X86Subtarget.cpp revision 219077
1//===-- X86Subtarget.cpp - X86 Subtarget Information ----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the X86 specific subclass of TargetSubtarget.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "subtarget"
15#include "X86Subtarget.h"
16#include "X86InstrInfo.h"
17#include "X86GenSubtarget.inc"
18#include "llvm/GlobalValue.h"
19#include "llvm/Support/Debug.h"
20#include "llvm/Support/raw_ostream.h"
21#include "llvm/Support/Host.h"
22#include "llvm/Target/TargetMachine.h"
23#include "llvm/Target/TargetOptions.h"
24#include "llvm/ADT/SmallVector.h"
25using namespace llvm;
26
27#if defined(_MSC_VER)
28#include <intrin.h>
29#endif
30
31/// ClassifyBlockAddressReference - Classify a blockaddress reference for the
32/// current subtarget according to how we should reference it in a non-pcrel
33/// context.
34unsigned char X86Subtarget::
35ClassifyBlockAddressReference() const {
36  if (isPICStyleGOT())    // 32-bit ELF targets.
37    return X86II::MO_GOTOFF;
38
39  if (isPICStyleStubPIC())   // Darwin/32 in PIC mode.
40    return X86II::MO_PIC_BASE_OFFSET;
41
42  // Direct static reference to label.
43  return X86II::MO_NO_FLAG;
44}
45
46/// ClassifyGlobalReference - Classify a global variable reference for the
47/// current subtarget according to how we should reference it in a non-pcrel
48/// context.
49unsigned char X86Subtarget::
50ClassifyGlobalReference(const GlobalValue *GV, const TargetMachine &TM) const {
51  // DLLImport only exists on windows, it is implemented as a load from a
52  // DLLIMPORT stub.
53  if (GV->hasDLLImportLinkage())
54    return X86II::MO_DLLIMPORT;
55
56  // Determine whether this is a reference to a definition or a declaration.
57  // Materializable GVs (in JIT lazy compilation mode) do not require an extra
58  // load from stub.
59  bool isDecl = GV->hasAvailableExternallyLinkage();
60  if (GV->isDeclaration() && !GV->isMaterializable())
61    isDecl = true;
62
63  // X86-64 in PIC mode.
64  if (isPICStyleRIPRel()) {
65    // Large model never uses stubs.
66    if (TM.getCodeModel() == CodeModel::Large)
67      return X86II::MO_NO_FLAG;
68
69    if (isTargetDarwin()) {
70      // If symbol visibility is hidden, the extra load is not needed if
71      // target is x86-64 or the symbol is definitely defined in the current
72      // translation unit.
73      if (GV->hasDefaultVisibility() &&
74          (isDecl || GV->isWeakForLinker()))
75        return X86II::MO_GOTPCREL;
76    } else if (!isTargetWin64()) {
77      assert(isTargetELF() && "Unknown rip-relative target");
78
79      // Extra load is needed for all externally visible.
80      if (!GV->hasLocalLinkage() && GV->hasDefaultVisibility())
81        return X86II::MO_GOTPCREL;
82    }
83
84    return X86II::MO_NO_FLAG;
85  }
86
87  if (isPICStyleGOT()) {   // 32-bit ELF targets.
88    // Extra load is needed for all externally visible.
89    if (GV->hasLocalLinkage() || GV->hasHiddenVisibility())
90      return X86II::MO_GOTOFF;
91    return X86II::MO_GOT;
92  }
93
94  if (isPICStyleStubPIC()) {  // Darwin/32 in PIC mode.
95    // Determine whether we have a stub reference and/or whether the reference
96    // is relative to the PIC base or not.
97
98    // If this is a strong reference to a definition, it is definitely not
99    // through a stub.
100    if (!isDecl && !GV->isWeakForLinker())
101      return X86II::MO_PIC_BASE_OFFSET;
102
103    // Unless we have a symbol with hidden visibility, we have to go through a
104    // normal $non_lazy_ptr stub because this symbol might be resolved late.
105    if (!GV->hasHiddenVisibility())  // Non-hidden $non_lazy_ptr reference.
106      return X86II::MO_DARWIN_NONLAZY_PIC_BASE;
107
108    // If symbol visibility is hidden, we have a stub for common symbol
109    // references and external declarations.
110    if (isDecl || GV->hasCommonLinkage()) {
111      // Hidden $non_lazy_ptr reference.
112      return X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE;
113    }
114
115    // Otherwise, no stub.
116    return X86II::MO_PIC_BASE_OFFSET;
117  }
118
119  if (isPICStyleStubNoDynamic()) {  // Darwin/32 in -mdynamic-no-pic mode.
120    // Determine whether we have a stub reference.
121
122    // If this is a strong reference to a definition, it is definitely not
123    // through a stub.
124    if (!isDecl && !GV->isWeakForLinker())
125      return X86II::MO_NO_FLAG;
126
127    // Unless we have a symbol with hidden visibility, we have to go through a
128    // normal $non_lazy_ptr stub because this symbol might be resolved late.
129    if (!GV->hasHiddenVisibility())  // Non-hidden $non_lazy_ptr reference.
130      return X86II::MO_DARWIN_NONLAZY;
131
132    // Otherwise, no stub.
133    return X86II::MO_NO_FLAG;
134  }
135
136  // Direct static reference to global.
137  return X86II::MO_NO_FLAG;
138}
139
140
141/// getBZeroEntry - This function returns the name of a function which has an
142/// interface like the non-standard bzero function, if such a function exists on
143/// the current subtarget and it is considered prefereable over memset with zero
144/// passed as the second argument. Otherwise it returns null.
145const char *X86Subtarget::getBZeroEntry() const {
146  // Darwin 10 has a __bzero entry point for this purpose.
147  if (getDarwinVers() >= 10)
148    return "__bzero";
149
150  return 0;
151}
152
153/// IsLegalToCallImmediateAddr - Return true if the subtarget allows calls
154/// to immediate address.
155bool X86Subtarget::IsLegalToCallImmediateAddr(const TargetMachine &TM) const {
156  if (Is64Bit)
157    return false;
158  return isTargetELF() || TM.getRelocationModel() == Reloc::Static;
159}
160
161/// getSpecialAddressLatency - For targets where it is beneficial to
162/// backschedule instructions that compute addresses, return a value
163/// indicating the number of scheduling cycles of backscheduling that
164/// should be attempted.
165unsigned X86Subtarget::getSpecialAddressLatency() const {
166  // For x86 out-of-order targets, back-schedule address computations so
167  // that loads and stores aren't blocked.
168  // This value was chosen arbitrarily.
169  return 200;
170}
171
172/// GetCpuIDAndInfo - Execute the specified cpuid and return the 4 values in the
173/// specified arguments.  If we can't run cpuid on the host, return true.
174static bool GetCpuIDAndInfo(unsigned value, unsigned *rEAX,
175                            unsigned *rEBX, unsigned *rECX, unsigned *rEDX) {
176#if defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64)
177  #if defined(__GNUC__)
178    // gcc doesn't know cpuid would clobber ebx/rbx. Preseve it manually.
179    asm ("movq\t%%rbx, %%rsi\n\t"
180         "cpuid\n\t"
181         "xchgq\t%%rbx, %%rsi\n\t"
182         : "=a" (*rEAX),
183           "=S" (*rEBX),
184           "=c" (*rECX),
185           "=d" (*rEDX)
186         :  "a" (value));
187    return false;
188  #elif defined(_MSC_VER)
189    int registers[4];
190    __cpuid(registers, value);
191    *rEAX = registers[0];
192    *rEBX = registers[1];
193    *rECX = registers[2];
194    *rEDX = registers[3];
195    return false;
196  #endif
197#elif defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86)
198  #if defined(__GNUC__)
199    asm ("movl\t%%ebx, %%esi\n\t"
200         "cpuid\n\t"
201         "xchgl\t%%ebx, %%esi\n\t"
202         : "=a" (*rEAX),
203           "=S" (*rEBX),
204           "=c" (*rECX),
205           "=d" (*rEDX)
206         :  "a" (value));
207    return false;
208  #elif defined(_MSC_VER)
209    __asm {
210      mov   eax,value
211      cpuid
212      mov   esi,rEAX
213      mov   dword ptr [esi],eax
214      mov   esi,rEBX
215      mov   dword ptr [esi],ebx
216      mov   esi,rECX
217      mov   dword ptr [esi],ecx
218      mov   esi,rEDX
219      mov   dword ptr [esi],edx
220    }
221    return false;
222  #endif
223#endif
224  return true;
225}
226
227static void DetectFamilyModel(unsigned EAX, unsigned &Family, unsigned &Model) {
228  Family = (EAX >> 8) & 0xf; // Bits 8 - 11
229  Model  = (EAX >> 4) & 0xf; // Bits 4 - 7
230  if (Family == 6 || Family == 0xf) {
231    if (Family == 0xf)
232      // Examine extended family ID if family ID is F.
233      Family += (EAX >> 20) & 0xff;    // Bits 20 - 27
234    // Examine extended model ID if family ID is 6 or F.
235    Model += ((EAX >> 16) & 0xf) << 4; // Bits 16 - 19
236  }
237}
238
239void X86Subtarget::AutoDetectSubtargetFeatures() {
240  unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
241  union {
242    unsigned u[3];
243    char     c[12];
244  } text;
245
246  if (GetCpuIDAndInfo(0, &EAX, text.u+0, text.u+2, text.u+1))
247    return;
248
249  GetCpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX);
250
251  if ((EDX >> 15) & 1) HasCMov = true;
252  if ((EDX >> 23) & 1) X86SSELevel = MMX;
253  if ((EDX >> 25) & 1) X86SSELevel = SSE1;
254  if ((EDX >> 26) & 1) X86SSELevel = SSE2;
255  if (ECX & 0x1)       X86SSELevel = SSE3;
256  if ((ECX >> 9)  & 1) X86SSELevel = SSSE3;
257  if ((ECX >> 19) & 1) X86SSELevel = SSE41;
258  if ((ECX >> 20) & 1) X86SSELevel = SSE42;
259  // FIXME: AVX codegen support is not ready.
260  //if ((ECX >> 28) & 1) { HasAVX = true; X86SSELevel = NoMMXSSE; }
261
262  bool IsIntel = memcmp(text.c, "GenuineIntel", 12) == 0;
263  bool IsAMD   = !IsIntel && memcmp(text.c, "AuthenticAMD", 12) == 0;
264
265  HasCLMUL = IsIntel && ((ECX >> 1) & 0x1);
266  HasFMA3  = IsIntel && ((ECX >> 12) & 0x1);
267  HasAES   = IsIntel && ((ECX >> 25) & 0x1);
268
269  if (IsIntel || IsAMD) {
270    // Determine if bit test memory instructions are slow.
271    unsigned Family = 0;
272    unsigned Model  = 0;
273    DetectFamilyModel(EAX, Family, Model);
274    IsBTMemSlow = IsAMD || (Family == 6 && Model >= 13);
275    // If it's Nehalem, unaligned memory access is fast.
276    if (Family == 15 && Model == 26)
277      IsUAMemFast = true;
278
279    GetCpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
280    HasX86_64 = (EDX >> 29) & 0x1;
281    HasSSE4A = IsAMD && ((ECX >> 6) & 0x1);
282    HasFMA4 = IsAMD && ((ECX >> 16) & 0x1);
283  }
284}
285
286X86Subtarget::X86Subtarget(const std::string &TT, const std::string &FS,
287                           bool is64Bit)
288  : PICStyle(PICStyles::None)
289  , X86SSELevel(NoMMXSSE)
290  , X863DNowLevel(NoThreeDNow)
291  , HasCMov(false)
292  , HasX86_64(false)
293  , HasPOPCNT(false)
294  , HasSSE4A(false)
295  , HasAVX(false)
296  , HasAES(false)
297  , HasCLMUL(false)
298  , HasFMA3(false)
299  , HasFMA4(false)
300  , IsBTMemSlow(false)
301  , IsUAMemFast(false)
302  , HasVectorUAMem(false)
303  , stackAlignment(8)
304  // FIXME: this is a known good value for Yonah. How about others?
305  , MaxInlineSizeThreshold(128)
306  , TargetTriple(TT)
307  , Is64Bit(is64Bit) {
308
309  // default to hard float ABI
310  if (FloatABIType == FloatABI::Default)
311    FloatABIType = FloatABI::Hard;
312
313  // Determine default and user specified characteristics
314  if (!FS.empty()) {
315    // If feature string is not empty, parse features string.
316    std::string CPU = sys::getHostCPUName();
317    ParseSubtargetFeatures(FS, CPU);
318    // All X86-64 CPUs also have SSE2, however user might request no SSE via
319    // -mattr, so don't force SSELevel here.
320    if (HasAVX)
321      X86SSELevel = NoMMXSSE;
322  } else {
323    // Otherwise, use CPUID to auto-detect feature set.
324    AutoDetectSubtargetFeatures();
325    // Make sure SSE2 is enabled; it is available on all X86-64 CPUs.
326    if (Is64Bit && !HasAVX && X86SSELevel < SSE2)
327      X86SSELevel = SSE2;
328  }
329
330  // If requesting codegen for X86-64, make sure that 64-bit features
331  // are enabled.
332  if (Is64Bit) {
333    HasX86_64 = true;
334
335    // All 64-bit cpus have cmov support.
336    HasCMov = true;
337  }
338
339  DEBUG(dbgs() << "Subtarget features: SSELevel " << X86SSELevel
340               << ", 3DNowLevel " << X863DNowLevel
341               << ", 64bit " << HasX86_64 << "\n");
342  assert((!Is64Bit || HasX86_64) &&
343         "64-bit code requested on a subtarget that doesn't support it!");
344
345  // Stack alignment is 16 bytes on Darwin, FreeBSD, Linux and Solaris (both
346  // 32 and 64 bit) and for all 64-bit targets.
347  if (isTargetDarwin() || isTargetFreeBSD() || isTargetLinux() ||
348      isTargetSolaris() || Is64Bit)
349    stackAlignment = 16;
350
351  if (StackAlignment)
352    stackAlignment = StackAlignment;
353}
354
355/// IsCalleePop - Determines whether the callee is required to pop its
356/// own arguments. Callee pop is necessary to support tail calls.
357bool X86Subtarget::IsCalleePop(bool IsVarArg,
358                               CallingConv::ID CallingConv) const {
359  if (IsVarArg)
360    return false;
361
362  switch (CallingConv) {
363  default:
364    return false;
365  case CallingConv::X86_StdCall:
366    return !is64Bit();
367  case CallingConv::X86_FastCall:
368    return !is64Bit();
369  case CallingConv::X86_ThisCall:
370    return !is64Bit();
371  case CallingConv::Fast:
372    return GuaranteedTailCallOpt;
373  case CallingConv::GHC:
374    return GuaranteedTailCallOpt;
375  }
376}
377