X86Subtarget.cpp revision 205218
1//===-- X86Subtarget.cpp - X86 Subtarget Information ------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the X86 specific subclass of TargetSubtarget.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "subtarget"
15#include "X86Subtarget.h"
16#include "X86InstrInfo.h"
17#include "X86GenSubtarget.inc"
18#include "llvm/GlobalValue.h"
19#include "llvm/Support/Debug.h"
20#include "llvm/Support/raw_ostream.h"
21#include "llvm/System/Host.h"
22#include "llvm/Target/TargetMachine.h"
23#include "llvm/Target/TargetOptions.h"
24#include "llvm/ADT/SmallVector.h"
25using namespace llvm;
26
27#if defined(_MSC_VER)
28#include <intrin.h>
29#endif
30
31/// ClassifyBlockAddressReference - Classify a blockaddress reference for the
32/// current subtarget according to how we should reference it in a non-pcrel
33/// context.
34unsigned char X86Subtarget::
35ClassifyBlockAddressReference() const {
36  if (isPICStyleGOT())    // 32-bit ELF targets.
37    return X86II::MO_GOTOFF;
38
39  if (isPICStyleStubPIC())   // Darwin/32 in PIC mode.
40    return X86II::MO_PIC_BASE_OFFSET;
41
42  // Direct static reference to label.
43  return X86II::MO_NO_FLAG;
44}
45
46/// ClassifyGlobalReference - Classify a global variable reference for the
47/// current subtarget according to how we should reference it in a non-pcrel
48/// context.
49unsigned char X86Subtarget::
50ClassifyGlobalReference(const GlobalValue *GV, const TargetMachine &TM) const {
51  // DLLImport only exists on windows, it is implemented as a load from a
52  // DLLIMPORT stub.
53  if (GV->hasDLLImportLinkage())
54    return X86II::MO_DLLIMPORT;
55
56  // Materializable GVs (in JIT lazy compilation mode) do not require an
57  // extra load from stub.
58  bool isDecl = GV->isDeclaration() && !GV->isMaterializable();
59
60  // X86-64 in PIC mode.
61  if (isPICStyleRIPRel()) {
62    // Large model never uses stubs.
63    if (TM.getCodeModel() == CodeModel::Large)
64      return X86II::MO_NO_FLAG;
65
66    if (isTargetDarwin()) {
67      // If symbol visibility is hidden, the extra load is not needed if
68      // target is x86-64 or the symbol is definitely defined in the current
69      // translation unit.
70      if (GV->hasDefaultVisibility() &&
71          (isDecl || GV->isWeakForLinker()))
72        return X86II::MO_GOTPCREL;
73    } else {
74      assert(isTargetELF() && "Unknown rip-relative target");
75
76      // Extra load is needed for all externally visible.
77      if (!GV->hasLocalLinkage() && GV->hasDefaultVisibility())
78        return X86II::MO_GOTPCREL;
79    }
80
81    return X86II::MO_NO_FLAG;
82  }
83
84  if (isPICStyleGOT()) {   // 32-bit ELF targets.
85    // Extra load is needed for all externally visible.
86    if (GV->hasLocalLinkage() || GV->hasHiddenVisibility())
87      return X86II::MO_GOTOFF;
88    return X86II::MO_GOT;
89  }
90
91  if (isPICStyleStubPIC()) {  // Darwin/32 in PIC mode.
92    // Determine whether we have a stub reference and/or whether the reference
93    // is relative to the PIC base or not.
94
95    // If this is a strong reference to a definition, it is definitely not
96    // through a stub.
97    if (!isDecl && !GV->isWeakForLinker())
98      return X86II::MO_PIC_BASE_OFFSET;
99
100    // Unless we have a symbol with hidden visibility, we have to go through a
101    // normal $non_lazy_ptr stub because this symbol might be resolved late.
102    if (!GV->hasHiddenVisibility())  // Non-hidden $non_lazy_ptr reference.
103      return X86II::MO_DARWIN_NONLAZY_PIC_BASE;
104
105    // If symbol visibility is hidden, we have a stub for common symbol
106    // references and external declarations.
107    if (isDecl || GV->hasCommonLinkage()) {
108      // Hidden $non_lazy_ptr reference.
109      return X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE;
110    }
111
112    // Otherwise, no stub.
113    return X86II::MO_PIC_BASE_OFFSET;
114  }
115
116  if (isPICStyleStubNoDynamic()) {  // Darwin/32 in -mdynamic-no-pic mode.
117    // Determine whether we have a stub reference.
118
119    // If this is a strong reference to a definition, it is definitely not
120    // through a stub.
121    if (!isDecl && !GV->isWeakForLinker())
122      return X86II::MO_NO_FLAG;
123
124    // Unless we have a symbol with hidden visibility, we have to go through a
125    // normal $non_lazy_ptr stub because this symbol might be resolved late.
126    if (!GV->hasHiddenVisibility())  // Non-hidden $non_lazy_ptr reference.
127      return X86II::MO_DARWIN_NONLAZY;
128
129    // Otherwise, no stub.
130    return X86II::MO_NO_FLAG;
131  }
132
133  // Direct static reference to global.
134  return X86II::MO_NO_FLAG;
135}
136
137
138/// getBZeroEntry - This function returns the name of a function which has an
139/// interface like the non-standard bzero function, if such a function exists on
140/// the current subtarget and it is considered prefereable over memset with zero
141/// passed as the second argument. Otherwise it returns null.
142const char *X86Subtarget::getBZeroEntry() const {
143  // Darwin 10 has a __bzero entry point for this purpose.
144  if (getDarwinVers() >= 10)
145    return "__bzero";
146
147  return 0;
148}
149
150/// IsLegalToCallImmediateAddr - Return true if the subtarget allows calls
151/// to immediate address.
152bool X86Subtarget::IsLegalToCallImmediateAddr(const TargetMachine &TM) const {
153  if (Is64Bit)
154    return false;
155  return isTargetELF() || TM.getRelocationModel() == Reloc::Static;
156}
157
158/// getSpecialAddressLatency - For targets where it is beneficial to
159/// backschedule instructions that compute addresses, return a value
160/// indicating the number of scheduling cycles of backscheduling that
161/// should be attempted.
162unsigned X86Subtarget::getSpecialAddressLatency() const {
163  // For x86 out-of-order targets, back-schedule address computations so
164  // that loads and stores aren't blocked.
165  // This value was chosen arbitrarily.
166  return 200;
167}
168
169/// GetCpuIDAndInfo - Execute the specified cpuid and return the 4 values in the
170/// specified arguments.  If we can't run cpuid on the host, return true.
171static bool GetCpuIDAndInfo(unsigned value, unsigned *rEAX,
172                            unsigned *rEBX, unsigned *rECX, unsigned *rEDX) {
173#if defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64)
174  #if defined(__GNUC__)
175    // gcc doesn't know cpuid would clobber ebx/rbx. Preseve it manually.
176    asm ("movq\t%%rbx, %%rsi\n\t"
177         "cpuid\n\t"
178         "xchgq\t%%rbx, %%rsi\n\t"
179         : "=a" (*rEAX),
180           "=S" (*rEBX),
181           "=c" (*rECX),
182           "=d" (*rEDX)
183         :  "a" (value));
184    return false;
185  #elif defined(_MSC_VER)
186    int registers[4];
187    __cpuid(registers, value);
188    *rEAX = registers[0];
189    *rEBX = registers[1];
190    *rECX = registers[2];
191    *rEDX = registers[3];
192    return false;
193  #endif
194#elif defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86)
195  #if defined(__GNUC__)
196    asm ("movl\t%%ebx, %%esi\n\t"
197         "cpuid\n\t"
198         "xchgl\t%%ebx, %%esi\n\t"
199         : "=a" (*rEAX),
200           "=S" (*rEBX),
201           "=c" (*rECX),
202           "=d" (*rEDX)
203         :  "a" (value));
204    return false;
205  #elif defined(_MSC_VER)
206    __asm {
207      mov   eax,value
208      cpuid
209      mov   esi,rEAX
210      mov   dword ptr [esi],eax
211      mov   esi,rEBX
212      mov   dword ptr [esi],ebx
213      mov   esi,rECX
214      mov   dword ptr [esi],ecx
215      mov   esi,rEDX
216      mov   dword ptr [esi],edx
217    }
218    return false;
219  #endif
220#endif
221  return true;
222}
223
224static void DetectFamilyModel(unsigned EAX, unsigned &Family, unsigned &Model) {
225  Family = (EAX >> 8) & 0xf; // Bits 8 - 11
226  Model  = (EAX >> 4) & 0xf; // Bits 4 - 7
227  if (Family == 6 || Family == 0xf) {
228    if (Family == 0xf)
229      // Examine extended family ID if family ID is F.
230      Family += (EAX >> 20) & 0xff;    // Bits 20 - 27
231    // Examine extended model ID if family ID is 6 or F.
232    Model += ((EAX >> 16) & 0xf) << 4; // Bits 16 - 19
233  }
234}
235
236void X86Subtarget::AutoDetectSubtargetFeatures() {
237  unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
238  union {
239    unsigned u[3];
240    char     c[12];
241  } text;
242
243  if (GetCpuIDAndInfo(0, &EAX, text.u+0, text.u+2, text.u+1))
244    return;
245
246  GetCpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX);
247
248  if ((EDX >> 15) & 1) HasCMov = true;
249  if ((EDX >> 23) & 1) X86SSELevel = MMX;
250  if ((EDX >> 25) & 1) X86SSELevel = SSE1;
251  if ((EDX >> 26) & 1) X86SSELevel = SSE2;
252  if (ECX & 0x1)       X86SSELevel = SSE3;
253  if ((ECX >> 9)  & 1) X86SSELevel = SSSE3;
254  if ((ECX >> 19) & 1) X86SSELevel = SSE41;
255  if ((ECX >> 20) & 1) X86SSELevel = SSE42;
256
257  bool IsIntel = memcmp(text.c, "GenuineIntel", 12) == 0;
258  bool IsAMD   = !IsIntel && memcmp(text.c, "AuthenticAMD", 12) == 0;
259
260  HasFMA3 = IsIntel && ((ECX >> 12) & 0x1);
261  HasAVX = ((ECX >> 28) & 0x1);
262
263  if (IsIntel || IsAMD) {
264    // Determine if bit test memory instructions are slow.
265    unsigned Family = 0;
266    unsigned Model  = 0;
267    DetectFamilyModel(EAX, Family, Model);
268    IsBTMemSlow = IsAMD || (Family == 6 && Model >= 13);
269
270    GetCpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
271    HasX86_64 = (EDX >> 29) & 0x1;
272    HasSSE4A = IsAMD && ((ECX >> 6) & 0x1);
273    HasFMA4 = IsAMD && ((ECX >> 16) & 0x1);
274  }
275}
276
277X86Subtarget::X86Subtarget(const std::string &TT, const std::string &FS,
278                           bool is64Bit)
279  : PICStyle(PICStyles::None)
280  , X86SSELevel(NoMMXSSE)
281  , X863DNowLevel(NoThreeDNow)
282  , HasCMov(false)
283  , HasX86_64(false)
284  , HasSSE4A(false)
285  , HasAVX(false)
286  , HasFMA3(false)
287  , HasFMA4(false)
288  , IsBTMemSlow(false)
289  , HasVectorUAMem(false)
290  , DarwinVers(0)
291  , stackAlignment(8)
292  // FIXME: this is a known good value for Yonah. How about others?
293  , MaxInlineSizeThreshold(128)
294  , Is64Bit(is64Bit)
295  , TargetType(isELF) { // Default to ELF unless otherwise specified.
296
297  // default to hard float ABI
298  if (FloatABIType == FloatABI::Default)
299    FloatABIType = FloatABI::Hard;
300
301  // Determine default and user specified characteristics
302  if (!FS.empty()) {
303    // If feature string is not empty, parse features string.
304    std::string CPU = sys::getHostCPUName();
305    ParseSubtargetFeatures(FS, CPU);
306    // All X86-64 CPUs also have SSE2, however user might request no SSE via
307    // -mattr, so don't force SSELevel here.
308  } else {
309    // Otherwise, use CPUID to auto-detect feature set.
310    AutoDetectSubtargetFeatures();
311    // Make sure SSE2 is enabled; it is available on all X86-64 CPUs.
312    if (Is64Bit && X86SSELevel < SSE2)
313      X86SSELevel = SSE2;
314  }
315
316  // If requesting codegen for X86-64, make sure that 64-bit features
317  // are enabled.
318  if (Is64Bit) {
319    HasX86_64 = true;
320
321    // All 64-bit cpus have cmov support.
322    HasCMov = true;
323  }
324
325
326  DEBUG(dbgs() << "Subtarget features: SSELevel " << X86SSELevel
327               << ", 3DNowLevel " << X863DNowLevel
328               << ", 64bit " << HasX86_64 << "\n");
329  assert((!Is64Bit || HasX86_64) &&
330         "64-bit code requested on a subtarget that doesn't support it!");
331
332  // Set the boolean corresponding to the current target triple, or the default
333  // if one cannot be determined, to true.
334  if (TT.length() > 5) {
335    size_t Pos;
336    if ((Pos = TT.find("-darwin")) != std::string::npos) {
337      TargetType = isDarwin;
338
339      // Compute the darwin version number.
340      if (isdigit(TT[Pos+7]))
341        DarwinVers = atoi(&TT[Pos+7]);
342      else
343        DarwinVers = 8;  // Minimum supported darwin is Tiger.
344    } else if (TT.find("linux") != std::string::npos) {
345      // Linux doesn't imply ELF, but we don't currently support anything else.
346      TargetType = isELF;
347    } else if (TT.find("cygwin") != std::string::npos) {
348      TargetType = isCygwin;
349    } else if (TT.find("mingw") != std::string::npos) {
350      TargetType = isMingw;
351    } else if (TT.find("win32") != std::string::npos) {
352      TargetType = isWindows;
353    } else if (TT.find("windows") != std::string::npos) {
354      TargetType = isWindows;
355    } else if (TT.find("-cl") != std::string::npos) {
356      TargetType = isDarwin;
357      DarwinVers = 9;
358    }
359  }
360
361  // Stack alignment is 16 bytes on Darwin (both 32 and 64 bit) and for all 64
362  // bit targets.
363  if (TargetType == isDarwin || Is64Bit)
364    stackAlignment = 16;
365
366  if (StackAlignment)
367    stackAlignment = StackAlignment;
368}
369
370bool X86Subtarget::enablePostRAScheduler(
371            CodeGenOpt::Level OptLevel,
372            TargetSubtarget::AntiDepBreakMode& Mode,
373            RegClassVector& CriticalPathRCs) const {
374  Mode = TargetSubtarget::ANTIDEP_CRITICAL;
375  CriticalPathRCs.clear();
376  return OptLevel >= CodeGenOpt::Aggressive;
377}
378