X86InstrInfo.cpp revision 205218
1//===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "X86InstrInfo.h"
15#include "X86.h"
16#include "X86GenInstrInfo.inc"
17#include "X86InstrBuilder.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86Subtarget.h"
20#include "X86TargetMachine.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/LLVMContext.h"
23#include "llvm/ADT/STLExtras.h"
24#include "llvm/CodeGen/MachineConstantPool.h"
25#include "llvm/CodeGen/MachineFrameInfo.h"
26#include "llvm/CodeGen/MachineInstrBuilder.h"
27#include "llvm/CodeGen/MachineRegisterInfo.h"
28#include "llvm/CodeGen/LiveVariables.h"
29#include "llvm/CodeGen/PseudoSourceValue.h"
30#include "llvm/Support/CommandLine.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/Support/ErrorHandling.h"
33#include "llvm/Support/raw_ostream.h"
34#include "llvm/Target/TargetOptions.h"
35#include "llvm/MC/MCAsmInfo.h"
36
37#include <limits>
38
39using namespace llvm;
40
41static cl::opt<bool>
42NoFusing("disable-spill-fusing",
43         cl::desc("Disable fusing of spill code into instructions"));
44static cl::opt<bool>
45PrintFailedFusing("print-failed-fuse-candidates",
46                  cl::desc("Print instructions that the allocator wants to"
47                           " fuse, but the X86 backend currently can't"),
48                  cl::Hidden);
49static cl::opt<bool>
50ReMatPICStubLoad("remat-pic-stub-load",
51                 cl::desc("Re-materialize load from stub in PIC mode"),
52                 cl::init(false), cl::Hidden);
53
54X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
55  : TargetInstrInfoImpl(X86Insts, array_lengthof(X86Insts)),
56    TM(tm), RI(tm, *this) {
57  SmallVector<unsigned,16> AmbEntries;
58  static const unsigned OpTbl2Addr[][2] = {
59    { X86::ADC32ri,     X86::ADC32mi },
60    { X86::ADC32ri8,    X86::ADC32mi8 },
61    { X86::ADC32rr,     X86::ADC32mr },
62    { X86::ADC64ri32,   X86::ADC64mi32 },
63    { X86::ADC64ri8,    X86::ADC64mi8 },
64    { X86::ADC64rr,     X86::ADC64mr },
65    { X86::ADD16ri,     X86::ADD16mi },
66    { X86::ADD16ri8,    X86::ADD16mi8 },
67    { X86::ADD16rr,     X86::ADD16mr },
68    { X86::ADD32ri,     X86::ADD32mi },
69    { X86::ADD32ri8,    X86::ADD32mi8 },
70    { X86::ADD32rr,     X86::ADD32mr },
71    { X86::ADD64ri32,   X86::ADD64mi32 },
72    { X86::ADD64ri8,    X86::ADD64mi8 },
73    { X86::ADD64rr,     X86::ADD64mr },
74    { X86::ADD8ri,      X86::ADD8mi },
75    { X86::ADD8rr,      X86::ADD8mr },
76    { X86::AND16ri,     X86::AND16mi },
77    { X86::AND16ri8,    X86::AND16mi8 },
78    { X86::AND16rr,     X86::AND16mr },
79    { X86::AND32ri,     X86::AND32mi },
80    { X86::AND32ri8,    X86::AND32mi8 },
81    { X86::AND32rr,     X86::AND32mr },
82    { X86::AND64ri32,   X86::AND64mi32 },
83    { X86::AND64ri8,    X86::AND64mi8 },
84    { X86::AND64rr,     X86::AND64mr },
85    { X86::AND8ri,      X86::AND8mi },
86    { X86::AND8rr,      X86::AND8mr },
87    { X86::DEC16r,      X86::DEC16m },
88    { X86::DEC32r,      X86::DEC32m },
89    { X86::DEC64_16r,   X86::DEC64_16m },
90    { X86::DEC64_32r,   X86::DEC64_32m },
91    { X86::DEC64r,      X86::DEC64m },
92    { X86::DEC8r,       X86::DEC8m },
93    { X86::INC16r,      X86::INC16m },
94    { X86::INC32r,      X86::INC32m },
95    { X86::INC64_16r,   X86::INC64_16m },
96    { X86::INC64_32r,   X86::INC64_32m },
97    { X86::INC64r,      X86::INC64m },
98    { X86::INC8r,       X86::INC8m },
99    { X86::NEG16r,      X86::NEG16m },
100    { X86::NEG32r,      X86::NEG32m },
101    { X86::NEG64r,      X86::NEG64m },
102    { X86::NEG8r,       X86::NEG8m },
103    { X86::NOT16r,      X86::NOT16m },
104    { X86::NOT32r,      X86::NOT32m },
105    { X86::NOT64r,      X86::NOT64m },
106    { X86::NOT8r,       X86::NOT8m },
107    { X86::OR16ri,      X86::OR16mi },
108    { X86::OR16ri8,     X86::OR16mi8 },
109    { X86::OR16rr,      X86::OR16mr },
110    { X86::OR32ri,      X86::OR32mi },
111    { X86::OR32ri8,     X86::OR32mi8 },
112    { X86::OR32rr,      X86::OR32mr },
113    { X86::OR64ri32,    X86::OR64mi32 },
114    { X86::OR64ri8,     X86::OR64mi8 },
115    { X86::OR64rr,      X86::OR64mr },
116    { X86::OR8ri,       X86::OR8mi },
117    { X86::OR8rr,       X86::OR8mr },
118    { X86::ROL16r1,     X86::ROL16m1 },
119    { X86::ROL16rCL,    X86::ROL16mCL },
120    { X86::ROL16ri,     X86::ROL16mi },
121    { X86::ROL32r1,     X86::ROL32m1 },
122    { X86::ROL32rCL,    X86::ROL32mCL },
123    { X86::ROL32ri,     X86::ROL32mi },
124    { X86::ROL64r1,     X86::ROL64m1 },
125    { X86::ROL64rCL,    X86::ROL64mCL },
126    { X86::ROL64ri,     X86::ROL64mi },
127    { X86::ROL8r1,      X86::ROL8m1 },
128    { X86::ROL8rCL,     X86::ROL8mCL },
129    { X86::ROL8ri,      X86::ROL8mi },
130    { X86::ROR16r1,     X86::ROR16m1 },
131    { X86::ROR16rCL,    X86::ROR16mCL },
132    { X86::ROR16ri,     X86::ROR16mi },
133    { X86::ROR32r1,     X86::ROR32m1 },
134    { X86::ROR32rCL,    X86::ROR32mCL },
135    { X86::ROR32ri,     X86::ROR32mi },
136    { X86::ROR64r1,     X86::ROR64m1 },
137    { X86::ROR64rCL,    X86::ROR64mCL },
138    { X86::ROR64ri,     X86::ROR64mi },
139    { X86::ROR8r1,      X86::ROR8m1 },
140    { X86::ROR8rCL,     X86::ROR8mCL },
141    { X86::ROR8ri,      X86::ROR8mi },
142    { X86::SAR16r1,     X86::SAR16m1 },
143    { X86::SAR16rCL,    X86::SAR16mCL },
144    { X86::SAR16ri,     X86::SAR16mi },
145    { X86::SAR32r1,     X86::SAR32m1 },
146    { X86::SAR32rCL,    X86::SAR32mCL },
147    { X86::SAR32ri,     X86::SAR32mi },
148    { X86::SAR64r1,     X86::SAR64m1 },
149    { X86::SAR64rCL,    X86::SAR64mCL },
150    { X86::SAR64ri,     X86::SAR64mi },
151    { X86::SAR8r1,      X86::SAR8m1 },
152    { X86::SAR8rCL,     X86::SAR8mCL },
153    { X86::SAR8ri,      X86::SAR8mi },
154    { X86::SBB32ri,     X86::SBB32mi },
155    { X86::SBB32ri8,    X86::SBB32mi8 },
156    { X86::SBB32rr,     X86::SBB32mr },
157    { X86::SBB64ri32,   X86::SBB64mi32 },
158    { X86::SBB64ri8,    X86::SBB64mi8 },
159    { X86::SBB64rr,     X86::SBB64mr },
160    { X86::SHL16rCL,    X86::SHL16mCL },
161    { X86::SHL16ri,     X86::SHL16mi },
162    { X86::SHL32rCL,    X86::SHL32mCL },
163    { X86::SHL32ri,     X86::SHL32mi },
164    { X86::SHL64rCL,    X86::SHL64mCL },
165    { X86::SHL64ri,     X86::SHL64mi },
166    { X86::SHL8rCL,     X86::SHL8mCL },
167    { X86::SHL8ri,      X86::SHL8mi },
168    { X86::SHLD16rrCL,  X86::SHLD16mrCL },
169    { X86::SHLD16rri8,  X86::SHLD16mri8 },
170    { X86::SHLD32rrCL,  X86::SHLD32mrCL },
171    { X86::SHLD32rri8,  X86::SHLD32mri8 },
172    { X86::SHLD64rrCL,  X86::SHLD64mrCL },
173    { X86::SHLD64rri8,  X86::SHLD64mri8 },
174    { X86::SHR16r1,     X86::SHR16m1 },
175    { X86::SHR16rCL,    X86::SHR16mCL },
176    { X86::SHR16ri,     X86::SHR16mi },
177    { X86::SHR32r1,     X86::SHR32m1 },
178    { X86::SHR32rCL,    X86::SHR32mCL },
179    { X86::SHR32ri,     X86::SHR32mi },
180    { X86::SHR64r1,     X86::SHR64m1 },
181    { X86::SHR64rCL,    X86::SHR64mCL },
182    { X86::SHR64ri,     X86::SHR64mi },
183    { X86::SHR8r1,      X86::SHR8m1 },
184    { X86::SHR8rCL,     X86::SHR8mCL },
185    { X86::SHR8ri,      X86::SHR8mi },
186    { X86::SHRD16rrCL,  X86::SHRD16mrCL },
187    { X86::SHRD16rri8,  X86::SHRD16mri8 },
188    { X86::SHRD32rrCL,  X86::SHRD32mrCL },
189    { X86::SHRD32rri8,  X86::SHRD32mri8 },
190    { X86::SHRD64rrCL,  X86::SHRD64mrCL },
191    { X86::SHRD64rri8,  X86::SHRD64mri8 },
192    { X86::SUB16ri,     X86::SUB16mi },
193    { X86::SUB16ri8,    X86::SUB16mi8 },
194    { X86::SUB16rr,     X86::SUB16mr },
195    { X86::SUB32ri,     X86::SUB32mi },
196    { X86::SUB32ri8,    X86::SUB32mi8 },
197    { X86::SUB32rr,     X86::SUB32mr },
198    { X86::SUB64ri32,   X86::SUB64mi32 },
199    { X86::SUB64ri8,    X86::SUB64mi8 },
200    { X86::SUB64rr,     X86::SUB64mr },
201    { X86::SUB8ri,      X86::SUB8mi },
202    { X86::SUB8rr,      X86::SUB8mr },
203    { X86::XOR16ri,     X86::XOR16mi },
204    { X86::XOR16ri8,    X86::XOR16mi8 },
205    { X86::XOR16rr,     X86::XOR16mr },
206    { X86::XOR32ri,     X86::XOR32mi },
207    { X86::XOR32ri8,    X86::XOR32mi8 },
208    { X86::XOR32rr,     X86::XOR32mr },
209    { X86::XOR64ri32,   X86::XOR64mi32 },
210    { X86::XOR64ri8,    X86::XOR64mi8 },
211    { X86::XOR64rr,     X86::XOR64mr },
212    { X86::XOR8ri,      X86::XOR8mi },
213    { X86::XOR8rr,      X86::XOR8mr }
214  };
215
216  for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
217    unsigned RegOp = OpTbl2Addr[i][0];
218    unsigned MemOp = OpTbl2Addr[i][1];
219    if (!RegOp2MemOpTable2Addr.insert(std::make_pair((unsigned*)RegOp,
220                                               std::make_pair(MemOp,0))).second)
221      assert(false && "Duplicated entries?");
222    // Index 0, folded load and store, no alignment requirement.
223    unsigned AuxInfo = 0 | (1 << 4) | (1 << 5);
224    if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
225                                                std::make_pair(RegOp,
226                                                              AuxInfo))).second)
227      AmbEntries.push_back(MemOp);
228  }
229
230  // If the third value is 1, then it's folding either a load or a store.
231  static const unsigned OpTbl0[][4] = {
232    { X86::BT16ri8,     X86::BT16mi8, 1, 0 },
233    { X86::BT32ri8,     X86::BT32mi8, 1, 0 },
234    { X86::BT64ri8,     X86::BT64mi8, 1, 0 },
235    { X86::CALL32r,     X86::CALL32m, 1, 0 },
236    { X86::CALL64r,     X86::CALL64m, 1, 0 },
237    { X86::CMP16ri,     X86::CMP16mi, 1, 0 },
238    { X86::CMP16ri8,    X86::CMP16mi8, 1, 0 },
239    { X86::CMP16rr,     X86::CMP16mr, 1, 0 },
240    { X86::CMP32ri,     X86::CMP32mi, 1, 0 },
241    { X86::CMP32ri8,    X86::CMP32mi8, 1, 0 },
242    { X86::CMP32rr,     X86::CMP32mr, 1, 0 },
243    { X86::CMP64ri32,   X86::CMP64mi32, 1, 0 },
244    { X86::CMP64ri8,    X86::CMP64mi8, 1, 0 },
245    { X86::CMP64rr,     X86::CMP64mr, 1, 0 },
246    { X86::CMP8ri,      X86::CMP8mi, 1, 0 },
247    { X86::CMP8rr,      X86::CMP8mr, 1, 0 },
248    { X86::DIV16r,      X86::DIV16m, 1, 0 },
249    { X86::DIV32r,      X86::DIV32m, 1, 0 },
250    { X86::DIV64r,      X86::DIV64m, 1, 0 },
251    { X86::DIV8r,       X86::DIV8m, 1, 0 },
252    { X86::EXTRACTPSrr, X86::EXTRACTPSmr, 0, 16 },
253    { X86::FsMOVAPDrr,  X86::MOVSDmr, 0, 0 },
254    { X86::FsMOVAPSrr,  X86::MOVSSmr, 0, 0 },
255    { X86::IDIV16r,     X86::IDIV16m, 1, 0 },
256    { X86::IDIV32r,     X86::IDIV32m, 1, 0 },
257    { X86::IDIV64r,     X86::IDIV64m, 1, 0 },
258    { X86::IDIV8r,      X86::IDIV8m, 1, 0 },
259    { X86::IMUL16r,     X86::IMUL16m, 1, 0 },
260    { X86::IMUL32r,     X86::IMUL32m, 1, 0 },
261    { X86::IMUL64r,     X86::IMUL64m, 1, 0 },
262    { X86::IMUL8r,      X86::IMUL8m, 1, 0 },
263    { X86::JMP32r,      X86::JMP32m, 1, 0 },
264    { X86::JMP64r,      X86::JMP64m, 1, 0 },
265    { X86::MOV16ri,     X86::MOV16mi, 0, 0 },
266    { X86::MOV16rr,     X86::MOV16mr, 0, 0 },
267    { X86::MOV32ri,     X86::MOV32mi, 0, 0 },
268    { X86::MOV32rr,     X86::MOV32mr, 0, 0 },
269    { X86::MOV32rr_TC,  X86::MOV32mr_TC, 0, 0 },
270    { X86::MOV64ri32,   X86::MOV64mi32, 0, 0 },
271    { X86::MOV64rr,     X86::MOV64mr, 0, 0 },
272    { X86::MOV8ri,      X86::MOV8mi, 0, 0 },
273    { X86::MOV8rr,      X86::MOV8mr, 0, 0 },
274    { X86::MOV8rr_NOREX, X86::MOV8mr_NOREX, 0, 0 },
275    { X86::MOVAPDrr,    X86::MOVAPDmr, 0, 16 },
276    { X86::MOVAPSrr,    X86::MOVAPSmr, 0, 16 },
277    { X86::MOVDQArr,    X86::MOVDQAmr, 0, 16 },
278    { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, 0, 0 },
279    { X86::MOVPQIto64rr,X86::MOVPQI2QImr, 0, 0 },
280    { X86::MOVSDto64rr, X86::MOVSDto64mr, 0, 0 },
281    { X86::MOVSS2DIrr,  X86::MOVSS2DImr, 0, 0 },
282    { X86::MOVUPDrr,    X86::MOVUPDmr, 0, 0 },
283    { X86::MOVUPSrr,    X86::MOVUPSmr, 0, 0 },
284    { X86::MUL16r,      X86::MUL16m, 1, 0 },
285    { X86::MUL32r,      X86::MUL32m, 1, 0 },
286    { X86::MUL64r,      X86::MUL64m, 1, 0 },
287    { X86::MUL8r,       X86::MUL8m, 1, 0 },
288    { X86::SETAEr,      X86::SETAEm, 0, 0 },
289    { X86::SETAr,       X86::SETAm, 0, 0 },
290    { X86::SETBEr,      X86::SETBEm, 0, 0 },
291    { X86::SETBr,       X86::SETBm, 0, 0 },
292    { X86::SETEr,       X86::SETEm, 0, 0 },
293    { X86::SETGEr,      X86::SETGEm, 0, 0 },
294    { X86::SETGr,       X86::SETGm, 0, 0 },
295    { X86::SETLEr,      X86::SETLEm, 0, 0 },
296    { X86::SETLr,       X86::SETLm, 0, 0 },
297    { X86::SETNEr,      X86::SETNEm, 0, 0 },
298    { X86::SETNOr,      X86::SETNOm, 0, 0 },
299    { X86::SETNPr,      X86::SETNPm, 0, 0 },
300    { X86::SETNSr,      X86::SETNSm, 0, 0 },
301    { X86::SETOr,       X86::SETOm, 0, 0 },
302    { X86::SETPr,       X86::SETPm, 0, 0 },
303    { X86::SETSr,       X86::SETSm, 0, 0 },
304    { X86::TAILJMPr,    X86::TAILJMPm, 1, 0 },
305    { X86::TAILJMPr64,  X86::TAILJMPm64, 1, 0 },
306    { X86::TEST16ri,    X86::TEST16mi, 1, 0 },
307    { X86::TEST32ri,    X86::TEST32mi, 1, 0 },
308    { X86::TEST64ri32,  X86::TEST64mi32, 1, 0 },
309    { X86::TEST8ri,     X86::TEST8mi, 1, 0 }
310  };
311
312  for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
313    unsigned RegOp = OpTbl0[i][0];
314    unsigned MemOp = OpTbl0[i][1];
315    unsigned Align = OpTbl0[i][3];
316    if (!RegOp2MemOpTable0.insert(std::make_pair((unsigned*)RegOp,
317                                           std::make_pair(MemOp,Align))).second)
318      assert(false && "Duplicated entries?");
319    unsigned FoldedLoad = OpTbl0[i][2];
320    // Index 0, folded load or store.
321    unsigned AuxInfo = 0 | (FoldedLoad << 4) | ((FoldedLoad^1) << 5);
322    if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
323      if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
324                                     std::make_pair(RegOp, AuxInfo))).second)
325        AmbEntries.push_back(MemOp);
326  }
327
328  static const unsigned OpTbl1[][3] = {
329    { X86::CMP16rr,         X86::CMP16rm, 0 },
330    { X86::CMP32rr,         X86::CMP32rm, 0 },
331    { X86::CMP64rr,         X86::CMP64rm, 0 },
332    { X86::CMP8rr,          X86::CMP8rm, 0 },
333    { X86::CVTSD2SSrr,      X86::CVTSD2SSrm, 0 },
334    { X86::CVTSI2SD64rr,    X86::CVTSI2SD64rm, 0 },
335    { X86::CVTSI2SDrr,      X86::CVTSI2SDrm, 0 },
336    { X86::CVTSI2SS64rr,    X86::CVTSI2SS64rm, 0 },
337    { X86::CVTSI2SSrr,      X86::CVTSI2SSrm, 0 },
338    { X86::CVTSS2SDrr,      X86::CVTSS2SDrm, 0 },
339    { X86::CVTTSD2SI64rr,   X86::CVTTSD2SI64rm, 0 },
340    { X86::CVTTSD2SIrr,     X86::CVTTSD2SIrm, 0 },
341    { X86::CVTTSS2SI64rr,   X86::CVTTSS2SI64rm, 0 },
342    { X86::CVTTSS2SIrr,     X86::CVTTSS2SIrm, 0 },
343    { X86::FsMOVAPDrr,      X86::MOVSDrm, 0 },
344    { X86::FsMOVAPSrr,      X86::MOVSSrm, 0 },
345    { X86::IMUL16rri,       X86::IMUL16rmi, 0 },
346    { X86::IMUL16rri8,      X86::IMUL16rmi8, 0 },
347    { X86::IMUL32rri,       X86::IMUL32rmi, 0 },
348    { X86::IMUL32rri8,      X86::IMUL32rmi8, 0 },
349    { X86::IMUL64rri32,     X86::IMUL64rmi32, 0 },
350    { X86::IMUL64rri8,      X86::IMUL64rmi8, 0 },
351    { X86::Int_CMPSDrr,     X86::Int_CMPSDrm, 0 },
352    { X86::Int_CMPSSrr,     X86::Int_CMPSSrm, 0 },
353    { X86::Int_COMISDrr,    X86::Int_COMISDrm, 0 },
354    { X86::Int_COMISSrr,    X86::Int_COMISSrm, 0 },
355    { X86::Int_CVTDQ2PDrr,  X86::Int_CVTDQ2PDrm, 16 },
356    { X86::Int_CVTDQ2PSrr,  X86::Int_CVTDQ2PSrm, 16 },
357    { X86::Int_CVTPD2DQrr,  X86::Int_CVTPD2DQrm, 16 },
358    { X86::Int_CVTPD2PSrr,  X86::Int_CVTPD2PSrm, 16 },
359    { X86::Int_CVTPS2DQrr,  X86::Int_CVTPS2DQrm, 16 },
360    { X86::Int_CVTPS2PDrr,  X86::Int_CVTPS2PDrm, 0 },
361    { X86::Int_CVTSD2SI64rr,X86::Int_CVTSD2SI64rm, 0 },
362    { X86::Int_CVTSD2SIrr,  X86::Int_CVTSD2SIrm, 0 },
363    { X86::Int_CVTSD2SSrr,  X86::Int_CVTSD2SSrm, 0 },
364    { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm, 0 },
365    { X86::Int_CVTSI2SDrr,  X86::Int_CVTSI2SDrm, 0 },
366    { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm, 0 },
367    { X86::Int_CVTSI2SSrr,  X86::Int_CVTSI2SSrm, 0 },
368    { X86::Int_CVTSS2SDrr,  X86::Int_CVTSS2SDrm, 0 },
369    { X86::Int_CVTSS2SI64rr,X86::Int_CVTSS2SI64rm, 0 },
370    { X86::Int_CVTSS2SIrr,  X86::Int_CVTSS2SIrm, 0 },
371    { X86::Int_CVTTPD2DQrr, X86::Int_CVTTPD2DQrm, 16 },
372    { X86::Int_CVTTPS2DQrr, X86::Int_CVTTPS2DQrm, 16 },
373    { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm, 0 },
374    { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm, 0 },
375    { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm, 0 },
376    { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm, 0 },
377    { X86::Int_UCOMISDrr,   X86::Int_UCOMISDrm, 0 },
378    { X86::Int_UCOMISSrr,   X86::Int_UCOMISSrm, 0 },
379    { X86::MOV16rr,         X86::MOV16rm, 0 },
380    { X86::MOV32rr,         X86::MOV32rm, 0 },
381    { X86::MOV32rr_TC,      X86::MOV32rm_TC, 0 },
382    { X86::MOV64rr,         X86::MOV64rm, 0 },
383    { X86::MOV64toPQIrr,    X86::MOVQI2PQIrm, 0 },
384    { X86::MOV64toSDrr,     X86::MOV64toSDrm, 0 },
385    { X86::MOV8rr,          X86::MOV8rm, 0 },
386    { X86::MOVAPDrr,        X86::MOVAPDrm, 16 },
387    { X86::MOVAPSrr,        X86::MOVAPSrm, 16 },
388    { X86::MOVDDUPrr,       X86::MOVDDUPrm, 0 },
389    { X86::MOVDI2PDIrr,     X86::MOVDI2PDIrm, 0 },
390    { X86::MOVDI2SSrr,      X86::MOVDI2SSrm, 0 },
391    { X86::MOVDQArr,        X86::MOVDQArm, 16 },
392    { X86::MOVSHDUPrr,      X86::MOVSHDUPrm, 16 },
393    { X86::MOVSLDUPrr,      X86::MOVSLDUPrm, 16 },
394    { X86::MOVSX16rr8,      X86::MOVSX16rm8, 0 },
395    { X86::MOVSX32rr16,     X86::MOVSX32rm16, 0 },
396    { X86::MOVSX32rr8,      X86::MOVSX32rm8, 0 },
397    { X86::MOVSX64rr16,     X86::MOVSX64rm16, 0 },
398    { X86::MOVSX64rr32,     X86::MOVSX64rm32, 0 },
399    { X86::MOVSX64rr8,      X86::MOVSX64rm8, 0 },
400    { X86::MOVUPDrr,        X86::MOVUPDrm, 16 },
401    { X86::MOVUPSrr,        X86::MOVUPSrm, 0 },
402    { X86::MOVZDI2PDIrr,    X86::MOVZDI2PDIrm, 0 },
403    { X86::MOVZQI2PQIrr,    X86::MOVZQI2PQIrm, 0 },
404    { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm, 16 },
405    { X86::MOVZX16rr8,      X86::MOVZX16rm8, 0 },
406    { X86::MOVZX32rr16,     X86::MOVZX32rm16, 0 },
407    { X86::MOVZX32_NOREXrr8, X86::MOVZX32_NOREXrm8, 0 },
408    { X86::MOVZX32rr8,      X86::MOVZX32rm8, 0 },
409    { X86::MOVZX64rr16,     X86::MOVZX64rm16, 0 },
410    { X86::MOVZX64rr32,     X86::MOVZX64rm32, 0 },
411    { X86::MOVZX64rr8,      X86::MOVZX64rm8, 0 },
412    { X86::PSHUFDri,        X86::PSHUFDmi, 16 },
413    { X86::PSHUFHWri,       X86::PSHUFHWmi, 16 },
414    { X86::PSHUFLWri,       X86::PSHUFLWmi, 16 },
415    { X86::RCPPSr,          X86::RCPPSm, 16 },
416    { X86::RCPPSr_Int,      X86::RCPPSm_Int, 16 },
417    { X86::RSQRTPSr,        X86::RSQRTPSm, 16 },
418    { X86::RSQRTPSr_Int,    X86::RSQRTPSm_Int, 16 },
419    { X86::RSQRTSSr,        X86::RSQRTSSm, 0 },
420    { X86::RSQRTSSr_Int,    X86::RSQRTSSm_Int, 0 },
421    { X86::SQRTPDr,         X86::SQRTPDm, 16 },
422    { X86::SQRTPDr_Int,     X86::SQRTPDm_Int, 16 },
423    { X86::SQRTPSr,         X86::SQRTPSm, 16 },
424    { X86::SQRTPSr_Int,     X86::SQRTPSm_Int, 16 },
425    { X86::SQRTSDr,         X86::SQRTSDm, 0 },
426    { X86::SQRTSDr_Int,     X86::SQRTSDm_Int, 0 },
427    { X86::SQRTSSr,         X86::SQRTSSm, 0 },
428    { X86::SQRTSSr_Int,     X86::SQRTSSm_Int, 0 },
429    { X86::TEST16rr,        X86::TEST16rm, 0 },
430    { X86::TEST32rr,        X86::TEST32rm, 0 },
431    { X86::TEST64rr,        X86::TEST64rm, 0 },
432    { X86::TEST8rr,         X86::TEST8rm, 0 },
433    // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
434    { X86::UCOMISDrr,       X86::UCOMISDrm, 0 },
435    { X86::UCOMISSrr,       X86::UCOMISSrm, 0 }
436  };
437
438  for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
439    unsigned RegOp = OpTbl1[i][0];
440    unsigned MemOp = OpTbl1[i][1];
441    unsigned Align = OpTbl1[i][2];
442    if (!RegOp2MemOpTable1.insert(std::make_pair((unsigned*)RegOp,
443                                           std::make_pair(MemOp,Align))).second)
444      assert(false && "Duplicated entries?");
445    // Index 1, folded load
446    unsigned AuxInfo = 1 | (1 << 4);
447    if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
448      if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
449                                     std::make_pair(RegOp, AuxInfo))).second)
450        AmbEntries.push_back(MemOp);
451  }
452
453  static const unsigned OpTbl2[][3] = {
454    { X86::ADC32rr,         X86::ADC32rm, 0 },
455    { X86::ADC64rr,         X86::ADC64rm, 0 },
456    { X86::ADD16rr,         X86::ADD16rm, 0 },
457    { X86::ADD32rr,         X86::ADD32rm, 0 },
458    { X86::ADD64rr,         X86::ADD64rm, 0 },
459    { X86::ADD8rr,          X86::ADD8rm, 0 },
460    { X86::ADDPDrr,         X86::ADDPDrm, 16 },
461    { X86::ADDPSrr,         X86::ADDPSrm, 16 },
462    { X86::ADDSDrr,         X86::ADDSDrm, 0 },
463    { X86::ADDSSrr,         X86::ADDSSrm, 0 },
464    { X86::ADDSUBPDrr,      X86::ADDSUBPDrm, 16 },
465    { X86::ADDSUBPSrr,      X86::ADDSUBPSrm, 16 },
466    { X86::AND16rr,         X86::AND16rm, 0 },
467    { X86::AND32rr,         X86::AND32rm, 0 },
468    { X86::AND64rr,         X86::AND64rm, 0 },
469    { X86::AND8rr,          X86::AND8rm, 0 },
470    { X86::ANDNPDrr,        X86::ANDNPDrm, 16 },
471    { X86::ANDNPSrr,        X86::ANDNPSrm, 16 },
472    { X86::ANDPDrr,         X86::ANDPDrm, 16 },
473    { X86::ANDPSrr,         X86::ANDPSrm, 16 },
474    { X86::CMOVA16rr,       X86::CMOVA16rm, 0 },
475    { X86::CMOVA32rr,       X86::CMOVA32rm, 0 },
476    { X86::CMOVA64rr,       X86::CMOVA64rm, 0 },
477    { X86::CMOVAE16rr,      X86::CMOVAE16rm, 0 },
478    { X86::CMOVAE32rr,      X86::CMOVAE32rm, 0 },
479    { X86::CMOVAE64rr,      X86::CMOVAE64rm, 0 },
480    { X86::CMOVB16rr,       X86::CMOVB16rm, 0 },
481    { X86::CMOVB32rr,       X86::CMOVB32rm, 0 },
482    { X86::CMOVB64rr,       X86::CMOVB64rm, 0 },
483    { X86::CMOVBE16rr,      X86::CMOVBE16rm, 0 },
484    { X86::CMOVBE32rr,      X86::CMOVBE32rm, 0 },
485    { X86::CMOVBE64rr,      X86::CMOVBE64rm, 0 },
486    { X86::CMOVE16rr,       X86::CMOVE16rm, 0 },
487    { X86::CMOVE32rr,       X86::CMOVE32rm, 0 },
488    { X86::CMOVE64rr,       X86::CMOVE64rm, 0 },
489    { X86::CMOVG16rr,       X86::CMOVG16rm, 0 },
490    { X86::CMOVG32rr,       X86::CMOVG32rm, 0 },
491    { X86::CMOVG64rr,       X86::CMOVG64rm, 0 },
492    { X86::CMOVGE16rr,      X86::CMOVGE16rm, 0 },
493    { X86::CMOVGE32rr,      X86::CMOVGE32rm, 0 },
494    { X86::CMOVGE64rr,      X86::CMOVGE64rm, 0 },
495    { X86::CMOVL16rr,       X86::CMOVL16rm, 0 },
496    { X86::CMOVL32rr,       X86::CMOVL32rm, 0 },
497    { X86::CMOVL64rr,       X86::CMOVL64rm, 0 },
498    { X86::CMOVLE16rr,      X86::CMOVLE16rm, 0 },
499    { X86::CMOVLE32rr,      X86::CMOVLE32rm, 0 },
500    { X86::CMOVLE64rr,      X86::CMOVLE64rm, 0 },
501    { X86::CMOVNE16rr,      X86::CMOVNE16rm, 0 },
502    { X86::CMOVNE32rr,      X86::CMOVNE32rm, 0 },
503    { X86::CMOVNE64rr,      X86::CMOVNE64rm, 0 },
504    { X86::CMOVNO16rr,      X86::CMOVNO16rm, 0 },
505    { X86::CMOVNO32rr,      X86::CMOVNO32rm, 0 },
506    { X86::CMOVNO64rr,      X86::CMOVNO64rm, 0 },
507    { X86::CMOVNP16rr,      X86::CMOVNP16rm, 0 },
508    { X86::CMOVNP32rr,      X86::CMOVNP32rm, 0 },
509    { X86::CMOVNP64rr,      X86::CMOVNP64rm, 0 },
510    { X86::CMOVNS16rr,      X86::CMOVNS16rm, 0 },
511    { X86::CMOVNS32rr,      X86::CMOVNS32rm, 0 },
512    { X86::CMOVNS64rr,      X86::CMOVNS64rm, 0 },
513    { X86::CMOVO16rr,       X86::CMOVO16rm, 0 },
514    { X86::CMOVO32rr,       X86::CMOVO32rm, 0 },
515    { X86::CMOVO64rr,       X86::CMOVO64rm, 0 },
516    { X86::CMOVP16rr,       X86::CMOVP16rm, 0 },
517    { X86::CMOVP32rr,       X86::CMOVP32rm, 0 },
518    { X86::CMOVP64rr,       X86::CMOVP64rm, 0 },
519    { X86::CMOVS16rr,       X86::CMOVS16rm, 0 },
520    { X86::CMOVS32rr,       X86::CMOVS32rm, 0 },
521    { X86::CMOVS64rr,       X86::CMOVS64rm, 0 },
522    { X86::CMPPDrri,        X86::CMPPDrmi, 16 },
523    { X86::CMPPSrri,        X86::CMPPSrmi, 16 },
524    { X86::CMPSDrr,         X86::CMPSDrm, 0 },
525    { X86::CMPSSrr,         X86::CMPSSrm, 0 },
526    { X86::DIVPDrr,         X86::DIVPDrm, 16 },
527    { X86::DIVPSrr,         X86::DIVPSrm, 16 },
528    { X86::DIVSDrr,         X86::DIVSDrm, 0 },
529    { X86::DIVSSrr,         X86::DIVSSrm, 0 },
530    { X86::FsANDNPDrr,      X86::FsANDNPDrm, 16 },
531    { X86::FsANDNPSrr,      X86::FsANDNPSrm, 16 },
532    { X86::FsANDPDrr,       X86::FsANDPDrm, 16 },
533    { X86::FsANDPSrr,       X86::FsANDPSrm, 16 },
534    { X86::FsORPDrr,        X86::FsORPDrm, 16 },
535    { X86::FsORPSrr,        X86::FsORPSrm, 16 },
536    { X86::FsXORPDrr,       X86::FsXORPDrm, 16 },
537    { X86::FsXORPSrr,       X86::FsXORPSrm, 16 },
538    { X86::HADDPDrr,        X86::HADDPDrm, 16 },
539    { X86::HADDPSrr,        X86::HADDPSrm, 16 },
540    { X86::HSUBPDrr,        X86::HSUBPDrm, 16 },
541    { X86::HSUBPSrr,        X86::HSUBPSrm, 16 },
542    { X86::IMUL16rr,        X86::IMUL16rm, 0 },
543    { X86::IMUL32rr,        X86::IMUL32rm, 0 },
544    { X86::IMUL64rr,        X86::IMUL64rm, 0 },
545    { X86::MAXPDrr,         X86::MAXPDrm, 16 },
546    { X86::MAXPDrr_Int,     X86::MAXPDrm_Int, 16 },
547    { X86::MAXPSrr,         X86::MAXPSrm, 16 },
548    { X86::MAXPSrr_Int,     X86::MAXPSrm_Int, 16 },
549    { X86::MAXSDrr,         X86::MAXSDrm, 0 },
550    { X86::MAXSDrr_Int,     X86::MAXSDrm_Int, 0 },
551    { X86::MAXSSrr,         X86::MAXSSrm, 0 },
552    { X86::MAXSSrr_Int,     X86::MAXSSrm_Int, 0 },
553    { X86::MINPDrr,         X86::MINPDrm, 16 },
554    { X86::MINPDrr_Int,     X86::MINPDrm_Int, 16 },
555    { X86::MINPSrr,         X86::MINPSrm, 16 },
556    { X86::MINPSrr_Int,     X86::MINPSrm_Int, 16 },
557    { X86::MINSDrr,         X86::MINSDrm, 0 },
558    { X86::MINSDrr_Int,     X86::MINSDrm_Int, 0 },
559    { X86::MINSSrr,         X86::MINSSrm, 0 },
560    { X86::MINSSrr_Int,     X86::MINSSrm_Int, 0 },
561    { X86::MULPDrr,         X86::MULPDrm, 16 },
562    { X86::MULPSrr,         X86::MULPSrm, 16 },
563    { X86::MULSDrr,         X86::MULSDrm, 0 },
564    { X86::MULSSrr,         X86::MULSSrm, 0 },
565    { X86::OR16rr,          X86::OR16rm, 0 },
566    { X86::OR32rr,          X86::OR32rm, 0 },
567    { X86::OR64rr,          X86::OR64rm, 0 },
568    { X86::OR8rr,           X86::OR8rm, 0 },
569    { X86::ORPDrr,          X86::ORPDrm, 16 },
570    { X86::ORPSrr,          X86::ORPSrm, 16 },
571    { X86::PACKSSDWrr,      X86::PACKSSDWrm, 16 },
572    { X86::PACKSSWBrr,      X86::PACKSSWBrm, 16 },
573    { X86::PACKUSWBrr,      X86::PACKUSWBrm, 16 },
574    { X86::PADDBrr,         X86::PADDBrm, 16 },
575    { X86::PADDDrr,         X86::PADDDrm, 16 },
576    { X86::PADDQrr,         X86::PADDQrm, 16 },
577    { X86::PADDSBrr,        X86::PADDSBrm, 16 },
578    { X86::PADDSWrr,        X86::PADDSWrm, 16 },
579    { X86::PADDWrr,         X86::PADDWrm, 16 },
580    { X86::PANDNrr,         X86::PANDNrm, 16 },
581    { X86::PANDrr,          X86::PANDrm, 16 },
582    { X86::PAVGBrr,         X86::PAVGBrm, 16 },
583    { X86::PAVGWrr,         X86::PAVGWrm, 16 },
584    { X86::PCMPEQBrr,       X86::PCMPEQBrm, 16 },
585    { X86::PCMPEQDrr,       X86::PCMPEQDrm, 16 },
586    { X86::PCMPEQWrr,       X86::PCMPEQWrm, 16 },
587    { X86::PCMPGTBrr,       X86::PCMPGTBrm, 16 },
588    { X86::PCMPGTDrr,       X86::PCMPGTDrm, 16 },
589    { X86::PCMPGTWrr,       X86::PCMPGTWrm, 16 },
590    { X86::PINSRWrri,       X86::PINSRWrmi, 16 },
591    { X86::PMADDWDrr,       X86::PMADDWDrm, 16 },
592    { X86::PMAXSWrr,        X86::PMAXSWrm, 16 },
593    { X86::PMAXUBrr,        X86::PMAXUBrm, 16 },
594    { X86::PMINSWrr,        X86::PMINSWrm, 16 },
595    { X86::PMINUBrr,        X86::PMINUBrm, 16 },
596    { X86::PMULDQrr,        X86::PMULDQrm, 16 },
597    { X86::PMULHUWrr,       X86::PMULHUWrm, 16 },
598    { X86::PMULHWrr,        X86::PMULHWrm, 16 },
599    { X86::PMULLDrr,        X86::PMULLDrm, 16 },
600    { X86::PMULLDrr_int,    X86::PMULLDrm_int, 16 },
601    { X86::PMULLWrr,        X86::PMULLWrm, 16 },
602    { X86::PMULUDQrr,       X86::PMULUDQrm, 16 },
603    { X86::PORrr,           X86::PORrm, 16 },
604    { X86::PSADBWrr,        X86::PSADBWrm, 16 },
605    { X86::PSLLDrr,         X86::PSLLDrm, 16 },
606    { X86::PSLLQrr,         X86::PSLLQrm, 16 },
607    { X86::PSLLWrr,         X86::PSLLWrm, 16 },
608    { X86::PSRADrr,         X86::PSRADrm, 16 },
609    { X86::PSRAWrr,         X86::PSRAWrm, 16 },
610    { X86::PSRLDrr,         X86::PSRLDrm, 16 },
611    { X86::PSRLQrr,         X86::PSRLQrm, 16 },
612    { X86::PSRLWrr,         X86::PSRLWrm, 16 },
613    { X86::PSUBBrr,         X86::PSUBBrm, 16 },
614    { X86::PSUBDrr,         X86::PSUBDrm, 16 },
615    { X86::PSUBSBrr,        X86::PSUBSBrm, 16 },
616    { X86::PSUBSWrr,        X86::PSUBSWrm, 16 },
617    { X86::PSUBWrr,         X86::PSUBWrm, 16 },
618    { X86::PUNPCKHBWrr,     X86::PUNPCKHBWrm, 16 },
619    { X86::PUNPCKHDQrr,     X86::PUNPCKHDQrm, 16 },
620    { X86::PUNPCKHQDQrr,    X86::PUNPCKHQDQrm, 16 },
621    { X86::PUNPCKHWDrr,     X86::PUNPCKHWDrm, 16 },
622    { X86::PUNPCKLBWrr,     X86::PUNPCKLBWrm, 16 },
623    { X86::PUNPCKLDQrr,     X86::PUNPCKLDQrm, 16 },
624    { X86::PUNPCKLQDQrr,    X86::PUNPCKLQDQrm, 16 },
625    { X86::PUNPCKLWDrr,     X86::PUNPCKLWDrm, 16 },
626    { X86::PXORrr,          X86::PXORrm, 16 },
627    { X86::SBB32rr,         X86::SBB32rm, 0 },
628    { X86::SBB64rr,         X86::SBB64rm, 0 },
629    { X86::SHUFPDrri,       X86::SHUFPDrmi, 16 },
630    { X86::SHUFPSrri,       X86::SHUFPSrmi, 16 },
631    { X86::SUB16rr,         X86::SUB16rm, 0 },
632    { X86::SUB32rr,         X86::SUB32rm, 0 },
633    { X86::SUB64rr,         X86::SUB64rm, 0 },
634    { X86::SUB8rr,          X86::SUB8rm, 0 },
635    { X86::SUBPDrr,         X86::SUBPDrm, 16 },
636    { X86::SUBPSrr,         X86::SUBPSrm, 16 },
637    { X86::SUBSDrr,         X86::SUBSDrm, 0 },
638    { X86::SUBSSrr,         X86::SUBSSrm, 0 },
639    // FIXME: TEST*rr -> swapped operand of TEST*mr.
640    { X86::UNPCKHPDrr,      X86::UNPCKHPDrm, 16 },
641    { X86::UNPCKHPSrr,      X86::UNPCKHPSrm, 16 },
642    { X86::UNPCKLPDrr,      X86::UNPCKLPDrm, 16 },
643    { X86::UNPCKLPSrr,      X86::UNPCKLPSrm, 16 },
644    { X86::XOR16rr,         X86::XOR16rm, 0 },
645    { X86::XOR32rr,         X86::XOR32rm, 0 },
646    { X86::XOR64rr,         X86::XOR64rm, 0 },
647    { X86::XOR8rr,          X86::XOR8rm, 0 },
648    { X86::XORPDrr,         X86::XORPDrm, 16 },
649    { X86::XORPSrr,         X86::XORPSrm, 16 }
650  };
651
652  for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
653    unsigned RegOp = OpTbl2[i][0];
654    unsigned MemOp = OpTbl2[i][1];
655    unsigned Align = OpTbl2[i][2];
656    if (!RegOp2MemOpTable2.insert(std::make_pair((unsigned*)RegOp,
657                                           std::make_pair(MemOp,Align))).second)
658      assert(false && "Duplicated entries?");
659    // Index 2, folded load
660    unsigned AuxInfo = 2 | (1 << 4);
661    if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
662                                   std::make_pair(RegOp, AuxInfo))).second)
663      AmbEntries.push_back(MemOp);
664  }
665
666  // Remove ambiguous entries.
667  assert(AmbEntries.empty() && "Duplicated entries in unfolding maps?");
668}
669
670bool X86InstrInfo::isMoveInstr(const MachineInstr& MI,
671                               unsigned &SrcReg, unsigned &DstReg,
672                               unsigned &SrcSubIdx, unsigned &DstSubIdx) const {
673  switch (MI.getOpcode()) {
674  default:
675    return false;
676  case X86::MOV8rr:
677  case X86::MOV8rr_NOREX:
678  case X86::MOV16rr:
679  case X86::MOV32rr:
680  case X86::MOV64rr:
681  case X86::MOV32rr_TC:
682  case X86::MOV64rr_TC:
683
684  // FP Stack register class copies
685  case X86::MOV_Fp3232: case X86::MOV_Fp6464: case X86::MOV_Fp8080:
686  case X86::MOV_Fp3264: case X86::MOV_Fp3280:
687  case X86::MOV_Fp6432: case X86::MOV_Fp8032:
688
689  // Note that MOVSSrr and MOVSDrr are not considered copies. FR32 and FR64
690  // copies are done with FsMOVAPSrr and FsMOVAPDrr.
691
692  case X86::FsMOVAPSrr:
693  case X86::FsMOVAPDrr:
694  case X86::MOVAPSrr:
695  case X86::MOVAPDrr:
696  case X86::MOVDQArr:
697  case X86::MMX_MOVQ64rr:
698    assert(MI.getNumOperands() >= 2 &&
699           MI.getOperand(0).isReg() &&
700           MI.getOperand(1).isReg() &&
701           "invalid register-register move instruction");
702    SrcReg = MI.getOperand(1).getReg();
703    DstReg = MI.getOperand(0).getReg();
704    SrcSubIdx = MI.getOperand(1).getSubReg();
705    DstSubIdx = MI.getOperand(0).getSubReg();
706    return true;
707  }
708}
709
710bool
711X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
712                                    unsigned &SrcReg, unsigned &DstReg,
713                                    unsigned &SubIdx) const {
714  switch (MI.getOpcode()) {
715  default: break;
716  case X86::MOVSX16rr8:
717  case X86::MOVZX16rr8:
718  case X86::MOVSX32rr8:
719  case X86::MOVZX32rr8:
720  case X86::MOVSX64rr8:
721  case X86::MOVZX64rr8:
722    if (!TM.getSubtarget<X86Subtarget>().is64Bit())
723      // It's not always legal to reference the low 8-bit of the larger
724      // register in 32-bit mode.
725      return false;
726  case X86::MOVSX32rr16:
727  case X86::MOVZX32rr16:
728  case X86::MOVSX64rr16:
729  case X86::MOVZX64rr16:
730  case X86::MOVSX64rr32:
731  case X86::MOVZX64rr32: {
732    if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
733      // Be conservative.
734      return false;
735    SrcReg = MI.getOperand(1).getReg();
736    DstReg = MI.getOperand(0).getReg();
737    switch (MI.getOpcode()) {
738    default:
739      llvm_unreachable(0);
740      break;
741    case X86::MOVSX16rr8:
742    case X86::MOVZX16rr8:
743    case X86::MOVSX32rr8:
744    case X86::MOVZX32rr8:
745    case X86::MOVSX64rr8:
746    case X86::MOVZX64rr8:
747      SubIdx = 1;
748      break;
749    case X86::MOVSX32rr16:
750    case X86::MOVZX32rr16:
751    case X86::MOVSX64rr16:
752    case X86::MOVZX64rr16:
753      SubIdx = 3;
754      break;
755    case X86::MOVSX64rr32:
756    case X86::MOVZX64rr32:
757      SubIdx = 4;
758      break;
759    }
760    return true;
761  }
762  }
763  return false;
764}
765
766/// isFrameOperand - Return true and the FrameIndex if the specified
767/// operand and follow operands form a reference to the stack frame.
768bool X86InstrInfo::isFrameOperand(const MachineInstr *MI, unsigned int Op,
769                                  int &FrameIndex) const {
770  if (MI->getOperand(Op).isFI() && MI->getOperand(Op+1).isImm() &&
771      MI->getOperand(Op+2).isReg() && MI->getOperand(Op+3).isImm() &&
772      MI->getOperand(Op+1).getImm() == 1 &&
773      MI->getOperand(Op+2).getReg() == 0 &&
774      MI->getOperand(Op+3).getImm() == 0) {
775    FrameIndex = MI->getOperand(Op).getIndex();
776    return true;
777  }
778  return false;
779}
780
781static bool isFrameLoadOpcode(int Opcode) {
782  switch (Opcode) {
783  default: break;
784  case X86::MOV8rm:
785  case X86::MOV16rm:
786  case X86::MOV32rm:
787  case X86::MOV64rm:
788  case X86::LD_Fp64m:
789  case X86::MOVSSrm:
790  case X86::MOVSDrm:
791  case X86::MOVAPSrm:
792  case X86::MOVAPDrm:
793  case X86::MOVDQArm:
794  case X86::MMX_MOVD64rm:
795  case X86::MMX_MOVQ64rm:
796    return true;
797    break;
798  }
799  return false;
800}
801
802static bool isFrameStoreOpcode(int Opcode) {
803  switch (Opcode) {
804  default: break;
805  case X86::MOV8mr:
806  case X86::MOV16mr:
807  case X86::MOV32mr:
808  case X86::MOV64mr:
809  case X86::ST_FpP64m:
810  case X86::MOVSSmr:
811  case X86::MOVSDmr:
812  case X86::MOVAPSmr:
813  case X86::MOVAPDmr:
814  case X86::MOVDQAmr:
815  case X86::MMX_MOVD64mr:
816  case X86::MMX_MOVQ64mr:
817  case X86::MMX_MOVNTQmr:
818    return true;
819  }
820  return false;
821}
822
823unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
824                                           int &FrameIndex) const {
825  if (isFrameLoadOpcode(MI->getOpcode()))
826    if (isFrameOperand(MI, 1, FrameIndex))
827      return MI->getOperand(0).getReg();
828  return 0;
829}
830
831unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI,
832                                                 int &FrameIndex) const {
833  if (isFrameLoadOpcode(MI->getOpcode())) {
834    unsigned Reg;
835    if ((Reg = isLoadFromStackSlot(MI, FrameIndex)))
836      return Reg;
837    // Check for post-frame index elimination operations
838    const MachineMemOperand *Dummy;
839    return hasLoadFromStackSlot(MI, Dummy, FrameIndex);
840  }
841  return 0;
842}
843
844bool X86InstrInfo::hasLoadFromStackSlot(const MachineInstr *MI,
845                                        const MachineMemOperand *&MMO,
846                                        int &FrameIndex) const {
847  for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
848         oe = MI->memoperands_end();
849       o != oe;
850       ++o) {
851    if ((*o)->isLoad() && (*o)->getValue())
852      if (const FixedStackPseudoSourceValue *Value =
853          dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
854        FrameIndex = Value->getFrameIndex();
855        MMO = *o;
856        return true;
857      }
858  }
859  return false;
860}
861
862unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr *MI,
863                                          int &FrameIndex) const {
864  if (isFrameStoreOpcode(MI->getOpcode()))
865    if (isFrameOperand(MI, 0, FrameIndex))
866      return MI->getOperand(X86AddrNumOperands).getReg();
867  return 0;
868}
869
870unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr *MI,
871                                                int &FrameIndex) const {
872  if (isFrameStoreOpcode(MI->getOpcode())) {
873    unsigned Reg;
874    if ((Reg = isStoreToStackSlot(MI, FrameIndex)))
875      return Reg;
876    // Check for post-frame index elimination operations
877    const MachineMemOperand *Dummy;
878    return hasStoreToStackSlot(MI, Dummy, FrameIndex);
879  }
880  return 0;
881}
882
883bool X86InstrInfo::hasStoreToStackSlot(const MachineInstr *MI,
884                                       const MachineMemOperand *&MMO,
885                                       int &FrameIndex) const {
886  for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
887         oe = MI->memoperands_end();
888       o != oe;
889       ++o) {
890    if ((*o)->isStore() && (*o)->getValue())
891      if (const FixedStackPseudoSourceValue *Value =
892          dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
893        FrameIndex = Value->getFrameIndex();
894        MMO = *o;
895        return true;
896      }
897  }
898  return false;
899}
900
901/// regIsPICBase - Return true if register is PIC base (i.e.g defined by
902/// X86::MOVPC32r.
903static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
904  bool isPICBase = false;
905  for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
906         E = MRI.def_end(); I != E; ++I) {
907    MachineInstr *DefMI = I.getOperand().getParent();
908    if (DefMI->getOpcode() != X86::MOVPC32r)
909      return false;
910    assert(!isPICBase && "More than one PIC base?");
911    isPICBase = true;
912  }
913  return isPICBase;
914}
915
916bool
917X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI,
918                                                AliasAnalysis *AA) const {
919  switch (MI->getOpcode()) {
920  default: break;
921    case X86::MOV8rm:
922    case X86::MOV16rm:
923    case X86::MOV32rm:
924    case X86::MOV64rm:
925    case X86::LD_Fp64m:
926    case X86::MOVSSrm:
927    case X86::MOVSDrm:
928    case X86::MOVAPSrm:
929    case X86::MOVUPSrm:
930    case X86::MOVUPSrm_Int:
931    case X86::MOVAPDrm:
932    case X86::MOVDQArm:
933    case X86::MMX_MOVD64rm:
934    case X86::MMX_MOVQ64rm:
935    case X86::FsMOVAPSrm:
936    case X86::FsMOVAPDrm: {
937      // Loads from constant pools are trivially rematerializable.
938      if (MI->getOperand(1).isReg() &&
939          MI->getOperand(2).isImm() &&
940          MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
941          MI->isInvariantLoad(AA)) {
942        unsigned BaseReg = MI->getOperand(1).getReg();
943        if (BaseReg == 0 || BaseReg == X86::RIP)
944          return true;
945        // Allow re-materialization of PIC load.
946        if (!ReMatPICStubLoad && MI->getOperand(4).isGlobal())
947          return false;
948        const MachineFunction &MF = *MI->getParent()->getParent();
949        const MachineRegisterInfo &MRI = MF.getRegInfo();
950        bool isPICBase = false;
951        for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
952               E = MRI.def_end(); I != E; ++I) {
953          MachineInstr *DefMI = I.getOperand().getParent();
954          if (DefMI->getOpcode() != X86::MOVPC32r)
955            return false;
956          assert(!isPICBase && "More than one PIC base?");
957          isPICBase = true;
958        }
959        return isPICBase;
960      }
961      return false;
962    }
963
964     case X86::LEA32r:
965     case X86::LEA64r: {
966       if (MI->getOperand(2).isImm() &&
967           MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
968           !MI->getOperand(4).isReg()) {
969         // lea fi#, lea GV, etc. are all rematerializable.
970         if (!MI->getOperand(1).isReg())
971           return true;
972         unsigned BaseReg = MI->getOperand(1).getReg();
973         if (BaseReg == 0)
974           return true;
975         // Allow re-materialization of lea PICBase + x.
976         const MachineFunction &MF = *MI->getParent()->getParent();
977         const MachineRegisterInfo &MRI = MF.getRegInfo();
978         return regIsPICBase(BaseReg, MRI);
979       }
980       return false;
981     }
982  }
983
984  // All other instructions marked M_REMATERIALIZABLE are always trivially
985  // rematerializable.
986  return true;
987}
988
989/// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction that
990/// would clobber the EFLAGS condition register. Note the result may be
991/// conservative. If it cannot definitely determine the safety after visiting
992/// a few instructions in each direction it assumes it's not safe.
993static bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
994                                  MachineBasicBlock::iterator I) {
995  // It's always safe to clobber EFLAGS at the end of a block.
996  if (I == MBB.end())
997    return true;
998
999  // For compile time consideration, if we are not able to determine the
1000  // safety after visiting 4 instructions in each direction, we will assume
1001  // it's not safe.
1002  MachineBasicBlock::iterator Iter = I;
1003  for (unsigned i = 0; i < 4; ++i) {
1004    bool SeenDef = false;
1005    for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
1006      MachineOperand &MO = Iter->getOperand(j);
1007      if (!MO.isReg())
1008        continue;
1009      if (MO.getReg() == X86::EFLAGS) {
1010        if (MO.isUse())
1011          return false;
1012        SeenDef = true;
1013      }
1014    }
1015
1016    if (SeenDef)
1017      // This instruction defines EFLAGS, no need to look any further.
1018      return true;
1019    ++Iter;
1020
1021    // If we make it to the end of the block, it's safe to clobber EFLAGS.
1022    if (Iter == MBB.end())
1023      return true;
1024  }
1025
1026  Iter = I;
1027  for (unsigned i = 0; i < 4; ++i) {
1028    // If we make it to the beginning of the block, it's safe to clobber
1029    // EFLAGS iff EFLAGS is not live-in.
1030    if (Iter == MBB.begin())
1031      return !MBB.isLiveIn(X86::EFLAGS);
1032
1033    --Iter;
1034    bool SawKill = false;
1035    for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
1036      MachineOperand &MO = Iter->getOperand(j);
1037      if (MO.isReg() && MO.getReg() == X86::EFLAGS) {
1038        if (MO.isDef()) return MO.isDead();
1039        if (MO.isKill()) SawKill = true;
1040      }
1041    }
1042
1043    if (SawKill)
1044      // This instruction kills EFLAGS and doesn't redefine it, so
1045      // there's no need to look further.
1046      return true;
1047  }
1048
1049  // Conservative answer.
1050  return false;
1051}
1052
1053void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
1054                                 MachineBasicBlock::iterator I,
1055                                 unsigned DestReg, unsigned SubIdx,
1056                                 const MachineInstr *Orig,
1057                                 const TargetRegisterInfo *TRI) const {
1058  DebugLoc DL = MBB.findDebugLoc(I);
1059
1060  if (SubIdx && TargetRegisterInfo::isPhysicalRegister(DestReg)) {
1061    DestReg = TRI->getSubReg(DestReg, SubIdx);
1062    SubIdx = 0;
1063  }
1064
1065  // MOV32r0 etc. are implemented with xor which clobbers condition code.
1066  // Re-materialize them as movri instructions to avoid side effects.
1067  bool Clone = true;
1068  unsigned Opc = Orig->getOpcode();
1069  switch (Opc) {
1070  default: break;
1071  case X86::MOV8r0:
1072  case X86::MOV16r0:
1073  case X86::MOV32r0:
1074  case X86::MOV64r0: {
1075    if (!isSafeToClobberEFLAGS(MBB, I)) {
1076      switch (Opc) {
1077      default: break;
1078      case X86::MOV8r0:  Opc = X86::MOV8ri;  break;
1079      case X86::MOV16r0: Opc = X86::MOV16ri; break;
1080      case X86::MOV32r0: Opc = X86::MOV32ri; break;
1081      case X86::MOV64r0: Opc = X86::MOV64ri64i32; break;
1082      }
1083      Clone = false;
1084    }
1085    break;
1086  }
1087  }
1088
1089  if (Clone) {
1090    MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
1091    MI->getOperand(0).setReg(DestReg);
1092    MBB.insert(I, MI);
1093  } else {
1094    BuildMI(MBB, I, DL, get(Opc), DestReg).addImm(0);
1095  }
1096
1097  MachineInstr *NewMI = prior(I);
1098  NewMI->getOperand(0).setSubReg(SubIdx);
1099}
1100
1101/// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
1102/// is not marked dead.
1103static bool hasLiveCondCodeDef(MachineInstr *MI) {
1104  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1105    MachineOperand &MO = MI->getOperand(i);
1106    if (MO.isReg() && MO.isDef() &&
1107        MO.getReg() == X86::EFLAGS && !MO.isDead()) {
1108      return true;
1109    }
1110  }
1111  return false;
1112}
1113
1114/// convertToThreeAddressWithLEA - Helper for convertToThreeAddress when
1115/// 16-bit LEA is disabled, use 32-bit LEA to form 3-address code by promoting
1116/// to a 32-bit superregister and then truncating back down to a 16-bit
1117/// subregister.
1118MachineInstr *
1119X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc,
1120                                           MachineFunction::iterator &MFI,
1121                                           MachineBasicBlock::iterator &MBBI,
1122                                           LiveVariables *LV) const {
1123  MachineInstr *MI = MBBI;
1124  unsigned Dest = MI->getOperand(0).getReg();
1125  unsigned Src = MI->getOperand(1).getReg();
1126  bool isDead = MI->getOperand(0).isDead();
1127  bool isKill = MI->getOperand(1).isKill();
1128
1129  unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit()
1130    ? X86::LEA64_32r : X86::LEA32r;
1131  MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
1132  unsigned leaInReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1133  unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1134
1135  // Build and insert into an implicit UNDEF value. This is OK because
1136  // well be shifting and then extracting the lower 16-bits.
1137  // This has the potential to cause partial register stall. e.g.
1138  //   movw    (%rbp,%rcx,2), %dx
1139  //   leal    -65(%rdx), %esi
1140  // But testing has shown this *does* help performance in 64-bit mode (at
1141  // least on modern x86 machines).
1142  BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg);
1143  MachineInstr *InsMI =
1144    BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::INSERT_SUBREG),leaInReg)
1145    .addReg(leaInReg)
1146    .addReg(Src, getKillRegState(isKill))
1147    .addImm(X86::SUBREG_16BIT);
1148
1149  MachineInstrBuilder MIB = BuildMI(*MFI, MBBI, MI->getDebugLoc(),
1150                                    get(Opc), leaOutReg);
1151  switch (MIOpc) {
1152  default:
1153    llvm_unreachable(0);
1154    break;
1155  case X86::SHL16ri: {
1156    unsigned ShAmt = MI->getOperand(2).getImm();
1157    MIB.addReg(0).addImm(1 << ShAmt)
1158       .addReg(leaInReg, RegState::Kill).addImm(0);
1159    break;
1160  }
1161  case X86::INC16r:
1162  case X86::INC64_16r:
1163    addLeaRegOffset(MIB, leaInReg, true, 1);
1164    break;
1165  case X86::DEC16r:
1166  case X86::DEC64_16r:
1167    addLeaRegOffset(MIB, leaInReg, true, -1);
1168    break;
1169  case X86::ADD16ri:
1170  case X86::ADD16ri8:
1171    addLeaRegOffset(MIB, leaInReg, true, MI->getOperand(2).getImm());
1172    break;
1173  case X86::ADD16rr: {
1174    unsigned Src2 = MI->getOperand(2).getReg();
1175    bool isKill2 = MI->getOperand(2).isKill();
1176    unsigned leaInReg2 = 0;
1177    MachineInstr *InsMI2 = 0;
1178    if (Src == Src2) {
1179      // ADD16rr %reg1028<kill>, %reg1028
1180      // just a single insert_subreg.
1181      addRegReg(MIB, leaInReg, true, leaInReg, false);
1182    } else {
1183      leaInReg2 = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1184      // Build and insert into an implicit UNDEF value. This is OK because
1185      // well be shifting and then extracting the lower 16-bits.
1186      BuildMI(*MFI, MIB, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg2);
1187      InsMI2 =
1188        BuildMI(*MFI, MIB, MI->getDebugLoc(), get(X86::INSERT_SUBREG),leaInReg2)
1189        .addReg(leaInReg2)
1190        .addReg(Src2, getKillRegState(isKill2))
1191        .addImm(X86::SUBREG_16BIT);
1192      addRegReg(MIB, leaInReg, true, leaInReg2, true);
1193    }
1194    if (LV && isKill2 && InsMI2)
1195      LV->replaceKillInstruction(Src2, MI, InsMI2);
1196    break;
1197  }
1198  }
1199
1200  MachineInstr *NewMI = MIB;
1201  MachineInstr *ExtMI =
1202    BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::EXTRACT_SUBREG))
1203    .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1204    .addReg(leaOutReg, RegState::Kill)
1205    .addImm(X86::SUBREG_16BIT);
1206
1207  if (LV) {
1208    // Update live variables
1209    LV->getVarInfo(leaInReg).Kills.push_back(NewMI);
1210    LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI);
1211    if (isKill)
1212      LV->replaceKillInstruction(Src, MI, InsMI);
1213    if (isDead)
1214      LV->replaceKillInstruction(Dest, MI, ExtMI);
1215  }
1216
1217  return ExtMI;
1218}
1219
1220/// convertToThreeAddress - This method must be implemented by targets that
1221/// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
1222/// may be able to convert a two-address instruction into a true
1223/// three-address instruction on demand.  This allows the X86 target (for
1224/// example) to convert ADD and SHL instructions into LEA instructions if they
1225/// would require register copies due to two-addressness.
1226///
1227/// This method returns a null pointer if the transformation cannot be
1228/// performed, otherwise it returns the new instruction.
1229///
1230MachineInstr *
1231X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
1232                                    MachineBasicBlock::iterator &MBBI,
1233                                    LiveVariables *LV) const {
1234  MachineInstr *MI = MBBI;
1235  MachineFunction &MF = *MI->getParent()->getParent();
1236  // All instructions input are two-addr instructions.  Get the known operands.
1237  unsigned Dest = MI->getOperand(0).getReg();
1238  unsigned Src = MI->getOperand(1).getReg();
1239  bool isDead = MI->getOperand(0).isDead();
1240  bool isKill = MI->getOperand(1).isKill();
1241
1242  MachineInstr *NewMI = NULL;
1243  // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's.  When
1244  // we have better subtarget support, enable the 16-bit LEA generation here.
1245  // 16-bit LEA is also slow on Core2.
1246  bool DisableLEA16 = true;
1247  bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
1248
1249  unsigned MIOpc = MI->getOpcode();
1250  switch (MIOpc) {
1251  case X86::SHUFPSrri: {
1252    assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
1253    if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
1254
1255    unsigned B = MI->getOperand(1).getReg();
1256    unsigned C = MI->getOperand(2).getReg();
1257    if (B != C) return 0;
1258    unsigned A = MI->getOperand(0).getReg();
1259    unsigned M = MI->getOperand(3).getImm();
1260    NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::PSHUFDri))
1261      .addReg(A, RegState::Define | getDeadRegState(isDead))
1262      .addReg(B, getKillRegState(isKill)).addImm(M);
1263    break;
1264  }
1265  case X86::SHL64ri: {
1266    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
1267    // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1268    // the flags produced by a shift yet, so this is safe.
1269    unsigned ShAmt = MI->getOperand(2).getImm();
1270    if (ShAmt == 0 || ShAmt >= 4) return 0;
1271
1272    NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
1273      .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1274      .addReg(0).addImm(1 << ShAmt)
1275      .addReg(Src, getKillRegState(isKill))
1276      .addImm(0);
1277    break;
1278  }
1279  case X86::SHL32ri: {
1280    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
1281    // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1282    // the flags produced by a shift yet, so this is safe.
1283    unsigned ShAmt = MI->getOperand(2).getImm();
1284    if (ShAmt == 0 || ShAmt >= 4) return 0;
1285
1286    unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
1287    NewMI = BuildMI(MF, MI->getDebugLoc(), get(Opc))
1288      .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1289      .addReg(0).addImm(1 << ShAmt)
1290      .addReg(Src, getKillRegState(isKill)).addImm(0);
1291    break;
1292  }
1293  case X86::SHL16ri: {
1294    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
1295    // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1296    // the flags produced by a shift yet, so this is safe.
1297    unsigned ShAmt = MI->getOperand(2).getImm();
1298    if (ShAmt == 0 || ShAmt >= 4) return 0;
1299
1300    if (DisableLEA16)
1301      return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
1302    NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1303      .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1304      .addReg(0).addImm(1 << ShAmt)
1305      .addReg(Src, getKillRegState(isKill))
1306      .addImm(0);
1307    break;
1308  }
1309  default: {
1310    // The following opcodes also sets the condition code register(s). Only
1311    // convert them to equivalent lea if the condition code register def's
1312    // are dead!
1313    if (hasLiveCondCodeDef(MI))
1314      return 0;
1315
1316    switch (MIOpc) {
1317    default: return 0;
1318    case X86::INC64r:
1319    case X86::INC32r:
1320    case X86::INC64_32r: {
1321      assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
1322      unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
1323        : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
1324      NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1325                              .addReg(Dest, RegState::Define |
1326                                      getDeadRegState(isDead)),
1327                              Src, isKill, 1);
1328      break;
1329    }
1330    case X86::INC16r:
1331    case X86::INC64_16r:
1332      if (DisableLEA16)
1333        return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
1334      assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
1335      NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1336                           .addReg(Dest, RegState::Define |
1337                                   getDeadRegState(isDead)),
1338                           Src, isKill, 1);
1339      break;
1340    case X86::DEC64r:
1341    case X86::DEC32r:
1342    case X86::DEC64_32r: {
1343      assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
1344      unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
1345        : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
1346      NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1347                              .addReg(Dest, RegState::Define |
1348                                      getDeadRegState(isDead)),
1349                              Src, isKill, -1);
1350      break;
1351    }
1352    case X86::DEC16r:
1353    case X86::DEC64_16r:
1354      if (DisableLEA16)
1355        return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
1356      assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
1357      NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1358                           .addReg(Dest, RegState::Define |
1359                                   getDeadRegState(isDead)),
1360                           Src, isKill, -1);
1361      break;
1362    case X86::ADD64rr:
1363    case X86::ADD32rr: {
1364      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1365      unsigned Opc = MIOpc == X86::ADD64rr ? X86::LEA64r
1366        : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
1367      unsigned Src2 = MI->getOperand(2).getReg();
1368      bool isKill2 = MI->getOperand(2).isKill();
1369      NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1370                        .addReg(Dest, RegState::Define |
1371                                getDeadRegState(isDead)),
1372                        Src, isKill, Src2, isKill2);
1373      if (LV && isKill2)
1374        LV->replaceKillInstruction(Src2, MI, NewMI);
1375      break;
1376    }
1377    case X86::ADD16rr: {
1378      if (DisableLEA16)
1379        return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
1380      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1381      unsigned Src2 = MI->getOperand(2).getReg();
1382      bool isKill2 = MI->getOperand(2).isKill();
1383      NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1384                        .addReg(Dest, RegState::Define |
1385                                getDeadRegState(isDead)),
1386                        Src, isKill, Src2, isKill2);
1387      if (LV && isKill2)
1388        LV->replaceKillInstruction(Src2, MI, NewMI);
1389      break;
1390    }
1391    case X86::ADD64ri32:
1392    case X86::ADD64ri8:
1393      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1394      NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
1395                              .addReg(Dest, RegState::Define |
1396                                      getDeadRegState(isDead)),
1397                              Src, isKill, MI->getOperand(2).getImm());
1398      break;
1399    case X86::ADD32ri:
1400    case X86::ADD32ri8: {
1401      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1402      unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
1403      NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1404                              .addReg(Dest, RegState::Define |
1405                                      getDeadRegState(isDead)),
1406                                Src, isKill, MI->getOperand(2).getImm());
1407      break;
1408    }
1409    case X86::ADD16ri:
1410    case X86::ADD16ri8:
1411      if (DisableLEA16)
1412        return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
1413      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1414      NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1415                              .addReg(Dest, RegState::Define |
1416                                      getDeadRegState(isDead)),
1417                              Src, isKill, MI->getOperand(2).getImm());
1418      break;
1419    }
1420  }
1421  }
1422
1423  if (!NewMI) return 0;
1424
1425  if (LV) {  // Update live variables
1426    if (isKill)
1427      LV->replaceKillInstruction(Src, MI, NewMI);
1428    if (isDead)
1429      LV->replaceKillInstruction(Dest, MI, NewMI);
1430  }
1431
1432  MFI->insert(MBBI, NewMI);          // Insert the new inst
1433  return NewMI;
1434}
1435
1436/// commuteInstruction - We have a few instructions that must be hacked on to
1437/// commute them.
1438///
1439MachineInstr *
1440X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
1441  switch (MI->getOpcode()) {
1442  case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
1443  case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
1444  case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
1445  case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
1446  case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
1447  case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
1448    unsigned Opc;
1449    unsigned Size;
1450    switch (MI->getOpcode()) {
1451    default: llvm_unreachable("Unreachable!");
1452    case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
1453    case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
1454    case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
1455    case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
1456    case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
1457    case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
1458    }
1459    unsigned Amt = MI->getOperand(3).getImm();
1460    if (NewMI) {
1461      MachineFunction &MF = *MI->getParent()->getParent();
1462      MI = MF.CloneMachineInstr(MI);
1463      NewMI = false;
1464    }
1465    MI->setDesc(get(Opc));
1466    MI->getOperand(3).setImm(Size-Amt);
1467    return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
1468  }
1469  case X86::CMOVB16rr:
1470  case X86::CMOVB32rr:
1471  case X86::CMOVB64rr:
1472  case X86::CMOVAE16rr:
1473  case X86::CMOVAE32rr:
1474  case X86::CMOVAE64rr:
1475  case X86::CMOVE16rr:
1476  case X86::CMOVE32rr:
1477  case X86::CMOVE64rr:
1478  case X86::CMOVNE16rr:
1479  case X86::CMOVNE32rr:
1480  case X86::CMOVNE64rr:
1481  case X86::CMOVBE16rr:
1482  case X86::CMOVBE32rr:
1483  case X86::CMOVBE64rr:
1484  case X86::CMOVA16rr:
1485  case X86::CMOVA32rr:
1486  case X86::CMOVA64rr:
1487  case X86::CMOVL16rr:
1488  case X86::CMOVL32rr:
1489  case X86::CMOVL64rr:
1490  case X86::CMOVGE16rr:
1491  case X86::CMOVGE32rr:
1492  case X86::CMOVGE64rr:
1493  case X86::CMOVLE16rr:
1494  case X86::CMOVLE32rr:
1495  case X86::CMOVLE64rr:
1496  case X86::CMOVG16rr:
1497  case X86::CMOVG32rr:
1498  case X86::CMOVG64rr:
1499  case X86::CMOVS16rr:
1500  case X86::CMOVS32rr:
1501  case X86::CMOVS64rr:
1502  case X86::CMOVNS16rr:
1503  case X86::CMOVNS32rr:
1504  case X86::CMOVNS64rr:
1505  case X86::CMOVP16rr:
1506  case X86::CMOVP32rr:
1507  case X86::CMOVP64rr:
1508  case X86::CMOVNP16rr:
1509  case X86::CMOVNP32rr:
1510  case X86::CMOVNP64rr:
1511  case X86::CMOVO16rr:
1512  case X86::CMOVO32rr:
1513  case X86::CMOVO64rr:
1514  case X86::CMOVNO16rr:
1515  case X86::CMOVNO32rr:
1516  case X86::CMOVNO64rr: {
1517    unsigned Opc = 0;
1518    switch (MI->getOpcode()) {
1519    default: break;
1520    case X86::CMOVB16rr:  Opc = X86::CMOVAE16rr; break;
1521    case X86::CMOVB32rr:  Opc = X86::CMOVAE32rr; break;
1522    case X86::CMOVB64rr:  Opc = X86::CMOVAE64rr; break;
1523    case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
1524    case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
1525    case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
1526    case X86::CMOVE16rr:  Opc = X86::CMOVNE16rr; break;
1527    case X86::CMOVE32rr:  Opc = X86::CMOVNE32rr; break;
1528    case X86::CMOVE64rr:  Opc = X86::CMOVNE64rr; break;
1529    case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
1530    case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
1531    case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
1532    case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
1533    case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
1534    case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
1535    case X86::CMOVA16rr:  Opc = X86::CMOVBE16rr; break;
1536    case X86::CMOVA32rr:  Opc = X86::CMOVBE32rr; break;
1537    case X86::CMOVA64rr:  Opc = X86::CMOVBE64rr; break;
1538    case X86::CMOVL16rr:  Opc = X86::CMOVGE16rr; break;
1539    case X86::CMOVL32rr:  Opc = X86::CMOVGE32rr; break;
1540    case X86::CMOVL64rr:  Opc = X86::CMOVGE64rr; break;
1541    case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
1542    case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
1543    case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
1544    case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
1545    case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
1546    case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
1547    case X86::CMOVG16rr:  Opc = X86::CMOVLE16rr; break;
1548    case X86::CMOVG32rr:  Opc = X86::CMOVLE32rr; break;
1549    case X86::CMOVG64rr:  Opc = X86::CMOVLE64rr; break;
1550    case X86::CMOVS16rr:  Opc = X86::CMOVNS16rr; break;
1551    case X86::CMOVS32rr:  Opc = X86::CMOVNS32rr; break;
1552    case X86::CMOVS64rr:  Opc = X86::CMOVNS64rr; break;
1553    case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
1554    case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
1555    case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
1556    case X86::CMOVP16rr:  Opc = X86::CMOVNP16rr; break;
1557    case X86::CMOVP32rr:  Opc = X86::CMOVNP32rr; break;
1558    case X86::CMOVP64rr:  Opc = X86::CMOVNP64rr; break;
1559    case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
1560    case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
1561    case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
1562    case X86::CMOVO16rr:  Opc = X86::CMOVNO16rr; break;
1563    case X86::CMOVO32rr:  Opc = X86::CMOVNO32rr; break;
1564    case X86::CMOVO64rr:  Opc = X86::CMOVNO64rr; break;
1565    case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break;
1566    case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break;
1567    case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break;
1568    }
1569    if (NewMI) {
1570      MachineFunction &MF = *MI->getParent()->getParent();
1571      MI = MF.CloneMachineInstr(MI);
1572      NewMI = false;
1573    }
1574    MI->setDesc(get(Opc));
1575    // Fallthrough intended.
1576  }
1577  default:
1578    return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
1579  }
1580}
1581
1582static X86::CondCode GetCondFromBranchOpc(unsigned BrOpc) {
1583  switch (BrOpc) {
1584  default: return X86::COND_INVALID;
1585  case X86::JE_4:  return X86::COND_E;
1586  case X86::JNE_4: return X86::COND_NE;
1587  case X86::JL_4:  return X86::COND_L;
1588  case X86::JLE_4: return X86::COND_LE;
1589  case X86::JG_4:  return X86::COND_G;
1590  case X86::JGE_4: return X86::COND_GE;
1591  case X86::JB_4:  return X86::COND_B;
1592  case X86::JBE_4: return X86::COND_BE;
1593  case X86::JA_4:  return X86::COND_A;
1594  case X86::JAE_4: return X86::COND_AE;
1595  case X86::JS_4:  return X86::COND_S;
1596  case X86::JNS_4: return X86::COND_NS;
1597  case X86::JP_4:  return X86::COND_P;
1598  case X86::JNP_4: return X86::COND_NP;
1599  case X86::JO_4:  return X86::COND_O;
1600  case X86::JNO_4: return X86::COND_NO;
1601  }
1602}
1603
1604unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
1605  switch (CC) {
1606  default: llvm_unreachable("Illegal condition code!");
1607  case X86::COND_E:  return X86::JE_4;
1608  case X86::COND_NE: return X86::JNE_4;
1609  case X86::COND_L:  return X86::JL_4;
1610  case X86::COND_LE: return X86::JLE_4;
1611  case X86::COND_G:  return X86::JG_4;
1612  case X86::COND_GE: return X86::JGE_4;
1613  case X86::COND_B:  return X86::JB_4;
1614  case X86::COND_BE: return X86::JBE_4;
1615  case X86::COND_A:  return X86::JA_4;
1616  case X86::COND_AE: return X86::JAE_4;
1617  case X86::COND_S:  return X86::JS_4;
1618  case X86::COND_NS: return X86::JNS_4;
1619  case X86::COND_P:  return X86::JP_4;
1620  case X86::COND_NP: return X86::JNP_4;
1621  case X86::COND_O:  return X86::JO_4;
1622  case X86::COND_NO: return X86::JNO_4;
1623  }
1624}
1625
1626/// GetOppositeBranchCondition - Return the inverse of the specified condition,
1627/// e.g. turning COND_E to COND_NE.
1628X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
1629  switch (CC) {
1630  default: llvm_unreachable("Illegal condition code!");
1631  case X86::COND_E:  return X86::COND_NE;
1632  case X86::COND_NE: return X86::COND_E;
1633  case X86::COND_L:  return X86::COND_GE;
1634  case X86::COND_LE: return X86::COND_G;
1635  case X86::COND_G:  return X86::COND_LE;
1636  case X86::COND_GE: return X86::COND_L;
1637  case X86::COND_B:  return X86::COND_AE;
1638  case X86::COND_BE: return X86::COND_A;
1639  case X86::COND_A:  return X86::COND_BE;
1640  case X86::COND_AE: return X86::COND_B;
1641  case X86::COND_S:  return X86::COND_NS;
1642  case X86::COND_NS: return X86::COND_S;
1643  case X86::COND_P:  return X86::COND_NP;
1644  case X86::COND_NP: return X86::COND_P;
1645  case X86::COND_O:  return X86::COND_NO;
1646  case X86::COND_NO: return X86::COND_O;
1647  }
1648}
1649
1650bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
1651  const TargetInstrDesc &TID = MI->getDesc();
1652  if (!TID.isTerminator()) return false;
1653
1654  // Conditional branch is a special case.
1655  if (TID.isBranch() && !TID.isBarrier())
1656    return true;
1657  if (!TID.isPredicable())
1658    return true;
1659  return !isPredicated(MI);
1660}
1661
1662// For purposes of branch analysis do not count FP_REG_KILL as a terminator.
1663static bool isBrAnalysisUnpredicatedTerminator(const MachineInstr *MI,
1664                                               const X86InstrInfo &TII) {
1665  if (MI->getOpcode() == X86::FP_REG_KILL)
1666    return false;
1667  return TII.isUnpredicatedTerminator(MI);
1668}
1669
1670bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
1671                                 MachineBasicBlock *&TBB,
1672                                 MachineBasicBlock *&FBB,
1673                                 SmallVectorImpl<MachineOperand> &Cond,
1674                                 bool AllowModify) const {
1675  // Start from the bottom of the block and work up, examining the
1676  // terminator instructions.
1677  MachineBasicBlock::iterator I = MBB.end();
1678  while (I != MBB.begin()) {
1679    --I;
1680
1681    // Working from the bottom, when we see a non-terminator instruction, we're
1682    // done.
1683    if (!isBrAnalysisUnpredicatedTerminator(I, *this))
1684      break;
1685
1686    // A terminator that isn't a branch can't easily be handled by this
1687    // analysis.
1688    if (!I->getDesc().isBranch())
1689      return true;
1690
1691    // Handle unconditional branches.
1692    if (I->getOpcode() == X86::JMP_4) {
1693      if (!AllowModify) {
1694        TBB = I->getOperand(0).getMBB();
1695        continue;
1696      }
1697
1698      // If the block has any instructions after a JMP, delete them.
1699      while (llvm::next(I) != MBB.end())
1700        llvm::next(I)->eraseFromParent();
1701
1702      Cond.clear();
1703      FBB = 0;
1704
1705      // Delete the JMP if it's equivalent to a fall-through.
1706      if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
1707        TBB = 0;
1708        I->eraseFromParent();
1709        I = MBB.end();
1710        continue;
1711      }
1712
1713      // TBB is used to indicate the unconditinal destination.
1714      TBB = I->getOperand(0).getMBB();
1715      continue;
1716    }
1717
1718    // Handle conditional branches.
1719    X86::CondCode BranchCode = GetCondFromBranchOpc(I->getOpcode());
1720    if (BranchCode == X86::COND_INVALID)
1721      return true;  // Can't handle indirect branch.
1722
1723    // Working from the bottom, handle the first conditional branch.
1724    if (Cond.empty()) {
1725      FBB = TBB;
1726      TBB = I->getOperand(0).getMBB();
1727      Cond.push_back(MachineOperand::CreateImm(BranchCode));
1728      continue;
1729    }
1730
1731    // Handle subsequent conditional branches. Only handle the case where all
1732    // conditional branches branch to the same destination and their condition
1733    // opcodes fit one of the special multi-branch idioms.
1734    assert(Cond.size() == 1);
1735    assert(TBB);
1736
1737    // Only handle the case where all conditional branches branch to the same
1738    // destination.
1739    if (TBB != I->getOperand(0).getMBB())
1740      return true;
1741
1742    // If the conditions are the same, we can leave them alone.
1743    X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
1744    if (OldBranchCode == BranchCode)
1745      continue;
1746
1747    // If they differ, see if they fit one of the known patterns. Theoretically,
1748    // we could handle more patterns here, but we shouldn't expect to see them
1749    // if instruction selection has done a reasonable job.
1750    if ((OldBranchCode == X86::COND_NP &&
1751         BranchCode == X86::COND_E) ||
1752        (OldBranchCode == X86::COND_E &&
1753         BranchCode == X86::COND_NP))
1754      BranchCode = X86::COND_NP_OR_E;
1755    else if ((OldBranchCode == X86::COND_P &&
1756              BranchCode == X86::COND_NE) ||
1757             (OldBranchCode == X86::COND_NE &&
1758              BranchCode == X86::COND_P))
1759      BranchCode = X86::COND_NE_OR_P;
1760    else
1761      return true;
1762
1763    // Update the MachineOperand.
1764    Cond[0].setImm(BranchCode);
1765  }
1766
1767  return false;
1768}
1769
1770unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
1771  MachineBasicBlock::iterator I = MBB.end();
1772  unsigned Count = 0;
1773
1774  while (I != MBB.begin()) {
1775    --I;
1776    if (I->getOpcode() != X86::JMP_4 &&
1777        GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
1778      break;
1779    // Remove the branch.
1780    I->eraseFromParent();
1781    I = MBB.end();
1782    ++Count;
1783  }
1784
1785  return Count;
1786}
1787
1788unsigned
1789X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
1790                           MachineBasicBlock *FBB,
1791                           const SmallVectorImpl<MachineOperand> &Cond) const {
1792  // FIXME this should probably have a DebugLoc operand
1793  DebugLoc dl = DebugLoc::getUnknownLoc();
1794  // Shouldn't be a fall through.
1795  assert(TBB && "InsertBranch must not be told to insert a fallthrough");
1796  assert((Cond.size() == 1 || Cond.size() == 0) &&
1797         "X86 branch conditions have one component!");
1798
1799  if (Cond.empty()) {
1800    // Unconditional branch?
1801    assert(!FBB && "Unconditional branch with multiple successors!");
1802    BuildMI(&MBB, dl, get(X86::JMP_4)).addMBB(TBB);
1803    return 1;
1804  }
1805
1806  // Conditional branch.
1807  unsigned Count = 0;
1808  X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
1809  switch (CC) {
1810  case X86::COND_NP_OR_E:
1811    // Synthesize NP_OR_E with two branches.
1812    BuildMI(&MBB, dl, get(X86::JNP_4)).addMBB(TBB);
1813    ++Count;
1814    BuildMI(&MBB, dl, get(X86::JE_4)).addMBB(TBB);
1815    ++Count;
1816    break;
1817  case X86::COND_NE_OR_P:
1818    // Synthesize NE_OR_P with two branches.
1819    BuildMI(&MBB, dl, get(X86::JNE_4)).addMBB(TBB);
1820    ++Count;
1821    BuildMI(&MBB, dl, get(X86::JP_4)).addMBB(TBB);
1822    ++Count;
1823    break;
1824  default: {
1825    unsigned Opc = GetCondBranchFromCond(CC);
1826    BuildMI(&MBB, dl, get(Opc)).addMBB(TBB);
1827    ++Count;
1828  }
1829  }
1830  if (FBB) {
1831    // Two-way Conditional branch. Insert the second branch.
1832    BuildMI(&MBB, dl, get(X86::JMP_4)).addMBB(FBB);
1833    ++Count;
1834  }
1835  return Count;
1836}
1837
1838/// isHReg - Test if the given register is a physical h register.
1839static bool isHReg(unsigned Reg) {
1840  return X86::GR8_ABCD_HRegClass.contains(Reg);
1841}
1842
1843bool X86InstrInfo::copyRegToReg(MachineBasicBlock &MBB,
1844                                MachineBasicBlock::iterator MI,
1845                                unsigned DestReg, unsigned SrcReg,
1846                                const TargetRegisterClass *DestRC,
1847                                const TargetRegisterClass *SrcRC) const {
1848  DebugLoc DL = MBB.findDebugLoc(MI);
1849
1850  // Determine if DstRC and SrcRC have a common superclass in common.
1851  const TargetRegisterClass *CommonRC = DestRC;
1852  if (DestRC == SrcRC)
1853    /* Source and destination have the same register class. */;
1854  else if (CommonRC->hasSuperClass(SrcRC))
1855    CommonRC = SrcRC;
1856  else if (!DestRC->hasSubClass(SrcRC)) {
1857    // Neither of GR64_NOREX or GR64_NOSP is a superclass of the other,
1858    // but we want to copy them as GR64. Similarly, for GR32_NOREX and
1859    // GR32_NOSP, copy as GR32.
1860    if (SrcRC->hasSuperClass(&X86::GR64RegClass) &&
1861        DestRC->hasSuperClass(&X86::GR64RegClass))
1862      CommonRC = &X86::GR64RegClass;
1863    else if (SrcRC->hasSuperClass(&X86::GR32RegClass) &&
1864             DestRC->hasSuperClass(&X86::GR32RegClass))
1865      CommonRC = &X86::GR32RegClass;
1866    else
1867      CommonRC = 0;
1868  }
1869
1870  if (CommonRC) {
1871    unsigned Opc;
1872    if (CommonRC == &X86::GR64RegClass || CommonRC == &X86::GR64_NOSPRegClass) {
1873      Opc = X86::MOV64rr;
1874    } else if (CommonRC == &X86::GR32RegClass ||
1875               CommonRC == &X86::GR32_NOSPRegClass) {
1876      Opc = X86::MOV32rr;
1877    } else if (CommonRC == &X86::GR16RegClass) {
1878      Opc = X86::MOV16rr;
1879    } else if (CommonRC == &X86::GR8RegClass) {
1880      // Copying to or from a physical H register on x86-64 requires a NOREX
1881      // move.  Otherwise use a normal move.
1882      if ((isHReg(DestReg) || isHReg(SrcReg)) &&
1883          TM.getSubtarget<X86Subtarget>().is64Bit())
1884        Opc = X86::MOV8rr_NOREX;
1885      else
1886        Opc = X86::MOV8rr;
1887    } else if (CommonRC == &X86::GR64_ABCDRegClass) {
1888      Opc = X86::MOV64rr;
1889    } else if (CommonRC == &X86::GR32_ABCDRegClass) {
1890      Opc = X86::MOV32rr;
1891    } else if (CommonRC == &X86::GR16_ABCDRegClass) {
1892      Opc = X86::MOV16rr;
1893    } else if (CommonRC == &X86::GR8_ABCD_LRegClass) {
1894      Opc = X86::MOV8rr;
1895    } else if (CommonRC == &X86::GR8_ABCD_HRegClass) {
1896      if (TM.getSubtarget<X86Subtarget>().is64Bit())
1897        Opc = X86::MOV8rr_NOREX;
1898      else
1899        Opc = X86::MOV8rr;
1900    } else if (CommonRC == &X86::GR64_NOREXRegClass ||
1901               CommonRC == &X86::GR64_NOREX_NOSPRegClass) {
1902      Opc = X86::MOV64rr;
1903    } else if (CommonRC == &X86::GR32_NOREXRegClass) {
1904      Opc = X86::MOV32rr;
1905    } else if (CommonRC == &X86::GR16_NOREXRegClass) {
1906      Opc = X86::MOV16rr;
1907    } else if (CommonRC == &X86::GR8_NOREXRegClass) {
1908      Opc = X86::MOV8rr;
1909    } else if (CommonRC == &X86::GR64_TCRegClass) {
1910      Opc = X86::MOV64rr_TC;
1911    } else if (CommonRC == &X86::GR32_TCRegClass) {
1912      Opc = X86::MOV32rr_TC;
1913    } else if (CommonRC == &X86::RFP32RegClass) {
1914      Opc = X86::MOV_Fp3232;
1915    } else if (CommonRC == &X86::RFP64RegClass || CommonRC == &X86::RSTRegClass) {
1916      Opc = X86::MOV_Fp6464;
1917    } else if (CommonRC == &X86::RFP80RegClass) {
1918      Opc = X86::MOV_Fp8080;
1919    } else if (CommonRC == &X86::FR32RegClass) {
1920      Opc = X86::FsMOVAPSrr;
1921    } else if (CommonRC == &X86::FR64RegClass) {
1922      Opc = X86::FsMOVAPDrr;
1923    } else if (CommonRC == &X86::VR128RegClass) {
1924      Opc = X86::MOVAPSrr;
1925    } else if (CommonRC == &X86::VR64RegClass) {
1926      Opc = X86::MMX_MOVQ64rr;
1927    } else {
1928      return false;
1929    }
1930    BuildMI(MBB, MI, DL, get(Opc), DestReg).addReg(SrcReg);
1931    return true;
1932  }
1933
1934  // Moving EFLAGS to / from another register requires a push and a pop.
1935  if (SrcRC == &X86::CCRRegClass) {
1936    if (SrcReg != X86::EFLAGS)
1937      return false;
1938    if (DestRC == &X86::GR64RegClass || DestRC == &X86::GR64_NOSPRegClass) {
1939      BuildMI(MBB, MI, DL, get(X86::PUSHFQ64));
1940      BuildMI(MBB, MI, DL, get(X86::POP64r), DestReg);
1941      return true;
1942    } else if (DestRC == &X86::GR32RegClass ||
1943               DestRC == &X86::GR32_NOSPRegClass) {
1944      BuildMI(MBB, MI, DL, get(X86::PUSHFD));
1945      BuildMI(MBB, MI, DL, get(X86::POP32r), DestReg);
1946      return true;
1947    }
1948  } else if (DestRC == &X86::CCRRegClass) {
1949    if (DestReg != X86::EFLAGS)
1950      return false;
1951    if (SrcRC == &X86::GR64RegClass || DestRC == &X86::GR64_NOSPRegClass) {
1952      BuildMI(MBB, MI, DL, get(X86::PUSH64r)).addReg(SrcReg);
1953      BuildMI(MBB, MI, DL, get(X86::POPFQ));
1954      return true;
1955    } else if (SrcRC == &X86::GR32RegClass ||
1956               DestRC == &X86::GR32_NOSPRegClass) {
1957      BuildMI(MBB, MI, DL, get(X86::PUSH32r)).addReg(SrcReg);
1958      BuildMI(MBB, MI, DL, get(X86::POPFD));
1959      return true;
1960    }
1961  }
1962
1963  // Moving from ST(0) turns into FpGET_ST0_32 etc.
1964  if (SrcRC == &X86::RSTRegClass) {
1965    // Copying from ST(0)/ST(1).
1966    if (SrcReg != X86::ST0 && SrcReg != X86::ST1)
1967      // Can only copy from ST(0)/ST(1) right now
1968      return false;
1969    bool isST0 = SrcReg == X86::ST0;
1970    unsigned Opc;
1971    if (DestRC == &X86::RFP32RegClass)
1972      Opc = isST0 ? X86::FpGET_ST0_32 : X86::FpGET_ST1_32;
1973    else if (DestRC == &X86::RFP64RegClass)
1974      Opc = isST0 ? X86::FpGET_ST0_64 : X86::FpGET_ST1_64;
1975    else {
1976      if (DestRC != &X86::RFP80RegClass)
1977        return false;
1978      Opc = isST0 ? X86::FpGET_ST0_80 : X86::FpGET_ST1_80;
1979    }
1980    BuildMI(MBB, MI, DL, get(Opc), DestReg);
1981    return true;
1982  }
1983
1984  // Moving to ST(0) turns into FpSET_ST0_32 etc.
1985  if (DestRC == &X86::RSTRegClass) {
1986    // Copying to ST(0) / ST(1).
1987    if (DestReg != X86::ST0 && DestReg != X86::ST1)
1988      // Can only copy to TOS right now
1989      return false;
1990    bool isST0 = DestReg == X86::ST0;
1991    unsigned Opc;
1992    if (SrcRC == &X86::RFP32RegClass)
1993      Opc = isST0 ? X86::FpSET_ST0_32 : X86::FpSET_ST1_32;
1994    else if (SrcRC == &X86::RFP64RegClass)
1995      Opc = isST0 ? X86::FpSET_ST0_64 : X86::FpSET_ST1_64;
1996    else {
1997      if (SrcRC != &X86::RFP80RegClass)
1998        return false;
1999      Opc = isST0 ? X86::FpSET_ST0_80 : X86::FpSET_ST1_80;
2000    }
2001    BuildMI(MBB, MI, DL, get(Opc)).addReg(SrcReg);
2002    return true;
2003  }
2004
2005  // Not yet supported!
2006  return false;
2007}
2008
2009static unsigned getStoreRegOpcode(unsigned SrcReg,
2010                                  const TargetRegisterClass *RC,
2011                                  bool isStackAligned,
2012                                  TargetMachine &TM) {
2013  unsigned Opc = 0;
2014  if (RC == &X86::GR64RegClass || RC == &X86::GR64_NOSPRegClass) {
2015    Opc = X86::MOV64mr;
2016  } else if (RC == &X86::GR32RegClass || RC == &X86::GR32_NOSPRegClass) {
2017    Opc = X86::MOV32mr;
2018  } else if (RC == &X86::GR16RegClass) {
2019    Opc = X86::MOV16mr;
2020  } else if (RC == &X86::GR8RegClass) {
2021    // Copying to or from a physical H register on x86-64 requires a NOREX
2022    // move.  Otherwise use a normal move.
2023    if (isHReg(SrcReg) &&
2024        TM.getSubtarget<X86Subtarget>().is64Bit())
2025      Opc = X86::MOV8mr_NOREX;
2026    else
2027      Opc = X86::MOV8mr;
2028  } else if (RC == &X86::GR64_ABCDRegClass) {
2029    Opc = X86::MOV64mr;
2030  } else if (RC == &X86::GR32_ABCDRegClass) {
2031    Opc = X86::MOV32mr;
2032  } else if (RC == &X86::GR16_ABCDRegClass) {
2033    Opc = X86::MOV16mr;
2034  } else if (RC == &X86::GR8_ABCD_LRegClass) {
2035    Opc = X86::MOV8mr;
2036  } else if (RC == &X86::GR8_ABCD_HRegClass) {
2037    if (TM.getSubtarget<X86Subtarget>().is64Bit())
2038      Opc = X86::MOV8mr_NOREX;
2039    else
2040      Opc = X86::MOV8mr;
2041  } else if (RC == &X86::GR64_NOREXRegClass ||
2042             RC == &X86::GR64_NOREX_NOSPRegClass) {
2043    Opc = X86::MOV64mr;
2044  } else if (RC == &X86::GR32_NOREXRegClass) {
2045    Opc = X86::MOV32mr;
2046  } else if (RC == &X86::GR16_NOREXRegClass) {
2047    Opc = X86::MOV16mr;
2048  } else if (RC == &X86::GR8_NOREXRegClass) {
2049    Opc = X86::MOV8mr;
2050  } else if (RC == &X86::GR64_TCRegClass) {
2051    Opc = X86::MOV64mr_TC;
2052  } else if (RC == &X86::GR32_TCRegClass) {
2053    Opc = X86::MOV32mr_TC;
2054  } else if (RC == &X86::RFP80RegClass) {
2055    Opc = X86::ST_FpP80m;   // pops
2056  } else if (RC == &X86::RFP64RegClass) {
2057    Opc = X86::ST_Fp64m;
2058  } else if (RC == &X86::RFP32RegClass) {
2059    Opc = X86::ST_Fp32m;
2060  } else if (RC == &X86::FR32RegClass) {
2061    Opc = X86::MOVSSmr;
2062  } else if (RC == &X86::FR64RegClass) {
2063    Opc = X86::MOVSDmr;
2064  } else if (RC == &X86::VR128RegClass) {
2065    // If stack is realigned we can use aligned stores.
2066    Opc = isStackAligned ? X86::MOVAPSmr : X86::MOVUPSmr;
2067  } else if (RC == &X86::VR64RegClass) {
2068    Opc = X86::MMX_MOVQ64mr;
2069  } else {
2070    llvm_unreachable("Unknown regclass");
2071  }
2072
2073  return Opc;
2074}
2075
2076void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
2077                                       MachineBasicBlock::iterator MI,
2078                                       unsigned SrcReg, bool isKill, int FrameIdx,
2079                                       const TargetRegisterClass *RC) const {
2080  const MachineFunction &MF = *MBB.getParent();
2081  bool isAligned = (RI.getStackAlignment() >= 16) || RI.canRealignStack(MF);
2082  unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM);
2083  DebugLoc DL = MBB.findDebugLoc(MI);
2084  addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIdx)
2085    .addReg(SrcReg, getKillRegState(isKill));
2086}
2087
2088void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
2089                                  bool isKill,
2090                                  SmallVectorImpl<MachineOperand> &Addr,
2091                                  const TargetRegisterClass *RC,
2092                                  MachineInstr::mmo_iterator MMOBegin,
2093                                  MachineInstr::mmo_iterator MMOEnd,
2094                                  SmallVectorImpl<MachineInstr*> &NewMIs) const {
2095  bool isAligned = (*MMOBegin)->getAlignment() >= 16;
2096  unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM);
2097  DebugLoc DL = DebugLoc::getUnknownLoc();
2098  MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
2099  for (unsigned i = 0, e = Addr.size(); i != e; ++i)
2100    MIB.addOperand(Addr[i]);
2101  MIB.addReg(SrcReg, getKillRegState(isKill));
2102  (*MIB).setMemRefs(MMOBegin, MMOEnd);
2103  NewMIs.push_back(MIB);
2104}
2105
2106static unsigned getLoadRegOpcode(unsigned DestReg,
2107                                 const TargetRegisterClass *RC,
2108                                 bool isStackAligned,
2109                                 const TargetMachine &TM) {
2110  unsigned Opc = 0;
2111  if (RC == &X86::GR64RegClass || RC == &X86::GR64_NOSPRegClass) {
2112    Opc = X86::MOV64rm;
2113  } else if (RC == &X86::GR32RegClass || RC == &X86::GR32_NOSPRegClass) {
2114    Opc = X86::MOV32rm;
2115  } else if (RC == &X86::GR16RegClass) {
2116    Opc = X86::MOV16rm;
2117  } else if (RC == &X86::GR8RegClass) {
2118    // Copying to or from a physical H register on x86-64 requires a NOREX
2119    // move.  Otherwise use a normal move.
2120    if (isHReg(DestReg) &&
2121        TM.getSubtarget<X86Subtarget>().is64Bit())
2122      Opc = X86::MOV8rm_NOREX;
2123    else
2124      Opc = X86::MOV8rm;
2125  } else if (RC == &X86::GR64_ABCDRegClass) {
2126    Opc = X86::MOV64rm;
2127  } else if (RC == &X86::GR32_ABCDRegClass) {
2128    Opc = X86::MOV32rm;
2129  } else if (RC == &X86::GR16_ABCDRegClass) {
2130    Opc = X86::MOV16rm;
2131  } else if (RC == &X86::GR8_ABCD_LRegClass) {
2132    Opc = X86::MOV8rm;
2133  } else if (RC == &X86::GR8_ABCD_HRegClass) {
2134    if (TM.getSubtarget<X86Subtarget>().is64Bit())
2135      Opc = X86::MOV8rm_NOREX;
2136    else
2137      Opc = X86::MOV8rm;
2138  } else if (RC == &X86::GR64_NOREXRegClass ||
2139             RC == &X86::GR64_NOREX_NOSPRegClass) {
2140    Opc = X86::MOV64rm;
2141  } else if (RC == &X86::GR32_NOREXRegClass) {
2142    Opc = X86::MOV32rm;
2143  } else if (RC == &X86::GR16_NOREXRegClass) {
2144    Opc = X86::MOV16rm;
2145  } else if (RC == &X86::GR8_NOREXRegClass) {
2146    Opc = X86::MOV8rm;
2147  } else if (RC == &X86::GR64_TCRegClass) {
2148    Opc = X86::MOV64rm_TC;
2149  } else if (RC == &X86::GR32_TCRegClass) {
2150    Opc = X86::MOV32rm_TC;
2151  } else if (RC == &X86::RFP80RegClass) {
2152    Opc = X86::LD_Fp80m;
2153  } else if (RC == &X86::RFP64RegClass) {
2154    Opc = X86::LD_Fp64m;
2155  } else if (RC == &X86::RFP32RegClass) {
2156    Opc = X86::LD_Fp32m;
2157  } else if (RC == &X86::FR32RegClass) {
2158    Opc = X86::MOVSSrm;
2159  } else if (RC == &X86::FR64RegClass) {
2160    Opc = X86::MOVSDrm;
2161  } else if (RC == &X86::VR128RegClass) {
2162    // If stack is realigned we can use aligned loads.
2163    Opc = isStackAligned ? X86::MOVAPSrm : X86::MOVUPSrm;
2164  } else if (RC == &X86::VR64RegClass) {
2165    Opc = X86::MMX_MOVQ64rm;
2166  } else {
2167    llvm_unreachable("Unknown regclass");
2168  }
2169
2170  return Opc;
2171}
2172
2173void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
2174                                        MachineBasicBlock::iterator MI,
2175                                        unsigned DestReg, int FrameIdx,
2176                                        const TargetRegisterClass *RC) const{
2177  const MachineFunction &MF = *MBB.getParent();
2178  bool isAligned = (RI.getStackAlignment() >= 16) || RI.canRealignStack(MF);
2179  unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM);
2180  DebugLoc DL = MBB.findDebugLoc(MI);
2181  addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DestReg), FrameIdx);
2182}
2183
2184void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
2185                                 SmallVectorImpl<MachineOperand> &Addr,
2186                                 const TargetRegisterClass *RC,
2187                                 MachineInstr::mmo_iterator MMOBegin,
2188                                 MachineInstr::mmo_iterator MMOEnd,
2189                                 SmallVectorImpl<MachineInstr*> &NewMIs) const {
2190  bool isAligned = (*MMOBegin)->getAlignment() >= 16;
2191  unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM);
2192  DebugLoc DL = DebugLoc::getUnknownLoc();
2193  MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg);
2194  for (unsigned i = 0, e = Addr.size(); i != e; ++i)
2195    MIB.addOperand(Addr[i]);
2196  (*MIB).setMemRefs(MMOBegin, MMOEnd);
2197  NewMIs.push_back(MIB);
2198}
2199
2200bool X86InstrInfo::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
2201                                             MachineBasicBlock::iterator MI,
2202                                const std::vector<CalleeSavedInfo> &CSI) const {
2203  if (CSI.empty())
2204    return false;
2205
2206  DebugLoc DL = MBB.findDebugLoc(MI);
2207
2208  bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
2209  bool isWin64 = TM.getSubtarget<X86Subtarget>().isTargetWin64();
2210  unsigned SlotSize = is64Bit ? 8 : 4;
2211
2212  MachineFunction &MF = *MBB.getParent();
2213  unsigned FPReg = RI.getFrameRegister(MF);
2214  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2215  unsigned CalleeFrameSize = 0;
2216
2217  unsigned Opc = is64Bit ? X86::PUSH64r : X86::PUSH32r;
2218  for (unsigned i = CSI.size(); i != 0; --i) {
2219    unsigned Reg = CSI[i-1].getReg();
2220    const TargetRegisterClass *RegClass = CSI[i-1].getRegClass();
2221    // Add the callee-saved register as live-in. It's killed at the spill.
2222    MBB.addLiveIn(Reg);
2223    if (Reg == FPReg)
2224      // X86RegisterInfo::emitPrologue will handle spilling of frame register.
2225      continue;
2226    if (RegClass != &X86::VR128RegClass && !isWin64) {
2227      CalleeFrameSize += SlotSize;
2228      BuildMI(MBB, MI, DL, get(Opc)).addReg(Reg, RegState::Kill);
2229    } else {
2230      storeRegToStackSlot(MBB, MI, Reg, true, CSI[i-1].getFrameIdx(), RegClass);
2231    }
2232  }
2233
2234  X86FI->setCalleeSavedFrameSize(CalleeFrameSize);
2235  return true;
2236}
2237
2238bool X86InstrInfo::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
2239                                               MachineBasicBlock::iterator MI,
2240                                const std::vector<CalleeSavedInfo> &CSI) const {
2241  if (CSI.empty())
2242    return false;
2243
2244  DebugLoc DL = MBB.findDebugLoc(MI);
2245
2246  MachineFunction &MF = *MBB.getParent();
2247  unsigned FPReg = RI.getFrameRegister(MF);
2248  bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
2249  bool isWin64 = TM.getSubtarget<X86Subtarget>().isTargetWin64();
2250  unsigned Opc = is64Bit ? X86::POP64r : X86::POP32r;
2251  for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
2252    unsigned Reg = CSI[i].getReg();
2253    if (Reg == FPReg)
2254      // X86RegisterInfo::emitEpilogue will handle restoring of frame register.
2255      continue;
2256    const TargetRegisterClass *RegClass = CSI[i].getRegClass();
2257    if (RegClass != &X86::VR128RegClass && !isWin64) {
2258      BuildMI(MBB, MI, DL, get(Opc), Reg);
2259    } else {
2260      loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(), RegClass);
2261    }
2262  }
2263  return true;
2264}
2265
2266static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
2267                                     const SmallVectorImpl<MachineOperand> &MOs,
2268                                     MachineInstr *MI,
2269                                     const TargetInstrInfo &TII) {
2270  // Create the base instruction with the memory operand as the first part.
2271  MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
2272                                              MI->getDebugLoc(), true);
2273  MachineInstrBuilder MIB(NewMI);
2274  unsigned NumAddrOps = MOs.size();
2275  for (unsigned i = 0; i != NumAddrOps; ++i)
2276    MIB.addOperand(MOs[i]);
2277  if (NumAddrOps < 4)  // FrameIndex only
2278    addOffset(MIB, 0);
2279
2280  // Loop over the rest of the ri operands, converting them over.
2281  unsigned NumOps = MI->getDesc().getNumOperands()-2;
2282  for (unsigned i = 0; i != NumOps; ++i) {
2283    MachineOperand &MO = MI->getOperand(i+2);
2284    MIB.addOperand(MO);
2285  }
2286  for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
2287    MachineOperand &MO = MI->getOperand(i);
2288    MIB.addOperand(MO);
2289  }
2290  return MIB;
2291}
2292
2293static MachineInstr *FuseInst(MachineFunction &MF,
2294                              unsigned Opcode, unsigned OpNo,
2295                              const SmallVectorImpl<MachineOperand> &MOs,
2296                              MachineInstr *MI, const TargetInstrInfo &TII) {
2297  MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
2298                                              MI->getDebugLoc(), true);
2299  MachineInstrBuilder MIB(NewMI);
2300
2301  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2302    MachineOperand &MO = MI->getOperand(i);
2303    if (i == OpNo) {
2304      assert(MO.isReg() && "Expected to fold into reg operand!");
2305      unsigned NumAddrOps = MOs.size();
2306      for (unsigned i = 0; i != NumAddrOps; ++i)
2307        MIB.addOperand(MOs[i]);
2308      if (NumAddrOps < 4)  // FrameIndex only
2309        addOffset(MIB, 0);
2310    } else {
2311      MIB.addOperand(MO);
2312    }
2313  }
2314  return MIB;
2315}
2316
2317static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
2318                                const SmallVectorImpl<MachineOperand> &MOs,
2319                                MachineInstr *MI) {
2320  MachineFunction &MF = *MI->getParent()->getParent();
2321  MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), TII.get(Opcode));
2322
2323  unsigned NumAddrOps = MOs.size();
2324  for (unsigned i = 0; i != NumAddrOps; ++i)
2325    MIB.addOperand(MOs[i]);
2326  if (NumAddrOps < 4)  // FrameIndex only
2327    addOffset(MIB, 0);
2328  return MIB.addImm(0);
2329}
2330
2331MachineInstr*
2332X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2333                                    MachineInstr *MI, unsigned i,
2334                                    const SmallVectorImpl<MachineOperand> &MOs,
2335                                    unsigned Size, unsigned Align) const {
2336  const DenseMap<unsigned*, std::pair<unsigned,unsigned> > *OpcodeTablePtr=NULL;
2337  bool isTwoAddrFold = false;
2338  unsigned NumOps = MI->getDesc().getNumOperands();
2339  bool isTwoAddr = NumOps > 1 &&
2340    MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
2341
2342  MachineInstr *NewMI = NULL;
2343  // Folding a memory location into the two-address part of a two-address
2344  // instruction is different than folding it other places.  It requires
2345  // replacing the *two* registers with the memory location.
2346  if (isTwoAddr && NumOps >= 2 && i < 2 &&
2347      MI->getOperand(0).isReg() &&
2348      MI->getOperand(1).isReg() &&
2349      MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
2350    OpcodeTablePtr = &RegOp2MemOpTable2Addr;
2351    isTwoAddrFold = true;
2352  } else if (i == 0) { // If operand 0
2353    if (MI->getOpcode() == X86::MOV64r0)
2354      NewMI = MakeM0Inst(*this, X86::MOV64mi32, MOs, MI);
2355    else if (MI->getOpcode() == X86::MOV32r0)
2356      NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
2357    else if (MI->getOpcode() == X86::MOV16r0)
2358      NewMI = MakeM0Inst(*this, X86::MOV16mi, MOs, MI);
2359    else if (MI->getOpcode() == X86::MOV8r0)
2360      NewMI = MakeM0Inst(*this, X86::MOV8mi, MOs, MI);
2361    if (NewMI)
2362      return NewMI;
2363
2364    OpcodeTablePtr = &RegOp2MemOpTable0;
2365  } else if (i == 1) {
2366    OpcodeTablePtr = &RegOp2MemOpTable1;
2367  } else if (i == 2) {
2368    OpcodeTablePtr = &RegOp2MemOpTable2;
2369  }
2370
2371  // If table selected...
2372  if (OpcodeTablePtr) {
2373    // Find the Opcode to fuse
2374    DenseMap<unsigned*, std::pair<unsigned,unsigned> >::const_iterator I =
2375      OpcodeTablePtr->find((unsigned*)MI->getOpcode());
2376    if (I != OpcodeTablePtr->end()) {
2377      unsigned Opcode = I->second.first;
2378      unsigned MinAlign = I->second.second;
2379      if (Align < MinAlign)
2380        return NULL;
2381      bool NarrowToMOV32rm = false;
2382      if (Size) {
2383        unsigned RCSize =  MI->getDesc().OpInfo[i].getRegClass(&RI)->getSize();
2384        if (Size < RCSize) {
2385          // Check if it's safe to fold the load. If the size of the object is
2386          // narrower than the load width, then it's not.
2387          if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4)
2388            return NULL;
2389          // If this is a 64-bit load, but the spill slot is 32, then we can do
2390          // a 32-bit load which is implicitly zero-extended. This likely is due
2391          // to liveintervalanalysis remat'ing a load from stack slot.
2392          if (MI->getOperand(0).getSubReg() || MI->getOperand(1).getSubReg())
2393            return NULL;
2394          Opcode = X86::MOV32rm;
2395          NarrowToMOV32rm = true;
2396        }
2397      }
2398
2399      if (isTwoAddrFold)
2400        NewMI = FuseTwoAddrInst(MF, Opcode, MOs, MI, *this);
2401      else
2402        NewMI = FuseInst(MF, Opcode, i, MOs, MI, *this);
2403
2404      if (NarrowToMOV32rm) {
2405        // If this is the special case where we use a MOV32rm to load a 32-bit
2406        // value and zero-extend the top bits. Change the destination register
2407        // to a 32-bit one.
2408        unsigned DstReg = NewMI->getOperand(0).getReg();
2409        if (TargetRegisterInfo::isPhysicalRegister(DstReg))
2410          NewMI->getOperand(0).setReg(RI.getSubReg(DstReg,
2411                                                   4/*x86_subreg_32bit*/));
2412        else
2413          NewMI->getOperand(0).setSubReg(4/*x86_subreg_32bit*/);
2414      }
2415      return NewMI;
2416    }
2417  }
2418
2419  // No fusion
2420  if (PrintFailedFusing)
2421    dbgs() << "We failed to fuse operand " << i << " in " << *MI;
2422  return NULL;
2423}
2424
2425
2426MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2427                                                  MachineInstr *MI,
2428                                           const SmallVectorImpl<unsigned> &Ops,
2429                                                  int FrameIndex) const {
2430  // Check switch flag
2431  if (NoFusing) return NULL;
2432
2433  if (!MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize))
2434    switch (MI->getOpcode()) {
2435    case X86::CVTSD2SSrr:
2436    case X86::Int_CVTSD2SSrr:
2437    case X86::CVTSS2SDrr:
2438    case X86::Int_CVTSS2SDrr:
2439    case X86::RCPSSr:
2440    case X86::RCPSSr_Int:
2441    case X86::ROUNDSDr_Int:
2442    case X86::ROUNDSSr_Int:
2443    case X86::RSQRTSSr:
2444    case X86::RSQRTSSr_Int:
2445    case X86::SQRTSSr:
2446    case X86::SQRTSSr_Int:
2447      return 0;
2448    }
2449
2450  const MachineFrameInfo *MFI = MF.getFrameInfo();
2451  unsigned Size = MFI->getObjectSize(FrameIndex);
2452  unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
2453  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2454    unsigned NewOpc = 0;
2455    unsigned RCSize = 0;
2456    switch (MI->getOpcode()) {
2457    default: return NULL;
2458    case X86::TEST8rr:  NewOpc = X86::CMP8ri; RCSize = 1; break;
2459    case X86::TEST16rr: NewOpc = X86::CMP16ri; RCSize = 2; break;
2460    case X86::TEST32rr: NewOpc = X86::CMP32ri; RCSize = 4; break;
2461    case X86::TEST64rr: NewOpc = X86::CMP64ri32; RCSize = 8; break;
2462    }
2463    // Check if it's safe to fold the load. If the size of the object is
2464    // narrower than the load width, then it's not.
2465    if (Size < RCSize)
2466      return NULL;
2467    // Change to CMPXXri r, 0 first.
2468    MI->setDesc(get(NewOpc));
2469    MI->getOperand(1).ChangeToImmediate(0);
2470  } else if (Ops.size() != 1)
2471    return NULL;
2472
2473  SmallVector<MachineOperand,4> MOs;
2474  MOs.push_back(MachineOperand::CreateFI(FrameIndex));
2475  return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, Size, Alignment);
2476}
2477
2478MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2479                                                  MachineInstr *MI,
2480                                           const SmallVectorImpl<unsigned> &Ops,
2481                                                  MachineInstr *LoadMI) const {
2482  // Check switch flag
2483  if (NoFusing) return NULL;
2484
2485  if (!MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize))
2486    switch (MI->getOpcode()) {
2487    case X86::CVTSD2SSrr:
2488    case X86::Int_CVTSD2SSrr:
2489    case X86::CVTSS2SDrr:
2490    case X86::Int_CVTSS2SDrr:
2491    case X86::RCPSSr:
2492    case X86::RCPSSr_Int:
2493    case X86::ROUNDSDr_Int:
2494    case X86::ROUNDSSr_Int:
2495    case X86::RSQRTSSr:
2496    case X86::RSQRTSSr_Int:
2497    case X86::SQRTSSr:
2498    case X86::SQRTSSr_Int:
2499      return 0;
2500    }
2501
2502  // Determine the alignment of the load.
2503  unsigned Alignment = 0;
2504  if (LoadMI->hasOneMemOperand())
2505    Alignment = (*LoadMI->memoperands_begin())->getAlignment();
2506  else
2507    switch (LoadMI->getOpcode()) {
2508    case X86::V_SET0:
2509    case X86::V_SETALLONES:
2510      Alignment = 16;
2511      break;
2512    case X86::FsFLD0SD:
2513      Alignment = 8;
2514      break;
2515    case X86::FsFLD0SS:
2516      Alignment = 4;
2517      break;
2518    default:
2519      llvm_unreachable("Don't know how to fold this instruction!");
2520    }
2521  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2522    unsigned NewOpc = 0;
2523    switch (MI->getOpcode()) {
2524    default: return NULL;
2525    case X86::TEST8rr:  NewOpc = X86::CMP8ri; break;
2526    case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
2527    case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
2528    case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
2529    }
2530    // Change to CMPXXri r, 0 first.
2531    MI->setDesc(get(NewOpc));
2532    MI->getOperand(1).ChangeToImmediate(0);
2533  } else if (Ops.size() != 1)
2534    return NULL;
2535
2536  SmallVector<MachineOperand,X86AddrNumOperands> MOs;
2537  switch (LoadMI->getOpcode()) {
2538  case X86::V_SET0:
2539  case X86::V_SETALLONES:
2540  case X86::FsFLD0SD:
2541  case X86::FsFLD0SS: {
2542    // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
2543    // Create a constant-pool entry and operands to load from it.
2544
2545    // Medium and large mode can't fold loads this way.
2546    if (TM.getCodeModel() != CodeModel::Small &&
2547        TM.getCodeModel() != CodeModel::Kernel)
2548      return NULL;
2549
2550    // x86-32 PIC requires a PIC base register for constant pools.
2551    unsigned PICBase = 0;
2552    if (TM.getRelocationModel() == Reloc::PIC_) {
2553      if (TM.getSubtarget<X86Subtarget>().is64Bit())
2554        PICBase = X86::RIP;
2555      else
2556        // FIXME: PICBase = TM.getInstrInfo()->getGlobalBaseReg(&MF);
2557        // This doesn't work for several reasons.
2558        // 1. GlobalBaseReg may have been spilled.
2559        // 2. It may not be live at MI.
2560        return NULL;
2561    }
2562
2563    // Create a constant-pool entry.
2564    MachineConstantPool &MCP = *MF.getConstantPool();
2565    const Type *Ty;
2566    if (LoadMI->getOpcode() == X86::FsFLD0SS)
2567      Ty = Type::getFloatTy(MF.getFunction()->getContext());
2568    else if (LoadMI->getOpcode() == X86::FsFLD0SD)
2569      Ty = Type::getDoubleTy(MF.getFunction()->getContext());
2570    else
2571      Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 4);
2572    Constant *C = LoadMI->getOpcode() == X86::V_SETALLONES ?
2573                    Constant::getAllOnesValue(Ty) :
2574                    Constant::getNullValue(Ty);
2575    unsigned CPI = MCP.getConstantPoolIndex(C, Alignment);
2576
2577    // Create operands to load from the constant pool entry.
2578    MOs.push_back(MachineOperand::CreateReg(PICBase, false));
2579    MOs.push_back(MachineOperand::CreateImm(1));
2580    MOs.push_back(MachineOperand::CreateReg(0, false));
2581    MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
2582    MOs.push_back(MachineOperand::CreateReg(0, false));
2583    break;
2584  }
2585  default: {
2586    // Folding a normal load. Just copy the load's address operands.
2587    unsigned NumOps = LoadMI->getDesc().getNumOperands();
2588    for (unsigned i = NumOps - X86AddrNumOperands; i != NumOps; ++i)
2589      MOs.push_back(LoadMI->getOperand(i));
2590    break;
2591  }
2592  }
2593  return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, 0, Alignment);
2594}
2595
2596
2597bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI,
2598                                  const SmallVectorImpl<unsigned> &Ops) const {
2599  // Check switch flag
2600  if (NoFusing) return 0;
2601
2602  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2603    switch (MI->getOpcode()) {
2604    default: return false;
2605    case X86::TEST8rr:
2606    case X86::TEST16rr:
2607    case X86::TEST32rr:
2608    case X86::TEST64rr:
2609      return true;
2610    }
2611  }
2612
2613  if (Ops.size() != 1)
2614    return false;
2615
2616  unsigned OpNum = Ops[0];
2617  unsigned Opc = MI->getOpcode();
2618  unsigned NumOps = MI->getDesc().getNumOperands();
2619  bool isTwoAddr = NumOps > 1 &&
2620    MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
2621
2622  // Folding a memory location into the two-address part of a two-address
2623  // instruction is different than folding it other places.  It requires
2624  // replacing the *two* registers with the memory location.
2625  const DenseMap<unsigned*, std::pair<unsigned,unsigned> > *OpcodeTablePtr=NULL;
2626  if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
2627    OpcodeTablePtr = &RegOp2MemOpTable2Addr;
2628  } else if (OpNum == 0) { // If operand 0
2629    switch (Opc) {
2630    case X86::MOV8r0:
2631    case X86::MOV16r0:
2632    case X86::MOV32r0:
2633    case X86::MOV64r0:
2634      return true;
2635    default: break;
2636    }
2637    OpcodeTablePtr = &RegOp2MemOpTable0;
2638  } else if (OpNum == 1) {
2639    OpcodeTablePtr = &RegOp2MemOpTable1;
2640  } else if (OpNum == 2) {
2641    OpcodeTablePtr = &RegOp2MemOpTable2;
2642  }
2643
2644  if (OpcodeTablePtr) {
2645    // Find the Opcode to fuse
2646    DenseMap<unsigned*, std::pair<unsigned,unsigned> >::const_iterator I =
2647      OpcodeTablePtr->find((unsigned*)Opc);
2648    if (I != OpcodeTablePtr->end())
2649      return true;
2650  }
2651  return false;
2652}
2653
2654bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
2655                                unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
2656                                SmallVectorImpl<MachineInstr*> &NewMIs) const {
2657  DenseMap<unsigned*, std::pair<unsigned,unsigned> >::const_iterator I =
2658    MemOp2RegOpTable.find((unsigned*)MI->getOpcode());
2659  if (I == MemOp2RegOpTable.end())
2660    return false;
2661  unsigned Opc = I->second.first;
2662  unsigned Index = I->second.second & 0xf;
2663  bool FoldedLoad = I->second.second & (1 << 4);
2664  bool FoldedStore = I->second.second & (1 << 5);
2665  if (UnfoldLoad && !FoldedLoad)
2666    return false;
2667  UnfoldLoad &= FoldedLoad;
2668  if (UnfoldStore && !FoldedStore)
2669    return false;
2670  UnfoldStore &= FoldedStore;
2671
2672  const TargetInstrDesc &TID = get(Opc);
2673  const TargetOperandInfo &TOI = TID.OpInfo[Index];
2674  const TargetRegisterClass *RC = TOI.getRegClass(&RI);
2675  SmallVector<MachineOperand, X86AddrNumOperands> AddrOps;
2676  SmallVector<MachineOperand,2> BeforeOps;
2677  SmallVector<MachineOperand,2> AfterOps;
2678  SmallVector<MachineOperand,4> ImpOps;
2679  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2680    MachineOperand &Op = MI->getOperand(i);
2681    if (i >= Index && i < Index + X86AddrNumOperands)
2682      AddrOps.push_back(Op);
2683    else if (Op.isReg() && Op.isImplicit())
2684      ImpOps.push_back(Op);
2685    else if (i < Index)
2686      BeforeOps.push_back(Op);
2687    else if (i > Index)
2688      AfterOps.push_back(Op);
2689  }
2690
2691  // Emit the load instruction.
2692  if (UnfoldLoad) {
2693    std::pair<MachineInstr::mmo_iterator,
2694              MachineInstr::mmo_iterator> MMOs =
2695      MF.extractLoadMemRefs(MI->memoperands_begin(),
2696                            MI->memoperands_end());
2697    loadRegFromAddr(MF, Reg, AddrOps, RC, MMOs.first, MMOs.second, NewMIs);
2698    if (UnfoldStore) {
2699      // Address operands cannot be marked isKill.
2700      for (unsigned i = 1; i != 1 + X86AddrNumOperands; ++i) {
2701        MachineOperand &MO = NewMIs[0]->getOperand(i);
2702        if (MO.isReg())
2703          MO.setIsKill(false);
2704      }
2705    }
2706  }
2707
2708  // Emit the data processing instruction.
2709  MachineInstr *DataMI = MF.CreateMachineInstr(TID, MI->getDebugLoc(), true);
2710  MachineInstrBuilder MIB(DataMI);
2711
2712  if (FoldedStore)
2713    MIB.addReg(Reg, RegState::Define);
2714  for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
2715    MIB.addOperand(BeforeOps[i]);
2716  if (FoldedLoad)
2717    MIB.addReg(Reg);
2718  for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
2719    MIB.addOperand(AfterOps[i]);
2720  for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
2721    MachineOperand &MO = ImpOps[i];
2722    MIB.addReg(MO.getReg(),
2723               getDefRegState(MO.isDef()) |
2724               RegState::Implicit |
2725               getKillRegState(MO.isKill()) |
2726               getDeadRegState(MO.isDead()) |
2727               getUndefRegState(MO.isUndef()));
2728  }
2729  // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
2730  unsigned NewOpc = 0;
2731  switch (DataMI->getOpcode()) {
2732  default: break;
2733  case X86::CMP64ri32:
2734  case X86::CMP32ri:
2735  case X86::CMP16ri:
2736  case X86::CMP8ri: {
2737    MachineOperand &MO0 = DataMI->getOperand(0);
2738    MachineOperand &MO1 = DataMI->getOperand(1);
2739    if (MO1.getImm() == 0) {
2740      switch (DataMI->getOpcode()) {
2741      default: break;
2742      case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
2743      case X86::CMP32ri:   NewOpc = X86::TEST32rr; break;
2744      case X86::CMP16ri:   NewOpc = X86::TEST16rr; break;
2745      case X86::CMP8ri:    NewOpc = X86::TEST8rr; break;
2746      }
2747      DataMI->setDesc(get(NewOpc));
2748      MO1.ChangeToRegister(MO0.getReg(), false);
2749    }
2750  }
2751  }
2752  NewMIs.push_back(DataMI);
2753
2754  // Emit the store instruction.
2755  if (UnfoldStore) {
2756    const TargetRegisterClass *DstRC = TID.OpInfo[0].getRegClass(&RI);
2757    std::pair<MachineInstr::mmo_iterator,
2758              MachineInstr::mmo_iterator> MMOs =
2759      MF.extractStoreMemRefs(MI->memoperands_begin(),
2760                             MI->memoperands_end());
2761    storeRegToAddr(MF, Reg, true, AddrOps, DstRC, MMOs.first, MMOs.second, NewMIs);
2762  }
2763
2764  return true;
2765}
2766
2767bool
2768X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
2769                                  SmallVectorImpl<SDNode*> &NewNodes) const {
2770  if (!N->isMachineOpcode())
2771    return false;
2772
2773  DenseMap<unsigned*, std::pair<unsigned,unsigned> >::const_iterator I =
2774    MemOp2RegOpTable.find((unsigned*)N->getMachineOpcode());
2775  if (I == MemOp2RegOpTable.end())
2776    return false;
2777  unsigned Opc = I->second.first;
2778  unsigned Index = I->second.second & 0xf;
2779  bool FoldedLoad = I->second.second & (1 << 4);
2780  bool FoldedStore = I->second.second & (1 << 5);
2781  const TargetInstrDesc &TID = get(Opc);
2782  const TargetRegisterClass *RC = TID.OpInfo[Index].getRegClass(&RI);
2783  unsigned NumDefs = TID.NumDefs;
2784  std::vector<SDValue> AddrOps;
2785  std::vector<SDValue> BeforeOps;
2786  std::vector<SDValue> AfterOps;
2787  DebugLoc dl = N->getDebugLoc();
2788  unsigned NumOps = N->getNumOperands();
2789  for (unsigned i = 0; i != NumOps-1; ++i) {
2790    SDValue Op = N->getOperand(i);
2791    if (i >= Index-NumDefs && i < Index-NumDefs + X86AddrNumOperands)
2792      AddrOps.push_back(Op);
2793    else if (i < Index-NumDefs)
2794      BeforeOps.push_back(Op);
2795    else if (i > Index-NumDefs)
2796      AfterOps.push_back(Op);
2797  }
2798  SDValue Chain = N->getOperand(NumOps-1);
2799  AddrOps.push_back(Chain);
2800
2801  // Emit the load instruction.
2802  SDNode *Load = 0;
2803  MachineFunction &MF = DAG.getMachineFunction();
2804  if (FoldedLoad) {
2805    EVT VT = *RC->vt_begin();
2806    std::pair<MachineInstr::mmo_iterator,
2807              MachineInstr::mmo_iterator> MMOs =
2808      MF.extractLoadMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
2809                            cast<MachineSDNode>(N)->memoperands_end());
2810    bool isAligned = (*MMOs.first)->getAlignment() >= 16;
2811    Load = DAG.getMachineNode(getLoadRegOpcode(0, RC, isAligned, TM), dl,
2812                              VT, MVT::Other, &AddrOps[0], AddrOps.size());
2813    NewNodes.push_back(Load);
2814
2815    // Preserve memory reference information.
2816    cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
2817  }
2818
2819  // Emit the data processing instruction.
2820  std::vector<EVT> VTs;
2821  const TargetRegisterClass *DstRC = 0;
2822  if (TID.getNumDefs() > 0) {
2823    DstRC = TID.OpInfo[0].getRegClass(&RI);
2824    VTs.push_back(*DstRC->vt_begin());
2825  }
2826  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
2827    EVT VT = N->getValueType(i);
2828    if (VT != MVT::Other && i >= (unsigned)TID.getNumDefs())
2829      VTs.push_back(VT);
2830  }
2831  if (Load)
2832    BeforeOps.push_back(SDValue(Load, 0));
2833  std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
2834  SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, &BeforeOps[0],
2835                                      BeforeOps.size());
2836  NewNodes.push_back(NewNode);
2837
2838  // Emit the store instruction.
2839  if (FoldedStore) {
2840    AddrOps.pop_back();
2841    AddrOps.push_back(SDValue(NewNode, 0));
2842    AddrOps.push_back(Chain);
2843    std::pair<MachineInstr::mmo_iterator,
2844              MachineInstr::mmo_iterator> MMOs =
2845      MF.extractStoreMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
2846                             cast<MachineSDNode>(N)->memoperands_end());
2847    bool isAligned = (*MMOs.first)->getAlignment() >= 16;
2848    SDNode *Store = DAG.getMachineNode(getStoreRegOpcode(0, DstRC,
2849                                                         isAligned, TM),
2850                                       dl, MVT::Other,
2851                                       &AddrOps[0], AddrOps.size());
2852    NewNodes.push_back(Store);
2853
2854    // Preserve memory reference information.
2855    cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
2856  }
2857
2858  return true;
2859}
2860
2861unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
2862                                      bool UnfoldLoad, bool UnfoldStore,
2863                                      unsigned *LoadRegIndex) const {
2864  DenseMap<unsigned*, std::pair<unsigned,unsigned> >::const_iterator I =
2865    MemOp2RegOpTable.find((unsigned*)Opc);
2866  if (I == MemOp2RegOpTable.end())
2867    return 0;
2868  bool FoldedLoad = I->second.second & (1 << 4);
2869  bool FoldedStore = I->second.second & (1 << 5);
2870  if (UnfoldLoad && !FoldedLoad)
2871    return 0;
2872  if (UnfoldStore && !FoldedStore)
2873    return 0;
2874  if (LoadRegIndex)
2875    *LoadRegIndex = I->second.second & 0xf;
2876  return I->second.first;
2877}
2878
2879bool
2880X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
2881                                     int64_t &Offset1, int64_t &Offset2) const {
2882  if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
2883    return false;
2884  unsigned Opc1 = Load1->getMachineOpcode();
2885  unsigned Opc2 = Load2->getMachineOpcode();
2886  switch (Opc1) {
2887  default: return false;
2888  case X86::MOV8rm:
2889  case X86::MOV16rm:
2890  case X86::MOV32rm:
2891  case X86::MOV64rm:
2892  case X86::LD_Fp32m:
2893  case X86::LD_Fp64m:
2894  case X86::LD_Fp80m:
2895  case X86::MOVSSrm:
2896  case X86::MOVSDrm:
2897  case X86::MMX_MOVD64rm:
2898  case X86::MMX_MOVQ64rm:
2899  case X86::FsMOVAPSrm:
2900  case X86::FsMOVAPDrm:
2901  case X86::MOVAPSrm:
2902  case X86::MOVUPSrm:
2903  case X86::MOVUPSrm_Int:
2904  case X86::MOVAPDrm:
2905  case X86::MOVDQArm:
2906  case X86::MOVDQUrm:
2907  case X86::MOVDQUrm_Int:
2908    break;
2909  }
2910  switch (Opc2) {
2911  default: return false;
2912  case X86::MOV8rm:
2913  case X86::MOV16rm:
2914  case X86::MOV32rm:
2915  case X86::MOV64rm:
2916  case X86::LD_Fp32m:
2917  case X86::LD_Fp64m:
2918  case X86::LD_Fp80m:
2919  case X86::MOVSSrm:
2920  case X86::MOVSDrm:
2921  case X86::MMX_MOVD64rm:
2922  case X86::MMX_MOVQ64rm:
2923  case X86::FsMOVAPSrm:
2924  case X86::FsMOVAPDrm:
2925  case X86::MOVAPSrm:
2926  case X86::MOVUPSrm:
2927  case X86::MOVUPSrm_Int:
2928  case X86::MOVAPDrm:
2929  case X86::MOVDQArm:
2930  case X86::MOVDQUrm:
2931  case X86::MOVDQUrm_Int:
2932    break;
2933  }
2934
2935  // Check if chain operands and base addresses match.
2936  if (Load1->getOperand(0) != Load2->getOperand(0) ||
2937      Load1->getOperand(5) != Load2->getOperand(5))
2938    return false;
2939  // Segment operands should match as well.
2940  if (Load1->getOperand(4) != Load2->getOperand(4))
2941    return false;
2942  // Scale should be 1, Index should be Reg0.
2943  if (Load1->getOperand(1) == Load2->getOperand(1) &&
2944      Load1->getOperand(2) == Load2->getOperand(2)) {
2945    if (cast<ConstantSDNode>(Load1->getOperand(1))->getZExtValue() != 1)
2946      return false;
2947    SDValue Op2 = Load1->getOperand(2);
2948    if (!isa<RegisterSDNode>(Op2) ||
2949        cast<RegisterSDNode>(Op2)->getReg() != 0)
2950      return 0;
2951
2952    // Now let's examine the displacements.
2953    if (isa<ConstantSDNode>(Load1->getOperand(3)) &&
2954        isa<ConstantSDNode>(Load2->getOperand(3))) {
2955      Offset1 = cast<ConstantSDNode>(Load1->getOperand(3))->getSExtValue();
2956      Offset2 = cast<ConstantSDNode>(Load2->getOperand(3))->getSExtValue();
2957      return true;
2958    }
2959  }
2960  return false;
2961}
2962
2963bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
2964                                           int64_t Offset1, int64_t Offset2,
2965                                           unsigned NumLoads) const {
2966  assert(Offset2 > Offset1);
2967  if ((Offset2 - Offset1) / 8 > 64)
2968    return false;
2969
2970  unsigned Opc1 = Load1->getMachineOpcode();
2971  unsigned Opc2 = Load2->getMachineOpcode();
2972  if (Opc1 != Opc2)
2973    return false;  // FIXME: overly conservative?
2974
2975  switch (Opc1) {
2976  default: break;
2977  case X86::LD_Fp32m:
2978  case X86::LD_Fp64m:
2979  case X86::LD_Fp80m:
2980  case X86::MMX_MOVD64rm:
2981  case X86::MMX_MOVQ64rm:
2982    return false;
2983  }
2984
2985  EVT VT = Load1->getValueType(0);
2986  switch (VT.getSimpleVT().SimpleTy) {
2987  default: {
2988    // XMM registers. In 64-bit mode we can be a bit more aggressive since we
2989    // have 16 of them to play with.
2990    if (TM.getSubtargetImpl()->is64Bit()) {
2991      if (NumLoads >= 3)
2992        return false;
2993    } else if (NumLoads)
2994      return false;
2995    break;
2996  }
2997  case MVT::i8:
2998  case MVT::i16:
2999  case MVT::i32:
3000  case MVT::i64:
3001  case MVT::f32:
3002  case MVT::f64:
3003    if (NumLoads)
3004      return false;
3005  }
3006
3007  return true;
3008}
3009
3010
3011bool X86InstrInfo::
3012ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
3013  assert(Cond.size() == 1 && "Invalid X86 branch condition!");
3014  X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
3015  if (CC == X86::COND_NE_OR_P || CC == X86::COND_NP_OR_E)
3016    return true;
3017  Cond[0].setImm(GetOppositeBranchCondition(CC));
3018  return false;
3019}
3020
3021bool X86InstrInfo::
3022isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
3023  // FIXME: Return false for x87 stack register classes for now. We can't
3024  // allow any loads of these registers before FpGet_ST0_80.
3025  return !(RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass ||
3026           RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass);
3027}
3028
3029
3030/// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended (r8 or higher)
3031/// register?  e.g. r8, xmm8, xmm13, etc.
3032bool X86InstrInfo::isX86_64ExtendedReg(unsigned RegNo) {
3033  switch (RegNo) {
3034  default: break;
3035  case X86::R8:    case X86::R9:    case X86::R10:   case X86::R11:
3036  case X86::R12:   case X86::R13:   case X86::R14:   case X86::R15:
3037  case X86::R8D:   case X86::R9D:   case X86::R10D:  case X86::R11D:
3038  case X86::R12D:  case X86::R13D:  case X86::R14D:  case X86::R15D:
3039  case X86::R8W:   case X86::R9W:   case X86::R10W:  case X86::R11W:
3040  case X86::R12W:  case X86::R13W:  case X86::R14W:  case X86::R15W:
3041  case X86::R8B:   case X86::R9B:   case X86::R10B:  case X86::R11B:
3042  case X86::R12B:  case X86::R13B:  case X86::R14B:  case X86::R15B:
3043  case X86::XMM8:  case X86::XMM9:  case X86::XMM10: case X86::XMM11:
3044  case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15:
3045    return true;
3046  }
3047  return false;
3048}
3049
3050
3051/// determineREX - Determine if the MachineInstr has to be encoded with a X86-64
3052/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
3053/// size, and 3) use of X86-64 extended registers.
3054unsigned X86InstrInfo::determineREX(const MachineInstr &MI) {
3055  unsigned REX = 0;
3056  const TargetInstrDesc &Desc = MI.getDesc();
3057
3058  // Pseudo instructions do not need REX prefix byte.
3059  if ((Desc.TSFlags & X86II::FormMask) == X86II::Pseudo)
3060    return 0;
3061  if (Desc.TSFlags & X86II::REX_W)
3062    REX |= 1 << 3;
3063
3064  unsigned NumOps = Desc.getNumOperands();
3065  if (NumOps) {
3066    bool isTwoAddr = NumOps > 1 &&
3067      Desc.getOperandConstraint(1, TOI::TIED_TO) != -1;
3068
3069    // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
3070    unsigned i = isTwoAddr ? 1 : 0;
3071    for (unsigned e = NumOps; i != e; ++i) {
3072      const MachineOperand& MO = MI.getOperand(i);
3073      if (MO.isReg()) {
3074        unsigned Reg = MO.getReg();
3075        if (isX86_64NonExtLowByteReg(Reg))
3076          REX |= 0x40;
3077      }
3078    }
3079
3080    switch (Desc.TSFlags & X86II::FormMask) {
3081    case X86II::MRMInitReg:
3082      if (isX86_64ExtendedReg(MI.getOperand(0)))
3083        REX |= (1 << 0) | (1 << 2);
3084      break;
3085    case X86II::MRMSrcReg: {
3086      if (isX86_64ExtendedReg(MI.getOperand(0)))
3087        REX |= 1 << 2;
3088      i = isTwoAddr ? 2 : 1;
3089      for (unsigned e = NumOps; i != e; ++i) {
3090        const MachineOperand& MO = MI.getOperand(i);
3091        if (isX86_64ExtendedReg(MO))
3092          REX |= 1 << 0;
3093      }
3094      break;
3095    }
3096    case X86II::MRMSrcMem: {
3097      if (isX86_64ExtendedReg(MI.getOperand(0)))
3098        REX |= 1 << 2;
3099      unsigned Bit = 0;
3100      i = isTwoAddr ? 2 : 1;
3101      for (; i != NumOps; ++i) {
3102        const MachineOperand& MO = MI.getOperand(i);
3103        if (MO.isReg()) {
3104          if (isX86_64ExtendedReg(MO))
3105            REX |= 1 << Bit;
3106          Bit++;
3107        }
3108      }
3109      break;
3110    }
3111    case X86II::MRM0m: case X86II::MRM1m:
3112    case X86II::MRM2m: case X86II::MRM3m:
3113    case X86II::MRM4m: case X86II::MRM5m:
3114    case X86II::MRM6m: case X86II::MRM7m:
3115    case X86II::MRMDestMem: {
3116      unsigned e = (isTwoAddr ? X86AddrNumOperands+1 : X86AddrNumOperands);
3117      i = isTwoAddr ? 1 : 0;
3118      if (NumOps > e && isX86_64ExtendedReg(MI.getOperand(e)))
3119        REX |= 1 << 2;
3120      unsigned Bit = 0;
3121      for (; i != e; ++i) {
3122        const MachineOperand& MO = MI.getOperand(i);
3123        if (MO.isReg()) {
3124          if (isX86_64ExtendedReg(MO))
3125            REX |= 1 << Bit;
3126          Bit++;
3127        }
3128      }
3129      break;
3130    }
3131    default: {
3132      if (isX86_64ExtendedReg(MI.getOperand(0)))
3133        REX |= 1 << 0;
3134      i = isTwoAddr ? 2 : 1;
3135      for (unsigned e = NumOps; i != e; ++i) {
3136        const MachineOperand& MO = MI.getOperand(i);
3137        if (isX86_64ExtendedReg(MO))
3138          REX |= 1 << 2;
3139      }
3140      break;
3141    }
3142    }
3143  }
3144  return REX;
3145}
3146
3147/// sizePCRelativeBlockAddress - This method returns the size of a PC
3148/// relative block address instruction
3149///
3150static unsigned sizePCRelativeBlockAddress() {
3151  return 4;
3152}
3153
3154/// sizeGlobalAddress - Give the size of the emission of this global address
3155///
3156static unsigned sizeGlobalAddress(bool dword) {
3157  return dword ? 8 : 4;
3158}
3159
3160/// sizeConstPoolAddress - Give the size of the emission of this constant
3161/// pool address
3162///
3163static unsigned sizeConstPoolAddress(bool dword) {
3164  return dword ? 8 : 4;
3165}
3166
3167/// sizeExternalSymbolAddress - Give the size of the emission of this external
3168/// symbol
3169///
3170static unsigned sizeExternalSymbolAddress(bool dword) {
3171  return dword ? 8 : 4;
3172}
3173
3174/// sizeJumpTableAddress - Give the size of the emission of this jump
3175/// table address
3176///
3177static unsigned sizeJumpTableAddress(bool dword) {
3178  return dword ? 8 : 4;
3179}
3180
3181static unsigned sizeConstant(unsigned Size) {
3182  return Size;
3183}
3184
3185static unsigned sizeRegModRMByte(){
3186  return 1;
3187}
3188
3189static unsigned sizeSIBByte(){
3190  return 1;
3191}
3192
3193static unsigned getDisplacementFieldSize(const MachineOperand *RelocOp) {
3194  unsigned FinalSize = 0;
3195  // If this is a simple integer displacement that doesn't require a relocation.
3196  if (!RelocOp) {
3197    FinalSize += sizeConstant(4);
3198    return FinalSize;
3199  }
3200
3201  // Otherwise, this is something that requires a relocation.
3202  if (RelocOp->isGlobal()) {
3203    FinalSize += sizeGlobalAddress(false);
3204  } else if (RelocOp->isCPI()) {
3205    FinalSize += sizeConstPoolAddress(false);
3206  } else if (RelocOp->isJTI()) {
3207    FinalSize += sizeJumpTableAddress(false);
3208  } else {
3209    llvm_unreachable("Unknown value to relocate!");
3210  }
3211  return FinalSize;
3212}
3213
3214static unsigned getMemModRMByteSize(const MachineInstr &MI, unsigned Op,
3215                                    bool IsPIC, bool Is64BitMode) {
3216  const MachineOperand &Op3 = MI.getOperand(Op+3);
3217  int DispVal = 0;
3218  const MachineOperand *DispForReloc = 0;
3219  unsigned FinalSize = 0;
3220
3221  // Figure out what sort of displacement we have to handle here.
3222  if (Op3.isGlobal()) {
3223    DispForReloc = &Op3;
3224  } else if (Op3.isCPI()) {
3225    if (Is64BitMode || IsPIC) {
3226      DispForReloc = &Op3;
3227    } else {
3228      DispVal = 1;
3229    }
3230  } else if (Op3.isJTI()) {
3231    if (Is64BitMode || IsPIC) {
3232      DispForReloc = &Op3;
3233    } else {
3234      DispVal = 1;
3235    }
3236  } else {
3237    DispVal = 1;
3238  }
3239
3240  const MachineOperand &Base     = MI.getOperand(Op);
3241  const MachineOperand &IndexReg = MI.getOperand(Op+2);
3242
3243  unsigned BaseReg = Base.getReg();
3244
3245  // Is a SIB byte needed?
3246  if ((!Is64BitMode || DispForReloc || BaseReg != 0) &&
3247      IndexReg.getReg() == 0 &&
3248      (BaseReg == 0 || X86RegisterInfo::getX86RegNum(BaseReg) != N86::ESP)) {
3249    if (BaseReg == 0) {  // Just a displacement?
3250      // Emit special case [disp32] encoding
3251      ++FinalSize;
3252      FinalSize += getDisplacementFieldSize(DispForReloc);
3253    } else {
3254      unsigned BaseRegNo = X86RegisterInfo::getX86RegNum(BaseReg);
3255      if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) {
3256        // Emit simple indirect register encoding... [EAX] f.e.
3257        ++FinalSize;
3258      // Be pessimistic and assume it's a disp32, not a disp8
3259      } else {
3260        // Emit the most general non-SIB encoding: [REG+disp32]
3261        ++FinalSize;
3262        FinalSize += getDisplacementFieldSize(DispForReloc);
3263      }
3264    }
3265
3266  } else {  // We need a SIB byte, so start by outputting the ModR/M byte first
3267    assert(IndexReg.getReg() != X86::ESP &&
3268           IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
3269
3270    bool ForceDisp32 = false;
3271    if (BaseReg == 0 || DispForReloc) {
3272      // Emit the normal disp32 encoding.
3273      ++FinalSize;
3274      ForceDisp32 = true;
3275    } else {
3276      ++FinalSize;
3277    }
3278
3279    FinalSize += sizeSIBByte();
3280
3281    // Do we need to output a displacement?
3282    if (DispVal != 0 || ForceDisp32) {
3283      FinalSize += getDisplacementFieldSize(DispForReloc);
3284    }
3285  }
3286  return FinalSize;
3287}
3288
3289
3290static unsigned GetInstSizeWithDesc(const MachineInstr &MI,
3291                                    const TargetInstrDesc *Desc,
3292                                    bool IsPIC, bool Is64BitMode) {
3293
3294  unsigned Opcode = Desc->Opcode;
3295  unsigned FinalSize = 0;
3296
3297  // Emit the lock opcode prefix as needed.
3298  if (Desc->TSFlags & X86II::LOCK) ++FinalSize;
3299
3300  // Emit segment override opcode prefix as needed.
3301  switch (Desc->TSFlags & X86II::SegOvrMask) {
3302  case X86II::FS:
3303  case X86II::GS:
3304   ++FinalSize;
3305   break;
3306  default: llvm_unreachable("Invalid segment!");
3307  case 0: break;  // No segment override!
3308  }
3309
3310  // Emit the repeat opcode prefix as needed.
3311  if ((Desc->TSFlags & X86II::Op0Mask) == X86II::REP) ++FinalSize;
3312
3313  // Emit the operand size opcode prefix as needed.
3314  if (Desc->TSFlags & X86II::OpSize) ++FinalSize;
3315
3316  // Emit the address size opcode prefix as needed.
3317  if (Desc->TSFlags & X86II::AdSize) ++FinalSize;
3318
3319  bool Need0FPrefix = false;
3320  switch (Desc->TSFlags & X86II::Op0Mask) {
3321  case X86II::TB:  // Two-byte opcode prefix
3322  case X86II::T8:  // 0F 38
3323  case X86II::TA:  // 0F 3A
3324    Need0FPrefix = true;
3325    break;
3326  case X86II::TF: // F2 0F 38
3327    ++FinalSize;
3328    Need0FPrefix = true;
3329    break;
3330  case X86II::REP: break; // already handled.
3331  case X86II::XS:   // F3 0F
3332    ++FinalSize;
3333    Need0FPrefix = true;
3334    break;
3335  case X86II::XD:   // F2 0F
3336    ++FinalSize;
3337    Need0FPrefix = true;
3338    break;
3339  case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB:
3340  case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF:
3341    ++FinalSize;
3342    break; // Two-byte opcode prefix
3343  default: llvm_unreachable("Invalid prefix!");
3344  case 0: break;  // No prefix!
3345  }
3346
3347  if (Is64BitMode) {
3348    // REX prefix
3349    unsigned REX = X86InstrInfo::determineREX(MI);
3350    if (REX)
3351      ++FinalSize;
3352  }
3353
3354  // 0x0F escape code must be emitted just before the opcode.
3355  if (Need0FPrefix)
3356    ++FinalSize;
3357
3358  switch (Desc->TSFlags & X86II::Op0Mask) {
3359  case X86II::T8:  // 0F 38
3360    ++FinalSize;
3361    break;
3362  case X86II::TA:  // 0F 3A
3363    ++FinalSize;
3364    break;
3365  case X86II::TF: // F2 0F 38
3366    ++FinalSize;
3367    break;
3368  }
3369
3370  // If this is a two-address instruction, skip one of the register operands.
3371  unsigned NumOps = Desc->getNumOperands();
3372  unsigned CurOp = 0;
3373  if (NumOps > 1 && Desc->getOperandConstraint(1, TOI::TIED_TO) != -1)
3374    CurOp++;
3375  else if (NumOps > 2 && Desc->getOperandConstraint(NumOps-1, TOI::TIED_TO)== 0)
3376    // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
3377    --NumOps;
3378
3379  switch (Desc->TSFlags & X86II::FormMask) {
3380  default: llvm_unreachable("Unknown FormMask value in X86 MachineCodeEmitter!");
3381  case X86II::Pseudo:
3382    // Remember the current PC offset, this is the PIC relocation
3383    // base address.
3384    switch (Opcode) {
3385    default:
3386      break;
3387    case TargetOpcode::INLINEASM: {
3388      const MachineFunction *MF = MI.getParent()->getParent();
3389      const TargetInstrInfo &TII = *MF->getTarget().getInstrInfo();
3390      FinalSize += TII.getInlineAsmLength(MI.getOperand(0).getSymbolName(),
3391                                          *MF->getTarget().getMCAsmInfo());
3392      break;
3393    }
3394    case TargetOpcode::DBG_LABEL:
3395    case TargetOpcode::EH_LABEL:
3396      break;
3397    case TargetOpcode::IMPLICIT_DEF:
3398    case TargetOpcode::KILL:
3399    case X86::FP_REG_KILL:
3400      break;
3401    case X86::MOVPC32r: {
3402      // This emits the "call" portion of this pseudo instruction.
3403      ++FinalSize;
3404      FinalSize += sizeConstant(X86II::getSizeOfImm(Desc->TSFlags));
3405      break;
3406    }
3407    }
3408    CurOp = NumOps;
3409    break;
3410  case X86II::RawFrm:
3411    ++FinalSize;
3412
3413    if (CurOp != NumOps) {
3414      const MachineOperand &MO = MI.getOperand(CurOp++);
3415      if (MO.isMBB()) {
3416        FinalSize += sizePCRelativeBlockAddress();
3417      } else if (MO.isGlobal()) {
3418        FinalSize += sizeGlobalAddress(false);
3419      } else if (MO.isSymbol()) {
3420        FinalSize += sizeExternalSymbolAddress(false);
3421      } else if (MO.isImm()) {
3422        FinalSize += sizeConstant(X86II::getSizeOfImm(Desc->TSFlags));
3423      } else {
3424        llvm_unreachable("Unknown RawFrm operand!");
3425      }
3426    }
3427    break;
3428
3429  case X86II::AddRegFrm:
3430    ++FinalSize;
3431    ++CurOp;
3432
3433    if (CurOp != NumOps) {
3434      const MachineOperand &MO1 = MI.getOperand(CurOp++);
3435      unsigned Size = X86II::getSizeOfImm(Desc->TSFlags);
3436      if (MO1.isImm())
3437        FinalSize += sizeConstant(Size);
3438      else {
3439        bool dword = false;
3440        if (Opcode == X86::MOV64ri)
3441          dword = true;
3442        if (MO1.isGlobal()) {
3443          FinalSize += sizeGlobalAddress(dword);
3444        } else if (MO1.isSymbol())
3445          FinalSize += sizeExternalSymbolAddress(dword);
3446        else if (MO1.isCPI())
3447          FinalSize += sizeConstPoolAddress(dword);
3448        else if (MO1.isJTI())
3449          FinalSize += sizeJumpTableAddress(dword);
3450      }
3451    }
3452    break;
3453
3454  case X86II::MRMDestReg: {
3455    ++FinalSize;
3456    FinalSize += sizeRegModRMByte();
3457    CurOp += 2;
3458    if (CurOp != NumOps) {
3459      ++CurOp;
3460      FinalSize += sizeConstant(X86II::getSizeOfImm(Desc->TSFlags));
3461    }
3462    break;
3463  }
3464  case X86II::MRMDestMem: {
3465    ++FinalSize;
3466    FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
3467    CurOp +=  X86AddrNumOperands + 1;
3468    if (CurOp != NumOps) {
3469      ++CurOp;
3470      FinalSize += sizeConstant(X86II::getSizeOfImm(Desc->TSFlags));
3471    }
3472    break;
3473  }
3474
3475  case X86II::MRMSrcReg:
3476    ++FinalSize;
3477    FinalSize += sizeRegModRMByte();
3478    CurOp += 2;
3479    if (CurOp != NumOps) {
3480      ++CurOp;
3481      FinalSize += sizeConstant(X86II::getSizeOfImm(Desc->TSFlags));
3482    }
3483    break;
3484
3485  case X86II::MRMSrcMem: {
3486    int AddrOperands;
3487    if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r ||
3488        Opcode == X86::LEA16r || Opcode == X86::LEA32r)
3489      AddrOperands = X86AddrNumOperands - 1; // No segment register
3490    else
3491      AddrOperands = X86AddrNumOperands;
3492
3493    ++FinalSize;
3494    FinalSize += getMemModRMByteSize(MI, CurOp+1, IsPIC, Is64BitMode);
3495    CurOp += AddrOperands + 1;
3496    if (CurOp != NumOps) {
3497      ++CurOp;
3498      FinalSize += sizeConstant(X86II::getSizeOfImm(Desc->TSFlags));
3499    }
3500    break;
3501  }
3502
3503  case X86II::MRM0r: case X86II::MRM1r:
3504  case X86II::MRM2r: case X86II::MRM3r:
3505  case X86II::MRM4r: case X86II::MRM5r:
3506  case X86II::MRM6r: case X86II::MRM7r:
3507    ++FinalSize;
3508    if (Desc->getOpcode() == X86::LFENCE ||
3509        Desc->getOpcode() == X86::MFENCE) {
3510      // Special handling of lfence and mfence;
3511      FinalSize += sizeRegModRMByte();
3512    } else if (Desc->getOpcode() == X86::MONITOR ||
3513               Desc->getOpcode() == X86::MWAIT) {
3514      // Special handling of monitor and mwait.
3515      FinalSize += sizeRegModRMByte() + 1; // +1 for the opcode.
3516    } else {
3517      ++CurOp;
3518      FinalSize += sizeRegModRMByte();
3519    }
3520
3521    if (CurOp != NumOps) {
3522      const MachineOperand &MO1 = MI.getOperand(CurOp++);
3523      unsigned Size = X86II::getSizeOfImm(Desc->TSFlags);
3524      if (MO1.isImm())
3525        FinalSize += sizeConstant(Size);
3526      else {
3527        bool dword = false;
3528        if (Opcode == X86::MOV64ri32)
3529          dword = true;
3530        if (MO1.isGlobal()) {
3531          FinalSize += sizeGlobalAddress(dword);
3532        } else if (MO1.isSymbol())
3533          FinalSize += sizeExternalSymbolAddress(dword);
3534        else if (MO1.isCPI())
3535          FinalSize += sizeConstPoolAddress(dword);
3536        else if (MO1.isJTI())
3537          FinalSize += sizeJumpTableAddress(dword);
3538      }
3539    }
3540    break;
3541
3542  case X86II::MRM0m: case X86II::MRM1m:
3543  case X86II::MRM2m: case X86II::MRM3m:
3544  case X86II::MRM4m: case X86II::MRM5m:
3545  case X86II::MRM6m: case X86II::MRM7m: {
3546
3547    ++FinalSize;
3548    FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
3549    CurOp += X86AddrNumOperands;
3550
3551    if (CurOp != NumOps) {
3552      const MachineOperand &MO = MI.getOperand(CurOp++);
3553      unsigned Size = X86II::getSizeOfImm(Desc->TSFlags);
3554      if (MO.isImm())
3555        FinalSize += sizeConstant(Size);
3556      else {
3557        bool dword = false;
3558        if (Opcode == X86::MOV64mi32)
3559          dword = true;
3560        if (MO.isGlobal()) {
3561          FinalSize += sizeGlobalAddress(dword);
3562        } else if (MO.isSymbol())
3563          FinalSize += sizeExternalSymbolAddress(dword);
3564        else if (MO.isCPI())
3565          FinalSize += sizeConstPoolAddress(dword);
3566        else if (MO.isJTI())
3567          FinalSize += sizeJumpTableAddress(dword);
3568      }
3569    }
3570    break;
3571
3572  case X86II::MRM_C1:
3573  case X86II::MRM_C8:
3574  case X86II::MRM_C9:
3575  case X86II::MRM_E8:
3576  case X86II::MRM_F0:
3577    FinalSize += 2;
3578    break;
3579  }
3580
3581  case X86II::MRMInitReg:
3582    ++FinalSize;
3583    // Duplicate register, used by things like MOV8r0 (aka xor reg,reg).
3584    FinalSize += sizeRegModRMByte();
3585    ++CurOp;
3586    break;
3587  }
3588
3589  if (!Desc->isVariadic() && CurOp != NumOps) {
3590    std::string msg;
3591    raw_string_ostream Msg(msg);
3592    Msg << "Cannot determine size: " << MI;
3593    llvm_report_error(Msg.str());
3594  }
3595
3596
3597  return FinalSize;
3598}
3599
3600
3601unsigned X86InstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
3602  const TargetInstrDesc &Desc = MI->getDesc();
3603  bool IsPIC = TM.getRelocationModel() == Reloc::PIC_;
3604  bool Is64BitMode = TM.getSubtargetImpl()->is64Bit();
3605  unsigned Size = GetInstSizeWithDesc(*MI, &Desc, IsPIC, Is64BitMode);
3606  if (Desc.getOpcode() == X86::MOVPC32r)
3607    Size += GetInstSizeWithDesc(*MI, &get(X86::POP32r), IsPIC, Is64BitMode);
3608  return Size;
3609}
3610
3611/// getGlobalBaseReg - Return a virtual register initialized with the
3612/// the global base register value. Output instructions required to
3613/// initialize the register in the function entry block, if necessary.
3614///
3615unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
3616  assert(!TM.getSubtarget<X86Subtarget>().is64Bit() &&
3617         "X86-64 PIC uses RIP relative addressing");
3618
3619  X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
3620  unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
3621  if (GlobalBaseReg != 0)
3622    return GlobalBaseReg;
3623
3624  // Insert the set of GlobalBaseReg into the first MBB of the function
3625  MachineBasicBlock &FirstMBB = MF->front();
3626  MachineBasicBlock::iterator MBBI = FirstMBB.begin();
3627  DebugLoc DL = FirstMBB.findDebugLoc(MBBI);
3628  MachineRegisterInfo &RegInfo = MF->getRegInfo();
3629  unsigned PC = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
3630
3631  const TargetInstrInfo *TII = TM.getInstrInfo();
3632  // Operand of MovePCtoStack is completely ignored by asm printer. It's
3633  // only used in JIT code emission as displacement to pc.
3634  BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
3635
3636  // If we're using vanilla 'GOT' PIC style, we should use relative addressing
3637  // not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
3638  if (TM.getSubtarget<X86Subtarget>().isPICStyleGOT()) {
3639    GlobalBaseReg = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
3640    // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], %some_register
3641    BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
3642      .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
3643                                    X86II::MO_GOT_ABSOLUTE_ADDRESS);
3644  } else {
3645    GlobalBaseReg = PC;
3646  }
3647
3648  X86FI->setGlobalBaseReg(GlobalBaseReg);
3649  return GlobalBaseReg;
3650}
3651