must be bitcast between the malloc and store to initialize the global.
1215      ReplaceUsesOfMallocWithGlobal(U, GV);
1216      U->eraseFromParent();
1217      continue;
1218    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
1219      // If this is a "GEP bitcast" and the user is a store to the global, then
1220      // just process it as a bitcast.
1221      if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse())
1222        if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->use_back()))
1223          if (SI->getOperand(1) == GV) {
1224            // Must be bitcast GEP between the malloc and store to initialize
1225            // the global.
1226            ReplaceUsesOfMallocWithGlobal(GEPI, GV);
1227            GEPI->eraseFromParent();
1228            continue;
1229          }
1230    }
1231
1232    // Insert a load from the global, and use it instead of the malloc.
1233    Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt);
1234    U->replaceUsesOfWith(Alloc, NL);
1235  }
1236}
1237
1238/// LoadUsesSimpleEnoughForHeapSRA - Verify that all uses of V (a load, or a phi
1239/// of a load) are simple enough to perform heap SRA on.  This permits GEP's
1240/// that index through the array and struct field, icmps of null, and PHIs.
1241static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V,
1242                        SmallPtrSet<const PHINode*, 32> &LoadUsingPHIs,
1243                        SmallPtrSet<const PHINode*, 32> &LoadUsingPHIsPerLoad) {
1244  // We permit two users of the load: setcc comparing against the null
1245  // pointer, and a getelementptr of a specific form.
1246  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;
1247       ++UI) {
1248    const Instruction *User = cast<Instruction>(*UI);
1249
1250    // Comparison against null is ok.
1251    if (const ICmpInst *ICI = dyn_cast<ICmpInst>(User)) {
1252      if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
1253        return false;
1254      continue;
1255    }
1256
1257    // getelementptr is also ok, but only a simple form.
1258    if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1259      // Must index into the array and into the struct.
1260      if (GEPI->getNumOperands() < 3)
1261        return false;
1262
1263      // Otherwise the GEP is ok.
1264      continue;
1265    }
1266
1267    if (const PHINode *PN = dyn_cast<PHINode>(User)) {
1268      if (!LoadUsingPHIsPerLoad.insert(PN))
1269        // This means some phi nodes are dependent on each other.
1270        // Avoid infinite looping!
1271        return false;
1272      if (!LoadUsingPHIs.insert(PN))
1273        // If we have already analyzed this PHI, then it is safe.
1274        continue;
1275
1276      // Make sure all uses of the PHI are simple enough to transform.
1277      if (!LoadUsesSimpleEnoughForHeapSRA(PN,
1278                                          LoadUsingPHIs, LoadUsingPHIsPerLoad))
1279        return false;
1280
1281      continue;
1282    }
1283
1284    // Otherwise we don't know what this is, not ok.
1285    return false;
1286  }
1287
1288  return true;
1289}
1290
1291
1292/// AllGlobalLoadUsesSimpleEnoughForHeapSRA - If all users of values loaded from
1293/// GV are simple enough to perform HeapSRA, return true.
1294static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV,
1295                                                    Instruction *StoredVal) {
1296  SmallPtrSet<const PHINode*, 32> LoadUsingPHIs;
1297  SmallPtrSet<const PHINode*, 32> LoadUsingPHIsPerLoad;
1298  for (Value::const_use_iterator UI = GV->use_begin(), E = GV->use_end();
1299       UI != E; ++UI)
1300    if (const LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
1301      if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs,
1302                                          LoadUsingPHIsPerLoad))
1303        return false;
1304      LoadUsingPHIsPerLoad.clear();
1305    }
1306
1307  // If we reach here, we know that all uses of the loads and transitive uses
1308  // (through PHI nodes) are simple enough to transform.  However, we don't know
1309  // that all inputs the to the PHI nodes are in the same equivalence sets.
1310  // Check to verify that all operands of the PHIs are either PHIS that can be
1311  // transformed, loads from GV, or MI itself.
1312  for (SmallPtrSet<const PHINode*, 32>::const_iterator I = LoadUsingPHIs.begin()
1313       , E = LoadUsingPHIs.end(); I != E; ++I) {
1314    const PHINode *PN = *I;
1315    for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) {
1316      Value *InVal = PN->getIncomingValue(op);
1317
1318      // PHI of the stored value itself is ok.
1319      if (InVal == StoredVal) continue;
1320
1321      if (const PHINode *InPN = dyn_cast<PHINode>(InVal)) {
1322        // One of the PHIs in our set is (optimistically) ok.
1323        if (LoadUsingPHIs.count(InPN))
1324          continue;
1325        return false;
1326      }
1327
1328      // Load from GV is ok.
1329      if (const LoadInst *LI = dyn_cast<LoadInst>(InVal))
1330        if (LI->getOperand(0) == GV)
1331          continue;
1332
1333      // UNDEF? NULL?
1334
1335      // Anything else is rejected.
1336      return false;
1337    }
1338  }
1339
1340  return true;
1341}
1342
1343static Value *GetHeapSROAValue(Value *V, unsigned FieldNo,
1344               DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1345                   std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1346  std::vector<Value*> &FieldVals = InsertedScalarizedValues[V];
1347
1348  if (FieldNo >= FieldVals.size())
1349    FieldVals.resize(FieldNo+1);
1350
1351  // If we already have this value, just reuse the previously scalarized
1352  // version.
1353  if (Value *FieldVal = FieldVals[FieldNo])
1354    return FieldVal;
1355
1356  // Depending on what instruction this is, we have several cases.
1357  Value *Result;
1358  if (LoadInst *LI = dyn_cast<LoadInst>(V)) {
1359    // This is a scalarized version of the load from the global.  Just create
1360    // a new Load of the scalarized global.
1361    Result = new LoadInst(GetHeapSROAValue(LI->getOperand(0), FieldNo,
1362                                           InsertedScalarizedValues,
1363                                           PHIsToRewrite),
1364                          LI->getName()+".f"+Twine(FieldNo), LI);
1365  } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
1366    // PN's type is pointer to struct.  Make a new PHI of pointer to struct
1367    // field.
1368    StructType *ST =
1369      cast<StructType>(cast<PointerType>(PN->getType())->getElementType());
1370
1371    PHINode *NewPN =
1372     PHINode::Create(PointerType::getUnqual(ST->getElementType(FieldNo)),
1373                     PN->getNumIncomingValues(),
1374                     PN->getName()+".f"+Twine(FieldNo), PN);
1375    Result = NewPN;
1376    PHIsToRewrite.push_back(std::make_pair(PN, FieldNo));
1377  } else {
1378    llvm_unreachable("Unknown usable value");
1379  }
1380
1381  return FieldVals[FieldNo] = Result;
1382}
1383
1384/// RewriteHeapSROALoadUser - Given a load instruction and a value derived from
1385/// the load, rewrite the derived value to use the HeapSRoA'd load.
1386static void RewriteHeapSROALoadUser(Instruction *LoadUser,
1387             DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1388                   std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1389  // If this is a comparison against null, handle it.
1390  if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) {
1391    assert(isa<ConstantPointerNull>(SCI->getOperand(1)));
1392    // If we have a setcc of the loaded pointer, we can use a setcc of any
1393    // field.
1394    Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0,
1395                                   InsertedScalarizedValues, PHIsToRewrite);
1396
1397    Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr,
1398                              Constant::getNullValue(NPtr->getType()),
1399                              SCI->getName());
1400    SCI->replaceAllUsesWith(New);
1401    SCI->eraseFromParent();
1402    return;
1403  }
1404
1405  // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...'
1406  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) {
1407    assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2))
1408           && "Unexpected GEPI!");
1409
1410    // Load the pointer for this field.
1411    unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
1412    Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo,
1413                                     InsertedScalarizedValues, PHIsToRewrite);
1414
1415    // Create the new GEP idx vector.
1416    SmallVector<Value*, 8> GEPIdx;
1417    GEPIdx.push_back(GEPI->getOperand(1));
1418    GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end());
1419
1420    Value *NGEPI = GetElementPtrInst::Create(NewPtr, GEPIdx,
1421                                             GEPI->getName(), GEPI);
1422    GEPI->replaceAllUsesWith(NGEPI);
1423    GEPI->eraseFromParent();
1424    return;
1425  }
1426
1427  // Recursively transform the users of PHI nodes.  This will lazily create the
1428  // PHIs that are needed for individual elements.  Keep track of what PHIs we
1429  // see in InsertedScalarizedValues so that we don't get infinite loops (very
1430  // antisocial).  If the PHI is already in InsertedScalarizedValues, it has
1431  // already been seen first by another load, so its uses have already been
1432  // processed.
1433  PHINode *PN = cast<PHINode>(LoadUser);
1434  if (!InsertedScalarizedValues.insert(std::make_pair(PN,
1435                                              std::vector<Value*>())).second)
1436    return;
1437
1438  // If this is the first time we've seen this PHI, recursively process all
1439  // users.
1440  for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end(); UI != E; ) {
1441    Instruction *User = cast<Instruction>(*UI++);
1442    RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1443  }
1444}
1445
1446/// RewriteUsesOfLoadForHeapSRoA - We are performing Heap SRoA on a global.  Ptr
1447/// is a value loaded from the global.  Eliminate all uses of Ptr, making them
1448/// use FieldGlobals instead.  All uses of loaded values satisfy
1449/// AllGlobalLoadUsesSimpleEnoughForHeapSRA.
1450static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
1451               DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1452                   std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1453  for (Value::use_iterator UI = Load->use_begin(), E = Load->use_end();
1454       UI != E; ) {
1455    Instruction *User = cast<Instruction>(*UI++);
1456    RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1457  }
1458
1459  if (Load->use_empty()) {
1460    Load->eraseFromParent();
1461    InsertedScalarizedValues.erase(Load);
1462  }
1463}
1464
1465/// PerformHeapAllocSRoA - CI is an allocation of an array of structures.  Break
1466/// it up into multiple allocations of arrays of the fields.
1467static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI,
1468                                            Value *NElems, TargetData *TD) {
1469  DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << "  MALLOC = " << *CI << '\n');
1470  Type *MAT = getMallocAllocatedType(CI);
1471  StructType *STy = cast<StructType>(MAT);
1472
1473  // There is guaranteed to be at least one use of the malloc (storing
1474  // it into GV).  If there are other uses, change them to be uses of
1475  // the global to simplify later code.  This also deletes the store
1476  // into GV.
1477  ReplaceUsesOfMallocWithGlobal(CI, GV);
1478
1479  // Okay, at this point, there are no users of the malloc.  Insert N
1480  // new mallocs at the same place as CI, and N globals.
1481  std::vector<Value*> FieldGlobals;
1482  std::vector<Value*> FieldMallocs;
1483
1484  for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){
1485    Type *FieldTy = STy->getElementType(FieldNo);
1486    PointerType *PFieldTy = PointerType::getUnqual(FieldTy);
1487
1488    GlobalVariable *NGV =
1489      new GlobalVariable(*GV->getParent(),
1490                         PFieldTy, false, GlobalValue::InternalLinkage,
1491                         Constant::getNullValue(PFieldTy),
1492                         GV->getName() + ".f" + Twine(FieldNo), GV,
1493                         GV->getThreadLocalMode());
1494    FieldGlobals.push_back(NGV);
1495
1496    unsigned TypeSize = TD->getTypeAllocSize(FieldTy);
1497    if (StructType *ST = dyn_cast<StructType>(FieldTy))
1498      TypeSize = TD->getStructLayout(ST)->getSizeInBytes();
1499    Type *IntPtrTy = TD->getIntPtrType(CI->getContext());
1500    Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy,
1501                                        ConstantInt::get(IntPtrTy, TypeSize),
1502                                        NElems, 0,
1503                                        CI->getName() + ".f" + Twine(FieldNo));
1504    FieldMallocs.push_back(NMI);
1505    new StoreInst(NMI, NGV, CI);
1506  }
1507
1508  // The tricky aspect of this transformation is handling the case when malloc
1509  // fails.  In the original code, malloc failing would set the result pointer
1510  // of malloc to null.  In this case, some mallocs could succeed and others
1511  // could fail.  As such, we emit code that looks like this:
1512  //    F0 = malloc(field0)
1513  //    F1 = malloc(field1)
1514  //    F2 = malloc(field2)
1515  //    if (F0 == 0 || F1 == 0 || F2 == 0) {
1516  //      if (F0) { free(F0); F0 = 0; }
1517  //      if (F1) { free(F1); F1 = 0; }
1518  //      if (F2) { free(F2); F2 = 0; }
1519  //    }
1520  // The malloc can also fail if its argument is too large.
1521  Constant *ConstantZero = ConstantInt::get(CI->getArgOperand(0)->getType(), 0);
1522  Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getArgOperand(0),
1523                                  ConstantZero, "isneg");
1524  for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) {
1525    Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i],
1526                             Constant::getNullValue(FieldMallocs[i]->getType()),
1527                               "isnull");
1528    RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI);
1529  }
1530
1531  // Split the basic block at the old malloc.
1532  BasicBlock *OrigBB = CI->getParent();
1533  BasicBlock *ContBB = OrigBB->splitBasicBlock(CI, "malloc_cont");
1534
1535  // Create the block to check the first condition.  Put all these blocks at the
1536  // end of the function as they are unlikely to be executed.
1537  BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(),
1538                                                "malloc_ret_null",
1539                                                OrigBB->getParent());
1540
1541  // Remove the uncond branch from OrigBB to ContBB, turning it into a cond
1542  // branch on RunningOr.
1543  OrigBB->getTerminator()->eraseFromParent();
1544  BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB);
1545
1546  // Within the NullPtrBlock, we need to emit a comparison and branch for each
1547  // pointer, because some may be null while others are not.
1548  for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1549    Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock);
1550    Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal,
1551                              Constant::getNullValue(GVVal->getType()));
1552    BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it",
1553                                               OrigBB->getParent());
1554    BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next",
1555                                               OrigBB->getParent());
1556    Instruction *BI = BranchInst::Create(FreeBlock, NextBlock,
1557                                         Cmp, NullPtrBlock);
1558
1559    // Fill in FreeBlock.
1560    CallInst::CreateFree(GVVal, BI);
1561    new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i],
1562                  FreeBlock);
1563    BranchInst::Create(NextBlock, FreeBlock);
1564
1565    NullPtrBlock = NextBlock;
1566  }
1567
1568  BranchInst::Create(ContBB, NullPtrBlock);
1569
1570  // CI is no longer needed, remove it.
1571  CI->eraseFromParent();
1572
1573  /// InsertedScalarizedLoads - As we process loads, if we can't immediately
1574  /// update all uses of the load, keep track of what scalarized loads are
1575  /// inserted for a given load.
1576  DenseMap<Value*, std::vector<Value*> > InsertedScalarizedValues;
1577  InsertedScalarizedValues[GV] = FieldGlobals;
1578
1579  std::vector<std::pair<PHINode*, unsigned> > PHIsToRewrite;
1580
1581  // Okay, the malloc site is completely handled.  All of the uses of GV are now
1582  // loads, and all uses of those loads are simple.  Rewrite them to use loads
1583  // of the per-field globals instead.
1584  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI != E;) {
1585    Instruction *User = cast<Instruction>(*UI++);
1586
1587    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1588      RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite);
1589      continue;
1590    }
1591
1592    // Must be a store of null.
1593    StoreInst *SI = cast<StoreInst>(User);
1594    assert(isa<ConstantPointerNull>(SI->getOperand(0)) &&
1595           "Unexpected heap-sra user!");
1596
1597    // Insert a store of null into each global.
1598    for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1599      PointerType *PT = cast<PointerType>(FieldGlobals[i]->getType());
1600      Constant *Null = Constant::getNullValue(PT->getElementType());
1601      new StoreInst(Null, FieldGlobals[i], SI);
1602    }
1603    // Erase the original store.
1604    SI->eraseFromParent();
1605  }
1606
1607  // While we have PHIs that are interesting to rewrite, do it.
1608  while (!PHIsToRewrite.empty()) {
1609    PHINode *PN = PHIsToRewrite.back().first;
1610    unsigned FieldNo = PHIsToRewrite.back().second;
1611    PHIsToRewrite.pop_back();
1612    PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]);
1613    assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi");
1614
1615    // Add all the incoming values.  This can materialize more phis.
1616    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1617      Value *InVal = PN->getIncomingValue(i);
1618      InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues,
1619                               PHIsToRewrite);
1620      FieldPN->addIncoming(InVal, PN->getIncomingBlock(i));
1621    }
1622  }
1623
1624  // Drop all inter-phi links and any loads that made it this far.
1625  for (DenseMap<Value*, std::vector<Value*> >::iterator
1626       I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1627       I != E; ++I) {
1628    if (PHINode *PN = dyn_cast<PHINode>(I->first))
1629      PN->dropAllReferences();
1630    else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1631      LI->dropAllReferences();
1632  }
1633
1634  // Delete all the phis and loads now that inter-references are dead.
1635  for (DenseMap<Value*, std::vector<Value*> >::iterator
1636       I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1637       I != E; ++I) {
1638    if (PHINode *PN = dyn_cast<PHINode>(I->first))
1639      PN->eraseFromParent();
1640    else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1641      LI->eraseFromParent();
1642  }
1643
1644  // The old global is now dead, remove it.
1645  GV->eraseFromParent();
1646
1647  ++NumHeapSRA;
1648  return cast<GlobalVariable>(FieldGlobals[0]);
1649}
1650
1651/// TryToOptimizeStoreOfMallocToGlobal - This function is called when we see a
1652/// pointer global variable with a single value stored it that is a malloc or
1653/// cast of malloc.
1654static bool TryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV,
1655                                               CallInst *CI,
1656                                               Type *AllocTy,
1657                                               AtomicOrdering Ordering,
1658                                               Module::global_iterator &GVI,
1659                                               TargetData *TD,
1660                                               TargetLibraryInfo *TLI) {
1661  if (!TD)
1662    return false;
1663
1664  // If this is a malloc of an abstract type, don't touch it.
1665  if (!AllocTy->isSized())
1666    return false;
1667
1668  // We can't optimize this global unless all uses of it are *known* to be
1669  // of the malloc value, not of the null initializer value (consider a use
1670  // that compares the global's value against zero to see if the malloc has
1671  // been reached).  To do this, we check to see if all uses of the global
1672  // would trap if the global were null: this proves that they must all
1673  // happen after the malloc.
1674  if (!AllUsesOfLoadedValueWillTrapIfNull(GV))
1675    return false;
1676
1677  // We can't optimize this if the malloc itself is used in a complex way,
1678  // for example, being stored into multiple globals.  This allows the
1679  // malloc to be stored into the specified global, loaded icmp'd, and
1680  // GEP'd.  These are all things we could transform to using the global
1681  // for.
1682  SmallPtrSet<const PHINode*, 8> PHIs;
1683  if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs))
1684    return false;
1685
1686  // If we have a global that is only initialized with a fixed size malloc,
1687  // transform the program to use global memory instead of malloc'd memory.
1688  // This eliminates dynamic allocation, avoids an indirection accessing the
1689  // data, and exposes the resultant global to further GlobalOpt.
1690  // We cannot optimize the malloc if we cannot determine malloc array size.
1691  Value *NElems = getMallocArraySize(CI, TD, true);
1692  if (!NElems)
1693    return false;
1694
1695  if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems))
1696    // Restrict this transformation to only working on small allocations
1697    // (2048 bytes currently), as we don't want to introduce a 16M global or
1698    // something.
1699    if (NElements->getZExtValue() * TD->getTypeAllocSize(AllocTy) < 2048) {
1700      GVI = OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, TD, TLI);
1701      return true;
1702    }
1703
1704  // If the allocation is an array of structures, consider transforming this
1705  // into multiple malloc'd arrays, one for each field.  This is basically
1706  // SRoA for malloc'd memory.
1707
1708  if (Ordering != NotAtomic)
1709    return false;
1710
1711  // If this is an allocation of a fixed size array of structs, analyze as a
1712  // variable size array.  malloc [100 x struct],1 -> malloc struct, 100
1713  if (NElems == ConstantInt::get(CI->getArgOperand(0)->getType(), 1))
1714    if (ArrayType *AT = dyn_cast<ArrayType>(AllocTy))
1715      AllocTy = AT->getElementType();
1716
1717  StructType *AllocSTy = dyn_cast<StructType>(AllocTy);
1718  if (!AllocSTy)
1719    return false;
1720
1721  // This the structure has an unreasonable number of fields, leave it
1722  // alone.
1723  if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 &&
1724      AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) {
1725
1726    // If this is a fixed size array, transform the Malloc to be an alloc of
1727    // structs.  malloc [100 x struct],1 -> malloc struct, 100
1728    if (ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI))) {
1729      Type *IntPtrTy = TD->getIntPtrType(CI->getContext());
1730      unsigned TypeSize = TD->getStructLayout(AllocSTy)->getSizeInBytes();
1731      Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize);
1732      Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements());
1733      Instruction *Malloc = CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy,
1734                                                   AllocSize, NumElements,
1735                                                   0, CI->getName());
1736      Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI);
1737      CI->replaceAllUsesWith(Cast);
1738      CI->eraseFromParent();
1739      if (BitCastInst *BCI = dyn_cast<BitCastInst>(Malloc))
1740        CI = cast<CallInst>(BCI->getOperand(0));
1741      else
1742        CI = cast<CallInst>(Malloc);
1743    }
1744
1745    GVI = PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, TD, true), TD);
1746    return true;
1747  }
1748
1749  return false;
1750}
1751
1752// OptimizeOnceStoredGlobal - Try to optimize globals based on the knowledge
1753// that only one value (besides its initializer) is ever stored to the global.
1754static bool OptimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
1755                                     AtomicOrdering Ordering,
1756                                     Module::global_iterator &GVI,
1757                                     TargetData *TD, TargetLibraryInfo *TLI) {
1758  // Ignore no-op GEPs and bitcasts.
1759  StoredOnceVal = StoredOnceVal->stripPointerCasts();
1760
1761  // If we are dealing with a pointer global that is initialized to null and
1762  // only has one (non-null) value stored into it, then we can optimize any
1763  // users of the loaded value (often calls and loads) that would trap if the
1764  // value was null.
1765  if (GV->getInitializer()->getType()->isPointerTy() &&
1766      GV->getInitializer()->isNullValue()) {
1767    if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
1768      if (GV->getInitializer()->getType() != SOVC->getType())
1769        SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
1770
1771      // Optimize away any trapping uses of the loaded value.
1772      if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, TD, TLI))
1773        return true;
1774    } else if (CallInst *CI = extractMallocCall(StoredOnceVal)) {
1775      Type *MallocType = getMallocAllocatedType(CI);
1776      if (MallocType &&
1777          TryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType, Ordering, GVI,
1778                                             TD, TLI))
1779        return true;
1780    }
1781  }
1782
1783  return false;
1784}
1785
1786/// TryToShrinkGlobalToBoolean - At this point, we have learned that the only
1787/// two values ever stored into GV are its initializer and OtherVal.  See if we
1788/// can shrink the global into a boolean and select between the two values
1789/// whenever it is used.  This exposes the values to other scalar optimizations.
1790static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
1791  Type *GVElType = GV->getType()->getElementType();
1792
1793  // If GVElType is already i1, it is already shrunk.  If the type of the GV is
1794  // an FP value, pointer or vector, don't do this optimization because a select
1795  // between them is very expensive and unlikely to lead to later
1796  // simplification.  In these cases, we typically end up with "cond ? v1 : v2"
1797  // where v1 and v2 both require constant pool loads, a big loss.
1798  if (GVElType == Type::getInt1Ty(GV->getContext()) ||
1799      GVElType->isFloatingPointTy() ||
1800      GVElType->isPointerTy() || GVElType->isVectorTy())
1801    return false;
1802
1803  // Walk the use list of the global seeing if all the uses are load or store.
1804  // If there is anything else, bail out.
1805  for (Value::use_iterator I = GV->use_begin(), E = GV->use_end(); I != E; ++I){
1806    User *U = *I;
1807    if (!isa<LoadInst>(U) && !isa<StoreInst>(U))
1808      return false;
1809  }
1810
1811  DEBUG(dbgs() << "   *** SHRINKING TO BOOL: " << *GV);
1812
1813  // Create the new global, initializing it to false.
1814  GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()),
1815                                             false,
1816                                             GlobalValue::InternalLinkage,
1817                                        ConstantInt::getFalse(GV->getContext()),
1818                                             GV->getName()+".b",
1819                                             GV->getThreadLocalMode());
1820  GV->getParent()->getGlobalList().insert(GV, NewGV);
1821
1822  Constant *InitVal = GV->getInitializer();
1823  assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) &&
1824         "No reason to shrink to bool!");
1825
1826  // If initialized to zero and storing one into the global, we can use a cast
1827  // instead of a select to synthesize the desired value.
1828  bool IsOneZero = false;
1829  if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal))
1830    IsOneZero = InitVal->isNullValue() && CI->isOne();
1831
1832  while (!GV->use_empty()) {
1833    Instruction *UI = cast<Instruction>(GV->use_back());
1834    if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
1835      // Change the store into a boolean store.
1836      bool StoringOther = SI->getOperand(0) == OtherVal;
1837      // Only do this if we weren't storing a loaded value.
1838      Value *StoreVal;
1839      if (StoringOther || SI->getOperand(0) == InitVal)
1840        StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()),
1841                                    StoringOther);
1842      else {
1843        // Otherwise, we are storing a previously loaded copy.  To do this,
1844        // change the copy from copying the original value to just copying the
1845        // bool.
1846        Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
1847
1848        // If we've already replaced the input, StoredVal will be a cast or
1849        // select instruction.  If not, it will be a load of the original
1850        // global.
1851        if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
1852          assert(LI->getOperand(0) == GV && "Not a copy!");
1853          // Insert a new load, to preserve the saved value.
1854          StoreVal = new LoadInst(NewGV, LI->getName()+".b", false, 0,
1855                                  LI->getOrdering(), LI->getSynchScope(), LI);
1856        } else {
1857          assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
1858                 "This is not a form that we understand!");
1859          StoreVal = StoredVal->getOperand(0);
1860          assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
1861        }
1862      }
1863      new StoreInst(StoreVal, NewGV, false, 0,
1864                    SI->getOrdering(), SI->getSynchScope(), SI);
1865    } else {
1866      // Change the load into a load of bool then a select.
1867      LoadInst *LI = cast<LoadInst>(UI);
1868      LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", false, 0,
1869                                   LI->getOrdering(), LI->getSynchScope(), LI);
1870      Value *NSI;
1871      if (IsOneZero)
1872        NSI = new ZExtInst(NLI, LI->getType(), "", LI);
1873      else
1874        NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI);
1875      NSI->takeName(LI);
1876      LI->replaceAllUsesWith(NSI);
1877    }
1878    UI->eraseFromParent();
1879  }
1880
1881  GV->eraseFromParent();
1882  return true;
1883}
1884
1885
1886/// ProcessGlobal - Analyze the specified global variable and optimize it if
1887/// possible.  If we make a change, return true.
1888bool GlobalOpt::ProcessGlobal(GlobalVariable *GV,
1889                              Module::global_iterator &GVI) {
1890  if (!GV->isDiscardableIfUnused())
1891    return false;
1892
1893  // Do more involved optimizations if the global is internal.
1894  GV->removeDeadConstantUsers();
1895
1896  if (GV->use_empty()) {
1897    DEBUG(dbgs() << "GLOBAL DEAD: " << *GV);
1898    GV->eraseFromParent();
1899    ++NumDeleted;
1900    return true;
1901  }
1902
1903  if (!GV->hasLocalLinkage())
1904    return false;
1905
1906  SmallPtrSet<const PHINode*, 16> PHIUsers;
1907  GlobalStatus GS;
1908
1909  if (AnalyzeGlobal(GV, GS, PHIUsers))
1910    return false;
1911
1912  if (!GS.isCompared && !GV->hasUnnamedAddr()) {
1913    GV->setUnnamedAddr(true);
1914    NumUnnamed++;
1915  }
1916
1917  if (GV->isConstant() || !GV->hasInitializer())
1918    return false;
1919
1920  return ProcessInternalGlobal(GV, GVI, PHIUsers, GS);
1921}
1922
1923/// ProcessInternalGlobal - Analyze the specified global variable and optimize
1924/// it if possible.  If we make a change, return true.
1925bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV,
1926                                      Module::global_iterator &GVI,
1927                                const SmallPtrSet<const PHINode*, 16> &PHIUsers,
1928                                      const GlobalStatus &GS) {
1929  // If this is a first class global and has only one accessing function
1930  // and this function is main (which we know is not recursive we can make
1931  // this global a local variable) we replace the global with a local alloca
1932  // in this function.
1933  //
1934  // NOTE: It doesn't make sense to promote non single-value types since we
1935  // are just replacing static memory to stack memory.
1936  //
1937  // If the global is in different address space, don't bring it to stack.
1938  if (!GS.HasMultipleAccessingFunctions &&
1939      GS.AccessingFunction && !GS.HasNonInstructionUser &&
1940      GV->getType()->getElementType()->isSingleValueType() &&
1941      GS.AccessingFunction->getName() == "main" &&
1942      GS.AccessingFunction->hasExternalLinkage() &&
1943      GV->getType()->getAddressSpace() == 0) {
1944    DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV);
1945    Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction
1946                                                   ->getEntryBlock().begin());
1947    Type *ElemTy = GV->getType()->getElementType();
1948    // FIXME: Pass Global's alignment when globals have alignment
1949    AllocaInst *Alloca = new AllocaInst(ElemTy, NULL, GV->getName(), &FirstI);
1950    if (!isa<UndefValue>(GV->getInitializer()))
1951      new StoreInst(GV->getInitializer(), Alloca, &FirstI);
1952
1953    GV->replaceAllUsesWith(Alloca);
1954    GV->eraseFromParent();
1955    ++NumLocalized;
1956    return true;
1957  }
1958
1959  // If the global is never loaded (but may be stored to), it is dead.
1960  // Delete it now.
1961  if (!GS.isLoaded) {
1962    DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV);
1963
1964    bool Changed;
1965    if (isLeakCheckerRoot(GV)) {
1966      // Delete any constant stores to the global.
1967      Changed = CleanupPointerRootUsers(GV);
1968    } else {
1969      // Delete any stores we can find to the global.  We may not be able to
1970      // make it completely dead though.
1971      Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer(), TD, TLI);
1972    }
1973
1974    // If the global is dead now, delete it.
1975    if (GV->use_empty()) {
1976      GV->eraseFromParent();
1977      ++NumDeleted;
1978      Changed = true;
1979    }
1980    return Changed;
1981
1982  } else if (GS.StoredType <= GlobalStatus::isInitializerStored) {
1983    DEBUG(dbgs() << "MARKING CONSTANT: " << *GV);
1984    GV->setConstant(true);
1985
1986    // Clean up any obviously simplifiable users now.
1987    CleanupConstantGlobalUsers(GV, GV->getInitializer(), TD, TLI);
1988
1989    // If the global is dead now, just nuke it.
1990    if (GV->use_empty()) {
1991      DEBUG(dbgs() << "   *** Marking constant allowed us to simplify "
1992            << "all users and delete global!\n");
1993      GV->eraseFromParent();
1994      ++NumDeleted;
1995    }
1996
1997    ++NumMarked;
1998    return true;
1999  } else if (!GV->getInitializer()->getType()->isSingleValueType()) {
2000    if (TargetData *TD = getAnalysisIfAvailable<TargetData>())
2001      if (GlobalVariable *FirstNewGV = SRAGlobal(GV, *TD)) {
2002        GVI = FirstNewGV;  // Don't skip the newly produced globals!
2003        return true;
2004      }
2005  } else if (GS.StoredType == GlobalStatus::isStoredOnce) {
2006    // If the initial value for the global was an undef value, and if only
2007    // one other value was stored into it, we can just change the
2008    // initializer to be the stored value, then delete all stores to the
2009    // global.  This allows us to mark it constant.
2010    if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
2011      if (isa<UndefValue>(GV->getInitializer())) {
2012        // Change the initial value here.
2013        GV->setInitializer(SOVConstant);
2014
2015        // Clean up any obviously simplifiable users now.
2016        CleanupConstantGlobalUsers(GV, GV->getInitializer(), TD, TLI);
2017
2018        if (GV->use_empty()) {
2019          DEBUG(dbgs() << "   *** Substituting initializer allowed us to "
2020                       << "simplify all users and delete global!\n");
2021          GV->eraseFromParent();
2022          ++NumDeleted;
2023        } else {
2024          GVI = GV;
2025        }
2026        ++NumSubstitute;
2027        return true;
2028      }
2029
2030    // Try to optimize globals based on the knowledge that only one value
2031    // (besides its initializer) is ever stored to the global.
2032    if (OptimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GS.Ordering, GVI,
2033                                 TD, TLI))
2034      return true;
2035
2036    // Otherwise, if the global was not a boolean, we can shrink it to be a
2037    // boolean.
2038    if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
2039      if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) {
2040        ++NumShrunkToBool;
2041        return true;
2042      }
2043  }
2044
2045  return false;
2046}
2047
2048/// ChangeCalleesToFastCall - Walk all of the direct calls of the specified
2049/// function, changing them to FastCC.
2050static void ChangeCalleesToFastCall(Function *F) {
2051  for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
2052    if (isa<BlockAddress>(*UI))
2053      continue;
2054    CallSite User(cast<Instruction>(*UI));
2055    User.setCallingConv(CallingConv::Fast);
2056  }
2057}
2058
2059static AttrListPtr StripNest(const AttrListPtr &Attrs) {
2060  for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
2061    if ((Attrs.getSlot(i).Attrs & Attribute::Nest) == 0)
2062      continue;
2063
2064    // There can be only one.
2065    return Attrs.removeAttr(Attrs.getSlot(i).Index, Attribute::Nest);
2066  }
2067
2068  return Attrs;
2069}
2070
2071static void RemoveNestAttribute(Function *F) {
2072  F->setAttributes(StripNest(F->getAttributes()));
2073  for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
2074    if (isa<BlockAddress>(*UI))
2075      continue;
2076    CallSite User(cast<Instruction>(*UI));
2077    User.setAttributes(StripNest(User.getAttributes()));
2078  }
2079}
2080
2081bool GlobalOpt::OptimizeFunctions(Module &M) {
2082  bool Changed = false;
2083  // Optimize functions.
2084  for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) {
2085    Function *F = FI++;
2086    // Functions without names cannot be referenced outside this module.
2087    if (!F->hasName() && !F->isDeclaration())
2088      F->setLinkage(GlobalValue::InternalLinkage);
2089    F->removeDeadConstantUsers();
2090    if (F->isDefTriviallyDead()) {
2091      F->eraseFromParent();
2092      Changed = true;
2093      ++NumFnDeleted;
2094    } else if (F->hasLocalLinkage()) {
2095      if (F->getCallingConv() == CallingConv::C && !F->isVarArg() &&
2096          !F->hasAddressTaken()) {
2097        // If this function has C calling conventions, is not a varargs
2098        // function, and is only called directly, promote it to use the Fast
2099        // calling convention.
2100        F->setCallingConv(CallingConv::Fast);
2101        ChangeCalleesToFastCall(F);
2102        ++NumFastCallFns;
2103        Changed = true;
2104      }
2105
2106      if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) &&
2107          !F->hasAddressTaken()) {
2108        // The function is not used by a trampoline intrinsic, so it is safe
2109        // to remove the 'nest' attribute.
2110        RemoveNestAttribute(F);
2111        ++NumNestRemoved;
2112        Changed = true;
2113      }
2114    }
2115  }
2116  return Changed;
2117}
2118
2119bool GlobalOpt::OptimizeGlobalVars(Module &M) {
2120  bool Changed = false;
2121  for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
2122       GVI != E; ) {
2123    GlobalVariable *GV = GVI++;
2124    // Global variables without names cannot be referenced outside this module.
2125    if (!GV->hasName() && !GV->isDeclaration())
2126      GV->setLinkage(GlobalValue::InternalLinkage);
2127    // Simplify the initializer.
2128    if (GV->hasInitializer())
2129      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GV->getInitializer())) {
2130        Constant *New = ConstantFoldConstantExpression(CE, TD, TLI);
2131        if (New && New != CE)
2132          GV->setInitializer(New);
2133      }
2134
2135    Changed |= ProcessGlobal(GV, GVI);
2136  }
2137  return Changed;
2138}
2139
2140/// FindGlobalCtors - Find the llvm.global_ctors list, verifying that all
2141/// initializers have an init priority of 65535.
2142GlobalVariable *GlobalOpt::FindGlobalCtors(Module &M) {
2143  GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors");
2144  if (GV == 0) return 0;
2145
2146  // Verify that the initializer is simple enough for us to handle. We are
2147  // only allowed to optimize the initializer if it is unique.
2148  if (!GV->hasUniqueInitializer()) return 0;
2149
2150  if (isa<ConstantAggregateZero>(GV->getInitializer()))
2151    return GV;
2152  ConstantArray *CA = cast<ConstantArray>(GV->getInitializer());
2153
2154  for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i) {
2155    if (isa<ConstantAggregateZero>(*i))
2156      continue;
2157    ConstantStruct *CS = cast<ConstantStruct>(*i);
2158    if (isa<ConstantPointerNull>(CS->getOperand(1)))
2159      continue;
2160
2161    // Must have a function or null ptr.
2162    if (!isa<Function>(CS->getOperand(1)))
2163      return 0;
2164
2165    // Init priority must be standard.
2166    ConstantInt *CI = cast<ConstantInt>(CS->getOperand(0));
2167    if (CI->getZExtValue() != 65535)
2168      return 0;
2169  }
2170
2171  return GV;
2172}
2173
2174/// ParseGlobalCtors - Given a llvm.global_ctors list that we can understand,
2175/// return a list of the functions and null terminator as a vector.
2176static std::vector<Function*> ParseGlobalCtors(GlobalVariable *GV) {
2177  if (GV->getInitializer()->isNullValue())
2178    return std::vector<Function*>();
2179  ConstantArray *CA = cast<ConstantArray>(GV->getInitializer());
2180  std::vector<Function*> Result;
2181  Result.reserve(CA->getNumOperands());
2182  for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i) {
2183    ConstantStruct *CS = cast<ConstantStruct>(*i);
2184    Result.push_back(dyn_cast<Function>(CS->getOperand(1)));
2185  }
2186  return Result;
2187}
2188
2189/// InstallGlobalCtors - Given a specified llvm.global_ctors list, install the
2190/// specified array, returning the new global to use.
2191static GlobalVariable *InstallGlobalCtors(GlobalVariable *GCL,
2192                                          const std::vector<Function*> &Ctors) {
2193  // If we made a change, reassemble the initializer list.
2194  Constant *CSVals[2];
2195  CSVals[0] = ConstantInt::get(Type::getInt32Ty(GCL->getContext()), 65535);
2196  CSVals[1] = 0;
2197
2198  StructType *StructTy =
2199    cast <StructType>(
2200    cast<ArrayType>(GCL->getType()->getElementType())->getElementType());
2201
2202  // Create the new init list.
2203  std::vector<Constant*> CAList;
2204  for (unsigned i = 0, e = Ctors.size(); i != e; ++i) {
2205    if (Ctors[i]) {
2206      CSVals[1] = Ctors[i];
2207    } else {
2208      Type *FTy = FunctionType::get(Type::getVoidTy(GCL->getContext()),
2209                                          false);
2210      PointerType *PFTy = PointerType::getUnqual(FTy);
2211      CSVals[1] = Constant::getNullValue(PFTy);
2212      CSVals[0] = ConstantInt::get(Type::getInt32Ty(GCL->getContext()),
2213                                   0x7fffffff);
2214    }
2215    CAList.push_back(ConstantStruct::get(StructTy, CSVals));
2216  }
2217
2218  // Create the array initializer.
2219  Constant *CA = ConstantArray::get(ArrayType::get(StructTy,
2220                                                   CAList.size()), CAList);
2221
2222  // If we didn't change the number of elements, don't create a new GV.
2223  if (CA->getType() == GCL->getInitializer()->getType()) {
2224    GCL->setInitializer(CA);
2225    return GCL;
2226  }
2227
2228  // Create the new global and insert it next to the existing list.
2229  GlobalVariable *NGV = new GlobalVariable(CA->getType(), GCL->isConstant(),
2230                                           GCL->getLinkage(), CA, "",
2231                                           GCL->getThreadLocalMode());
2232  GCL->getParent()->getGlobalList().insert(GCL, NGV);
2233  NGV->takeName(GCL);
2234
2235  // Nuke the old list, replacing any uses with the new one.
2236  if (!GCL->use_empty()) {
2237    Constant *V = NGV;
2238    if (V->getType() != GCL->getType())
2239      V = ConstantExpr::getBitCast(V, GCL->getType());
2240    GCL->replaceAllUsesWith(V);
2241  }
2242  GCL->eraseFromParent();
2243
2244  if (Ctors.size())
2245    return NGV;
2246  else
2247    return 0;
2248}
2249
2250
2251static inline bool
2252isSimpleEnoughValueToCommit(Constant *C,
2253                            SmallPtrSet<Constant*, 8> &SimpleConstants,
2254                            const TargetData *TD);
2255
2256
2257/// isSimpleEnoughValueToCommit - Return true if the specified constant can be
2258/// handled by the code generator.  We don't want to generate something like:
2259///   void *X = &X/42;
2260/// because the code generator doesn't have a relocation that can handle that.
2261///
2262/// This function should be called if C was not found (but just got inserted)
2263/// in SimpleConstants to avoid having to rescan the same constants all the
2264/// time.
2265static bool isSimpleEnoughValueToCommitHelper(Constant *C,
2266                                   SmallPtrSet<Constant*, 8> &SimpleConstants,
2267                                   const TargetData *TD) {
2268  // Simple integer, undef, constant aggregate zero, global addresses, etc are
2269  // all supported.
2270  if (C->getNumOperands() == 0 || isa<BlockAddress>(C) ||
2271      isa<GlobalValue>(C))
2272    return true;
2273
2274  // Aggregate values are safe if all their elements are.
2275  if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
2276      isa<ConstantVector>(C)) {
2277    for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
2278      Constant *Op = cast<Constant>(C->getOperand(i));
2279      if (!isSimpleEnoughValueToCommit(Op, SimpleConstants, TD))
2280        return false;
2281    }
2282    return true;
2283  }
2284
2285  // We don't know exactly what relocations are allowed in constant expressions,
2286  // so we allow &global+constantoffset, which is safe and uniformly supported
2287  // across targets.
2288  ConstantExpr *CE = cast<ConstantExpr>(C);
2289  switch (CE->getOpcode()) {
2290  case Instruction::BitCast:
2291    // Bitcast is fine if the casted value is fine.
2292    return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, TD);
2293
2294  case Instruction::IntToPtr:
2295  case Instruction::PtrToInt:
2296    // int <=> ptr is fine if the int type is the same size as the
2297    // pointer type.
2298    if (!TD || TD->getTypeSizeInBits(CE->getType()) !=
2299               TD->getTypeSizeInBits(CE->getOperand(0)->getType()))
2300      return false;
2301    return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, TD);
2302
2303  // GEP is fine if it is simple + constant offset.
2304  case Instruction::GetElementPtr:
2305    for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
2306      if (!isa<ConstantInt>(CE->getOperand(i)))
2307        return false;
2308    return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, TD);
2309
2310  case Instruction::Add:
2311    // We allow simple+cst.
2312    if (!isa<ConstantInt>(CE->getOperand(1)))
2313      return false;
2314    return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, TD);
2315  }
2316  return false;
2317}
2318
2319static inline bool
2320isSimpleEnoughValueToCommit(Constant *C,
2321                            SmallPtrSet<Constant*, 8> &SimpleConstants,
2322                            const TargetData *TD) {
2323  // If we already checked this constant, we win.
2324  if (!SimpleConstants.insert(C)) return true;
2325  // Check the constant.
2326  return isSimpleEnoughValueToCommitHelper(C, SimpleConstants, TD);
2327}
2328
2329
2330/// isSimpleEnoughPointerToCommit - Return true if this constant is simple
2331/// enough for us to understand.  In particular, if it is a cast to anything
2332/// other than from one pointer type to another pointer type, we punt.
2333/// We basically just support direct accesses to globals and GEP's of
2334/// globals.  This should be kept up to date with CommitValueTo.
2335static bool isSimpleEnoughPointerToCommit(Constant *C) {
2336  // Conservatively, avoid aggregate types. This is because we don't
2337  // want to worry about them partially overlapping other stores.
2338  if (!cast<PointerType>(C->getType())->getElementType()->isSingleValueType())
2339    return false;
2340
2341  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
2342    // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
2343    // external globals.
2344    return GV->hasUniqueInitializer();
2345
2346  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2347    // Handle a constantexpr gep.
2348    if (CE->getOpcode() == Instruction::GetElementPtr &&
2349        isa<GlobalVariable>(CE->getOperand(0)) &&
2350        cast<GEPOperator>(CE)->isInBounds()) {
2351      GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2352      // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
2353      // external globals.
2354      if (!GV->hasUniqueInitializer())
2355        return false;
2356
2357      // The first index must be zero.
2358      ConstantInt *CI = dyn_cast<ConstantInt>(*llvm::next(CE->op_begin()));
2359      if (!CI || !CI->isZero()) return false;
2360
2361      // The remaining indices must be compile-time known integers within the
2362      // notional bounds of the corresponding static array types.
2363      if (!CE->isGEPWithNoNotionalOverIndexing())
2364        return false;
2365
2366      return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
2367
2368    // A constantexpr bitcast from a pointer to another pointer is a no-op,
2369    // and we know how to evaluate it by moving the bitcast from the pointer
2370    // operand to the value operand.
2371    } else if (CE->getOpcode() == Instruction::BitCast &&
2372               isa<GlobalVariable>(CE->getOperand(0))) {
2373      // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
2374      // external globals.
2375      return cast<GlobalVariable>(CE->getOperand(0))->hasUniqueInitializer();
2376    }
2377  }
2378
2379  return false;
2380}
2381
2382/// EvaluateStoreInto - Evaluate a piece of a constantexpr store into a global
2383/// initializer.  This returns 'Init' modified to reflect 'Val' stored into it.
2384/// At this point, the GEP operands of Addr [0, OpNo) have been stepped into.
2385static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
2386                                   ConstantExpr *Addr, unsigned OpNo) {
2387  // Base case of the recursion.
2388  if (OpNo == Addr->getNumOperands()) {
2389    assert(Val->getType() == Init->getType() && "Type mismatch!");
2390    return Val;
2391  }
2392
2393  SmallVector<Constant*, 32> Elts;
2394  if (StructType *STy = dyn_cast<StructType>(Init->getType())) {
2395    // Break up the constant into its elements.
2396    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
2397      Elts.push_back(Init->getAggregateElement(i));
2398
2399    // Replace the element that we are supposed to.
2400    ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
2401    unsigned Idx = CU->getZExtValue();
2402    assert(Idx < STy->getNumElements() && "Struct index out of range!");
2403    Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1);
2404
2405    // Return the modified struct.
2406    return ConstantStruct::get(STy, Elts);
2407  }
2408
2409  ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
2410  SequentialType *InitTy = cast<SequentialType>(Init->getType());
2411
2412  uint64_t NumElts;
2413  if (ArrayType *ATy = dyn_cast<ArrayType>(InitTy))
2414    NumElts = ATy->getNumElements();
2415  else
2416    NumElts = InitTy->getVectorNumElements();
2417
2418  // Break up the array into elements.
2419  for (uint64_t i = 0, e = NumElts; i != e; ++i)
2420    Elts.push_back(Init->getAggregateElement(i));
2421
2422  assert(CI->getZExtValue() < NumElts);
2423  Elts[CI->getZExtValue()] =
2424    EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1);
2425
2426  if (Init->getType()->isArrayTy())
2427    return ConstantArray::get(cast<ArrayType>(InitTy), Elts);
2428  return ConstantVector::get(Elts);
2429}
2430
2431/// CommitValueTo - We have decided that Addr (which satisfies the predicate
2432/// isSimpleEnoughPointerToCommit) should get Val as its value.  Make it happen.
2433static void CommitValueTo(Constant *Val, Constant *Addr) {
2434  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
2435    assert(GV->hasInitializer());
2436    GV->setInitializer(Val);
2437    return;
2438  }
2439
2440  ConstantExpr *CE = cast<ConstantExpr>(Addr);
2441  GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2442  GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2));
2443}
2444
2445namespace {
2446
2447/// Evaluator - This class evaluates LLVM IR, producing the Constant
2448/// representing each SSA instruction.  Changes to global variables are stored
2449/// in a mapping that can be iterated over after the evaluation is complete.
2450/// Once an evaluation call fails, the evaluation object should not be reused.
2451class Evaluator {
2452public:
2453  Evaluator(const TargetData *TD, const TargetLibraryInfo *TLI)
2454    : TD(TD), TLI(TLI) {
2455    ValueStack.push_back(new DenseMap<Value*, Constant*>);
2456  }
2457
2458  ~Evaluator() {
2459    DeleteContainerPointers(ValueStack);
2460    while (!AllocaTmps.empty()) {
2461      GlobalVariable *Tmp = AllocaTmps.back();
2462      AllocaTmps.pop_back();
2463
2464      // If there are still users of the alloca, the program is doing something
2465      // silly, e.g. storing the address of the alloca somewhere and using it
2466      // later.  Since this is undefined, we'll just make it be null.
2467      if (!Tmp->use_empty())
2468        Tmp->replaceAllUsesWith(Constant::getNullValue(Tmp->getType()));
2469      delete Tmp;
2470    }
2471  }
2472
2473  /// EvaluateFunction - Evaluate a call to function F, returning true if
2474  /// successful, false if we can't evaluate it.  ActualArgs contains the formal
2475  /// arguments for the function.
2476  bool EvaluateFunction(Function *F, Constant *&RetVal,
2477                        const SmallVectorImpl<Constant*> &ActualArgs);
2478
2479  /// EvaluateBlock - Evaluate all instructions in block BB, returning true if
2480  /// successful, false if we can't evaluate it.  NewBB returns the next BB that
2481  /// control flows into, or null upon return.
2482  bool EvaluateBlock(BasicBlock::iterator CurInst, BasicBlock *&NextBB);
2483
2484  Constant *getVal(Value *V) {
2485    if (Constant *CV = dyn_cast<Constant>(V)) return CV;
2486    Constant *R = ValueStack.back()->lookup(V);
2487    assert(R && "Reference to an uncomputed value!");
2488    return R;
2489  }
2490
2491  void setVal(Value *V, Constant *C) {
2492    ValueStack.back()->operator[](V) = C;
2493  }
2494
2495  const DenseMap<Constant*, Constant*> &getMutatedMemory() const {
2496    return MutatedMemory;
2497  }
2498
2499  const SmallPtrSet<GlobalVariable*, 8> &getInvariants() const {
2500    return Invariants;
2501  }
2502
2503private:
2504  Constant *ComputeLoadResult(Constant *P);
2505
2506  /// ValueStack - As we compute SSA register values, we store their contents
2507  /// here. The back of the vector contains the current function and the stack
2508  /// contains the values in the calling frames.
2509  SmallVector<DenseMap<Value*, Constant*>*, 4> ValueStack;
2510
2511  /// CallStack - This is used to detect recursion.  In pathological situations
2512  /// we could hit exponential behavior, but at least there is nothing
2513  /// unbounded.
2514  SmallVector<Function*, 4> CallStack;
2515
2516  /// MutatedMemory - For each store we execute, we update this map.  Loads
2517  /// check this to get the most up-to-date value.  If evaluation is successful,
2518  /// this state is committed to the process.
2519  DenseMap<Constant*, Constant*> MutatedMemory;
2520
2521  /// AllocaTmps - To 'execute' an alloca, we create a temporary global variable
2522  /// to represent its body.  This vector is needed so we can delete the
2523  /// temporary globals when we are done.
2524  SmallVector<GlobalVariable*, 32> AllocaTmps;
2525
2526  /// Invariants - These global variables have been marked invariant by the
2527  /// static constructor.
2528  SmallPtrSet<GlobalVariable*, 8> Invariants;
2529
2530  /// SimpleConstants - These are constants we have checked and know to be
2531  /// simple enough to live in a static initializer of a global.
2532  SmallPtrSet<Constant*, 8> SimpleConstants;
2533
2534  const TargetData *TD;
2535  const TargetLibraryInfo *TLI;
2536};
2537
2538}  // anonymous namespace
2539
2540/// ComputeLoadResult - Return the value that would be computed by a load from
2541/// P after the stores reflected by 'memory' have been performed.  If we can't
2542/// decide, return null.
2543Constant *Evaluator::ComputeLoadResult(Constant *P) {
2544  // If this memory location has been recently stored, use the stored value: it
2545  // is the most up-to-date.
2546  DenseMap<Constant*, Constant*>::const_iterator I = MutatedMemory.find(P);
2547  if (I != MutatedMemory.end()) return I->second;
2548
2549  // Access it.
2550  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
2551    if (GV->hasDefinitiveInitializer())
2552      return GV->getInitializer();
2553    return 0;
2554  }
2555
2556  // Handle a constantexpr getelementptr.
2557  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P))
2558    if (CE->getOpcode() == Instruction::GetElementPtr &&
2559        isa<GlobalVariable>(CE->getOperand(0))) {
2560      GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2561      if (GV->hasDefinitiveInitializer())
2562        return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
2563    }
2564
2565  return 0;  // don't know how to evaluate.
2566}
2567
2568/// EvaluateBlock - Evaluate all instructions in block BB, returning true if
2569/// successful, false if we can't evaluate it.  NewBB returns the next BB that
2570/// control flows into, or null upon return.
2571bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst,
2572                              BasicBlock *&NextBB) {
2573  // This is the main evaluation loop.
2574  while (1) {
2575    Constant *InstResult = 0;
2576
2577    if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) {
2578      if (!SI->isSimple()) return false;  // no volatile/atomic accesses.
2579      Constant *Ptr = getVal(SI->getOperand(1));
2580      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
2581        Ptr = ConstantFoldConstantExpression(CE, TD, TLI);
2582      if (!isSimpleEnoughPointerToCommit(Ptr))
2583        // If this is too complex for us to commit, reject it.
2584        return false;
2585
2586      Constant *Val = getVal(SI->getOperand(0));
2587
2588      // If this might be too difficult for the backend to handle (e.g. the addr
2589      // of one global variable divided by another) then we can't commit it.
2590      if (!isSimpleEnoughValueToCommit(Val, SimpleConstants, TD))
2591        return false;
2592
2593      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
2594        if (CE->getOpcode() == Instruction::BitCast) {
2595          // If we're evaluating a store through a bitcast, then we need
2596          // to pull the bitcast off the pointer type and push it onto the
2597          // stored value.
2598          Ptr = CE->getOperand(0);
2599
2600          Type *NewTy = cast<PointerType>(Ptr->getType())->getElementType();
2601
2602          // In order to push the bitcast onto the stored value, a bitcast
2603          // from NewTy to Val's type must be legal.  If it's not, we can try
2604          // introspecting NewTy to find a legal conversion.
2605          while (!Val->getType()->canLosslesslyBitCastTo(NewTy)) {
2606            // If NewTy is a struct, we can convert the pointer to the struct
2607            // into a pointer to its first member.
2608            // FIXME: This could be extended to support arrays as well.
2609            if (StructType *STy = dyn_cast<StructType>(NewTy)) {
2610              NewTy = STy->getTypeAtIndex(0U);
2611
2612              IntegerType *IdxTy = IntegerType::get(NewTy->getContext(), 32);
2613              Constant *IdxZero = ConstantInt::get(IdxTy, 0, false);
2614              Constant * const IdxList[] = {IdxZero, IdxZero};
2615
2616              Ptr = ConstantExpr::getGetElementPtr(Ptr, IdxList);
2617              if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
2618                Ptr = ConstantFoldConstantExpression(CE, TD, TLI);
2619
2620            // If we can't improve the situation by introspecting NewTy,
2621            // we have to give up.
2622            } else {
2623              return false;
2624            }
2625          }
2626
2627          // If we found compatible types, go ahead and push the bitcast
2628          // onto the stored value.
2629          Val = ConstantExpr::getBitCast(Val, NewTy);
2630        }
2631
2632      MutatedMemory[Ptr] = Val;
2633    } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) {
2634      InstResult = ConstantExpr::get(BO->getOpcode(),
2635                                     getVal(BO->getOperand(0)),
2636                                     getVal(BO->getOperand(1)));
2637    } else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) {
2638      InstResult = ConstantExpr::getCompare(CI->getPredicate(),
2639                                            getVal(CI->getOperand(0)),
2640                                            getVal(CI->getOperand(1)));
2641    } else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) {
2642      InstResult = ConstantExpr::getCast(CI->getOpcode(),
2643                                         getVal(CI->getOperand(0)),
2644                                         CI->getType());
2645    } else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) {
2646      InstResult = ConstantExpr::getSelect(getVal(SI->getOperand(0)),
2647                                           getVal(SI->getOperand(1)),
2648                                           getVal(SI->getOperand(2)));
2649    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) {
2650      Constant *P = getVal(GEP->getOperand(0));
2651      SmallVector<Constant*, 8> GEPOps;
2652      for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end();
2653           i != e; ++i)
2654        GEPOps.push_back(getVal(*i));
2655      InstResult =
2656        ConstantExpr::getGetElementPtr(P, GEPOps,
2657                                       cast<GEPOperator>(GEP)->isInBounds());
2658    } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) {
2659      if (!LI->isSimple()) return false;  // no volatile/atomic accesses.
2660      Constant *Ptr = getVal(LI->getOperand(0));
2661      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
2662        Ptr = ConstantFoldConstantExpression(CE, TD, TLI);
2663      InstResult = ComputeLoadResult(Ptr);
2664      if (InstResult == 0) return false; // Could not evaluate load.
2665    } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) {
2666      if (AI->isArrayAllocation()) return false;  // Cannot handle array allocs.
2667      Type *Ty = AI->getType()->getElementType();
2668      AllocaTmps.push_back(new GlobalVariable(Ty, false,
2669                                              GlobalValue::InternalLinkage,
2670                                              UndefValue::get(Ty),
2671                                              AI->getName()));
2672      InstResult = AllocaTmps.back();
2673    } else if (isa<CallInst>(CurInst) || isa<InvokeInst>(CurInst)) {
2674      CallSite CS(CurInst);
2675
2676      // Debug info can safely be ignored here.
2677      if (isa<DbgInfoIntrinsic>(CS.getInstruction())) {
2678        ++CurInst;
2679        continue;
2680      }
2681
2682      // Cannot handle inline asm.
2683      if (isa<InlineAsm>(CS.getCalledValue())) return false;
2684
2685      if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) {
2686        if (MemSetInst *MSI = dyn_cast<MemSetInst>(II)) {
2687          if (MSI->isVolatile()) return false;
2688          Constant *Ptr = getVal(MSI->getDest());
2689          Constant *Val = getVal(MSI->getValue());
2690          Constant *DestVal = ComputeLoadResult(getVal(Ptr));
2691          if (Val->isNullValue() && DestVal && DestVal->isNullValue()) {
2692            // This memset is a no-op.
2693            ++CurInst;
2694            continue;
2695          }
2696        }
2697
2698        if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
2699            II->getIntrinsicID() == Intrinsic::lifetime_end) {
2700          ++CurInst;
2701          continue;
2702        }
2703
2704        if (II->getIntrinsicID() == Intrinsic::invariant_start) {
2705          // We don't insert an entry into Values, as it doesn't have a
2706          // meaningful return value.
2707          if (!II->use_empty())
2708            return false;
2709          ConstantInt *Size = cast<ConstantInt>(II->getArgOperand(0));
2710          Value *PtrArg = getVal(II->getArgOperand(1));
2711          Value *Ptr = PtrArg->stripPointerCasts();
2712          if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
2713            Type *ElemTy = cast<PointerType>(GV->getType())->getElementType();
2714            if (!Size->isAllOnesValue() &&
2715                Size->getValue().getLimitedValue() >=
2716                TD->getTypeStoreSize(ElemTy))
2717              Invariants.insert(GV);
2718          }
2719          // Continue even if we do nothing.
2720          ++CurInst;
2721          continue;
2722        }
2723        return false;
2724      }
2725
2726      // Resolve function pointers.
2727      Function *Callee = dyn_cast<Function>(getVal(CS.getCalledValue()));
2728      if (!Callee || Callee->mayBeOverridden())
2729        return false;  // Cannot resolve.
2730
2731      SmallVector<Constant*, 8> Formals;
2732      for (User::op_iterator i = CS.arg_begin(), e = CS.arg_end(); i != e; ++i)
2733        Formals.push_back(getVal(*i));
2734
2735      if (Callee->isDeclaration()) {
2736        // If this is a function we can constant fold, do it.
2737        if (Constant *C = ConstantFoldCall(Callee, Formals, TLI)) {
2738          InstResult = C;
2739        } else {
2740          return false;
2741        }
2742      } else {
2743        if (Callee->getFunctionType()->isVarArg())
2744          return false;
2745
2746        Constant *RetVal;
2747        // Execute the call, if successful, use the return value.
2748        ValueStack.push_back(new DenseMap<Value*, Constant*>);
2749        if (!EvaluateFunction(Callee, RetVal, Formals))
2750          return false;
2751        delete ValueStack.pop_back_val();
2752        InstResult = RetVal;
2753      }
2754    } else if (isa<TerminatorInst>(CurInst)) {
2755      if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) {
2756        if (BI->isUnconditional()) {
2757          NextBB = BI->getSuccessor(0);
2758        } else {
2759          ConstantInt *Cond =
2760            dyn_cast<ConstantInt>(getVal(BI->getCondition()));
2761          if (!Cond) return false;  // Cannot determine.
2762
2763          NextBB = BI->getSuccessor(!Cond->getZExtValue());
2764        }
2765      } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) {
2766        ConstantInt *Val =
2767          dyn_cast<ConstantInt>(getVal(SI->getCondition()));
2768        if (!Val) return false;  // Cannot determine.
2769        NextBB = SI->findCaseValue(Val).getCaseSuccessor();
2770      } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(CurInst)) {
2771        Value *Val = getVal(IBI->getAddress())->stripPointerCasts();
2772        if (BlockAddress *BA = dyn_cast<BlockAddress>(Val))
2773          NextBB = BA->getBasicBlock();
2774        else
2775          return false;  // Cannot determine.
2776      } else if (isa<ReturnInst>(CurInst)) {
2777        NextBB = 0;
2778      } else {
2779        // invoke, unwind, resume, unreachable.
2780        return false;  // Cannot handle this terminator.
2781      }
2782
2783      // We succeeded at evaluating this block!
2784      return true;
2785    } else {
2786      // Did not know how to evaluate this!
2787      return false;
2788    }
2789
2790    if (!CurInst->use_empty()) {
2791      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(InstResult))
2792        InstResult = ConstantFoldConstantExpression(CE, TD, TLI);
2793
2794      setVal(CurInst, InstResult);
2795    }
2796
2797    // If we just processed an invoke, we finished evaluating the block.
2798    if (InvokeInst *II = dyn_cast<InvokeInst>(CurInst)) {
2799      NextBB = II->getNormalDest();
2800      return true;
2801    }
2802
2803    // Advance program counter.
2804    ++CurInst;
2805  }
2806}
2807
2808/// EvaluateFunction - Evaluate a call to function F, returning true if
2809/// successful, false if we can't evaluate it.  ActualArgs contains the formal
2810/// arguments for the function.
2811bool Evaluator::EvaluateFunction(Function *F, Constant *&RetVal,
2812                                 const SmallVectorImpl<Constant*> &ActualArgs) {
2813  // Check to see if this function is already executing (recursion).  If so,
2814  // bail out.  TODO: we might want to accept limited recursion.
2815  if (std::find(CallStack.begin(), CallStack.end(), F) != CallStack.end())
2816    return false;
2817
2818  CallStack.push_back(F);
2819
2820  // Initialize arguments to the incoming values specified.
2821  unsigned ArgNo = 0;
2822  for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
2823       ++AI, ++ArgNo)
2824    setVal(AI, ActualArgs[ArgNo]);
2825
2826  // ExecutedBlocks - We only handle non-looping, non-recursive code.  As such,
2827  // we can only evaluate any one basic block at most once.  This set keeps
2828  // track of what we have executed so we can detect recursive cases etc.
2829  SmallPtrSet<BasicBlock*, 32> ExecutedBlocks;
2830
2831  // CurBB - The current basic block we're evaluating.
2832  BasicBlock *CurBB = F->begin();
2833
2834  BasicBlock::iterator CurInst = CurBB->begin();
2835
2836  while (1) {
2837    BasicBlock *NextBB = 0; // Initialized to avoid compiler warnings.
2838    if (!EvaluateBlock(CurInst, NextBB))
2839      return false;
2840
2841    if (NextBB == 0) {
2842      // Successfully running until there's no next block means that we found
2843      // the return.  Fill it the return value and pop the call stack.
2844      ReturnInst *RI = cast<ReturnInst>(CurBB->getTerminator());
2845      if (RI->getNumOperands())
2846        RetVal = getVal(RI->getOperand(0));
2847      CallStack.pop_back();
2848      return true;
2849    }
2850
2851    // Okay, we succeeded in evaluating this control flow.  See if we have
2852    // executed the new block before.  If so, we have a looping function,
2853    // which we cannot evaluate in reasonable time.
2854    if (!ExecutedBlocks.insert(NextBB))
2855      return false;  // looped!
2856
2857    // Okay, we have never been in this block before.  Check to see if there
2858    // are any PHI nodes.  If so, evaluate them with information about where
2859    // we came from.
2860    PHINode *PN = 0;
2861    for (CurInst = NextBB->begin();
2862         (PN = dyn_cast<PHINode>(CurInst)); ++CurInst)
2863      setVal(PN, getVal(PN->getIncomingValueForBlock(CurBB)));
2864
2865    // Advance to the next block.
2866    CurBB = NextBB;
2867  }
2868}
2869
2870/// EvaluateStaticConstructor - Evaluate static constructors in the function, if
2871/// we can.  Return true if we can, false otherwise.
2872static bool EvaluateStaticConstructor(Function *F, const TargetData *TD,
2873                                      const TargetLibraryInfo *TLI) {
2874  // Call the function.
2875  Evaluator Eval(TD, TLI);
2876  Constant *RetValDummy;
2877  bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy,
2878                                           SmallVector<Constant*, 0>());
2879
2880  if (EvalSuccess) {
2881    // We succeeded at evaluation: commit the result.
2882    DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
2883          << F->getName() << "' to " << Eval.getMutatedMemory().size()
2884          << " stores.\n");
2885    for (DenseMap<Constant*, Constant*>::const_iterator I =
2886           Eval.getMutatedMemory().begin(), E = Eval.getMutatedMemory().end();
2887         I != E; ++I)
2888      CommitValueTo(I->second, I->first);
2889    for (SmallPtrSet<GlobalVariable*, 8>::const_iterator I =
2890           Eval.getInvariants().begin(), E = Eval.getInvariants().end();
2891         I != E; ++I)
2892      (*I)->setConstant(true);
2893  }
2894
2895  return EvalSuccess;
2896}
2897
2898/// OptimizeGlobalCtorsList - Simplify and evaluation global ctors if possible.
2899/// Return true if anything changed.
2900bool GlobalOpt::OptimizeGlobalCtorsList(GlobalVariable *&GCL) {
2901  std::vector<Function*> Ctors = ParseGlobalCtors(GCL);
2902  bool MadeChange = false;
2903  if (Ctors.empty()) return false;
2904
2905  // Loop over global ctors, optimizing them when we can.
2906  for (unsigned i = 0; i != Ctors.size(); ++i) {
2907    Function *F = Ctors[i];
2908    // Found a null terminator in the middle of the list, prune off the rest of
2909    // the list.
2910    if (F == 0) {
2911      if (i != Ctors.size()-1) {
2912        Ctors.resize(i+1);
2913        MadeChange = true;
2914      }
2915      break;
2916    }
2917
2918    // We cannot simplify external ctor functions.
2919    if (F->empty()) continue;
2920
2921    // If we can evaluate the ctor at compile time, do.
2922    if (EvaluateStaticConstructor(F, TD, TLI)) {
2923      Ctors.erase(Ctors.begin()+i);
2924      MadeChange = true;
2925      --i;
2926      ++NumCtorsEvaluated;
2927      continue;
2928    }
2929  }
2930
2931  if (!MadeChange) return false;
2932
2933  GCL = InstallGlobalCtors(GCL, Ctors);
2934  return true;
2935}
2936
2937bool GlobalOpt::OptimizeGlobalAliases(Module &M) {
2938  bool Changed = false;
2939
2940  for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
2941       I != E;) {
2942    Module::alias_iterator J = I++;
2943    // Aliases without names cannot be referenced outside this module.
2944    if (!J->hasName() && !J->isDeclaration())
2945      J->setLinkage(GlobalValue::InternalLinkage);
2946    // If the aliasee may change at link time, nothing can be done - bail out.
2947    if (J->mayBeOverridden())
2948      continue;
2949
2950    Constant *Aliasee = J->getAliasee();
2951    GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts());
2952    Target->removeDeadConstantUsers();
2953    bool hasOneUse = Target->hasOneUse() && Aliasee->hasOneUse();
2954
2955    // Make all users of the alias use the aliasee instead.
2956    if (!J->use_empty()) {
2957      J->replaceAllUsesWith(Aliasee);
2958      ++NumAliasesResolved;
2959      Changed = true;
2960    }
2961
2962    // If the alias is externally visible, we may still be able to simplify it.
2963    if (!J->hasLocalLinkage()) {
2964      // If the aliasee has internal linkage, give it the name and linkage
2965      // of the alias, and delete the alias.  This turns:
2966      //   define internal ... @f(...)
2967      //   @a = alias ... @f
2968      // into:
2969      //   define ... @a(...)
2970      if (!Target->hasLocalLinkage())
2971        continue;
2972
2973      // Do not perform the transform if multiple aliases potentially target the
2974      // aliasee. This check also ensures that it is safe to replace the section
2975      // and other attributes of the aliasee with those of the alias.
2976      if (!hasOneUse)
2977        continue;
2978
2979      // Give the aliasee the name, linkage and other attributes of the alias.
2980      Target->takeName(J);
2981      Target->setLinkage(J->getLinkage());
2982      Target->GlobalValue::copyAttributesFrom(J);
2983    }
2984
2985    // Delete the alias.
2986    M.getAliasList().erase(J);
2987    ++NumAliasesRemoved;
2988    Changed = true;
2989  }
2990
2991  return Changed;
2992}
2993
2994static Function *FindCXAAtExit(Module &M, TargetLibraryInfo *TLI) {
2995  if (!TLI->has(LibFunc::cxa_atexit))
2996    return 0;
2997
2998  Function *Fn = M.getFunction(TLI->getName(LibFunc::cxa_atexit));
2999
3000  if (!Fn)
3001    return 0;
3002
3003  FunctionType *FTy = Fn->getFunctionType();
3004
3005  // Checking that the function has the right return type, the right number of
3006  // parameters and that they all have pointer types should be enough.
3007  if (!FTy->getReturnType()->isIntegerTy() ||
3008      FTy->getNumParams() != 3 ||
3009      !FTy->getParamType(0)->isPointerTy() ||
3010      !FTy->getParamType(1)->isPointerTy() ||
3011      !FTy->getParamType(2)->isPointerTy())
3012    return 0;
3013
3014  return Fn;
3015}
3016
3017/// cxxDtorIsEmpty - Returns whether the given function is an empty C++
3018/// destructor and can therefore be eliminated.
3019/// Note that we assume that other optimization passes have already simplified
3020/// the code so we only look for a function with a single basic block, where
3021/// the only allowed instructions are 'ret', 'call' to an empty C++ dtor and
3022/// other side-effect free instructions.
3023static bool cxxDtorIsEmpty(const Function &Fn,
3024                           SmallPtrSet<const Function *, 8> &CalledFunctions) {
3025  // FIXME: We could eliminate C++ destructors if they're readonly/readnone and
3026  // nounwind, but that doesn't seem worth doing.
3027  if (Fn.isDeclaration())
3028    return false;
3029
3030  if (++Fn.begin() != Fn.end())
3031    return false;
3032
3033  const BasicBlock &EntryBlock = Fn.getEntryBlock();
3034  for (BasicBlock::const_iterator I = EntryBlock.begin(), E = EntryBlock.end();
3035       I != E; ++I) {
3036    if (const CallInst *CI = dyn_cast<CallInst>(I)) {
3037      // Ignore debug intrinsics.
3038      if (isa<DbgInfoIntrinsic>(CI))
3039        continue;
3040
3041      const Function *CalledFn = CI->getCalledFunction();
3042
3043      if (!CalledFn)
3044        return false;
3045
3046      SmallPtrSet<const Function *, 8> NewCalledFunctions(CalledFunctions);
3047
3048      // Don't treat recursive functions as empty.
3049      if (!NewCalledFunctions.insert(CalledFn))
3050        return false;
3051
3052      if (!cxxDtorIsEmpty(*CalledFn, NewCalledFunctions))
3053        return false;
3054    } else if (isa<ReturnInst>(*I))
3055      return true; // We're done.
3056    else if (I->mayHaveSideEffects())
3057      return false; // Destructor with side effects, bail.
3058  }
3059
3060  return false;
3061}
3062
3063bool GlobalOpt::OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) {
3064  /// Itanium C++ ABI p3.3.5:
3065  ///
3066  ///   After constructing a global (or local static) object, that will require
3067  ///   destruction on exit, a termination function is registered as follows:
3068  ///
3069  ///   extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d );
3070  ///
3071  ///   This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the
3072  ///   call f(p) when DSO d is unloaded, before all such termination calls
3073  ///   registered before this one. It returns zero if registration is
3074  ///   successful, nonzero on failure.
3075
3076  // This pass will look for calls to __cxa_atexit where the function is trivial
3077  // and remove them.
3078  bool Changed = false;
3079
3080  for (Function::use_iterator I = CXAAtExitFn->use_begin(),
3081       E = CXAAtExitFn->use_end(); I != E;) {
3082    // We're only interested in calls. Theoretically, we could handle invoke
3083    // instructions as well, but neither llvm-gcc nor clang generate invokes
3084    // to __cxa_atexit.
3085    CallInst *CI = dyn_cast<CallInst>(*I++);
3086    if (!CI)
3087      continue;
3088
3089    Function *DtorFn =
3090      dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts());
3091    if (!DtorFn)
3092      continue;
3093
3094    SmallPtrSet<const Function *, 8> CalledFunctions;
3095    if (!cxxDtorIsEmpty(*DtorFn, CalledFunctions))
3096      continue;
3097
3098    // Just remove the call.
3099    CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
3100    CI->eraseFromParent();
3101
3102    ++NumCXXDtorsRemoved;
3103
3104    Changed |= true;
3105  }
3106
3107  return Changed;
3108}
3109
3110bool GlobalOpt::runOnModule(Module &M) {
3111  bool Changed = false;
3112
3113  TD = getAnalysisIfAvailable<TargetData>();
3114  TLI = &getAnalysis<TargetLibraryInfo>();
3115
3116  // Try to find the llvm.globalctors list.
3117  GlobalVariable *GlobalCtors = FindGlobalCtors(M);
3118
3119  Function *CXAAtExitFn = FindCXAAtExit(M, TLI);
3120
3121  bool LocalChange = true;
3122  while (LocalChange) {
3123    LocalChange = false;
3124
3125    // Delete functions that are trivially dead, ccc -> fastcc
3126    LocalChange |= OptimizeFunctions(M);
3127
3128    // Optimize global_ctors list.
3129    if (GlobalCtors)
3130      LocalChange |= OptimizeGlobalCtorsList(GlobalCtors);
3131
3132    // Optimize non-address-taken globals.
3133    LocalChange |= OptimizeGlobalVars(M);
3134
3135    // Resolve aliases, when possible.
3136    LocalChange |= OptimizeGlobalAliases(M);
3137
3138    // Try to remove trivial global destructors.
3139    if (CXAAtExitFn)
3140      LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn);
3141
3142    Changed |= LocalChange;
3143  }
3144
3145  // TODO: Move all global ctors functions to the end of the module for code
3146  // layout.
3147
3148  return Changed;
3149}
3150