X86InstrInfo.cpp revision 202878
1//===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "X86InstrInfo.h"
15#include "X86.h"
16#include "X86GenInstrInfo.inc"
17#include "X86InstrBuilder.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86Subtarget.h"
20#include "X86TargetMachine.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/LLVMContext.h"
23#include "llvm/ADT/STLExtras.h"
24#include "llvm/CodeGen/MachineConstantPool.h"
25#include "llvm/CodeGen/MachineFrameInfo.h"
26#include "llvm/CodeGen/MachineInstrBuilder.h"
27#include "llvm/CodeGen/MachineRegisterInfo.h"
28#include "llvm/CodeGen/LiveVariables.h"
29#include "llvm/CodeGen/PseudoSourceValue.h"
30#include "llvm/Support/CommandLine.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/Support/ErrorHandling.h"
33#include "llvm/Support/raw_ostream.h"
34#include "llvm/Target/TargetOptions.h"
35#include "llvm/MC/MCAsmInfo.h"
36
37#include <limits>
38
39using namespace llvm;
40
41static cl::opt<bool>
42NoFusing("disable-spill-fusing",
43         cl::desc("Disable fusing of spill code into instructions"));
44static cl::opt<bool>
45PrintFailedFusing("print-failed-fuse-candidates",
46                  cl::desc("Print instructions that the allocator wants to"
47                           " fuse, but the X86 backend currently can't"),
48                  cl::Hidden);
49static cl::opt<bool>
50ReMatPICStubLoad("remat-pic-stub-load",
51                 cl::desc("Re-materialize load from stub in PIC mode"),
52                 cl::init(false), cl::Hidden);
53
54X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
55  : TargetInstrInfoImpl(X86Insts, array_lengthof(X86Insts)),
56    TM(tm), RI(tm, *this) {
57  SmallVector<unsigned,16> AmbEntries;
58  static const unsigned OpTbl2Addr[][2] = {
59    { X86::ADC32ri,     X86::ADC32mi },
60    { X86::ADC32ri8,    X86::ADC32mi8 },
61    { X86::ADC32rr,     X86::ADC32mr },
62    { X86::ADC64ri32,   X86::ADC64mi32 },
63    { X86::ADC64ri8,    X86::ADC64mi8 },
64    { X86::ADC64rr,     X86::ADC64mr },
65    { X86::ADD16ri,     X86::ADD16mi },
66    { X86::ADD16ri8,    X86::ADD16mi8 },
67    { X86::ADD16rr,     X86::ADD16mr },
68    { X86::ADD32ri,     X86::ADD32mi },
69    { X86::ADD32ri8,    X86::ADD32mi8 },
70    { X86::ADD32rr,     X86::ADD32mr },
71    { X86::ADD64ri32,   X86::ADD64mi32 },
72    { X86::ADD64ri8,    X86::ADD64mi8 },
73    { X86::ADD64rr,     X86::ADD64mr },
74    { X86::ADD8ri,      X86::ADD8mi },
75    { X86::ADD8rr,      X86::ADD8mr },
76    { X86::AND16ri,     X86::AND16mi },
77    { X86::AND16ri8,    X86::AND16mi8 },
78    { X86::AND16rr,     X86::AND16mr },
79    { X86::AND32ri,     X86::AND32mi },
80    { X86::AND32ri8,    X86::AND32mi8 },
81    { X86::AND32rr,     X86::AND32mr },
82    { X86::AND64ri32,   X86::AND64mi32 },
83    { X86::AND64ri8,    X86::AND64mi8 },
84    { X86::AND64rr,     X86::AND64mr },
85    { X86::AND8ri,      X86::AND8mi },
86    { X86::AND8rr,      X86::AND8mr },
87    { X86::DEC16r,      X86::DEC16m },
88    { X86::DEC32r,      X86::DEC32m },
89    { X86::DEC64_16r,   X86::DEC64_16m },
90    { X86::DEC64_32r,   X86::DEC64_32m },
91    { X86::DEC64r,      X86::DEC64m },
92    { X86::DEC8r,       X86::DEC8m },
93    { X86::INC16r,      X86::INC16m },
94    { X86::INC32r,      X86::INC32m },
95    { X86::INC64_16r,   X86::INC64_16m },
96    { X86::INC64_32r,   X86::INC64_32m },
97    { X86::INC64r,      X86::INC64m },
98    { X86::INC8r,       X86::INC8m },
99    { X86::NEG16r,      X86::NEG16m },
100    { X86::NEG32r,      X86::NEG32m },
101    { X86::NEG64r,      X86::NEG64m },
102    { X86::NEG8r,       X86::NEG8m },
103    { X86::NOT16r,      X86::NOT16m },
104    { X86::NOT32r,      X86::NOT32m },
105    { X86::NOT64r,      X86::NOT64m },
106    { X86::NOT8r,       X86::NOT8m },
107    { X86::OR16ri,      X86::OR16mi },
108    { X86::OR16ri8,     X86::OR16mi8 },
109    { X86::OR16rr,      X86::OR16mr },
110    { X86::OR32ri,      X86::OR32mi },
111    { X86::OR32ri8,     X86::OR32mi8 },
112    { X86::OR32rr,      X86::OR32mr },
113    { X86::OR64ri32,    X86::OR64mi32 },
114    { X86::OR64ri8,     X86::OR64mi8 },
115    { X86::OR64rr,      X86::OR64mr },
116    { X86::OR8ri,       X86::OR8mi },
117    { X86::OR8rr,       X86::OR8mr },
118    { X86::ROL16r1,     X86::ROL16m1 },
119    { X86::ROL16rCL,    X86::ROL16mCL },
120    { X86::ROL16ri,     X86::ROL16mi },
121    { X86::ROL32r1,     X86::ROL32m1 },
122    { X86::ROL32rCL,    X86::ROL32mCL },
123    { X86::ROL32ri,     X86::ROL32mi },
124    { X86::ROL64r1,     X86::ROL64m1 },
125    { X86::ROL64rCL,    X86::ROL64mCL },
126    { X86::ROL64ri,     X86::ROL64mi },
127    { X86::ROL8r1,      X86::ROL8m1 },
128    { X86::ROL8rCL,     X86::ROL8mCL },
129    { X86::ROL8ri,      X86::ROL8mi },
130    { X86::ROR16r1,     X86::ROR16m1 },
131    { X86::ROR16rCL,    X86::ROR16mCL },
132    { X86::ROR16ri,     X86::ROR16mi },
133    { X86::ROR32r1,     X86::ROR32m1 },
134    { X86::ROR32rCL,    X86::ROR32mCL },
135    { X86::ROR32ri,     X86::ROR32mi },
136    { X86::ROR64r1,     X86::ROR64m1 },
137    { X86::ROR64rCL,    X86::ROR64mCL },
138    { X86::ROR64ri,     X86::ROR64mi },
139    { X86::ROR8r1,      X86::ROR8m1 },
140    { X86::ROR8rCL,     X86::ROR8mCL },
141    { X86::ROR8ri,      X86::ROR8mi },
142    { X86::SAR16r1,     X86::SAR16m1 },
143    { X86::SAR16rCL,    X86::SAR16mCL },
144    { X86::SAR16ri,     X86::SAR16mi },
145    { X86::SAR32r1,     X86::SAR32m1 },
146    { X86::SAR32rCL,    X86::SAR32mCL },
147    { X86::SAR32ri,     X86::SAR32mi },
148    { X86::SAR64r1,     X86::SAR64m1 },
149    { X86::SAR64rCL,    X86::SAR64mCL },
150    { X86::SAR64ri,     X86::SAR64mi },
151    { X86::SAR8r1,      X86::SAR8m1 },
152    { X86::SAR8rCL,     X86::SAR8mCL },
153    { X86::SAR8ri,      X86::SAR8mi },
154    { X86::SBB32ri,     X86::SBB32mi },
155    { X86::SBB32ri8,    X86::SBB32mi8 },
156    { X86::SBB32rr,     X86::SBB32mr },
157    { X86::SBB64ri32,   X86::SBB64mi32 },
158    { X86::SBB64ri8,    X86::SBB64mi8 },
159    { X86::SBB64rr,     X86::SBB64mr },
160    { X86::SHL16rCL,    X86::SHL16mCL },
161    { X86::SHL16ri,     X86::SHL16mi },
162    { X86::SHL32rCL,    X86::SHL32mCL },
163    { X86::SHL32ri,     X86::SHL32mi },
164    { X86::SHL64rCL,    X86::SHL64mCL },
165    { X86::SHL64ri,     X86::SHL64mi },
166    { X86::SHL8rCL,     X86::SHL8mCL },
167    { X86::SHL8ri,      X86::SHL8mi },
168    { X86::SHLD16rrCL,  X86::SHLD16mrCL },
169    { X86::SHLD16rri8,  X86::SHLD16mri8 },
170    { X86::SHLD32rrCL,  X86::SHLD32mrCL },
171    { X86::SHLD32rri8,  X86::SHLD32mri8 },
172    { X86::SHLD64rrCL,  X86::SHLD64mrCL },
173    { X86::SHLD64rri8,  X86::SHLD64mri8 },
174    { X86::SHR16r1,     X86::SHR16m1 },
175    { X86::SHR16rCL,    X86::SHR16mCL },
176    { X86::SHR16ri,     X86::SHR16mi },
177    { X86::SHR32r1,     X86::SHR32m1 },
178    { X86::SHR32rCL,    X86::SHR32mCL },
179    { X86::SHR32ri,     X86::SHR32mi },
180    { X86::SHR64r1,     X86::SHR64m1 },
181    { X86::SHR64rCL,    X86::SHR64mCL },
182    { X86::SHR64ri,     X86::SHR64mi },
183    { X86::SHR8r1,      X86::SHR8m1 },
184    { X86::SHR8rCL,     X86::SHR8mCL },
185    { X86::SHR8ri,      X86::SHR8mi },
186    { X86::SHRD16rrCL,  X86::SHRD16mrCL },
187    { X86::SHRD16rri8,  X86::SHRD16mri8 },
188    { X86::SHRD32rrCL,  X86::SHRD32mrCL },
189    { X86::SHRD32rri8,  X86::SHRD32mri8 },
190    { X86::SHRD64rrCL,  X86::SHRD64mrCL },
191    { X86::SHRD64rri8,  X86::SHRD64mri8 },
192    { X86::SUB16ri,     X86::SUB16mi },
193    { X86::SUB16ri8,    X86::SUB16mi8 },
194    { X86::SUB16rr,     X86::SUB16mr },
195    { X86::SUB32ri,     X86::SUB32mi },
196    { X86::SUB32ri8,    X86::SUB32mi8 },
197    { X86::SUB32rr,     X86::SUB32mr },
198    { X86::SUB64ri32,   X86::SUB64mi32 },
199    { X86::SUB64ri8,    X86::SUB64mi8 },
200    { X86::SUB64rr,     X86::SUB64mr },
201    { X86::SUB8ri,      X86::SUB8mi },
202    { X86::SUB8rr,      X86::SUB8mr },
203    { X86::XOR16ri,     X86::XOR16mi },
204    { X86::XOR16ri8,    X86::XOR16mi8 },
205    { X86::XOR16rr,     X86::XOR16mr },
206    { X86::XOR32ri,     X86::XOR32mi },
207    { X86::XOR32ri8,    X86::XOR32mi8 },
208    { X86::XOR32rr,     X86::XOR32mr },
209    { X86::XOR64ri32,   X86::XOR64mi32 },
210    { X86::XOR64ri8,    X86::XOR64mi8 },
211    { X86::XOR64rr,     X86::XOR64mr },
212    { X86::XOR8ri,      X86::XOR8mi },
213    { X86::XOR8rr,      X86::XOR8mr }
214  };
215
216  for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
217    unsigned RegOp = OpTbl2Addr[i][0];
218    unsigned MemOp = OpTbl2Addr[i][1];
219    if (!RegOp2MemOpTable2Addr.insert(std::make_pair((unsigned*)RegOp,
220                                               std::make_pair(MemOp,0))).second)
221      assert(false && "Duplicated entries?");
222    // Index 0, folded load and store, no alignment requirement.
223    unsigned AuxInfo = 0 | (1 << 4) | (1 << 5);
224    if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
225                                                std::make_pair(RegOp,
226                                                              AuxInfo))).second)
227      AmbEntries.push_back(MemOp);
228  }
229
230  // If the third value is 1, then it's folding either a load or a store.
231  static const unsigned OpTbl0[][4] = {
232    { X86::BT16ri8,     X86::BT16mi8, 1, 0 },
233    { X86::BT32ri8,     X86::BT32mi8, 1, 0 },
234    { X86::BT64ri8,     X86::BT64mi8, 1, 0 },
235    { X86::CALL32r,     X86::CALL32m, 1, 0 },
236    { X86::CALL64r,     X86::CALL64m, 1, 0 },
237    { X86::CMP16ri,     X86::CMP16mi, 1, 0 },
238    { X86::CMP16ri8,    X86::CMP16mi8, 1, 0 },
239    { X86::CMP16rr,     X86::CMP16mr, 1, 0 },
240    { X86::CMP32ri,     X86::CMP32mi, 1, 0 },
241    { X86::CMP32ri8,    X86::CMP32mi8, 1, 0 },
242    { X86::CMP32rr,     X86::CMP32mr, 1, 0 },
243    { X86::CMP64ri32,   X86::CMP64mi32, 1, 0 },
244    { X86::CMP64ri8,    X86::CMP64mi8, 1, 0 },
245    { X86::CMP64rr,     X86::CMP64mr, 1, 0 },
246    { X86::CMP8ri,      X86::CMP8mi, 1, 0 },
247    { X86::CMP8rr,      X86::CMP8mr, 1, 0 },
248    { X86::DIV16r,      X86::DIV16m, 1, 0 },
249    { X86::DIV32r,      X86::DIV32m, 1, 0 },
250    { X86::DIV64r,      X86::DIV64m, 1, 0 },
251    { X86::DIV8r,       X86::DIV8m, 1, 0 },
252    { X86::EXTRACTPSrr, X86::EXTRACTPSmr, 0, 16 },
253    { X86::FsMOVAPDrr,  X86::MOVSDmr, 0, 0 },
254    { X86::FsMOVAPSrr,  X86::MOVSSmr, 0, 0 },
255    { X86::IDIV16r,     X86::IDIV16m, 1, 0 },
256    { X86::IDIV32r,     X86::IDIV32m, 1, 0 },
257    { X86::IDIV64r,     X86::IDIV64m, 1, 0 },
258    { X86::IDIV8r,      X86::IDIV8m, 1, 0 },
259    { X86::IMUL16r,     X86::IMUL16m, 1, 0 },
260    { X86::IMUL32r,     X86::IMUL32m, 1, 0 },
261    { X86::IMUL64r,     X86::IMUL64m, 1, 0 },
262    { X86::IMUL8r,      X86::IMUL8m, 1, 0 },
263    { X86::JMP32r,      X86::JMP32m, 1, 0 },
264    { X86::JMP64r,      X86::JMP64m, 1, 0 },
265    { X86::MOV16ri,     X86::MOV16mi, 0, 0 },
266    { X86::MOV16rr,     X86::MOV16mr, 0, 0 },
267    { X86::MOV32ri,     X86::MOV32mi, 0, 0 },
268    { X86::MOV32rr,     X86::MOV32mr, 0, 0 },
269    { X86::MOV64ri32,   X86::MOV64mi32, 0, 0 },
270    { X86::MOV64rr,     X86::MOV64mr, 0, 0 },
271    { X86::MOV8ri,      X86::MOV8mi, 0, 0 },
272    { X86::MOV8rr,      X86::MOV8mr, 0, 0 },
273    { X86::MOV8rr_NOREX, X86::MOV8mr_NOREX, 0, 0 },
274    { X86::MOVAPDrr,    X86::MOVAPDmr, 0, 16 },
275    { X86::MOVAPSrr,    X86::MOVAPSmr, 0, 16 },
276    { X86::MOVDQArr,    X86::MOVDQAmr, 0, 16 },
277    { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, 0, 0 },
278    { X86::MOVPQIto64rr,X86::MOVPQI2QImr, 0, 0 },
279    { X86::MOVPS2SSrr,  X86::MOVPS2SSmr, 0, 0 },
280    { X86::MOVSDrr,     X86::MOVSDmr, 0, 0 },
281    { X86::MOVSDto64rr, X86::MOVSDto64mr, 0, 0 },
282    { X86::MOVSS2DIrr,  X86::MOVSS2DImr, 0, 0 },
283    { X86::MOVSSrr,     X86::MOVSSmr, 0, 0 },
284    { X86::MOVUPDrr,    X86::MOVUPDmr, 0, 0 },
285    { X86::MOVUPSrr,    X86::MOVUPSmr, 0, 0 },
286    { X86::MUL16r,      X86::MUL16m, 1, 0 },
287    { X86::MUL32r,      X86::MUL32m, 1, 0 },
288    { X86::MUL64r,      X86::MUL64m, 1, 0 },
289    { X86::MUL8r,       X86::MUL8m, 1, 0 },
290    { X86::SETAEr,      X86::SETAEm, 0, 0 },
291    { X86::SETAr,       X86::SETAm, 0, 0 },
292    { X86::SETBEr,      X86::SETBEm, 0, 0 },
293    { X86::SETBr,       X86::SETBm, 0, 0 },
294    { X86::SETEr,       X86::SETEm, 0, 0 },
295    { X86::SETGEr,      X86::SETGEm, 0, 0 },
296    { X86::SETGr,       X86::SETGm, 0, 0 },
297    { X86::SETLEr,      X86::SETLEm, 0, 0 },
298    { X86::SETLr,       X86::SETLm, 0, 0 },
299    { X86::SETNEr,      X86::SETNEm, 0, 0 },
300    { X86::SETNOr,      X86::SETNOm, 0, 0 },
301    { X86::SETNPr,      X86::SETNPm, 0, 0 },
302    { X86::SETNSr,      X86::SETNSm, 0, 0 },
303    { X86::SETOr,       X86::SETOm, 0, 0 },
304    { X86::SETPr,       X86::SETPm, 0, 0 },
305    { X86::SETSr,       X86::SETSm, 0, 0 },
306    { X86::TAILJMPr,    X86::TAILJMPm, 1, 0 },
307    { X86::TEST16ri,    X86::TEST16mi, 1, 0 },
308    { X86::TEST32ri,    X86::TEST32mi, 1, 0 },
309    { X86::TEST64ri32,  X86::TEST64mi32, 1, 0 },
310    { X86::TEST8ri,     X86::TEST8mi, 1, 0 }
311  };
312
313  for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
314    unsigned RegOp = OpTbl0[i][0];
315    unsigned MemOp = OpTbl0[i][1];
316    unsigned Align = OpTbl0[i][3];
317    if (!RegOp2MemOpTable0.insert(std::make_pair((unsigned*)RegOp,
318                                           std::make_pair(MemOp,Align))).second)
319      assert(false && "Duplicated entries?");
320    unsigned FoldedLoad = OpTbl0[i][2];
321    // Index 0, folded load or store.
322    unsigned AuxInfo = 0 | (FoldedLoad << 4) | ((FoldedLoad^1) << 5);
323    if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
324      if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
325                                     std::make_pair(RegOp, AuxInfo))).second)
326        AmbEntries.push_back(MemOp);
327  }
328
329  static const unsigned OpTbl1[][3] = {
330    { X86::CMP16rr,         X86::CMP16rm, 0 },
331    { X86::CMP32rr,         X86::CMP32rm, 0 },
332    { X86::CMP64rr,         X86::CMP64rm, 0 },
333    { X86::CMP8rr,          X86::CMP8rm, 0 },
334    { X86::CVTSD2SSrr,      X86::CVTSD2SSrm, 0 },
335    { X86::CVTSI2SD64rr,    X86::CVTSI2SD64rm, 0 },
336    { X86::CVTSI2SDrr,      X86::CVTSI2SDrm, 0 },
337    { X86::CVTSI2SS64rr,    X86::CVTSI2SS64rm, 0 },
338    { X86::CVTSI2SSrr,      X86::CVTSI2SSrm, 0 },
339    { X86::CVTSS2SDrr,      X86::CVTSS2SDrm, 0 },
340    { X86::CVTTSD2SI64rr,   X86::CVTTSD2SI64rm, 0 },
341    { X86::CVTTSD2SIrr,     X86::CVTTSD2SIrm, 0 },
342    { X86::CVTTSS2SI64rr,   X86::CVTTSS2SI64rm, 0 },
343    { X86::CVTTSS2SIrr,     X86::CVTTSS2SIrm, 0 },
344    { X86::FsMOVAPDrr,      X86::MOVSDrm, 0 },
345    { X86::FsMOVAPSrr,      X86::MOVSSrm, 0 },
346    { X86::IMUL16rri,       X86::IMUL16rmi, 0 },
347    { X86::IMUL16rri8,      X86::IMUL16rmi8, 0 },
348    { X86::IMUL32rri,       X86::IMUL32rmi, 0 },
349    { X86::IMUL32rri8,      X86::IMUL32rmi8, 0 },
350    { X86::IMUL64rri32,     X86::IMUL64rmi32, 0 },
351    { X86::IMUL64rri8,      X86::IMUL64rmi8, 0 },
352    { X86::Int_CMPSDrr,     X86::Int_CMPSDrm, 0 },
353    { X86::Int_CMPSSrr,     X86::Int_CMPSSrm, 0 },
354    { X86::Int_COMISDrr,    X86::Int_COMISDrm, 0 },
355    { X86::Int_COMISSrr,    X86::Int_COMISSrm, 0 },
356    { X86::Int_CVTDQ2PDrr,  X86::Int_CVTDQ2PDrm, 16 },
357    { X86::Int_CVTDQ2PSrr,  X86::Int_CVTDQ2PSrm, 16 },
358    { X86::Int_CVTPD2DQrr,  X86::Int_CVTPD2DQrm, 16 },
359    { X86::Int_CVTPD2PSrr,  X86::Int_CVTPD2PSrm, 16 },
360    { X86::Int_CVTPS2DQrr,  X86::Int_CVTPS2DQrm, 16 },
361    { X86::Int_CVTPS2PDrr,  X86::Int_CVTPS2PDrm, 0 },
362    { X86::Int_CVTSD2SI64rr,X86::Int_CVTSD2SI64rm, 0 },
363    { X86::Int_CVTSD2SIrr,  X86::Int_CVTSD2SIrm, 0 },
364    { X86::Int_CVTSD2SSrr,  X86::Int_CVTSD2SSrm, 0 },
365    { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm, 0 },
366    { X86::Int_CVTSI2SDrr,  X86::Int_CVTSI2SDrm, 0 },
367    { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm, 0 },
368    { X86::Int_CVTSI2SSrr,  X86::Int_CVTSI2SSrm, 0 },
369    { X86::Int_CVTSS2SDrr,  X86::Int_CVTSS2SDrm, 0 },
370    { X86::Int_CVTSS2SI64rr,X86::Int_CVTSS2SI64rm, 0 },
371    { X86::Int_CVTSS2SIrr,  X86::Int_CVTSS2SIrm, 0 },
372    { X86::Int_CVTTPD2DQrr, X86::Int_CVTTPD2DQrm, 16 },
373    { X86::Int_CVTTPS2DQrr, X86::Int_CVTTPS2DQrm, 16 },
374    { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm, 0 },
375    { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm, 0 },
376    { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm, 0 },
377    { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm, 0 },
378    { X86::Int_UCOMISDrr,   X86::Int_UCOMISDrm, 0 },
379    { X86::Int_UCOMISSrr,   X86::Int_UCOMISSrm, 0 },
380    { X86::MOV16rr,         X86::MOV16rm, 0 },
381    { X86::MOV32rr,         X86::MOV32rm, 0 },
382    { X86::MOV64rr,         X86::MOV64rm, 0 },
383    { X86::MOV64toPQIrr,    X86::MOVQI2PQIrm, 0 },
384    { X86::MOV64toSDrr,     X86::MOV64toSDrm, 0 },
385    { X86::MOV8rr,          X86::MOV8rm, 0 },
386    { X86::MOVAPDrr,        X86::MOVAPDrm, 16 },
387    { X86::MOVAPSrr,        X86::MOVAPSrm, 16 },
388    { X86::MOVDDUPrr,       X86::MOVDDUPrm, 0 },
389    { X86::MOVDI2PDIrr,     X86::MOVDI2PDIrm, 0 },
390    { X86::MOVDI2SSrr,      X86::MOVDI2SSrm, 0 },
391    { X86::MOVDQArr,        X86::MOVDQArm, 16 },
392    { X86::MOVSD2PDrr,      X86::MOVSD2PDrm, 0 },
393    { X86::MOVSDrr,         X86::MOVSDrm, 0 },
394    { X86::MOVSHDUPrr,      X86::MOVSHDUPrm, 16 },
395    { X86::MOVSLDUPrr,      X86::MOVSLDUPrm, 16 },
396    { X86::MOVSS2PSrr,      X86::MOVSS2PSrm, 0 },
397    { X86::MOVSSrr,         X86::MOVSSrm, 0 },
398    { X86::MOVSX16rr8,      X86::MOVSX16rm8, 0 },
399    { X86::MOVSX32rr16,     X86::MOVSX32rm16, 0 },
400    { X86::MOVSX32rr8,      X86::MOVSX32rm8, 0 },
401    { X86::MOVSX64rr16,     X86::MOVSX64rm16, 0 },
402    { X86::MOVSX64rr32,     X86::MOVSX64rm32, 0 },
403    { X86::MOVSX64rr8,      X86::MOVSX64rm8, 0 },
404    { X86::MOVUPDrr,        X86::MOVUPDrm, 16 },
405    { X86::MOVUPSrr,        X86::MOVUPSrm, 0 },
406    { X86::MOVZDI2PDIrr,    X86::MOVZDI2PDIrm, 0 },
407    { X86::MOVZQI2PQIrr,    X86::MOVZQI2PQIrm, 0 },
408    { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm, 16 },
409    { X86::MOVZX16rr8,      X86::MOVZX16rm8, 0 },
410    { X86::MOVZX32rr16,     X86::MOVZX32rm16, 0 },
411    { X86::MOVZX32_NOREXrr8, X86::MOVZX32_NOREXrm8, 0 },
412    { X86::MOVZX32rr8,      X86::MOVZX32rm8, 0 },
413    { X86::MOVZX64rr16,     X86::MOVZX64rm16, 0 },
414    { X86::MOVZX64rr32,     X86::MOVZX64rm32, 0 },
415    { X86::MOVZX64rr8,      X86::MOVZX64rm8, 0 },
416    { X86::PSHUFDri,        X86::PSHUFDmi, 16 },
417    { X86::PSHUFHWri,       X86::PSHUFHWmi, 16 },
418    { X86::PSHUFLWri,       X86::PSHUFLWmi, 16 },
419    { X86::RCPPSr,          X86::RCPPSm, 16 },
420    { X86::RCPPSr_Int,      X86::RCPPSm_Int, 16 },
421    { X86::RSQRTPSr,        X86::RSQRTPSm, 16 },
422    { X86::RSQRTPSr_Int,    X86::RSQRTPSm_Int, 16 },
423    { X86::RSQRTSSr,        X86::RSQRTSSm, 0 },
424    { X86::RSQRTSSr_Int,    X86::RSQRTSSm_Int, 0 },
425    { X86::SQRTPDr,         X86::SQRTPDm, 16 },
426    { X86::SQRTPDr_Int,     X86::SQRTPDm_Int, 16 },
427    { X86::SQRTPSr,         X86::SQRTPSm, 16 },
428    { X86::SQRTPSr_Int,     X86::SQRTPSm_Int, 16 },
429    { X86::SQRTSDr,         X86::SQRTSDm, 0 },
430    { X86::SQRTSDr_Int,     X86::SQRTSDm_Int, 0 },
431    { X86::SQRTSSr,         X86::SQRTSSm, 0 },
432    { X86::SQRTSSr_Int,     X86::SQRTSSm_Int, 0 },
433    { X86::TEST16rr,        X86::TEST16rm, 0 },
434    { X86::TEST32rr,        X86::TEST32rm, 0 },
435    { X86::TEST64rr,        X86::TEST64rm, 0 },
436    { X86::TEST8rr,         X86::TEST8rm, 0 },
437    // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
438    { X86::UCOMISDrr,       X86::UCOMISDrm, 0 },
439    { X86::UCOMISSrr,       X86::UCOMISSrm, 0 }
440  };
441
442  for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
443    unsigned RegOp = OpTbl1[i][0];
444    unsigned MemOp = OpTbl1[i][1];
445    unsigned Align = OpTbl1[i][2];
446    if (!RegOp2MemOpTable1.insert(std::make_pair((unsigned*)RegOp,
447                                           std::make_pair(MemOp,Align))).second)
448      assert(false && "Duplicated entries?");
449    // Index 1, folded load
450    unsigned AuxInfo = 1 | (1 << 4);
451    if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
452      if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
453                                     std::make_pair(RegOp, AuxInfo))).second)
454        AmbEntries.push_back(MemOp);
455  }
456
457  static const unsigned OpTbl2[][3] = {
458    { X86::ADC32rr,         X86::ADC32rm, 0 },
459    { X86::ADC64rr,         X86::ADC64rm, 0 },
460    { X86::ADD16rr,         X86::ADD16rm, 0 },
461    { X86::ADD32rr,         X86::ADD32rm, 0 },
462    { X86::ADD64rr,         X86::ADD64rm, 0 },
463    { X86::ADD8rr,          X86::ADD8rm, 0 },
464    { X86::ADDPDrr,         X86::ADDPDrm, 16 },
465    { X86::ADDPSrr,         X86::ADDPSrm, 16 },
466    { X86::ADDSDrr,         X86::ADDSDrm, 0 },
467    { X86::ADDSSrr,         X86::ADDSSrm, 0 },
468    { X86::ADDSUBPDrr,      X86::ADDSUBPDrm, 16 },
469    { X86::ADDSUBPSrr,      X86::ADDSUBPSrm, 16 },
470    { X86::AND16rr,         X86::AND16rm, 0 },
471    { X86::AND32rr,         X86::AND32rm, 0 },
472    { X86::AND64rr,         X86::AND64rm, 0 },
473    { X86::AND8rr,          X86::AND8rm, 0 },
474    { X86::ANDNPDrr,        X86::ANDNPDrm, 16 },
475    { X86::ANDNPSrr,        X86::ANDNPSrm, 16 },
476    { X86::ANDPDrr,         X86::ANDPDrm, 16 },
477    { X86::ANDPSrr,         X86::ANDPSrm, 16 },
478    { X86::CMOVA16rr,       X86::CMOVA16rm, 0 },
479    { X86::CMOVA32rr,       X86::CMOVA32rm, 0 },
480    { X86::CMOVA64rr,       X86::CMOVA64rm, 0 },
481    { X86::CMOVAE16rr,      X86::CMOVAE16rm, 0 },
482    { X86::CMOVAE32rr,      X86::CMOVAE32rm, 0 },
483    { X86::CMOVAE64rr,      X86::CMOVAE64rm, 0 },
484    { X86::CMOVB16rr,       X86::CMOVB16rm, 0 },
485    { X86::CMOVB32rr,       X86::CMOVB32rm, 0 },
486    { X86::CMOVB64rr,       X86::CMOVB64rm, 0 },
487    { X86::CMOVBE16rr,      X86::CMOVBE16rm, 0 },
488    { X86::CMOVBE32rr,      X86::CMOVBE32rm, 0 },
489    { X86::CMOVBE64rr,      X86::CMOVBE64rm, 0 },
490    { X86::CMOVE16rr,       X86::CMOVE16rm, 0 },
491    { X86::CMOVE32rr,       X86::CMOVE32rm, 0 },
492    { X86::CMOVE64rr,       X86::CMOVE64rm, 0 },
493    { X86::CMOVG16rr,       X86::CMOVG16rm, 0 },
494    { X86::CMOVG32rr,       X86::CMOVG32rm, 0 },
495    { X86::CMOVG64rr,       X86::CMOVG64rm, 0 },
496    { X86::CMOVGE16rr,      X86::CMOVGE16rm, 0 },
497    { X86::CMOVGE32rr,      X86::CMOVGE32rm, 0 },
498    { X86::CMOVGE64rr,      X86::CMOVGE64rm, 0 },
499    { X86::CMOVL16rr,       X86::CMOVL16rm, 0 },
500    { X86::CMOVL32rr,       X86::CMOVL32rm, 0 },
501    { X86::CMOVL64rr,       X86::CMOVL64rm, 0 },
502    { X86::CMOVLE16rr,      X86::CMOVLE16rm, 0 },
503    { X86::CMOVLE32rr,      X86::CMOVLE32rm, 0 },
504    { X86::CMOVLE64rr,      X86::CMOVLE64rm, 0 },
505    { X86::CMOVNE16rr,      X86::CMOVNE16rm, 0 },
506    { X86::CMOVNE32rr,      X86::CMOVNE32rm, 0 },
507    { X86::CMOVNE64rr,      X86::CMOVNE64rm, 0 },
508    { X86::CMOVNO16rr,      X86::CMOVNO16rm, 0 },
509    { X86::CMOVNO32rr,      X86::CMOVNO32rm, 0 },
510    { X86::CMOVNO64rr,      X86::CMOVNO64rm, 0 },
511    { X86::CMOVNP16rr,      X86::CMOVNP16rm, 0 },
512    { X86::CMOVNP32rr,      X86::CMOVNP32rm, 0 },
513    { X86::CMOVNP64rr,      X86::CMOVNP64rm, 0 },
514    { X86::CMOVNS16rr,      X86::CMOVNS16rm, 0 },
515    { X86::CMOVNS32rr,      X86::CMOVNS32rm, 0 },
516    { X86::CMOVNS64rr,      X86::CMOVNS64rm, 0 },
517    { X86::CMOVO16rr,       X86::CMOVO16rm, 0 },
518    { X86::CMOVO32rr,       X86::CMOVO32rm, 0 },
519    { X86::CMOVO64rr,       X86::CMOVO64rm, 0 },
520    { X86::CMOVP16rr,       X86::CMOVP16rm, 0 },
521    { X86::CMOVP32rr,       X86::CMOVP32rm, 0 },
522    { X86::CMOVP64rr,       X86::CMOVP64rm, 0 },
523    { X86::CMOVS16rr,       X86::CMOVS16rm, 0 },
524    { X86::CMOVS32rr,       X86::CMOVS32rm, 0 },
525    { X86::CMOVS64rr,       X86::CMOVS64rm, 0 },
526    { X86::CMPPDrri,        X86::CMPPDrmi, 16 },
527    { X86::CMPPSrri,        X86::CMPPSrmi, 16 },
528    { X86::CMPSDrr,         X86::CMPSDrm, 0 },
529    { X86::CMPSSrr,         X86::CMPSSrm, 0 },
530    { X86::DIVPDrr,         X86::DIVPDrm, 16 },
531    { X86::DIVPSrr,         X86::DIVPSrm, 16 },
532    { X86::DIVSDrr,         X86::DIVSDrm, 0 },
533    { X86::DIVSSrr,         X86::DIVSSrm, 0 },
534    { X86::FsANDNPDrr,      X86::FsANDNPDrm, 16 },
535    { X86::FsANDNPSrr,      X86::FsANDNPSrm, 16 },
536    { X86::FsANDPDrr,       X86::FsANDPDrm, 16 },
537    { X86::FsANDPSrr,       X86::FsANDPSrm, 16 },
538    { X86::FsORPDrr,        X86::FsORPDrm, 16 },
539    { X86::FsORPSrr,        X86::FsORPSrm, 16 },
540    { X86::FsXORPDrr,       X86::FsXORPDrm, 16 },
541    { X86::FsXORPSrr,       X86::FsXORPSrm, 16 },
542    { X86::HADDPDrr,        X86::HADDPDrm, 16 },
543    { X86::HADDPSrr,        X86::HADDPSrm, 16 },
544    { X86::HSUBPDrr,        X86::HSUBPDrm, 16 },
545    { X86::HSUBPSrr,        X86::HSUBPSrm, 16 },
546    { X86::IMUL16rr,        X86::IMUL16rm, 0 },
547    { X86::IMUL32rr,        X86::IMUL32rm, 0 },
548    { X86::IMUL64rr,        X86::IMUL64rm, 0 },
549    { X86::MAXPDrr,         X86::MAXPDrm, 16 },
550    { X86::MAXPDrr_Int,     X86::MAXPDrm_Int, 16 },
551    { X86::MAXPSrr,         X86::MAXPSrm, 16 },
552    { X86::MAXPSrr_Int,     X86::MAXPSrm_Int, 16 },
553    { X86::MAXSDrr,         X86::MAXSDrm, 0 },
554    { X86::MAXSDrr_Int,     X86::MAXSDrm_Int, 0 },
555    { X86::MAXSSrr,         X86::MAXSSrm, 0 },
556    { X86::MAXSSrr_Int,     X86::MAXSSrm_Int, 0 },
557    { X86::MINPDrr,         X86::MINPDrm, 16 },
558    { X86::MINPDrr_Int,     X86::MINPDrm_Int, 16 },
559    { X86::MINPSrr,         X86::MINPSrm, 16 },
560    { X86::MINPSrr_Int,     X86::MINPSrm_Int, 16 },
561    { X86::MINSDrr,         X86::MINSDrm, 0 },
562    { X86::MINSDrr_Int,     X86::MINSDrm_Int, 0 },
563    { X86::MINSSrr,         X86::MINSSrm, 0 },
564    { X86::MINSSrr_Int,     X86::MINSSrm_Int, 0 },
565    { X86::MULPDrr,         X86::MULPDrm, 16 },
566    { X86::MULPSrr,         X86::MULPSrm, 16 },
567    { X86::MULSDrr,         X86::MULSDrm, 0 },
568    { X86::MULSSrr,         X86::MULSSrm, 0 },
569    { X86::OR16rr,          X86::OR16rm, 0 },
570    { X86::OR32rr,          X86::OR32rm, 0 },
571    { X86::OR64rr,          X86::OR64rm, 0 },
572    { X86::OR8rr,           X86::OR8rm, 0 },
573    { X86::ORPDrr,          X86::ORPDrm, 16 },
574    { X86::ORPSrr,          X86::ORPSrm, 16 },
575    { X86::PACKSSDWrr,      X86::PACKSSDWrm, 16 },
576    { X86::PACKSSWBrr,      X86::PACKSSWBrm, 16 },
577    { X86::PACKUSWBrr,      X86::PACKUSWBrm, 16 },
578    { X86::PADDBrr,         X86::PADDBrm, 16 },
579    { X86::PADDDrr,         X86::PADDDrm, 16 },
580    { X86::PADDQrr,         X86::PADDQrm, 16 },
581    { X86::PADDSBrr,        X86::PADDSBrm, 16 },
582    { X86::PADDSWrr,        X86::PADDSWrm, 16 },
583    { X86::PADDWrr,         X86::PADDWrm, 16 },
584    { X86::PANDNrr,         X86::PANDNrm, 16 },
585    { X86::PANDrr,          X86::PANDrm, 16 },
586    { X86::PAVGBrr,         X86::PAVGBrm, 16 },
587    { X86::PAVGWrr,         X86::PAVGWrm, 16 },
588    { X86::PCMPEQBrr,       X86::PCMPEQBrm, 16 },
589    { X86::PCMPEQDrr,       X86::PCMPEQDrm, 16 },
590    { X86::PCMPEQWrr,       X86::PCMPEQWrm, 16 },
591    { X86::PCMPGTBrr,       X86::PCMPGTBrm, 16 },
592    { X86::PCMPGTDrr,       X86::PCMPGTDrm, 16 },
593    { X86::PCMPGTWrr,       X86::PCMPGTWrm, 16 },
594    { X86::PINSRWrri,       X86::PINSRWrmi, 16 },
595    { X86::PMADDWDrr,       X86::PMADDWDrm, 16 },
596    { X86::PMAXSWrr,        X86::PMAXSWrm, 16 },
597    { X86::PMAXUBrr,        X86::PMAXUBrm, 16 },
598    { X86::PMINSWrr,        X86::PMINSWrm, 16 },
599    { X86::PMINUBrr,        X86::PMINUBrm, 16 },
600    { X86::PMULDQrr,        X86::PMULDQrm, 16 },
601    { X86::PMULHUWrr,       X86::PMULHUWrm, 16 },
602    { X86::PMULHWrr,        X86::PMULHWrm, 16 },
603    { X86::PMULLDrr,        X86::PMULLDrm, 16 },
604    { X86::PMULLDrr_int,    X86::PMULLDrm_int, 16 },
605    { X86::PMULLWrr,        X86::PMULLWrm, 16 },
606    { X86::PMULUDQrr,       X86::PMULUDQrm, 16 },
607    { X86::PORrr,           X86::PORrm, 16 },
608    { X86::PSADBWrr,        X86::PSADBWrm, 16 },
609    { X86::PSLLDrr,         X86::PSLLDrm, 16 },
610    { X86::PSLLQrr,         X86::PSLLQrm, 16 },
611    { X86::PSLLWrr,         X86::PSLLWrm, 16 },
612    { X86::PSRADrr,         X86::PSRADrm, 16 },
613    { X86::PSRAWrr,         X86::PSRAWrm, 16 },
614    { X86::PSRLDrr,         X86::PSRLDrm, 16 },
615    { X86::PSRLQrr,         X86::PSRLQrm, 16 },
616    { X86::PSRLWrr,         X86::PSRLWrm, 16 },
617    { X86::PSUBBrr,         X86::PSUBBrm, 16 },
618    { X86::PSUBDrr,         X86::PSUBDrm, 16 },
619    { X86::PSUBSBrr,        X86::PSUBSBrm, 16 },
620    { X86::PSUBSWrr,        X86::PSUBSWrm, 16 },
621    { X86::PSUBWrr,         X86::PSUBWrm, 16 },
622    { X86::PUNPCKHBWrr,     X86::PUNPCKHBWrm, 16 },
623    { X86::PUNPCKHDQrr,     X86::PUNPCKHDQrm, 16 },
624    { X86::PUNPCKHQDQrr,    X86::PUNPCKHQDQrm, 16 },
625    { X86::PUNPCKHWDrr,     X86::PUNPCKHWDrm, 16 },
626    { X86::PUNPCKLBWrr,     X86::PUNPCKLBWrm, 16 },
627    { X86::PUNPCKLDQrr,     X86::PUNPCKLDQrm, 16 },
628    { X86::PUNPCKLQDQrr,    X86::PUNPCKLQDQrm, 16 },
629    { X86::PUNPCKLWDrr,     X86::PUNPCKLWDrm, 16 },
630    { X86::PXORrr,          X86::PXORrm, 16 },
631    { X86::SBB32rr,         X86::SBB32rm, 0 },
632    { X86::SBB64rr,         X86::SBB64rm, 0 },
633    { X86::SHUFPDrri,       X86::SHUFPDrmi, 16 },
634    { X86::SHUFPSrri,       X86::SHUFPSrmi, 16 },
635    { X86::SUB16rr,         X86::SUB16rm, 0 },
636    { X86::SUB32rr,         X86::SUB32rm, 0 },
637    { X86::SUB64rr,         X86::SUB64rm, 0 },
638    { X86::SUB8rr,          X86::SUB8rm, 0 },
639    { X86::SUBPDrr,         X86::SUBPDrm, 16 },
640    { X86::SUBPSrr,         X86::SUBPSrm, 16 },
641    { X86::SUBSDrr,         X86::SUBSDrm, 0 },
642    { X86::SUBSSrr,         X86::SUBSSrm, 0 },
643    // FIXME: TEST*rr -> swapped operand of TEST*mr.
644    { X86::UNPCKHPDrr,      X86::UNPCKHPDrm, 16 },
645    { X86::UNPCKHPSrr,      X86::UNPCKHPSrm, 16 },
646    { X86::UNPCKLPDrr,      X86::UNPCKLPDrm, 16 },
647    { X86::UNPCKLPSrr,      X86::UNPCKLPSrm, 16 },
648    { X86::XOR16rr,         X86::XOR16rm, 0 },
649    { X86::XOR32rr,         X86::XOR32rm, 0 },
650    { X86::XOR64rr,         X86::XOR64rm, 0 },
651    { X86::XOR8rr,          X86::XOR8rm, 0 },
652    { X86::XORPDrr,         X86::XORPDrm, 16 },
653    { X86::XORPSrr,         X86::XORPSrm, 16 }
654  };
655
656  for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
657    unsigned RegOp = OpTbl2[i][0];
658    unsigned MemOp = OpTbl2[i][1];
659    unsigned Align = OpTbl2[i][2];
660    if (!RegOp2MemOpTable2.insert(std::make_pair((unsigned*)RegOp,
661                                           std::make_pair(MemOp,Align))).second)
662      assert(false && "Duplicated entries?");
663    // Index 2, folded load
664    unsigned AuxInfo = 2 | (1 << 4);
665    if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
666                                   std::make_pair(RegOp, AuxInfo))).second)
667      AmbEntries.push_back(MemOp);
668  }
669
670  // Remove ambiguous entries.
671  assert(AmbEntries.empty() && "Duplicated entries in unfolding maps?");
672}
673
674bool X86InstrInfo::isMoveInstr(const MachineInstr& MI,
675                               unsigned &SrcReg, unsigned &DstReg,
676                               unsigned &SrcSubIdx, unsigned &DstSubIdx) const {
677  switch (MI.getOpcode()) {
678  default:
679    return false;
680  case X86::MOV8rr:
681  case X86::MOV8rr_NOREX:
682  case X86::MOV16rr:
683  case X86::MOV32rr:
684  case X86::MOV64rr:
685  case X86::MOVSSrr:
686  case X86::MOVSDrr:
687
688  // FP Stack register class copies
689  case X86::MOV_Fp3232: case X86::MOV_Fp6464: case X86::MOV_Fp8080:
690  case X86::MOV_Fp3264: case X86::MOV_Fp3280:
691  case X86::MOV_Fp6432: case X86::MOV_Fp8032:
692
693  case X86::FsMOVAPSrr:
694  case X86::FsMOVAPDrr:
695  case X86::MOVAPSrr:
696  case X86::MOVAPDrr:
697  case X86::MOVDQArr:
698  case X86::MOVSS2PSrr:
699  case X86::MOVSD2PDrr:
700  case X86::MOVPS2SSrr:
701  case X86::MOVPD2SDrr:
702  case X86::MMX_MOVQ64rr:
703    assert(MI.getNumOperands() >= 2 &&
704           MI.getOperand(0).isReg() &&
705           MI.getOperand(1).isReg() &&
706           "invalid register-register move instruction");
707    SrcReg = MI.getOperand(1).getReg();
708    DstReg = MI.getOperand(0).getReg();
709    SrcSubIdx = MI.getOperand(1).getSubReg();
710    DstSubIdx = MI.getOperand(0).getSubReg();
711    return true;
712  }
713}
714
715bool
716X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
717                                    unsigned &SrcReg, unsigned &DstReg,
718                                    unsigned &SubIdx) const {
719  switch (MI.getOpcode()) {
720  default: break;
721  case X86::MOVSX16rr8:
722  case X86::MOVZX16rr8:
723  case X86::MOVSX32rr8:
724  case X86::MOVZX32rr8:
725  case X86::MOVSX64rr8:
726  case X86::MOVZX64rr8:
727    if (!TM.getSubtarget<X86Subtarget>().is64Bit())
728      // It's not always legal to reference the low 8-bit of the larger
729      // register in 32-bit mode.
730      return false;
731  case X86::MOVSX32rr16:
732  case X86::MOVZX32rr16:
733  case X86::MOVSX64rr16:
734  case X86::MOVZX64rr16:
735  case X86::MOVSX64rr32:
736  case X86::MOVZX64rr32: {
737    if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
738      // Be conservative.
739      return false;
740    SrcReg = MI.getOperand(1).getReg();
741    DstReg = MI.getOperand(0).getReg();
742    switch (MI.getOpcode()) {
743    default:
744      llvm_unreachable(0);
745      break;
746    case X86::MOVSX16rr8:
747    case X86::MOVZX16rr8:
748    case X86::MOVSX32rr8:
749    case X86::MOVZX32rr8:
750    case X86::MOVSX64rr8:
751    case X86::MOVZX64rr8:
752      SubIdx = 1;
753      break;
754    case X86::MOVSX32rr16:
755    case X86::MOVZX32rr16:
756    case X86::MOVSX64rr16:
757    case X86::MOVZX64rr16:
758      SubIdx = 3;
759      break;
760    case X86::MOVSX64rr32:
761    case X86::MOVZX64rr32:
762      SubIdx = 4;
763      break;
764    }
765    return true;
766  }
767  }
768  return false;
769}
770
771/// isFrameOperand - Return true and the FrameIndex if the specified
772/// operand and follow operands form a reference to the stack frame.
773bool X86InstrInfo::isFrameOperand(const MachineInstr *MI, unsigned int Op,
774                                  int &FrameIndex) const {
775  if (MI->getOperand(Op).isFI() && MI->getOperand(Op+1).isImm() &&
776      MI->getOperand(Op+2).isReg() && MI->getOperand(Op+3).isImm() &&
777      MI->getOperand(Op+1).getImm() == 1 &&
778      MI->getOperand(Op+2).getReg() == 0 &&
779      MI->getOperand(Op+3).getImm() == 0) {
780    FrameIndex = MI->getOperand(Op).getIndex();
781    return true;
782  }
783  return false;
784}
785
786static bool isFrameLoadOpcode(int Opcode) {
787  switch (Opcode) {
788  default: break;
789  case X86::MOV8rm:
790  case X86::MOV16rm:
791  case X86::MOV32rm:
792  case X86::MOV64rm:
793  case X86::LD_Fp64m:
794  case X86::MOVSSrm:
795  case X86::MOVSDrm:
796  case X86::MOVAPSrm:
797  case X86::MOVAPDrm:
798  case X86::MOVDQArm:
799  case X86::MMX_MOVD64rm:
800  case X86::MMX_MOVQ64rm:
801    return true;
802    break;
803  }
804  return false;
805}
806
807static bool isFrameStoreOpcode(int Opcode) {
808  switch (Opcode) {
809  default: break;
810  case X86::MOV8mr:
811  case X86::MOV16mr:
812  case X86::MOV32mr:
813  case X86::MOV64mr:
814  case X86::ST_FpP64m:
815  case X86::MOVSSmr:
816  case X86::MOVSDmr:
817  case X86::MOVAPSmr:
818  case X86::MOVAPDmr:
819  case X86::MOVDQAmr:
820  case X86::MMX_MOVD64mr:
821  case X86::MMX_MOVQ64mr:
822  case X86::MMX_MOVNTQmr:
823    return true;
824  }
825  return false;
826}
827
828unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
829                                           int &FrameIndex) const {
830  if (isFrameLoadOpcode(MI->getOpcode()))
831    if (isFrameOperand(MI, 1, FrameIndex))
832      return MI->getOperand(0).getReg();
833  return 0;
834}
835
836unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI,
837                                                 int &FrameIndex) const {
838  if (isFrameLoadOpcode(MI->getOpcode())) {
839    unsigned Reg;
840    if ((Reg = isLoadFromStackSlot(MI, FrameIndex)))
841      return Reg;
842    // Check for post-frame index elimination operations
843    const MachineMemOperand *Dummy;
844    return hasLoadFromStackSlot(MI, Dummy, FrameIndex);
845  }
846  return 0;
847}
848
849bool X86InstrInfo::hasLoadFromStackSlot(const MachineInstr *MI,
850                                        const MachineMemOperand *&MMO,
851                                        int &FrameIndex) const {
852  for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
853         oe = MI->memoperands_end();
854       o != oe;
855       ++o) {
856    if ((*o)->isLoad() && (*o)->getValue())
857      if (const FixedStackPseudoSourceValue *Value =
858          dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
859        FrameIndex = Value->getFrameIndex();
860        MMO = *o;
861        return true;
862      }
863  }
864  return false;
865}
866
867unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr *MI,
868                                          int &FrameIndex) const {
869  if (isFrameStoreOpcode(MI->getOpcode()))
870    if (isFrameOperand(MI, 0, FrameIndex))
871      return MI->getOperand(X86AddrNumOperands).getReg();
872  return 0;
873}
874
875unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr *MI,
876                                                int &FrameIndex) const {
877  if (isFrameStoreOpcode(MI->getOpcode())) {
878    unsigned Reg;
879    if ((Reg = isStoreToStackSlot(MI, FrameIndex)))
880      return Reg;
881    // Check for post-frame index elimination operations
882    const MachineMemOperand *Dummy;
883    return hasStoreToStackSlot(MI, Dummy, FrameIndex);
884  }
885  return 0;
886}
887
888bool X86InstrInfo::hasStoreToStackSlot(const MachineInstr *MI,
889                                       const MachineMemOperand *&MMO,
890                                       int &FrameIndex) const {
891  for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
892         oe = MI->memoperands_end();
893       o != oe;
894       ++o) {
895    if ((*o)->isStore() && (*o)->getValue())
896      if (const FixedStackPseudoSourceValue *Value =
897          dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
898        FrameIndex = Value->getFrameIndex();
899        MMO = *o;
900        return true;
901      }
902  }
903  return false;
904}
905
906/// regIsPICBase - Return true if register is PIC base (i.e.g defined by
907/// X86::MOVPC32r.
908static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
909  bool isPICBase = false;
910  for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
911         E = MRI.def_end(); I != E; ++I) {
912    MachineInstr *DefMI = I.getOperand().getParent();
913    if (DefMI->getOpcode() != X86::MOVPC32r)
914      return false;
915    assert(!isPICBase && "More than one PIC base?");
916    isPICBase = true;
917  }
918  return isPICBase;
919}
920
921bool
922X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI,
923                                                AliasAnalysis *AA) const {
924  switch (MI->getOpcode()) {
925  default: break;
926    case X86::MOV8rm:
927    case X86::MOV16rm:
928    case X86::MOV32rm:
929    case X86::MOV64rm:
930    case X86::LD_Fp64m:
931    case X86::MOVSSrm:
932    case X86::MOVSDrm:
933    case X86::MOVAPSrm:
934    case X86::MOVUPSrm:
935    case X86::MOVUPSrm_Int:
936    case X86::MOVAPDrm:
937    case X86::MOVDQArm:
938    case X86::MMX_MOVD64rm:
939    case X86::MMX_MOVQ64rm:
940    case X86::FsMOVAPSrm:
941    case X86::FsMOVAPDrm: {
942      // Loads from constant pools are trivially rematerializable.
943      if (MI->getOperand(1).isReg() &&
944          MI->getOperand(2).isImm() &&
945          MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
946          MI->isInvariantLoad(AA)) {
947        unsigned BaseReg = MI->getOperand(1).getReg();
948        if (BaseReg == 0 || BaseReg == X86::RIP)
949          return true;
950        // Allow re-materialization of PIC load.
951        if (!ReMatPICStubLoad && MI->getOperand(4).isGlobal())
952          return false;
953        const MachineFunction &MF = *MI->getParent()->getParent();
954        const MachineRegisterInfo &MRI = MF.getRegInfo();
955        bool isPICBase = false;
956        for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
957               E = MRI.def_end(); I != E; ++I) {
958          MachineInstr *DefMI = I.getOperand().getParent();
959          if (DefMI->getOpcode() != X86::MOVPC32r)
960            return false;
961          assert(!isPICBase && "More than one PIC base?");
962          isPICBase = true;
963        }
964        return isPICBase;
965      }
966      return false;
967    }
968
969     case X86::LEA32r:
970     case X86::LEA64r: {
971       if (MI->getOperand(2).isImm() &&
972           MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
973           !MI->getOperand(4).isReg()) {
974         // lea fi#, lea GV, etc. are all rematerializable.
975         if (!MI->getOperand(1).isReg())
976           return true;
977         unsigned BaseReg = MI->getOperand(1).getReg();
978         if (BaseReg == 0)
979           return true;
980         // Allow re-materialization of lea PICBase + x.
981         const MachineFunction &MF = *MI->getParent()->getParent();
982         const MachineRegisterInfo &MRI = MF.getRegInfo();
983         return regIsPICBase(BaseReg, MRI);
984       }
985       return false;
986     }
987  }
988
989  // All other instructions marked M_REMATERIALIZABLE are always trivially
990  // rematerializable.
991  return true;
992}
993
994/// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction that
995/// would clobber the EFLAGS condition register. Note the result may be
996/// conservative. If it cannot definitely determine the safety after visiting
997/// a few instructions in each direction it assumes it's not safe.
998static bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
999                                  MachineBasicBlock::iterator I) {
1000  // It's always safe to clobber EFLAGS at the end of a block.
1001  if (I == MBB.end())
1002    return true;
1003
1004  // For compile time consideration, if we are not able to determine the
1005  // safety after visiting 4 instructions in each direction, we will assume
1006  // it's not safe.
1007  MachineBasicBlock::iterator Iter = I;
1008  for (unsigned i = 0; i < 4; ++i) {
1009    bool SeenDef = false;
1010    for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
1011      MachineOperand &MO = Iter->getOperand(j);
1012      if (!MO.isReg())
1013        continue;
1014      if (MO.getReg() == X86::EFLAGS) {
1015        if (MO.isUse())
1016          return false;
1017        SeenDef = true;
1018      }
1019    }
1020
1021    if (SeenDef)
1022      // This instruction defines EFLAGS, no need to look any further.
1023      return true;
1024    ++Iter;
1025
1026    // If we make it to the end of the block, it's safe to clobber EFLAGS.
1027    if (Iter == MBB.end())
1028      return true;
1029  }
1030
1031  Iter = I;
1032  for (unsigned i = 0; i < 4; ++i) {
1033    // If we make it to the beginning of the block, it's safe to clobber
1034    // EFLAGS iff EFLAGS is not live-in.
1035    if (Iter == MBB.begin())
1036      return !MBB.isLiveIn(X86::EFLAGS);
1037
1038    --Iter;
1039    bool SawKill = false;
1040    for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
1041      MachineOperand &MO = Iter->getOperand(j);
1042      if (MO.isReg() && MO.getReg() == X86::EFLAGS) {
1043        if (MO.isDef()) return MO.isDead();
1044        if (MO.isKill()) SawKill = true;
1045      }
1046    }
1047
1048    if (SawKill)
1049      // This instruction kills EFLAGS and doesn't redefine it, so
1050      // there's no need to look further.
1051      return true;
1052  }
1053
1054  // Conservative answer.
1055  return false;
1056}
1057
1058void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
1059                                 MachineBasicBlock::iterator I,
1060                                 unsigned DestReg, unsigned SubIdx,
1061                                 const MachineInstr *Orig,
1062                                 const TargetRegisterInfo *TRI) const {
1063  DebugLoc DL = DebugLoc::getUnknownLoc();
1064  if (I != MBB.end()) DL = I->getDebugLoc();
1065
1066  if (SubIdx && TargetRegisterInfo::isPhysicalRegister(DestReg)) {
1067    DestReg = TRI->getSubReg(DestReg, SubIdx);
1068    SubIdx = 0;
1069  }
1070
1071  // MOV32r0 etc. are implemented with xor which clobbers condition code.
1072  // Re-materialize them as movri instructions to avoid side effects.
1073  bool Clone = true;
1074  unsigned Opc = Orig->getOpcode();
1075  switch (Opc) {
1076  default: break;
1077  case X86::MOV8r0:
1078  case X86::MOV16r0:
1079  case X86::MOV32r0:
1080  case X86::MOV64r0: {
1081    if (!isSafeToClobberEFLAGS(MBB, I)) {
1082      switch (Opc) {
1083      default: break;
1084      case X86::MOV8r0:  Opc = X86::MOV8ri;  break;
1085      case X86::MOV16r0: Opc = X86::MOV16ri; break;
1086      case X86::MOV32r0: Opc = X86::MOV32ri; break;
1087      case X86::MOV64r0: Opc = X86::MOV64ri; break;
1088      }
1089      Clone = false;
1090    }
1091    break;
1092  }
1093  }
1094
1095  if (Clone) {
1096    MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
1097    MI->getOperand(0).setReg(DestReg);
1098    MBB.insert(I, MI);
1099  } else {
1100    BuildMI(MBB, I, DL, get(Opc), DestReg).addImm(0);
1101  }
1102
1103  MachineInstr *NewMI = prior(I);
1104  NewMI->getOperand(0).setSubReg(SubIdx);
1105}
1106
1107/// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
1108/// is not marked dead.
1109static bool hasLiveCondCodeDef(MachineInstr *MI) {
1110  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1111    MachineOperand &MO = MI->getOperand(i);
1112    if (MO.isReg() && MO.isDef() &&
1113        MO.getReg() == X86::EFLAGS && !MO.isDead()) {
1114      return true;
1115    }
1116  }
1117  return false;
1118}
1119
1120/// convertToThreeAddressWithLEA - Helper for convertToThreeAddress when
1121/// 16-bit LEA is disabled, use 32-bit LEA to form 3-address code by promoting
1122/// to a 32-bit superregister and then truncating back down to a 16-bit
1123/// subregister.
1124MachineInstr *
1125X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc,
1126                                           MachineFunction::iterator &MFI,
1127                                           MachineBasicBlock::iterator &MBBI,
1128                                           LiveVariables *LV) const {
1129  MachineInstr *MI = MBBI;
1130  unsigned Dest = MI->getOperand(0).getReg();
1131  unsigned Src = MI->getOperand(1).getReg();
1132  bool isDead = MI->getOperand(0).isDead();
1133  bool isKill = MI->getOperand(1).isKill();
1134
1135  unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit()
1136    ? X86::LEA64_32r : X86::LEA32r;
1137  MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
1138  unsigned leaInReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1139  unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1140
1141  // Build and insert into an implicit UNDEF value. This is OK because
1142  // well be shifting and then extracting the lower 16-bits.
1143  // This has the potential to cause partial register stall. e.g.
1144  //   movw    (%rbp,%rcx,2), %dx
1145  //   leal    -65(%rdx), %esi
1146  // But testing has shown this *does* help performance in 64-bit mode (at
1147  // least on modern x86 machines).
1148  BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg);
1149  MachineInstr *InsMI =
1150    BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::INSERT_SUBREG),leaInReg)
1151    .addReg(leaInReg)
1152    .addReg(Src, getKillRegState(isKill))
1153    .addImm(X86::SUBREG_16BIT);
1154
1155  MachineInstrBuilder MIB = BuildMI(*MFI, MBBI, MI->getDebugLoc(),
1156                                    get(Opc), leaOutReg);
1157  switch (MIOpc) {
1158  default:
1159    llvm_unreachable(0);
1160    break;
1161  case X86::SHL16ri: {
1162    unsigned ShAmt = MI->getOperand(2).getImm();
1163    MIB.addReg(0).addImm(1 << ShAmt)
1164       .addReg(leaInReg, RegState::Kill).addImm(0);
1165    break;
1166  }
1167  case X86::INC16r:
1168  case X86::INC64_16r:
1169    addLeaRegOffset(MIB, leaInReg, true, 1);
1170    break;
1171  case X86::DEC16r:
1172  case X86::DEC64_16r:
1173    addLeaRegOffset(MIB, leaInReg, true, -1);
1174    break;
1175  case X86::ADD16ri:
1176  case X86::ADD16ri8:
1177    addLeaRegOffset(MIB, leaInReg, true, MI->getOperand(2).getImm());
1178    break;
1179  case X86::ADD16rr: {
1180    unsigned Src2 = MI->getOperand(2).getReg();
1181    bool isKill2 = MI->getOperand(2).isKill();
1182    unsigned leaInReg2 = 0;
1183    MachineInstr *InsMI2 = 0;
1184    if (Src == Src2) {
1185      // ADD16rr %reg1028<kill>, %reg1028
1186      // just a single insert_subreg.
1187      addRegReg(MIB, leaInReg, true, leaInReg, false);
1188    } else {
1189      leaInReg2 = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1190      // Build and insert into an implicit UNDEF value. This is OK because
1191      // well be shifting and then extracting the lower 16-bits.
1192      BuildMI(*MFI, MIB, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg2);
1193      InsMI2 =
1194        BuildMI(*MFI, MIB, MI->getDebugLoc(), get(X86::INSERT_SUBREG),leaInReg2)
1195        .addReg(leaInReg2)
1196        .addReg(Src2, getKillRegState(isKill2))
1197        .addImm(X86::SUBREG_16BIT);
1198      addRegReg(MIB, leaInReg, true, leaInReg2, true);
1199    }
1200    if (LV && isKill2 && InsMI2)
1201      LV->replaceKillInstruction(Src2, MI, InsMI2);
1202    break;
1203  }
1204  }
1205
1206  MachineInstr *NewMI = MIB;
1207  MachineInstr *ExtMI =
1208    BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::EXTRACT_SUBREG))
1209    .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1210    .addReg(leaOutReg, RegState::Kill)
1211    .addImm(X86::SUBREG_16BIT);
1212
1213  if (LV) {
1214    // Update live variables
1215    LV->getVarInfo(leaInReg).Kills.push_back(NewMI);
1216    LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI);
1217    if (isKill)
1218      LV->replaceKillInstruction(Src, MI, InsMI);
1219    if (isDead)
1220      LV->replaceKillInstruction(Dest, MI, ExtMI);
1221  }
1222
1223  return ExtMI;
1224}
1225
1226/// convertToThreeAddress - This method must be implemented by targets that
1227/// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
1228/// may be able to convert a two-address instruction into a true
1229/// three-address instruction on demand.  This allows the X86 target (for
1230/// example) to convert ADD and SHL instructions into LEA instructions if they
1231/// would require register copies due to two-addressness.
1232///
1233/// This method returns a null pointer if the transformation cannot be
1234/// performed, otherwise it returns the new instruction.
1235///
1236MachineInstr *
1237X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
1238                                    MachineBasicBlock::iterator &MBBI,
1239                                    LiveVariables *LV) const {
1240  MachineInstr *MI = MBBI;
1241  MachineFunction &MF = *MI->getParent()->getParent();
1242  // All instructions input are two-addr instructions.  Get the known operands.
1243  unsigned Dest = MI->getOperand(0).getReg();
1244  unsigned Src = MI->getOperand(1).getReg();
1245  bool isDead = MI->getOperand(0).isDead();
1246  bool isKill = MI->getOperand(1).isKill();
1247
1248  MachineInstr *NewMI = NULL;
1249  // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's.  When
1250  // we have better subtarget support, enable the 16-bit LEA generation here.
1251  // 16-bit LEA is also slow on Core2.
1252  bool DisableLEA16 = true;
1253  bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
1254
1255  unsigned MIOpc = MI->getOpcode();
1256  switch (MIOpc) {
1257  case X86::SHUFPSrri: {
1258    assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
1259    if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
1260
1261    unsigned B = MI->getOperand(1).getReg();
1262    unsigned C = MI->getOperand(2).getReg();
1263    if (B != C) return 0;
1264    unsigned A = MI->getOperand(0).getReg();
1265    unsigned M = MI->getOperand(3).getImm();
1266    NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::PSHUFDri))
1267      .addReg(A, RegState::Define | getDeadRegState(isDead))
1268      .addReg(B, getKillRegState(isKill)).addImm(M);
1269    break;
1270  }
1271  case X86::SHL64ri: {
1272    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
1273    // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1274    // the flags produced by a shift yet, so this is safe.
1275    unsigned ShAmt = MI->getOperand(2).getImm();
1276    if (ShAmt == 0 || ShAmt >= 4) return 0;
1277
1278    NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
1279      .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1280      .addReg(0).addImm(1 << ShAmt)
1281      .addReg(Src, getKillRegState(isKill))
1282      .addImm(0);
1283    break;
1284  }
1285  case X86::SHL32ri: {
1286    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
1287    // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1288    // the flags produced by a shift yet, so this is safe.
1289    unsigned ShAmt = MI->getOperand(2).getImm();
1290    if (ShAmt == 0 || ShAmt >= 4) return 0;
1291
1292    unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
1293    NewMI = BuildMI(MF, MI->getDebugLoc(), get(Opc))
1294      .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1295      .addReg(0).addImm(1 << ShAmt)
1296      .addReg(Src, getKillRegState(isKill)).addImm(0);
1297    break;
1298  }
1299  case X86::SHL16ri: {
1300    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
1301    // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1302    // the flags produced by a shift yet, so this is safe.
1303    unsigned ShAmt = MI->getOperand(2).getImm();
1304    if (ShAmt == 0 || ShAmt >= 4) return 0;
1305
1306    if (DisableLEA16)
1307      return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
1308    NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1309      .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1310      .addReg(0).addImm(1 << ShAmt)
1311      .addReg(Src, getKillRegState(isKill))
1312      .addImm(0);
1313    break;
1314  }
1315  default: {
1316    // The following opcodes also sets the condition code register(s). Only
1317    // convert them to equivalent lea if the condition code register def's
1318    // are dead!
1319    if (hasLiveCondCodeDef(MI))
1320      return 0;
1321
1322    switch (MIOpc) {
1323    default: return 0;
1324    case X86::INC64r:
1325    case X86::INC32r:
1326    case X86::INC64_32r: {
1327      assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
1328      unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
1329        : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
1330      NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1331                              .addReg(Dest, RegState::Define |
1332                                      getDeadRegState(isDead)),
1333                              Src, isKill, 1);
1334      break;
1335    }
1336    case X86::INC16r:
1337    case X86::INC64_16r:
1338      if (DisableLEA16)
1339        return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
1340      assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
1341      NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1342                           .addReg(Dest, RegState::Define |
1343                                   getDeadRegState(isDead)),
1344                           Src, isKill, 1);
1345      break;
1346    case X86::DEC64r:
1347    case X86::DEC32r:
1348    case X86::DEC64_32r: {
1349      assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
1350      unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
1351        : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
1352      NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1353                              .addReg(Dest, RegState::Define |
1354                                      getDeadRegState(isDead)),
1355                              Src, isKill, -1);
1356      break;
1357    }
1358    case X86::DEC16r:
1359    case X86::DEC64_16r:
1360      if (DisableLEA16)
1361        return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
1362      assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
1363      NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1364                           .addReg(Dest, RegState::Define |
1365                                   getDeadRegState(isDead)),
1366                           Src, isKill, -1);
1367      break;
1368    case X86::ADD64rr:
1369    case X86::ADD32rr: {
1370      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1371      unsigned Opc = MIOpc == X86::ADD64rr ? X86::LEA64r
1372        : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
1373      unsigned Src2 = MI->getOperand(2).getReg();
1374      bool isKill2 = MI->getOperand(2).isKill();
1375      NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1376                        .addReg(Dest, RegState::Define |
1377                                getDeadRegState(isDead)),
1378                        Src, isKill, Src2, isKill2);
1379      if (LV && isKill2)
1380        LV->replaceKillInstruction(Src2, MI, NewMI);
1381      break;
1382    }
1383    case X86::ADD16rr: {
1384      if (DisableLEA16)
1385        return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
1386      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1387      unsigned Src2 = MI->getOperand(2).getReg();
1388      bool isKill2 = MI->getOperand(2).isKill();
1389      NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1390                        .addReg(Dest, RegState::Define |
1391                                getDeadRegState(isDead)),
1392                        Src, isKill, Src2, isKill2);
1393      if (LV && isKill2)
1394        LV->replaceKillInstruction(Src2, MI, NewMI);
1395      break;
1396    }
1397    case X86::ADD64ri32:
1398    case X86::ADD64ri8:
1399      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1400      NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
1401                              .addReg(Dest, RegState::Define |
1402                                      getDeadRegState(isDead)),
1403                              Src, isKill, MI->getOperand(2).getImm());
1404      break;
1405    case X86::ADD32ri:
1406    case X86::ADD32ri8: {
1407      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1408      unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
1409      NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1410                              .addReg(Dest, RegState::Define |
1411                                      getDeadRegState(isDead)),
1412                                Src, isKill, MI->getOperand(2).getImm());
1413      break;
1414    }
1415    case X86::ADD16ri:
1416    case X86::ADD16ri8:
1417      if (DisableLEA16)
1418        return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
1419      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1420      NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1421                              .addReg(Dest, RegState::Define |
1422                                      getDeadRegState(isDead)),
1423                              Src, isKill, MI->getOperand(2).getImm());
1424      break;
1425    }
1426  }
1427  }
1428
1429  if (!NewMI) return 0;
1430
1431  if (LV) {  // Update live variables
1432    if (isKill)
1433      LV->replaceKillInstruction(Src, MI, NewMI);
1434    if (isDead)
1435      LV->replaceKillInstruction(Dest, MI, NewMI);
1436  }
1437
1438  MFI->insert(MBBI, NewMI);          // Insert the new inst
1439  return NewMI;
1440}
1441
1442/// commuteInstruction - We have a few instructions that must be hacked on to
1443/// commute them.
1444///
1445MachineInstr *
1446X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
1447  switch (MI->getOpcode()) {
1448  case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
1449  case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
1450  case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
1451  case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
1452  case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
1453  case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
1454    unsigned Opc;
1455    unsigned Size;
1456    switch (MI->getOpcode()) {
1457    default: llvm_unreachable("Unreachable!");
1458    case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
1459    case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
1460    case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
1461    case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
1462    case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
1463    case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
1464    }
1465    unsigned Amt = MI->getOperand(3).getImm();
1466    if (NewMI) {
1467      MachineFunction &MF = *MI->getParent()->getParent();
1468      MI = MF.CloneMachineInstr(MI);
1469      NewMI = false;
1470    }
1471    MI->setDesc(get(Opc));
1472    MI->getOperand(3).setImm(Size-Amt);
1473    return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
1474  }
1475  case X86::CMOVB16rr:
1476  case X86::CMOVB32rr:
1477  case X86::CMOVB64rr:
1478  case X86::CMOVAE16rr:
1479  case X86::CMOVAE32rr:
1480  case X86::CMOVAE64rr:
1481  case X86::CMOVE16rr:
1482  case X86::CMOVE32rr:
1483  case X86::CMOVE64rr:
1484  case X86::CMOVNE16rr:
1485  case X86::CMOVNE32rr:
1486  case X86::CMOVNE64rr:
1487  case X86::CMOVBE16rr:
1488  case X86::CMOVBE32rr:
1489  case X86::CMOVBE64rr:
1490  case X86::CMOVA16rr:
1491  case X86::CMOVA32rr:
1492  case X86::CMOVA64rr:
1493  case X86::CMOVL16rr:
1494  case X86::CMOVL32rr:
1495  case X86::CMOVL64rr:
1496  case X86::CMOVGE16rr:
1497  case X86::CMOVGE32rr:
1498  case X86::CMOVGE64rr:
1499  case X86::CMOVLE16rr:
1500  case X86::CMOVLE32rr:
1501  case X86::CMOVLE64rr:
1502  case X86::CMOVG16rr:
1503  case X86::CMOVG32rr:
1504  case X86::CMOVG64rr:
1505  case X86::CMOVS16rr:
1506  case X86::CMOVS32rr:
1507  case X86::CMOVS64rr:
1508  case X86::CMOVNS16rr:
1509  case X86::CMOVNS32rr:
1510  case X86::CMOVNS64rr:
1511  case X86::CMOVP16rr:
1512  case X86::CMOVP32rr:
1513  case X86::CMOVP64rr:
1514  case X86::CMOVNP16rr:
1515  case X86::CMOVNP32rr:
1516  case X86::CMOVNP64rr:
1517  case X86::CMOVO16rr:
1518  case X86::CMOVO32rr:
1519  case X86::CMOVO64rr:
1520  case X86::CMOVNO16rr:
1521  case X86::CMOVNO32rr:
1522  case X86::CMOVNO64rr: {
1523    unsigned Opc = 0;
1524    switch (MI->getOpcode()) {
1525    default: break;
1526    case X86::CMOVB16rr:  Opc = X86::CMOVAE16rr; break;
1527    case X86::CMOVB32rr:  Opc = X86::CMOVAE32rr; break;
1528    case X86::CMOVB64rr:  Opc = X86::CMOVAE64rr; break;
1529    case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
1530    case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
1531    case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
1532    case X86::CMOVE16rr:  Opc = X86::CMOVNE16rr; break;
1533    case X86::CMOVE32rr:  Opc = X86::CMOVNE32rr; break;
1534    case X86::CMOVE64rr:  Opc = X86::CMOVNE64rr; break;
1535    case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
1536    case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
1537    case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
1538    case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
1539    case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
1540    case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
1541    case X86::CMOVA16rr:  Opc = X86::CMOVBE16rr; break;
1542    case X86::CMOVA32rr:  Opc = X86::CMOVBE32rr; break;
1543    case X86::CMOVA64rr:  Opc = X86::CMOVBE64rr; break;
1544    case X86::CMOVL16rr:  Opc = X86::CMOVGE16rr; break;
1545    case X86::CMOVL32rr:  Opc = X86::CMOVGE32rr; break;
1546    case X86::CMOVL64rr:  Opc = X86::CMOVGE64rr; break;
1547    case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
1548    case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
1549    case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
1550    case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
1551    case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
1552    case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
1553    case X86::CMOVG16rr:  Opc = X86::CMOVLE16rr; break;
1554    case X86::CMOVG32rr:  Opc = X86::CMOVLE32rr; break;
1555    case X86::CMOVG64rr:  Opc = X86::CMOVLE64rr; break;
1556    case X86::CMOVS16rr:  Opc = X86::CMOVNS16rr; break;
1557    case X86::CMOVS32rr:  Opc = X86::CMOVNS32rr; break;
1558    case X86::CMOVS64rr:  Opc = X86::CMOVNS64rr; break;
1559    case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
1560    case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
1561    case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
1562    case X86::CMOVP16rr:  Opc = X86::CMOVNP16rr; break;
1563    case X86::CMOVP32rr:  Opc = X86::CMOVNP32rr; break;
1564    case X86::CMOVP64rr:  Opc = X86::CMOVNP64rr; break;
1565    case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
1566    case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
1567    case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
1568    case X86::CMOVO16rr:  Opc = X86::CMOVNO16rr; break;
1569    case X86::CMOVO32rr:  Opc = X86::CMOVNO32rr; break;
1570    case X86::CMOVO64rr:  Opc = X86::CMOVNO64rr; break;
1571    case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break;
1572    case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break;
1573    case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break;
1574    }
1575    if (NewMI) {
1576      MachineFunction &MF = *MI->getParent()->getParent();
1577      MI = MF.CloneMachineInstr(MI);
1578      NewMI = false;
1579    }
1580    MI->setDesc(get(Opc));
1581    // Fallthrough intended.
1582  }
1583  default:
1584    return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
1585  }
1586}
1587
1588static X86::CondCode GetCondFromBranchOpc(unsigned BrOpc) {
1589  switch (BrOpc) {
1590  default: return X86::COND_INVALID;
1591  case X86::JE:  return X86::COND_E;
1592  case X86::JNE: return X86::COND_NE;
1593  case X86::JL:  return X86::COND_L;
1594  case X86::JLE: return X86::COND_LE;
1595  case X86::JG:  return X86::COND_G;
1596  case X86::JGE: return X86::COND_GE;
1597  case X86::JB:  return X86::COND_B;
1598  case X86::JBE: return X86::COND_BE;
1599  case X86::JA:  return X86::COND_A;
1600  case X86::JAE: return X86::COND_AE;
1601  case X86::JS:  return X86::COND_S;
1602  case X86::JNS: return X86::COND_NS;
1603  case X86::JP:  return X86::COND_P;
1604  case X86::JNP: return X86::COND_NP;
1605  case X86::JO:  return X86::COND_O;
1606  case X86::JNO: return X86::COND_NO;
1607  }
1608}
1609
1610unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
1611  switch (CC) {
1612  default: llvm_unreachable("Illegal condition code!");
1613  case X86::COND_E:  return X86::JE;
1614  case X86::COND_NE: return X86::JNE;
1615  case X86::COND_L:  return X86::JL;
1616  case X86::COND_LE: return X86::JLE;
1617  case X86::COND_G:  return X86::JG;
1618  case X86::COND_GE: return X86::JGE;
1619  case X86::COND_B:  return X86::JB;
1620  case X86::COND_BE: return X86::JBE;
1621  case X86::COND_A:  return X86::JA;
1622  case X86::COND_AE: return X86::JAE;
1623  case X86::COND_S:  return X86::JS;
1624  case X86::COND_NS: return X86::JNS;
1625  case X86::COND_P:  return X86::JP;
1626  case X86::COND_NP: return X86::JNP;
1627  case X86::COND_O:  return X86::JO;
1628  case X86::COND_NO: return X86::JNO;
1629  }
1630}
1631
1632/// GetOppositeBranchCondition - Return the inverse of the specified condition,
1633/// e.g. turning COND_E to COND_NE.
1634X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
1635  switch (CC) {
1636  default: llvm_unreachable("Illegal condition code!");
1637  case X86::COND_E:  return X86::COND_NE;
1638  case X86::COND_NE: return X86::COND_E;
1639  case X86::COND_L:  return X86::COND_GE;
1640  case X86::COND_LE: return X86::COND_G;
1641  case X86::COND_G:  return X86::COND_LE;
1642  case X86::COND_GE: return X86::COND_L;
1643  case X86::COND_B:  return X86::COND_AE;
1644  case X86::COND_BE: return X86::COND_A;
1645  case X86::COND_A:  return X86::COND_BE;
1646  case X86::COND_AE: return X86::COND_B;
1647  case X86::COND_S:  return X86::COND_NS;
1648  case X86::COND_NS: return X86::COND_S;
1649  case X86::COND_P:  return X86::COND_NP;
1650  case X86::COND_NP: return X86::COND_P;
1651  case X86::COND_O:  return X86::COND_NO;
1652  case X86::COND_NO: return X86::COND_O;
1653  }
1654}
1655
1656bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
1657  const TargetInstrDesc &TID = MI->getDesc();
1658  if (!TID.isTerminator()) return false;
1659
1660  // Conditional branch is a special case.
1661  if (TID.isBranch() && !TID.isBarrier())
1662    return true;
1663  if (!TID.isPredicable())
1664    return true;
1665  return !isPredicated(MI);
1666}
1667
1668// For purposes of branch analysis do not count FP_REG_KILL as a terminator.
1669static bool isBrAnalysisUnpredicatedTerminator(const MachineInstr *MI,
1670                                               const X86InstrInfo &TII) {
1671  if (MI->getOpcode() == X86::FP_REG_KILL)
1672    return false;
1673  return TII.isUnpredicatedTerminator(MI);
1674}
1675
1676bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
1677                                 MachineBasicBlock *&TBB,
1678                                 MachineBasicBlock *&FBB,
1679                                 SmallVectorImpl<MachineOperand> &Cond,
1680                                 bool AllowModify) const {
1681  // Start from the bottom of the block and work up, examining the
1682  // terminator instructions.
1683  MachineBasicBlock::iterator I = MBB.end();
1684  while (I != MBB.begin()) {
1685    --I;
1686
1687    // Working from the bottom, when we see a non-terminator instruction, we're
1688    // done.
1689    if (!isBrAnalysisUnpredicatedTerminator(I, *this))
1690      break;
1691
1692    // A terminator that isn't a branch can't easily be handled by this
1693    // analysis.
1694    if (!I->getDesc().isBranch())
1695      return true;
1696
1697    // Handle unconditional branches.
1698    if (I->getOpcode() == X86::JMP) {
1699      if (!AllowModify) {
1700        TBB = I->getOperand(0).getMBB();
1701        continue;
1702      }
1703
1704      // If the block has any instructions after a JMP, delete them.
1705      while (llvm::next(I) != MBB.end())
1706        llvm::next(I)->eraseFromParent();
1707
1708      Cond.clear();
1709      FBB = 0;
1710
1711      // Delete the JMP if it's equivalent to a fall-through.
1712      if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
1713        TBB = 0;
1714        I->eraseFromParent();
1715        I = MBB.end();
1716        continue;
1717      }
1718
1719      // TBB is used to indicate the unconditinal destination.
1720      TBB = I->getOperand(0).getMBB();
1721      continue;
1722    }
1723
1724    // Handle conditional branches.
1725    X86::CondCode BranchCode = GetCondFromBranchOpc(I->getOpcode());
1726    if (BranchCode == X86::COND_INVALID)
1727      return true;  // Can't handle indirect branch.
1728
1729    // Working from the bottom, handle the first conditional branch.
1730    if (Cond.empty()) {
1731      FBB = TBB;
1732      TBB = I->getOperand(0).getMBB();
1733      Cond.push_back(MachineOperand::CreateImm(BranchCode));
1734      continue;
1735    }
1736
1737    // Handle subsequent conditional branches. Only handle the case where all
1738    // conditional branches branch to the same destination and their condition
1739    // opcodes fit one of the special multi-branch idioms.
1740    assert(Cond.size() == 1);
1741    assert(TBB);
1742
1743    // Only handle the case where all conditional branches branch to the same
1744    // destination.
1745    if (TBB != I->getOperand(0).getMBB())
1746      return true;
1747
1748    // If the conditions are the same, we can leave them alone.
1749    X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
1750    if (OldBranchCode == BranchCode)
1751      continue;
1752
1753    // If they differ, see if they fit one of the known patterns. Theoretically,
1754    // we could handle more patterns here, but we shouldn't expect to see them
1755    // if instruction selection has done a reasonable job.
1756    if ((OldBranchCode == X86::COND_NP &&
1757         BranchCode == X86::COND_E) ||
1758        (OldBranchCode == X86::COND_E &&
1759         BranchCode == X86::COND_NP))
1760      BranchCode = X86::COND_NP_OR_E;
1761    else if ((OldBranchCode == X86::COND_P &&
1762              BranchCode == X86::COND_NE) ||
1763             (OldBranchCode == X86::COND_NE &&
1764              BranchCode == X86::COND_P))
1765      BranchCode = X86::COND_NE_OR_P;
1766    else
1767      return true;
1768
1769    // Update the MachineOperand.
1770    Cond[0].setImm(BranchCode);
1771  }
1772
1773  return false;
1774}
1775
1776unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
1777  MachineBasicBlock::iterator I = MBB.end();
1778  unsigned Count = 0;
1779
1780  while (I != MBB.begin()) {
1781    --I;
1782    if (I->getOpcode() != X86::JMP &&
1783        GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
1784      break;
1785    // Remove the branch.
1786    I->eraseFromParent();
1787    I = MBB.end();
1788    ++Count;
1789  }
1790
1791  return Count;
1792}
1793
1794unsigned
1795X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
1796                           MachineBasicBlock *FBB,
1797                           const SmallVectorImpl<MachineOperand> &Cond) const {
1798  // FIXME this should probably have a DebugLoc operand
1799  DebugLoc dl = DebugLoc::getUnknownLoc();
1800  // Shouldn't be a fall through.
1801  assert(TBB && "InsertBranch must not be told to insert a fallthrough");
1802  assert((Cond.size() == 1 || Cond.size() == 0) &&
1803         "X86 branch conditions have one component!");
1804
1805  if (Cond.empty()) {
1806    // Unconditional branch?
1807    assert(!FBB && "Unconditional branch with multiple successors!");
1808    BuildMI(&MBB, dl, get(X86::JMP)).addMBB(TBB);
1809    return 1;
1810  }
1811
1812  // Conditional branch.
1813  unsigned Count = 0;
1814  X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
1815  switch (CC) {
1816  case X86::COND_NP_OR_E:
1817    // Synthesize NP_OR_E with two branches.
1818    BuildMI(&MBB, dl, get(X86::JNP)).addMBB(TBB);
1819    ++Count;
1820    BuildMI(&MBB, dl, get(X86::JE)).addMBB(TBB);
1821    ++Count;
1822    break;
1823  case X86::COND_NE_OR_P:
1824    // Synthesize NE_OR_P with two branches.
1825    BuildMI(&MBB, dl, get(X86::JNE)).addMBB(TBB);
1826    ++Count;
1827    BuildMI(&MBB, dl, get(X86::JP)).addMBB(TBB);
1828    ++Count;
1829    break;
1830  default: {
1831    unsigned Opc = GetCondBranchFromCond(CC);
1832    BuildMI(&MBB, dl, get(Opc)).addMBB(TBB);
1833    ++Count;
1834  }
1835  }
1836  if (FBB) {
1837    // Two-way Conditional branch. Insert the second branch.
1838    BuildMI(&MBB, dl, get(X86::JMP)).addMBB(FBB);
1839    ++Count;
1840  }
1841  return Count;
1842}
1843
1844/// isHReg - Test if the given register is a physical h register.
1845static bool isHReg(unsigned Reg) {
1846  return X86::GR8_ABCD_HRegClass.contains(Reg);
1847}
1848
1849bool X86InstrInfo::copyRegToReg(MachineBasicBlock &MBB,
1850                                MachineBasicBlock::iterator MI,
1851                                unsigned DestReg, unsigned SrcReg,
1852                                const TargetRegisterClass *DestRC,
1853                                const TargetRegisterClass *SrcRC) const {
1854  DebugLoc DL = DebugLoc::getUnknownLoc();
1855  if (MI != MBB.end()) DL = MI->getDebugLoc();
1856
1857  // Determine if DstRC and SrcRC have a common superclass in common.
1858  const TargetRegisterClass *CommonRC = DestRC;
1859  if (DestRC == SrcRC)
1860    /* Source and destination have the same register class. */;
1861  else if (CommonRC->hasSuperClass(SrcRC))
1862    CommonRC = SrcRC;
1863  else if (!DestRC->hasSubClass(SrcRC)) {
1864    // Neither of GR64_NOREX or GR64_NOSP is a superclass of the other,
1865    // but we want to copy then as GR64. Similarly, for GR32_NOREX and
1866    // GR32_NOSP, copy as GR32.
1867    if (SrcRC->hasSuperClass(&X86::GR64RegClass) &&
1868        DestRC->hasSuperClass(&X86::GR64RegClass))
1869      CommonRC = &X86::GR64RegClass;
1870    else if (SrcRC->hasSuperClass(&X86::GR32RegClass) &&
1871             DestRC->hasSuperClass(&X86::GR32RegClass))
1872      CommonRC = &X86::GR32RegClass;
1873    else
1874      CommonRC = 0;
1875  }
1876
1877  if (CommonRC) {
1878    unsigned Opc;
1879    if (CommonRC == &X86::GR64RegClass || CommonRC == &X86::GR64_NOSPRegClass) {
1880      Opc = X86::MOV64rr;
1881    } else if (CommonRC == &X86::GR32RegClass ||
1882               CommonRC == &X86::GR32_NOSPRegClass) {
1883      Opc = X86::MOV32rr;
1884    } else if (CommonRC == &X86::GR16RegClass) {
1885      Opc = X86::MOV16rr;
1886    } else if (CommonRC == &X86::GR8RegClass) {
1887      // Copying to or from a physical H register on x86-64 requires a NOREX
1888      // move.  Otherwise use a normal move.
1889      if ((isHReg(DestReg) || isHReg(SrcReg)) &&
1890          TM.getSubtarget<X86Subtarget>().is64Bit())
1891        Opc = X86::MOV8rr_NOREX;
1892      else
1893        Opc = X86::MOV8rr;
1894    } else if (CommonRC == &X86::GR64_ABCDRegClass) {
1895      Opc = X86::MOV64rr;
1896    } else if (CommonRC == &X86::GR32_ABCDRegClass) {
1897      Opc = X86::MOV32rr;
1898    } else if (CommonRC == &X86::GR16_ABCDRegClass) {
1899      Opc = X86::MOV16rr;
1900    } else if (CommonRC == &X86::GR8_ABCD_LRegClass) {
1901      Opc = X86::MOV8rr;
1902    } else if (CommonRC == &X86::GR8_ABCD_HRegClass) {
1903      if (TM.getSubtarget<X86Subtarget>().is64Bit())
1904        Opc = X86::MOV8rr_NOREX;
1905      else
1906        Opc = X86::MOV8rr;
1907    } else if (CommonRC == &X86::GR64_NOREXRegClass ||
1908               CommonRC == &X86::GR64_NOREX_NOSPRegClass) {
1909      Opc = X86::MOV64rr;
1910    } else if (CommonRC == &X86::GR32_NOREXRegClass) {
1911      Opc = X86::MOV32rr;
1912    } else if (CommonRC == &X86::GR16_NOREXRegClass) {
1913      Opc = X86::MOV16rr;
1914    } else if (CommonRC == &X86::GR8_NOREXRegClass) {
1915      Opc = X86::MOV8rr;
1916    } else if (CommonRC == &X86::RFP32RegClass) {
1917      Opc = X86::MOV_Fp3232;
1918    } else if (CommonRC == &X86::RFP64RegClass || CommonRC == &X86::RSTRegClass) {
1919      Opc = X86::MOV_Fp6464;
1920    } else if (CommonRC == &X86::RFP80RegClass) {
1921      Opc = X86::MOV_Fp8080;
1922    } else if (CommonRC == &X86::FR32RegClass) {
1923      Opc = X86::FsMOVAPSrr;
1924    } else if (CommonRC == &X86::FR64RegClass) {
1925      Opc = X86::FsMOVAPDrr;
1926    } else if (CommonRC == &X86::VR128RegClass) {
1927      Opc = X86::MOVAPSrr;
1928    } else if (CommonRC == &X86::VR64RegClass) {
1929      Opc = X86::MMX_MOVQ64rr;
1930    } else {
1931      return false;
1932    }
1933    BuildMI(MBB, MI, DL, get(Opc), DestReg).addReg(SrcReg);
1934    return true;
1935  }
1936
1937  // Moving EFLAGS to / from another register requires a push and a pop.
1938  if (SrcRC == &X86::CCRRegClass) {
1939    if (SrcReg != X86::EFLAGS)
1940      return false;
1941    if (DestRC == &X86::GR64RegClass || DestRC == &X86::GR64_NOSPRegClass) {
1942      BuildMI(MBB, MI, DL, get(X86::PUSHFQ64));
1943      BuildMI(MBB, MI, DL, get(X86::POP64r), DestReg);
1944      return true;
1945    } else if (DestRC == &X86::GR32RegClass ||
1946               DestRC == &X86::GR32_NOSPRegClass) {
1947      BuildMI(MBB, MI, DL, get(X86::PUSHFD));
1948      BuildMI(MBB, MI, DL, get(X86::POP32r), DestReg);
1949      return true;
1950    }
1951  } else if (DestRC == &X86::CCRRegClass) {
1952    if (DestReg != X86::EFLAGS)
1953      return false;
1954    if (SrcRC == &X86::GR64RegClass || DestRC == &X86::GR64_NOSPRegClass) {
1955      BuildMI(MBB, MI, DL, get(X86::PUSH64r)).addReg(SrcReg);
1956      BuildMI(MBB, MI, DL, get(X86::POPFQ));
1957      return true;
1958    } else if (SrcRC == &X86::GR32RegClass ||
1959               DestRC == &X86::GR32_NOSPRegClass) {
1960      BuildMI(MBB, MI, DL, get(X86::PUSH32r)).addReg(SrcReg);
1961      BuildMI(MBB, MI, DL, get(X86::POPFD));
1962      return true;
1963    }
1964  }
1965
1966  // Moving from ST(0) turns into FpGET_ST0_32 etc.
1967  if (SrcRC == &X86::RSTRegClass) {
1968    // Copying from ST(0)/ST(1).
1969    if (SrcReg != X86::ST0 && SrcReg != X86::ST1)
1970      // Can only copy from ST(0)/ST(1) right now
1971      return false;
1972    bool isST0 = SrcReg == X86::ST0;
1973    unsigned Opc;
1974    if (DestRC == &X86::RFP32RegClass)
1975      Opc = isST0 ? X86::FpGET_ST0_32 : X86::FpGET_ST1_32;
1976    else if (DestRC == &X86::RFP64RegClass)
1977      Opc = isST0 ? X86::FpGET_ST0_64 : X86::FpGET_ST1_64;
1978    else {
1979      if (DestRC != &X86::RFP80RegClass)
1980        return false;
1981      Opc = isST0 ? X86::FpGET_ST0_80 : X86::FpGET_ST1_80;
1982    }
1983    BuildMI(MBB, MI, DL, get(Opc), DestReg);
1984    return true;
1985  }
1986
1987  // Moving to ST(0) turns into FpSET_ST0_32 etc.
1988  if (DestRC == &X86::RSTRegClass) {
1989    // Copying to ST(0) / ST(1).
1990    if (DestReg != X86::ST0 && DestReg != X86::ST1)
1991      // Can only copy to TOS right now
1992      return false;
1993    bool isST0 = DestReg == X86::ST0;
1994    unsigned Opc;
1995    if (SrcRC == &X86::RFP32RegClass)
1996      Opc = isST0 ? X86::FpSET_ST0_32 : X86::FpSET_ST1_32;
1997    else if (SrcRC == &X86::RFP64RegClass)
1998      Opc = isST0 ? X86::FpSET_ST0_64 : X86::FpSET_ST1_64;
1999    else {
2000      if (SrcRC != &X86::RFP80RegClass)
2001        return false;
2002      Opc = isST0 ? X86::FpSET_ST0_80 : X86::FpSET_ST1_80;
2003    }
2004    BuildMI(MBB, MI, DL, get(Opc)).addReg(SrcReg);
2005    return true;
2006  }
2007
2008  // Not yet supported!
2009  return false;
2010}
2011
2012static unsigned getStoreRegOpcode(unsigned SrcReg,
2013                                  const TargetRegisterClass *RC,
2014                                  bool isStackAligned,
2015                                  TargetMachine &TM) {
2016  unsigned Opc = 0;
2017  if (RC == &X86::GR64RegClass || RC == &X86::GR64_NOSPRegClass) {
2018    Opc = X86::MOV64mr;
2019  } else if (RC == &X86::GR32RegClass || RC == &X86::GR32_NOSPRegClass) {
2020    Opc = X86::MOV32mr;
2021  } else if (RC == &X86::GR16RegClass) {
2022    Opc = X86::MOV16mr;
2023  } else if (RC == &X86::GR8RegClass) {
2024    // Copying to or from a physical H register on x86-64 requires a NOREX
2025    // move.  Otherwise use a normal move.
2026    if (isHReg(SrcReg) &&
2027        TM.getSubtarget<X86Subtarget>().is64Bit())
2028      Opc = X86::MOV8mr_NOREX;
2029    else
2030      Opc = X86::MOV8mr;
2031  } else if (RC == &X86::GR64_ABCDRegClass) {
2032    Opc = X86::MOV64mr;
2033  } else if (RC == &X86::GR32_ABCDRegClass) {
2034    Opc = X86::MOV32mr;
2035  } else if (RC == &X86::GR16_ABCDRegClass) {
2036    Opc = X86::MOV16mr;
2037  } else if (RC == &X86::GR8_ABCD_LRegClass) {
2038    Opc = X86::MOV8mr;
2039  } else if (RC == &X86::GR8_ABCD_HRegClass) {
2040    if (TM.getSubtarget<X86Subtarget>().is64Bit())
2041      Opc = X86::MOV8mr_NOREX;
2042    else
2043      Opc = X86::MOV8mr;
2044  } else if (RC == &X86::GR64_NOREXRegClass ||
2045             RC == &X86::GR64_NOREX_NOSPRegClass) {
2046    Opc = X86::MOV64mr;
2047  } else if (RC == &X86::GR32_NOREXRegClass) {
2048    Opc = X86::MOV32mr;
2049  } else if (RC == &X86::GR16_NOREXRegClass) {
2050    Opc = X86::MOV16mr;
2051  } else if (RC == &X86::GR8_NOREXRegClass) {
2052    Opc = X86::MOV8mr;
2053  } else if (RC == &X86::RFP80RegClass) {
2054    Opc = X86::ST_FpP80m;   // pops
2055  } else if (RC == &X86::RFP64RegClass) {
2056    Opc = X86::ST_Fp64m;
2057  } else if (RC == &X86::RFP32RegClass) {
2058    Opc = X86::ST_Fp32m;
2059  } else if (RC == &X86::FR32RegClass) {
2060    Opc = X86::MOVSSmr;
2061  } else if (RC == &X86::FR64RegClass) {
2062    Opc = X86::MOVSDmr;
2063  } else if (RC == &X86::VR128RegClass) {
2064    // If stack is realigned we can use aligned stores.
2065    Opc = isStackAligned ? X86::MOVAPSmr : X86::MOVUPSmr;
2066  } else if (RC == &X86::VR64RegClass) {
2067    Opc = X86::MMX_MOVQ64mr;
2068  } else {
2069    llvm_unreachable("Unknown regclass");
2070  }
2071
2072  return Opc;
2073}
2074
2075void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
2076                                       MachineBasicBlock::iterator MI,
2077                                       unsigned SrcReg, bool isKill, int FrameIdx,
2078                                       const TargetRegisterClass *RC) const {
2079  const MachineFunction &MF = *MBB.getParent();
2080  bool isAligned = (RI.getStackAlignment() >= 16) || RI.canRealignStack(MF);
2081  unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM);
2082  DebugLoc DL = DebugLoc::getUnknownLoc();
2083  if (MI != MBB.end()) DL = MI->getDebugLoc();
2084  addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIdx)
2085    .addReg(SrcReg, getKillRegState(isKill));
2086}
2087
2088void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
2089                                  bool isKill,
2090                                  SmallVectorImpl<MachineOperand> &Addr,
2091                                  const TargetRegisterClass *RC,
2092                                  MachineInstr::mmo_iterator MMOBegin,
2093                                  MachineInstr::mmo_iterator MMOEnd,
2094                                  SmallVectorImpl<MachineInstr*> &NewMIs) const {
2095  bool isAligned = (*MMOBegin)->getAlignment() >= 16;
2096  unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM);
2097  DebugLoc DL = DebugLoc::getUnknownLoc();
2098  MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
2099  for (unsigned i = 0, e = Addr.size(); i != e; ++i)
2100    MIB.addOperand(Addr[i]);
2101  MIB.addReg(SrcReg, getKillRegState(isKill));
2102  (*MIB).setMemRefs(MMOBegin, MMOEnd);
2103  NewMIs.push_back(MIB);
2104}
2105
2106static unsigned getLoadRegOpcode(unsigned DestReg,
2107                                 const TargetRegisterClass *RC,
2108                                 bool isStackAligned,
2109                                 const TargetMachine &TM) {
2110  unsigned Opc = 0;
2111  if (RC == &X86::GR64RegClass || RC == &X86::GR64_NOSPRegClass) {
2112    Opc = X86::MOV64rm;
2113  } else if (RC == &X86::GR32RegClass || RC == &X86::GR32_NOSPRegClass) {
2114    Opc = X86::MOV32rm;
2115  } else if (RC == &X86::GR16RegClass) {
2116    Opc = X86::MOV16rm;
2117  } else if (RC == &X86::GR8RegClass) {
2118    // Copying to or from a physical H register on x86-64 requires a NOREX
2119    // move.  Otherwise use a normal move.
2120    if (isHReg(DestReg) &&
2121        TM.getSubtarget<X86Subtarget>().is64Bit())
2122      Opc = X86::MOV8rm_NOREX;
2123    else
2124      Opc = X86::MOV8rm;
2125  } else if (RC == &X86::GR64_ABCDRegClass) {
2126    Opc = X86::MOV64rm;
2127  } else if (RC == &X86::GR32_ABCDRegClass) {
2128    Opc = X86::MOV32rm;
2129  } else if (RC == &X86::GR16_ABCDRegClass) {
2130    Opc = X86::MOV16rm;
2131  } else if (RC == &X86::GR8_ABCD_LRegClass) {
2132    Opc = X86::MOV8rm;
2133  } else if (RC == &X86::GR8_ABCD_HRegClass) {
2134    if (TM.getSubtarget<X86Subtarget>().is64Bit())
2135      Opc = X86::MOV8rm_NOREX;
2136    else
2137      Opc = X86::MOV8rm;
2138  } else if (RC == &X86::GR64_NOREXRegClass ||
2139             RC == &X86::GR64_NOREX_NOSPRegClass) {
2140    Opc = X86::MOV64rm;
2141  } else if (RC == &X86::GR32_NOREXRegClass) {
2142    Opc = X86::MOV32rm;
2143  } else if (RC == &X86::GR16_NOREXRegClass) {
2144    Opc = X86::MOV16rm;
2145  } else if (RC == &X86::GR8_NOREXRegClass) {
2146    Opc = X86::MOV8rm;
2147  } else if (RC == &X86::RFP80RegClass) {
2148    Opc = X86::LD_Fp80m;
2149  } else if (RC == &X86::RFP64RegClass) {
2150    Opc = X86::LD_Fp64m;
2151  } else if (RC == &X86::RFP32RegClass) {
2152    Opc = X86::LD_Fp32m;
2153  } else if (RC == &X86::FR32RegClass) {
2154    Opc = X86::MOVSSrm;
2155  } else if (RC == &X86::FR64RegClass) {
2156    Opc = X86::MOVSDrm;
2157  } else if (RC == &X86::VR128RegClass) {
2158    // If stack is realigned we can use aligned loads.
2159    Opc = isStackAligned ? X86::MOVAPSrm : X86::MOVUPSrm;
2160  } else if (RC == &X86::VR64RegClass) {
2161    Opc = X86::MMX_MOVQ64rm;
2162  } else {
2163    llvm_unreachable("Unknown regclass");
2164  }
2165
2166  return Opc;
2167}
2168
2169void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
2170                                        MachineBasicBlock::iterator MI,
2171                                        unsigned DestReg, int FrameIdx,
2172                                        const TargetRegisterClass *RC) const{
2173  const MachineFunction &MF = *MBB.getParent();
2174  bool isAligned = (RI.getStackAlignment() >= 16) || RI.canRealignStack(MF);
2175  unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM);
2176  DebugLoc DL = DebugLoc::getUnknownLoc();
2177  if (MI != MBB.end()) DL = MI->getDebugLoc();
2178  addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DestReg), FrameIdx);
2179}
2180
2181void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
2182                                 SmallVectorImpl<MachineOperand> &Addr,
2183                                 const TargetRegisterClass *RC,
2184                                 MachineInstr::mmo_iterator MMOBegin,
2185                                 MachineInstr::mmo_iterator MMOEnd,
2186                                 SmallVectorImpl<MachineInstr*> &NewMIs) const {
2187  bool isAligned = (*MMOBegin)->getAlignment() >= 16;
2188  unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM);
2189  DebugLoc DL = DebugLoc::getUnknownLoc();
2190  MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg);
2191  for (unsigned i = 0, e = Addr.size(); i != e; ++i)
2192    MIB.addOperand(Addr[i]);
2193  (*MIB).setMemRefs(MMOBegin, MMOEnd);
2194  NewMIs.push_back(MIB);
2195}
2196
2197bool X86InstrInfo::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
2198                                             MachineBasicBlock::iterator MI,
2199                                const std::vector<CalleeSavedInfo> &CSI) const {
2200  if (CSI.empty())
2201    return false;
2202
2203  DebugLoc DL = MBB.findDebugLoc(MI);
2204
2205  bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
2206  bool isWin64 = TM.getSubtarget<X86Subtarget>().isTargetWin64();
2207  unsigned SlotSize = is64Bit ? 8 : 4;
2208
2209  MachineFunction &MF = *MBB.getParent();
2210  unsigned FPReg = RI.getFrameRegister(MF);
2211  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2212  unsigned CalleeFrameSize = 0;
2213
2214  unsigned Opc = is64Bit ? X86::PUSH64r : X86::PUSH32r;
2215  for (unsigned i = CSI.size(); i != 0; --i) {
2216    unsigned Reg = CSI[i-1].getReg();
2217    const TargetRegisterClass *RegClass = CSI[i-1].getRegClass();
2218    // Add the callee-saved register as live-in. It's killed at the spill.
2219    MBB.addLiveIn(Reg);
2220    if (Reg == FPReg)
2221      // X86RegisterInfo::emitPrologue will handle spilling of frame register.
2222      continue;
2223    if (RegClass != &X86::VR128RegClass && !isWin64) {
2224      CalleeFrameSize += SlotSize;
2225      BuildMI(MBB, MI, DL, get(Opc)).addReg(Reg, RegState::Kill);
2226    } else {
2227      storeRegToStackSlot(MBB, MI, Reg, true, CSI[i-1].getFrameIdx(), RegClass);
2228    }
2229  }
2230
2231  X86FI->setCalleeSavedFrameSize(CalleeFrameSize);
2232  return true;
2233}
2234
2235bool X86InstrInfo::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
2236                                               MachineBasicBlock::iterator MI,
2237                                const std::vector<CalleeSavedInfo> &CSI) const {
2238  if (CSI.empty())
2239    return false;
2240
2241  DebugLoc DL = MBB.findDebugLoc(MI);
2242
2243  MachineFunction &MF = *MBB.getParent();
2244  unsigned FPReg = RI.getFrameRegister(MF);
2245  bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
2246  bool isWin64 = TM.getSubtarget<X86Subtarget>().isTargetWin64();
2247  unsigned Opc = is64Bit ? X86::POP64r : X86::POP32r;
2248  for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
2249    unsigned Reg = CSI[i].getReg();
2250    if (Reg == FPReg)
2251      // X86RegisterInfo::emitEpilogue will handle restoring of frame register.
2252      continue;
2253    const TargetRegisterClass *RegClass = CSI[i].getRegClass();
2254    if (RegClass != &X86::VR128RegClass && !isWin64) {
2255      BuildMI(MBB, MI, DL, get(Opc), Reg);
2256    } else {
2257      loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(), RegClass);
2258    }
2259  }
2260  return true;
2261}
2262
2263static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
2264                                     const SmallVectorImpl<MachineOperand> &MOs,
2265                                     MachineInstr *MI,
2266                                     const TargetInstrInfo &TII) {
2267  // Create the base instruction with the memory operand as the first part.
2268  MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
2269                                              MI->getDebugLoc(), true);
2270  MachineInstrBuilder MIB(NewMI);
2271  unsigned NumAddrOps = MOs.size();
2272  for (unsigned i = 0; i != NumAddrOps; ++i)
2273    MIB.addOperand(MOs[i]);
2274  if (NumAddrOps < 4)  // FrameIndex only
2275    addOffset(MIB, 0);
2276
2277  // Loop over the rest of the ri operands, converting them over.
2278  unsigned NumOps = MI->getDesc().getNumOperands()-2;
2279  for (unsigned i = 0; i != NumOps; ++i) {
2280    MachineOperand &MO = MI->getOperand(i+2);
2281    MIB.addOperand(MO);
2282  }
2283  for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
2284    MachineOperand &MO = MI->getOperand(i);
2285    MIB.addOperand(MO);
2286  }
2287  return MIB;
2288}
2289
2290static MachineInstr *FuseInst(MachineFunction &MF,
2291                              unsigned Opcode, unsigned OpNo,
2292                              const SmallVectorImpl<MachineOperand> &MOs,
2293                              MachineInstr *MI, const TargetInstrInfo &TII) {
2294  MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
2295                                              MI->getDebugLoc(), true);
2296  MachineInstrBuilder MIB(NewMI);
2297
2298  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2299    MachineOperand &MO = MI->getOperand(i);
2300    if (i == OpNo) {
2301      assert(MO.isReg() && "Expected to fold into reg operand!");
2302      unsigned NumAddrOps = MOs.size();
2303      for (unsigned i = 0; i != NumAddrOps; ++i)
2304        MIB.addOperand(MOs[i]);
2305      if (NumAddrOps < 4)  // FrameIndex only
2306        addOffset(MIB, 0);
2307    } else {
2308      MIB.addOperand(MO);
2309    }
2310  }
2311  return MIB;
2312}
2313
2314static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
2315                                const SmallVectorImpl<MachineOperand> &MOs,
2316                                MachineInstr *MI) {
2317  MachineFunction &MF = *MI->getParent()->getParent();
2318  MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), TII.get(Opcode));
2319
2320  unsigned NumAddrOps = MOs.size();
2321  for (unsigned i = 0; i != NumAddrOps; ++i)
2322    MIB.addOperand(MOs[i]);
2323  if (NumAddrOps < 4)  // FrameIndex only
2324    addOffset(MIB, 0);
2325  return MIB.addImm(0);
2326}
2327
2328MachineInstr*
2329X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2330                                    MachineInstr *MI, unsigned i,
2331                                    const SmallVectorImpl<MachineOperand> &MOs,
2332                                    unsigned Size, unsigned Align) const {
2333  const DenseMap<unsigned*, std::pair<unsigned,unsigned> > *OpcodeTablePtr=NULL;
2334  bool isTwoAddrFold = false;
2335  unsigned NumOps = MI->getDesc().getNumOperands();
2336  bool isTwoAddr = NumOps > 1 &&
2337    MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
2338
2339  MachineInstr *NewMI = NULL;
2340  // Folding a memory location into the two-address part of a two-address
2341  // instruction is different than folding it other places.  It requires
2342  // replacing the *two* registers with the memory location.
2343  if (isTwoAddr && NumOps >= 2 && i < 2 &&
2344      MI->getOperand(0).isReg() &&
2345      MI->getOperand(1).isReg() &&
2346      MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
2347    OpcodeTablePtr = &RegOp2MemOpTable2Addr;
2348    isTwoAddrFold = true;
2349  } else if (i == 0) { // If operand 0
2350    if (MI->getOpcode() == X86::MOV64r0)
2351      NewMI = MakeM0Inst(*this, X86::MOV64mi32, MOs, MI);
2352    else if (MI->getOpcode() == X86::MOV32r0)
2353      NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
2354    else if (MI->getOpcode() == X86::MOV16r0)
2355      NewMI = MakeM0Inst(*this, X86::MOV16mi, MOs, MI);
2356    else if (MI->getOpcode() == X86::MOV8r0)
2357      NewMI = MakeM0Inst(*this, X86::MOV8mi, MOs, MI);
2358    if (NewMI)
2359      return NewMI;
2360
2361    OpcodeTablePtr = &RegOp2MemOpTable0;
2362  } else if (i == 1) {
2363    OpcodeTablePtr = &RegOp2MemOpTable1;
2364  } else if (i == 2) {
2365    OpcodeTablePtr = &RegOp2MemOpTable2;
2366  }
2367
2368  // If table selected...
2369  if (OpcodeTablePtr) {
2370    // Find the Opcode to fuse
2371    DenseMap<unsigned*, std::pair<unsigned,unsigned> >::const_iterator I =
2372      OpcodeTablePtr->find((unsigned*)MI->getOpcode());
2373    if (I != OpcodeTablePtr->end()) {
2374      unsigned Opcode = I->second.first;
2375      unsigned MinAlign = I->second.second;
2376      if (Align < MinAlign)
2377        return NULL;
2378      bool NarrowToMOV32rm = false;
2379      if (Size) {
2380        unsigned RCSize =  MI->getDesc().OpInfo[i].getRegClass(&RI)->getSize();
2381        if (Size < RCSize) {
2382          // Check if it's safe to fold the load. If the size of the object is
2383          // narrower than the load width, then it's not.
2384          if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4)
2385            return NULL;
2386          // If this is a 64-bit load, but the spill slot is 32, then we can do
2387          // a 32-bit load which is implicitly zero-extended. This likely is due
2388          // to liveintervalanalysis remat'ing a load from stack slot.
2389          if (MI->getOperand(0).getSubReg() || MI->getOperand(1).getSubReg())
2390            return NULL;
2391          Opcode = X86::MOV32rm;
2392          NarrowToMOV32rm = true;
2393        }
2394      }
2395
2396      if (isTwoAddrFold)
2397        NewMI = FuseTwoAddrInst(MF, Opcode, MOs, MI, *this);
2398      else
2399        NewMI = FuseInst(MF, Opcode, i, MOs, MI, *this);
2400
2401      if (NarrowToMOV32rm) {
2402        // If this is the special case where we use a MOV32rm to load a 32-bit
2403        // value and zero-extend the top bits. Change the destination register
2404        // to a 32-bit one.
2405        unsigned DstReg = NewMI->getOperand(0).getReg();
2406        if (TargetRegisterInfo::isPhysicalRegister(DstReg))
2407          NewMI->getOperand(0).setReg(RI.getSubReg(DstReg,
2408                                                   4/*x86_subreg_32bit*/));
2409        else
2410          NewMI->getOperand(0).setSubReg(4/*x86_subreg_32bit*/);
2411      }
2412      return NewMI;
2413    }
2414  }
2415
2416  // No fusion
2417  if (PrintFailedFusing)
2418    dbgs() << "We failed to fuse operand " << i << " in " << *MI;
2419  return NULL;
2420}
2421
2422
2423MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2424                                                  MachineInstr *MI,
2425                                           const SmallVectorImpl<unsigned> &Ops,
2426                                                  int FrameIndex) const {
2427  // Check switch flag
2428  if (NoFusing) return NULL;
2429
2430  if (!MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize))
2431    switch (MI->getOpcode()) {
2432    case X86::CVTSD2SSrr:
2433    case X86::Int_CVTSD2SSrr:
2434    case X86::CVTSS2SDrr:
2435    case X86::Int_CVTSS2SDrr:
2436    case X86::RCPSSr:
2437    case X86::RCPSSr_Int:
2438    case X86::ROUNDSDr_Int:
2439    case X86::ROUNDSSr_Int:
2440    case X86::RSQRTSSr:
2441    case X86::RSQRTSSr_Int:
2442    case X86::SQRTSSr:
2443    case X86::SQRTSSr_Int:
2444      return 0;
2445    }
2446
2447  const MachineFrameInfo *MFI = MF.getFrameInfo();
2448  unsigned Size = MFI->getObjectSize(FrameIndex);
2449  unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
2450  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2451    unsigned NewOpc = 0;
2452    unsigned RCSize = 0;
2453    switch (MI->getOpcode()) {
2454    default: return NULL;
2455    case X86::TEST8rr:  NewOpc = X86::CMP8ri; RCSize = 1; break;
2456    case X86::TEST16rr: NewOpc = X86::CMP16ri; RCSize = 2; break;
2457    case X86::TEST32rr: NewOpc = X86::CMP32ri; RCSize = 4; break;
2458    case X86::TEST64rr: NewOpc = X86::CMP64ri32; RCSize = 8; break;
2459    }
2460    // Check if it's safe to fold the load. If the size of the object is
2461    // narrower than the load width, then it's not.
2462    if (Size < RCSize)
2463      return NULL;
2464    // Change to CMPXXri r, 0 first.
2465    MI->setDesc(get(NewOpc));
2466    MI->getOperand(1).ChangeToImmediate(0);
2467  } else if (Ops.size() != 1)
2468    return NULL;
2469
2470  SmallVector<MachineOperand,4> MOs;
2471  MOs.push_back(MachineOperand::CreateFI(FrameIndex));
2472  return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, Size, Alignment);
2473}
2474
2475MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2476                                                  MachineInstr *MI,
2477                                           const SmallVectorImpl<unsigned> &Ops,
2478                                                  MachineInstr *LoadMI) const {
2479  // Check switch flag
2480  if (NoFusing) return NULL;
2481
2482  if (!MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize))
2483    switch (MI->getOpcode()) {
2484    case X86::CVTSD2SSrr:
2485    case X86::Int_CVTSD2SSrr:
2486    case X86::CVTSS2SDrr:
2487    case X86::Int_CVTSS2SDrr:
2488    case X86::RCPSSr:
2489    case X86::RCPSSr_Int:
2490    case X86::ROUNDSDr_Int:
2491    case X86::ROUNDSSr_Int:
2492    case X86::RSQRTSSr:
2493    case X86::RSQRTSSr_Int:
2494    case X86::SQRTSSr:
2495    case X86::SQRTSSr_Int:
2496      return 0;
2497    }
2498
2499  // Determine the alignment of the load.
2500  unsigned Alignment = 0;
2501  if (LoadMI->hasOneMemOperand())
2502    Alignment = (*LoadMI->memoperands_begin())->getAlignment();
2503  else
2504    switch (LoadMI->getOpcode()) {
2505    case X86::V_SET0:
2506    case X86::V_SETALLONES:
2507      Alignment = 16;
2508      break;
2509    case X86::FsFLD0SD:
2510      Alignment = 8;
2511      break;
2512    case X86::FsFLD0SS:
2513      Alignment = 4;
2514      break;
2515    default:
2516      llvm_unreachable("Don't know how to fold this instruction!");
2517    }
2518  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2519    unsigned NewOpc = 0;
2520    switch (MI->getOpcode()) {
2521    default: return NULL;
2522    case X86::TEST8rr:  NewOpc = X86::CMP8ri; break;
2523    case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
2524    case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
2525    case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
2526    }
2527    // Change to CMPXXri r, 0 first.
2528    MI->setDesc(get(NewOpc));
2529    MI->getOperand(1).ChangeToImmediate(0);
2530  } else if (Ops.size() != 1)
2531    return NULL;
2532
2533  SmallVector<MachineOperand,X86AddrNumOperands> MOs;
2534  switch (LoadMI->getOpcode()) {
2535  case X86::V_SET0:
2536  case X86::V_SETALLONES:
2537  case X86::FsFLD0SD:
2538  case X86::FsFLD0SS: {
2539    // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
2540    // Create a constant-pool entry and operands to load from it.
2541
2542    // x86-32 PIC requires a PIC base register for constant pools.
2543    unsigned PICBase = 0;
2544    if (TM.getRelocationModel() == Reloc::PIC_) {
2545      if (TM.getSubtarget<X86Subtarget>().is64Bit())
2546        PICBase = X86::RIP;
2547      else
2548        // FIXME: PICBase = TM.getInstrInfo()->getGlobalBaseReg(&MF);
2549        // This doesn't work for several reasons.
2550        // 1. GlobalBaseReg may have been spilled.
2551        // 2. It may not be live at MI.
2552        return NULL;
2553    }
2554
2555    // Create a constant-pool entry.
2556    MachineConstantPool &MCP = *MF.getConstantPool();
2557    const Type *Ty;
2558    if (LoadMI->getOpcode() == X86::FsFLD0SS)
2559      Ty = Type::getFloatTy(MF.getFunction()->getContext());
2560    else if (LoadMI->getOpcode() == X86::FsFLD0SD)
2561      Ty = Type::getDoubleTy(MF.getFunction()->getContext());
2562    else
2563      Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 4);
2564    Constant *C = LoadMI->getOpcode() == X86::V_SETALLONES ?
2565                    Constant::getAllOnesValue(Ty) :
2566                    Constant::getNullValue(Ty);
2567    unsigned CPI = MCP.getConstantPoolIndex(C, Alignment);
2568
2569    // Create operands to load from the constant pool entry.
2570    MOs.push_back(MachineOperand::CreateReg(PICBase, false));
2571    MOs.push_back(MachineOperand::CreateImm(1));
2572    MOs.push_back(MachineOperand::CreateReg(0, false));
2573    MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
2574    MOs.push_back(MachineOperand::CreateReg(0, false));
2575    break;
2576  }
2577  default: {
2578    // Folding a normal load. Just copy the load's address operands.
2579    unsigned NumOps = LoadMI->getDesc().getNumOperands();
2580    for (unsigned i = NumOps - X86AddrNumOperands; i != NumOps; ++i)
2581      MOs.push_back(LoadMI->getOperand(i));
2582    break;
2583  }
2584  }
2585  return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, 0, Alignment);
2586}
2587
2588
2589bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI,
2590                                  const SmallVectorImpl<unsigned> &Ops) const {
2591  // Check switch flag
2592  if (NoFusing) return 0;
2593
2594  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2595    switch (MI->getOpcode()) {
2596    default: return false;
2597    case X86::TEST8rr:
2598    case X86::TEST16rr:
2599    case X86::TEST32rr:
2600    case X86::TEST64rr:
2601      return true;
2602    }
2603  }
2604
2605  if (Ops.size() != 1)
2606    return false;
2607
2608  unsigned OpNum = Ops[0];
2609  unsigned Opc = MI->getOpcode();
2610  unsigned NumOps = MI->getDesc().getNumOperands();
2611  bool isTwoAddr = NumOps > 1 &&
2612    MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
2613
2614  // Folding a memory location into the two-address part of a two-address
2615  // instruction is different than folding it other places.  It requires
2616  // replacing the *two* registers with the memory location.
2617  const DenseMap<unsigned*, std::pair<unsigned,unsigned> > *OpcodeTablePtr=NULL;
2618  if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
2619    OpcodeTablePtr = &RegOp2MemOpTable2Addr;
2620  } else if (OpNum == 0) { // If operand 0
2621    switch (Opc) {
2622    case X86::MOV8r0:
2623    case X86::MOV16r0:
2624    case X86::MOV32r0:
2625    case X86::MOV64r0:
2626      return true;
2627    default: break;
2628    }
2629    OpcodeTablePtr = &RegOp2MemOpTable0;
2630  } else if (OpNum == 1) {
2631    OpcodeTablePtr = &RegOp2MemOpTable1;
2632  } else if (OpNum == 2) {
2633    OpcodeTablePtr = &RegOp2MemOpTable2;
2634  }
2635
2636  if (OpcodeTablePtr) {
2637    // Find the Opcode to fuse
2638    DenseMap<unsigned*, std::pair<unsigned,unsigned> >::const_iterator I =
2639      OpcodeTablePtr->find((unsigned*)Opc);
2640    if (I != OpcodeTablePtr->end())
2641      return true;
2642  }
2643  return false;
2644}
2645
2646bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
2647                                unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
2648                                SmallVectorImpl<MachineInstr*> &NewMIs) const {
2649  DenseMap<unsigned*, std::pair<unsigned,unsigned> >::const_iterator I =
2650    MemOp2RegOpTable.find((unsigned*)MI->getOpcode());
2651  if (I == MemOp2RegOpTable.end())
2652    return false;
2653  unsigned Opc = I->second.first;
2654  unsigned Index = I->second.second & 0xf;
2655  bool FoldedLoad = I->second.second & (1 << 4);
2656  bool FoldedStore = I->second.second & (1 << 5);
2657  if (UnfoldLoad && !FoldedLoad)
2658    return false;
2659  UnfoldLoad &= FoldedLoad;
2660  if (UnfoldStore && !FoldedStore)
2661    return false;
2662  UnfoldStore &= FoldedStore;
2663
2664  const TargetInstrDesc &TID = get(Opc);
2665  const TargetOperandInfo &TOI = TID.OpInfo[Index];
2666  const TargetRegisterClass *RC = TOI.getRegClass(&RI);
2667  SmallVector<MachineOperand, X86AddrNumOperands> AddrOps;
2668  SmallVector<MachineOperand,2> BeforeOps;
2669  SmallVector<MachineOperand,2> AfterOps;
2670  SmallVector<MachineOperand,4> ImpOps;
2671  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2672    MachineOperand &Op = MI->getOperand(i);
2673    if (i >= Index && i < Index + X86AddrNumOperands)
2674      AddrOps.push_back(Op);
2675    else if (Op.isReg() && Op.isImplicit())
2676      ImpOps.push_back(Op);
2677    else if (i < Index)
2678      BeforeOps.push_back(Op);
2679    else if (i > Index)
2680      AfterOps.push_back(Op);
2681  }
2682
2683  // Emit the load instruction.
2684  if (UnfoldLoad) {
2685    std::pair<MachineInstr::mmo_iterator,
2686              MachineInstr::mmo_iterator> MMOs =
2687      MF.extractLoadMemRefs(MI->memoperands_begin(),
2688                            MI->memoperands_end());
2689    loadRegFromAddr(MF, Reg, AddrOps, RC, MMOs.first, MMOs.second, NewMIs);
2690    if (UnfoldStore) {
2691      // Address operands cannot be marked isKill.
2692      for (unsigned i = 1; i != 1 + X86AddrNumOperands; ++i) {
2693        MachineOperand &MO = NewMIs[0]->getOperand(i);
2694        if (MO.isReg())
2695          MO.setIsKill(false);
2696      }
2697    }
2698  }
2699
2700  // Emit the data processing instruction.
2701  MachineInstr *DataMI = MF.CreateMachineInstr(TID, MI->getDebugLoc(), true);
2702  MachineInstrBuilder MIB(DataMI);
2703
2704  if (FoldedStore)
2705    MIB.addReg(Reg, RegState::Define);
2706  for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
2707    MIB.addOperand(BeforeOps[i]);
2708  if (FoldedLoad)
2709    MIB.addReg(Reg);
2710  for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
2711    MIB.addOperand(AfterOps[i]);
2712  for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
2713    MachineOperand &MO = ImpOps[i];
2714    MIB.addReg(MO.getReg(),
2715               getDefRegState(MO.isDef()) |
2716               RegState::Implicit |
2717               getKillRegState(MO.isKill()) |
2718               getDeadRegState(MO.isDead()) |
2719               getUndefRegState(MO.isUndef()));
2720  }
2721  // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
2722  unsigned NewOpc = 0;
2723  switch (DataMI->getOpcode()) {
2724  default: break;
2725  case X86::CMP64ri32:
2726  case X86::CMP32ri:
2727  case X86::CMP16ri:
2728  case X86::CMP8ri: {
2729    MachineOperand &MO0 = DataMI->getOperand(0);
2730    MachineOperand &MO1 = DataMI->getOperand(1);
2731    if (MO1.getImm() == 0) {
2732      switch (DataMI->getOpcode()) {
2733      default: break;
2734      case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
2735      case X86::CMP32ri:   NewOpc = X86::TEST32rr; break;
2736      case X86::CMP16ri:   NewOpc = X86::TEST16rr; break;
2737      case X86::CMP8ri:    NewOpc = X86::TEST8rr; break;
2738      }
2739      DataMI->setDesc(get(NewOpc));
2740      MO1.ChangeToRegister(MO0.getReg(), false);
2741    }
2742  }
2743  }
2744  NewMIs.push_back(DataMI);
2745
2746  // Emit the store instruction.
2747  if (UnfoldStore) {
2748    const TargetRegisterClass *DstRC = TID.OpInfo[0].getRegClass(&RI);
2749    std::pair<MachineInstr::mmo_iterator,
2750              MachineInstr::mmo_iterator> MMOs =
2751      MF.extractStoreMemRefs(MI->memoperands_begin(),
2752                             MI->memoperands_end());
2753    storeRegToAddr(MF, Reg, true, AddrOps, DstRC, MMOs.first, MMOs.second, NewMIs);
2754  }
2755
2756  return true;
2757}
2758
2759bool
2760X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
2761                                  SmallVectorImpl<SDNode*> &NewNodes) const {
2762  if (!N->isMachineOpcode())
2763    return false;
2764
2765  DenseMap<unsigned*, std::pair<unsigned,unsigned> >::const_iterator I =
2766    MemOp2RegOpTable.find((unsigned*)N->getMachineOpcode());
2767  if (I == MemOp2RegOpTable.end())
2768    return false;
2769  unsigned Opc = I->second.first;
2770  unsigned Index = I->second.second & 0xf;
2771  bool FoldedLoad = I->second.second & (1 << 4);
2772  bool FoldedStore = I->second.second & (1 << 5);
2773  const TargetInstrDesc &TID = get(Opc);
2774  const TargetRegisterClass *RC = TID.OpInfo[Index].getRegClass(&RI);
2775  unsigned NumDefs = TID.NumDefs;
2776  std::vector<SDValue> AddrOps;
2777  std::vector<SDValue> BeforeOps;
2778  std::vector<SDValue> AfterOps;
2779  DebugLoc dl = N->getDebugLoc();
2780  unsigned NumOps = N->getNumOperands();
2781  for (unsigned i = 0; i != NumOps-1; ++i) {
2782    SDValue Op = N->getOperand(i);
2783    if (i >= Index-NumDefs && i < Index-NumDefs + X86AddrNumOperands)
2784      AddrOps.push_back(Op);
2785    else if (i < Index-NumDefs)
2786      BeforeOps.push_back(Op);
2787    else if (i > Index-NumDefs)
2788      AfterOps.push_back(Op);
2789  }
2790  SDValue Chain = N->getOperand(NumOps-1);
2791  AddrOps.push_back(Chain);
2792
2793  // Emit the load instruction.
2794  SDNode *Load = 0;
2795  MachineFunction &MF = DAG.getMachineFunction();
2796  if (FoldedLoad) {
2797    EVT VT = *RC->vt_begin();
2798    std::pair<MachineInstr::mmo_iterator,
2799              MachineInstr::mmo_iterator> MMOs =
2800      MF.extractLoadMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
2801                            cast<MachineSDNode>(N)->memoperands_end());
2802    bool isAligned = (*MMOs.first)->getAlignment() >= 16;
2803    Load = DAG.getMachineNode(getLoadRegOpcode(0, RC, isAligned, TM), dl,
2804                              VT, MVT::Other, &AddrOps[0], AddrOps.size());
2805    NewNodes.push_back(Load);
2806
2807    // Preserve memory reference information.
2808    cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
2809  }
2810
2811  // Emit the data processing instruction.
2812  std::vector<EVT> VTs;
2813  const TargetRegisterClass *DstRC = 0;
2814  if (TID.getNumDefs() > 0) {
2815    DstRC = TID.OpInfo[0].getRegClass(&RI);
2816    VTs.push_back(*DstRC->vt_begin());
2817  }
2818  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
2819    EVT VT = N->getValueType(i);
2820    if (VT != MVT::Other && i >= (unsigned)TID.getNumDefs())
2821      VTs.push_back(VT);
2822  }
2823  if (Load)
2824    BeforeOps.push_back(SDValue(Load, 0));
2825  std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
2826  SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, &BeforeOps[0],
2827                                      BeforeOps.size());
2828  NewNodes.push_back(NewNode);
2829
2830  // Emit the store instruction.
2831  if (FoldedStore) {
2832    AddrOps.pop_back();
2833    AddrOps.push_back(SDValue(NewNode, 0));
2834    AddrOps.push_back(Chain);
2835    std::pair<MachineInstr::mmo_iterator,
2836              MachineInstr::mmo_iterator> MMOs =
2837      MF.extractStoreMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
2838                             cast<MachineSDNode>(N)->memoperands_end());
2839    bool isAligned = (*MMOs.first)->getAlignment() >= 16;
2840    SDNode *Store = DAG.getMachineNode(getStoreRegOpcode(0, DstRC,
2841                                                         isAligned, TM),
2842                                       dl, MVT::Other,
2843                                       &AddrOps[0], AddrOps.size());
2844    NewNodes.push_back(Store);
2845
2846    // Preserve memory reference information.
2847    cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
2848  }
2849
2850  return true;
2851}
2852
2853unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
2854                                      bool UnfoldLoad, bool UnfoldStore,
2855                                      unsigned *LoadRegIndex) const {
2856  DenseMap<unsigned*, std::pair<unsigned,unsigned> >::const_iterator I =
2857    MemOp2RegOpTable.find((unsigned*)Opc);
2858  if (I == MemOp2RegOpTable.end())
2859    return 0;
2860  bool FoldedLoad = I->second.second & (1 << 4);
2861  bool FoldedStore = I->second.second & (1 << 5);
2862  if (UnfoldLoad && !FoldedLoad)
2863    return 0;
2864  if (UnfoldStore && !FoldedStore)
2865    return 0;
2866  if (LoadRegIndex)
2867    *LoadRegIndex = I->second.second & 0xf;
2868  return I->second.first;
2869}
2870
2871bool
2872X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
2873                                     int64_t &Offset1, int64_t &Offset2) const {
2874  if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
2875    return false;
2876  unsigned Opc1 = Load1->getMachineOpcode();
2877  unsigned Opc2 = Load2->getMachineOpcode();
2878  switch (Opc1) {
2879  default: return false;
2880  case X86::MOV8rm:
2881  case X86::MOV16rm:
2882  case X86::MOV32rm:
2883  case X86::MOV64rm:
2884  case X86::LD_Fp32m:
2885  case X86::LD_Fp64m:
2886  case X86::LD_Fp80m:
2887  case X86::MOVSSrm:
2888  case X86::MOVSDrm:
2889  case X86::MMX_MOVD64rm:
2890  case X86::MMX_MOVQ64rm:
2891  case X86::FsMOVAPSrm:
2892  case X86::FsMOVAPDrm:
2893  case X86::MOVAPSrm:
2894  case X86::MOVUPSrm:
2895  case X86::MOVUPSrm_Int:
2896  case X86::MOVAPDrm:
2897  case X86::MOVDQArm:
2898  case X86::MOVDQUrm:
2899  case X86::MOVDQUrm_Int:
2900    break;
2901  }
2902  switch (Opc2) {
2903  default: return false;
2904  case X86::MOV8rm:
2905  case X86::MOV16rm:
2906  case X86::MOV32rm:
2907  case X86::MOV64rm:
2908  case X86::LD_Fp32m:
2909  case X86::LD_Fp64m:
2910  case X86::LD_Fp80m:
2911  case X86::MOVSSrm:
2912  case X86::MOVSDrm:
2913  case X86::MMX_MOVD64rm:
2914  case X86::MMX_MOVQ64rm:
2915  case X86::FsMOVAPSrm:
2916  case X86::FsMOVAPDrm:
2917  case X86::MOVAPSrm:
2918  case X86::MOVUPSrm:
2919  case X86::MOVUPSrm_Int:
2920  case X86::MOVAPDrm:
2921  case X86::MOVDQArm:
2922  case X86::MOVDQUrm:
2923  case X86::MOVDQUrm_Int:
2924    break;
2925  }
2926
2927  // Check if chain operands and base addresses match.
2928  if (Load1->getOperand(0) != Load2->getOperand(0) ||
2929      Load1->getOperand(5) != Load2->getOperand(5))
2930    return false;
2931  // Segment operands should match as well.
2932  if (Load1->getOperand(4) != Load2->getOperand(4))
2933    return false;
2934  // Scale should be 1, Index should be Reg0.
2935  if (Load1->getOperand(1) == Load2->getOperand(1) &&
2936      Load1->getOperand(2) == Load2->getOperand(2)) {
2937    if (cast<ConstantSDNode>(Load1->getOperand(1))->getZExtValue() != 1)
2938      return false;
2939    SDValue Op2 = Load1->getOperand(2);
2940    if (!isa<RegisterSDNode>(Op2) ||
2941        cast<RegisterSDNode>(Op2)->getReg() != 0)
2942      return 0;
2943
2944    // Now let's examine the displacements.
2945    if (isa<ConstantSDNode>(Load1->getOperand(3)) &&
2946        isa<ConstantSDNode>(Load2->getOperand(3))) {
2947      Offset1 = cast<ConstantSDNode>(Load1->getOperand(3))->getSExtValue();
2948      Offset2 = cast<ConstantSDNode>(Load2->getOperand(3))->getSExtValue();
2949      return true;
2950    }
2951  }
2952  return false;
2953}
2954
2955bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
2956                                           int64_t Offset1, int64_t Offset2,
2957                                           unsigned NumLoads) const {
2958  assert(Offset2 > Offset1);
2959  if ((Offset2 - Offset1) / 8 > 64)
2960    return false;
2961
2962  unsigned Opc1 = Load1->getMachineOpcode();
2963  unsigned Opc2 = Load2->getMachineOpcode();
2964  if (Opc1 != Opc2)
2965    return false;  // FIXME: overly conservative?
2966
2967  switch (Opc1) {
2968  default: break;
2969  case X86::LD_Fp32m:
2970  case X86::LD_Fp64m:
2971  case X86::LD_Fp80m:
2972  case X86::MMX_MOVD64rm:
2973  case X86::MMX_MOVQ64rm:
2974    return false;
2975  }
2976
2977  EVT VT = Load1->getValueType(0);
2978  switch (VT.getSimpleVT().SimpleTy) {
2979  default: {
2980    // XMM registers. In 64-bit mode we can be a bit more aggressive since we
2981    // have 16 of them to play with.
2982    if (TM.getSubtargetImpl()->is64Bit()) {
2983      if (NumLoads >= 3)
2984        return false;
2985    } else if (NumLoads)
2986      return false;
2987    break;
2988  }
2989  case MVT::i8:
2990  case MVT::i16:
2991  case MVT::i32:
2992  case MVT::i64:
2993  case MVT::f32:
2994  case MVT::f64:
2995    if (NumLoads)
2996      return false;
2997  }
2998
2999  return true;
3000}
3001
3002
3003bool X86InstrInfo::
3004ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
3005  assert(Cond.size() == 1 && "Invalid X86 branch condition!");
3006  X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
3007  if (CC == X86::COND_NE_OR_P || CC == X86::COND_NP_OR_E)
3008    return true;
3009  Cond[0].setImm(GetOppositeBranchCondition(CC));
3010  return false;
3011}
3012
3013bool X86InstrInfo::
3014isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
3015  // FIXME: Return false for x87 stack register classes for now. We can't
3016  // allow any loads of these registers before FpGet_ST0_80.
3017  return !(RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass ||
3018           RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass);
3019}
3020
3021unsigned X86InstrInfo::sizeOfImm(const TargetInstrDesc *Desc) {
3022  switch (Desc->TSFlags & X86II::ImmMask) {
3023  case X86II::Imm8:   return 1;
3024  case X86II::Imm16:  return 2;
3025  case X86II::Imm32:  return 4;
3026  case X86II::Imm64:  return 8;
3027  default: llvm_unreachable("Immediate size not set!");
3028    return 0;
3029  }
3030}
3031
3032/// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended register?
3033/// e.g. r8, xmm8, etc.
3034bool X86InstrInfo::isX86_64ExtendedReg(const MachineOperand &MO) {
3035  if (!MO.isReg()) return false;
3036  switch (MO.getReg()) {
3037  default: break;
3038  case X86::R8:    case X86::R9:    case X86::R10:   case X86::R11:
3039  case X86::R12:   case X86::R13:   case X86::R14:   case X86::R15:
3040  case X86::R8D:   case X86::R9D:   case X86::R10D:  case X86::R11D:
3041  case X86::R12D:  case X86::R13D:  case X86::R14D:  case X86::R15D:
3042  case X86::R8W:   case X86::R9W:   case X86::R10W:  case X86::R11W:
3043  case X86::R12W:  case X86::R13W:  case X86::R14W:  case X86::R15W:
3044  case X86::R8B:   case X86::R9B:   case X86::R10B:  case X86::R11B:
3045  case X86::R12B:  case X86::R13B:  case X86::R14B:  case X86::R15B:
3046  case X86::XMM8:  case X86::XMM9:  case X86::XMM10: case X86::XMM11:
3047  case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15:
3048    return true;
3049  }
3050  return false;
3051}
3052
3053
3054/// determineREX - Determine if the MachineInstr has to be encoded with a X86-64
3055/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
3056/// size, and 3) use of X86-64 extended registers.
3057unsigned X86InstrInfo::determineREX(const MachineInstr &MI) {
3058  unsigned REX = 0;
3059  const TargetInstrDesc &Desc = MI.getDesc();
3060
3061  // Pseudo instructions do not need REX prefix byte.
3062  if ((Desc.TSFlags & X86II::FormMask) == X86II::Pseudo)
3063    return 0;
3064  if (Desc.TSFlags & X86II::REX_W)
3065    REX |= 1 << 3;
3066
3067  unsigned NumOps = Desc.getNumOperands();
3068  if (NumOps) {
3069    bool isTwoAddr = NumOps > 1 &&
3070      Desc.getOperandConstraint(1, TOI::TIED_TO) != -1;
3071
3072    // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
3073    unsigned i = isTwoAddr ? 1 : 0;
3074    for (unsigned e = NumOps; i != e; ++i) {
3075      const MachineOperand& MO = MI.getOperand(i);
3076      if (MO.isReg()) {
3077        unsigned Reg = MO.getReg();
3078        if (isX86_64NonExtLowByteReg(Reg))
3079          REX |= 0x40;
3080      }
3081    }
3082
3083    switch (Desc.TSFlags & X86II::FormMask) {
3084    case X86II::MRMInitReg:
3085      if (isX86_64ExtendedReg(MI.getOperand(0)))
3086        REX |= (1 << 0) | (1 << 2);
3087      break;
3088    case X86II::MRMSrcReg: {
3089      if (isX86_64ExtendedReg(MI.getOperand(0)))
3090        REX |= 1 << 2;
3091      i = isTwoAddr ? 2 : 1;
3092      for (unsigned e = NumOps; i != e; ++i) {
3093        const MachineOperand& MO = MI.getOperand(i);
3094        if (isX86_64ExtendedReg(MO))
3095          REX |= 1 << 0;
3096      }
3097      break;
3098    }
3099    case X86II::MRMSrcMem: {
3100      if (isX86_64ExtendedReg(MI.getOperand(0)))
3101        REX |= 1 << 2;
3102      unsigned Bit = 0;
3103      i = isTwoAddr ? 2 : 1;
3104      for (; i != NumOps; ++i) {
3105        const MachineOperand& MO = MI.getOperand(i);
3106        if (MO.isReg()) {
3107          if (isX86_64ExtendedReg(MO))
3108            REX |= 1 << Bit;
3109          Bit++;
3110        }
3111      }
3112      break;
3113    }
3114    case X86II::MRM0m: case X86II::MRM1m:
3115    case X86II::MRM2m: case X86II::MRM3m:
3116    case X86II::MRM4m: case X86II::MRM5m:
3117    case X86II::MRM6m: case X86II::MRM7m:
3118    case X86II::MRMDestMem: {
3119      unsigned e = (isTwoAddr ? X86AddrNumOperands+1 : X86AddrNumOperands);
3120      i = isTwoAddr ? 1 : 0;
3121      if (NumOps > e && isX86_64ExtendedReg(MI.getOperand(e)))
3122        REX |= 1 << 2;
3123      unsigned Bit = 0;
3124      for (; i != e; ++i) {
3125        const MachineOperand& MO = MI.getOperand(i);
3126        if (MO.isReg()) {
3127          if (isX86_64ExtendedReg(MO))
3128            REX |= 1 << Bit;
3129          Bit++;
3130        }
3131      }
3132      break;
3133    }
3134    default: {
3135      if (isX86_64ExtendedReg(MI.getOperand(0)))
3136        REX |= 1 << 0;
3137      i = isTwoAddr ? 2 : 1;
3138      for (unsigned e = NumOps; i != e; ++i) {
3139        const MachineOperand& MO = MI.getOperand(i);
3140        if (isX86_64ExtendedReg(MO))
3141          REX |= 1 << 2;
3142      }
3143      break;
3144    }
3145    }
3146  }
3147  return REX;
3148}
3149
3150/// sizePCRelativeBlockAddress - This method returns the size of a PC
3151/// relative block address instruction
3152///
3153static unsigned sizePCRelativeBlockAddress() {
3154  return 4;
3155}
3156
3157/// sizeGlobalAddress - Give the size of the emission of this global address
3158///
3159static unsigned sizeGlobalAddress(bool dword) {
3160  return dword ? 8 : 4;
3161}
3162
3163/// sizeConstPoolAddress - Give the size of the emission of this constant
3164/// pool address
3165///
3166static unsigned sizeConstPoolAddress(bool dword) {
3167  return dword ? 8 : 4;
3168}
3169
3170/// sizeExternalSymbolAddress - Give the size of the emission of this external
3171/// symbol
3172///
3173static unsigned sizeExternalSymbolAddress(bool dword) {
3174  return dword ? 8 : 4;
3175}
3176
3177/// sizeJumpTableAddress - Give the size of the emission of this jump
3178/// table address
3179///
3180static unsigned sizeJumpTableAddress(bool dword) {
3181  return dword ? 8 : 4;
3182}
3183
3184static unsigned sizeConstant(unsigned Size) {
3185  return Size;
3186}
3187
3188static unsigned sizeRegModRMByte(){
3189  return 1;
3190}
3191
3192static unsigned sizeSIBByte(){
3193  return 1;
3194}
3195
3196static unsigned getDisplacementFieldSize(const MachineOperand *RelocOp) {
3197  unsigned FinalSize = 0;
3198  // If this is a simple integer displacement that doesn't require a relocation.
3199  if (!RelocOp) {
3200    FinalSize += sizeConstant(4);
3201    return FinalSize;
3202  }
3203
3204  // Otherwise, this is something that requires a relocation.
3205  if (RelocOp->isGlobal()) {
3206    FinalSize += sizeGlobalAddress(false);
3207  } else if (RelocOp->isCPI()) {
3208    FinalSize += sizeConstPoolAddress(false);
3209  } else if (RelocOp->isJTI()) {
3210    FinalSize += sizeJumpTableAddress(false);
3211  } else {
3212    llvm_unreachable("Unknown value to relocate!");
3213  }
3214  return FinalSize;
3215}
3216
3217static unsigned getMemModRMByteSize(const MachineInstr &MI, unsigned Op,
3218                                    bool IsPIC, bool Is64BitMode) {
3219  const MachineOperand &Op3 = MI.getOperand(Op+3);
3220  int DispVal = 0;
3221  const MachineOperand *DispForReloc = 0;
3222  unsigned FinalSize = 0;
3223
3224  // Figure out what sort of displacement we have to handle here.
3225  if (Op3.isGlobal()) {
3226    DispForReloc = &Op3;
3227  } else if (Op3.isCPI()) {
3228    if (Is64BitMode || IsPIC) {
3229      DispForReloc = &Op3;
3230    } else {
3231      DispVal = 1;
3232    }
3233  } else if (Op3.isJTI()) {
3234    if (Is64BitMode || IsPIC) {
3235      DispForReloc = &Op3;
3236    } else {
3237      DispVal = 1;
3238    }
3239  } else {
3240    DispVal = 1;
3241  }
3242
3243  const MachineOperand &Base     = MI.getOperand(Op);
3244  const MachineOperand &IndexReg = MI.getOperand(Op+2);
3245
3246  unsigned BaseReg = Base.getReg();
3247
3248  // Is a SIB byte needed?
3249  if ((!Is64BitMode || DispForReloc || BaseReg != 0) &&
3250      IndexReg.getReg() == 0 &&
3251      (BaseReg == 0 || X86RegisterInfo::getX86RegNum(BaseReg) != N86::ESP)) {
3252    if (BaseReg == 0) {  // Just a displacement?
3253      // Emit special case [disp32] encoding
3254      ++FinalSize;
3255      FinalSize += getDisplacementFieldSize(DispForReloc);
3256    } else {
3257      unsigned BaseRegNo = X86RegisterInfo::getX86RegNum(BaseReg);
3258      if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) {
3259        // Emit simple indirect register encoding... [EAX] f.e.
3260        ++FinalSize;
3261      // Be pessimistic and assume it's a disp32, not a disp8
3262      } else {
3263        // Emit the most general non-SIB encoding: [REG+disp32]
3264        ++FinalSize;
3265        FinalSize += getDisplacementFieldSize(DispForReloc);
3266      }
3267    }
3268
3269  } else {  // We need a SIB byte, so start by outputting the ModR/M byte first
3270    assert(IndexReg.getReg() != X86::ESP &&
3271           IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
3272
3273    bool ForceDisp32 = false;
3274    if (BaseReg == 0 || DispForReloc) {
3275      // Emit the normal disp32 encoding.
3276      ++FinalSize;
3277      ForceDisp32 = true;
3278    } else {
3279      ++FinalSize;
3280    }
3281
3282    FinalSize += sizeSIBByte();
3283
3284    // Do we need to output a displacement?
3285    if (DispVal != 0 || ForceDisp32) {
3286      FinalSize += getDisplacementFieldSize(DispForReloc);
3287    }
3288  }
3289  return FinalSize;
3290}
3291
3292
3293static unsigned GetInstSizeWithDesc(const MachineInstr &MI,
3294                                    const TargetInstrDesc *Desc,
3295                                    bool IsPIC, bool Is64BitMode) {
3296
3297  unsigned Opcode = Desc->Opcode;
3298  unsigned FinalSize = 0;
3299
3300  // Emit the lock opcode prefix as needed.
3301  if (Desc->TSFlags & X86II::LOCK) ++FinalSize;
3302
3303  // Emit segment override opcode prefix as needed.
3304  switch (Desc->TSFlags & X86II::SegOvrMask) {
3305  case X86II::FS:
3306  case X86II::GS:
3307   ++FinalSize;
3308   break;
3309  default: llvm_unreachable("Invalid segment!");
3310  case 0: break;  // No segment override!
3311  }
3312
3313  // Emit the repeat opcode prefix as needed.
3314  if ((Desc->TSFlags & X86II::Op0Mask) == X86II::REP) ++FinalSize;
3315
3316  // Emit the operand size opcode prefix as needed.
3317  if (Desc->TSFlags & X86II::OpSize) ++FinalSize;
3318
3319  // Emit the address size opcode prefix as needed.
3320  if (Desc->TSFlags & X86II::AdSize) ++FinalSize;
3321
3322  bool Need0FPrefix = false;
3323  switch (Desc->TSFlags & X86II::Op0Mask) {
3324  case X86II::TB:  // Two-byte opcode prefix
3325  case X86II::T8:  // 0F 38
3326  case X86II::TA:  // 0F 3A
3327    Need0FPrefix = true;
3328    break;
3329  case X86II::TF: // F2 0F 38
3330    ++FinalSize;
3331    Need0FPrefix = true;
3332    break;
3333  case X86II::REP: break; // already handled.
3334  case X86II::XS:   // F3 0F
3335    ++FinalSize;
3336    Need0FPrefix = true;
3337    break;
3338  case X86II::XD:   // F2 0F
3339    ++FinalSize;
3340    Need0FPrefix = true;
3341    break;
3342  case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB:
3343  case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF:
3344    ++FinalSize;
3345    break; // Two-byte opcode prefix
3346  default: llvm_unreachable("Invalid prefix!");
3347  case 0: break;  // No prefix!
3348  }
3349
3350  if (Is64BitMode) {
3351    // REX prefix
3352    unsigned REX = X86InstrInfo::determineREX(MI);
3353    if (REX)
3354      ++FinalSize;
3355  }
3356
3357  // 0x0F escape code must be emitted just before the opcode.
3358  if (Need0FPrefix)
3359    ++FinalSize;
3360
3361  switch (Desc->TSFlags & X86II::Op0Mask) {
3362  case X86II::T8:  // 0F 38
3363    ++FinalSize;
3364    break;
3365  case X86II::TA:  // 0F 3A
3366    ++FinalSize;
3367    break;
3368  case X86II::TF: // F2 0F 38
3369    ++FinalSize;
3370    break;
3371  }
3372
3373  // If this is a two-address instruction, skip one of the register operands.
3374  unsigned NumOps = Desc->getNumOperands();
3375  unsigned CurOp = 0;
3376  if (NumOps > 1 && Desc->getOperandConstraint(1, TOI::TIED_TO) != -1)
3377    CurOp++;
3378  else if (NumOps > 2 && Desc->getOperandConstraint(NumOps-1, TOI::TIED_TO)== 0)
3379    // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
3380    --NumOps;
3381
3382  switch (Desc->TSFlags & X86II::FormMask) {
3383  default: llvm_unreachable("Unknown FormMask value in X86 MachineCodeEmitter!");
3384  case X86II::Pseudo:
3385    // Remember the current PC offset, this is the PIC relocation
3386    // base address.
3387    switch (Opcode) {
3388    default:
3389      break;
3390    case TargetInstrInfo::INLINEASM: {
3391      const MachineFunction *MF = MI.getParent()->getParent();
3392      const TargetInstrInfo &TII = *MF->getTarget().getInstrInfo();
3393      FinalSize += TII.getInlineAsmLength(MI.getOperand(0).getSymbolName(),
3394                                          *MF->getTarget().getMCAsmInfo());
3395      break;
3396    }
3397    case TargetInstrInfo::DBG_LABEL:
3398    case TargetInstrInfo::EH_LABEL:
3399      break;
3400    case TargetInstrInfo::IMPLICIT_DEF:
3401    case TargetInstrInfo::KILL:
3402    case X86::FP_REG_KILL:
3403      break;
3404    case X86::MOVPC32r: {
3405      // This emits the "call" portion of this pseudo instruction.
3406      ++FinalSize;
3407      FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
3408      break;
3409    }
3410    }
3411    CurOp = NumOps;
3412    break;
3413  case X86II::RawFrm:
3414    ++FinalSize;
3415
3416    if (CurOp != NumOps) {
3417      const MachineOperand &MO = MI.getOperand(CurOp++);
3418      if (MO.isMBB()) {
3419        FinalSize += sizePCRelativeBlockAddress();
3420      } else if (MO.isGlobal()) {
3421        FinalSize += sizeGlobalAddress(false);
3422      } else if (MO.isSymbol()) {
3423        FinalSize += sizeExternalSymbolAddress(false);
3424      } else if (MO.isImm()) {
3425        FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
3426      } else {
3427        llvm_unreachable("Unknown RawFrm operand!");
3428      }
3429    }
3430    break;
3431
3432  case X86II::AddRegFrm:
3433    ++FinalSize;
3434    ++CurOp;
3435
3436    if (CurOp != NumOps) {
3437      const MachineOperand &MO1 = MI.getOperand(CurOp++);
3438      unsigned Size = X86InstrInfo::sizeOfImm(Desc);
3439      if (MO1.isImm())
3440        FinalSize += sizeConstant(Size);
3441      else {
3442        bool dword = false;
3443        if (Opcode == X86::MOV64ri)
3444          dword = true;
3445        if (MO1.isGlobal()) {
3446          FinalSize += sizeGlobalAddress(dword);
3447        } else if (MO1.isSymbol())
3448          FinalSize += sizeExternalSymbolAddress(dword);
3449        else if (MO1.isCPI())
3450          FinalSize += sizeConstPoolAddress(dword);
3451        else if (MO1.isJTI())
3452          FinalSize += sizeJumpTableAddress(dword);
3453      }
3454    }
3455    break;
3456
3457  case X86II::MRMDestReg: {
3458    ++FinalSize;
3459    FinalSize += sizeRegModRMByte();
3460    CurOp += 2;
3461    if (CurOp != NumOps) {
3462      ++CurOp;
3463      FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
3464    }
3465    break;
3466  }
3467  case X86II::MRMDestMem: {
3468    ++FinalSize;
3469    FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
3470    CurOp +=  X86AddrNumOperands + 1;
3471    if (CurOp != NumOps) {
3472      ++CurOp;
3473      FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
3474    }
3475    break;
3476  }
3477
3478  case X86II::MRMSrcReg:
3479    ++FinalSize;
3480    FinalSize += sizeRegModRMByte();
3481    CurOp += 2;
3482    if (CurOp != NumOps) {
3483      ++CurOp;
3484      FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
3485    }
3486    break;
3487
3488  case X86II::MRMSrcMem: {
3489    int AddrOperands;
3490    if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r ||
3491        Opcode == X86::LEA16r || Opcode == X86::LEA32r)
3492      AddrOperands = X86AddrNumOperands - 1; // No segment register
3493    else
3494      AddrOperands = X86AddrNumOperands;
3495
3496    ++FinalSize;
3497    FinalSize += getMemModRMByteSize(MI, CurOp+1, IsPIC, Is64BitMode);
3498    CurOp += AddrOperands + 1;
3499    if (CurOp != NumOps) {
3500      ++CurOp;
3501      FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
3502    }
3503    break;
3504  }
3505
3506  case X86II::MRM0r: case X86II::MRM1r:
3507  case X86II::MRM2r: case X86II::MRM3r:
3508  case X86II::MRM4r: case X86II::MRM5r:
3509  case X86II::MRM6r: case X86II::MRM7r:
3510    ++FinalSize;
3511    if (Desc->getOpcode() == X86::LFENCE ||
3512        Desc->getOpcode() == X86::MFENCE) {
3513      // Special handling of lfence and mfence;
3514      FinalSize += sizeRegModRMByte();
3515    } else if (Desc->getOpcode() == X86::MONITOR ||
3516               Desc->getOpcode() == X86::MWAIT) {
3517      // Special handling of monitor and mwait.
3518      FinalSize += sizeRegModRMByte() + 1; // +1 for the opcode.
3519    } else {
3520      ++CurOp;
3521      FinalSize += sizeRegModRMByte();
3522    }
3523
3524    if (CurOp != NumOps) {
3525      const MachineOperand &MO1 = MI.getOperand(CurOp++);
3526      unsigned Size = X86InstrInfo::sizeOfImm(Desc);
3527      if (MO1.isImm())
3528        FinalSize += sizeConstant(Size);
3529      else {
3530        bool dword = false;
3531        if (Opcode == X86::MOV64ri32)
3532          dword = true;
3533        if (MO1.isGlobal()) {
3534          FinalSize += sizeGlobalAddress(dword);
3535        } else if (MO1.isSymbol())
3536          FinalSize += sizeExternalSymbolAddress(dword);
3537        else if (MO1.isCPI())
3538          FinalSize += sizeConstPoolAddress(dword);
3539        else if (MO1.isJTI())
3540          FinalSize += sizeJumpTableAddress(dword);
3541      }
3542    }
3543    break;
3544
3545  case X86II::MRM0m: case X86II::MRM1m:
3546  case X86II::MRM2m: case X86II::MRM3m:
3547  case X86II::MRM4m: case X86II::MRM5m:
3548  case X86II::MRM6m: case X86II::MRM7m: {
3549
3550    ++FinalSize;
3551    FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
3552    CurOp += X86AddrNumOperands;
3553
3554    if (CurOp != NumOps) {
3555      const MachineOperand &MO = MI.getOperand(CurOp++);
3556      unsigned Size = X86InstrInfo::sizeOfImm(Desc);
3557      if (MO.isImm())
3558        FinalSize += sizeConstant(Size);
3559      else {
3560        bool dword = false;
3561        if (Opcode == X86::MOV64mi32)
3562          dword = true;
3563        if (MO.isGlobal()) {
3564          FinalSize += sizeGlobalAddress(dword);
3565        } else if (MO.isSymbol())
3566          FinalSize += sizeExternalSymbolAddress(dword);
3567        else if (MO.isCPI())
3568          FinalSize += sizeConstPoolAddress(dword);
3569        else if (MO.isJTI())
3570          FinalSize += sizeJumpTableAddress(dword);
3571      }
3572    }
3573    break;
3574  }
3575
3576  case X86II::MRMInitReg:
3577    ++FinalSize;
3578    // Duplicate register, used by things like MOV8r0 (aka xor reg,reg).
3579    FinalSize += sizeRegModRMByte();
3580    ++CurOp;
3581    break;
3582  }
3583
3584  if (!Desc->isVariadic() && CurOp != NumOps) {
3585    std::string msg;
3586    raw_string_ostream Msg(msg);
3587    Msg << "Cannot determine size: " << MI;
3588    llvm_report_error(Msg.str());
3589  }
3590
3591
3592  return FinalSize;
3593}
3594
3595
3596unsigned X86InstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
3597  const TargetInstrDesc &Desc = MI->getDesc();
3598  bool IsPIC = TM.getRelocationModel() == Reloc::PIC_;
3599  bool Is64BitMode = TM.getSubtargetImpl()->is64Bit();
3600  unsigned Size = GetInstSizeWithDesc(*MI, &Desc, IsPIC, Is64BitMode);
3601  if (Desc.getOpcode() == X86::MOVPC32r)
3602    Size += GetInstSizeWithDesc(*MI, &get(X86::POP32r), IsPIC, Is64BitMode);
3603  return Size;
3604}
3605
3606/// getGlobalBaseReg - Return a virtual register initialized with the
3607/// the global base register value. Output instructions required to
3608/// initialize the register in the function entry block, if necessary.
3609///
3610unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
3611  assert(!TM.getSubtarget<X86Subtarget>().is64Bit() &&
3612         "X86-64 PIC uses RIP relative addressing");
3613
3614  X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
3615  unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
3616  if (GlobalBaseReg != 0)
3617    return GlobalBaseReg;
3618
3619  // Insert the set of GlobalBaseReg into the first MBB of the function
3620  MachineBasicBlock &FirstMBB = MF->front();
3621  MachineBasicBlock::iterator MBBI = FirstMBB.begin();
3622  DebugLoc DL = DebugLoc::getUnknownLoc();
3623  if (MBBI != FirstMBB.end()) DL = MBBI->getDebugLoc();
3624  MachineRegisterInfo &RegInfo = MF->getRegInfo();
3625  unsigned PC = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
3626
3627  const TargetInstrInfo *TII = TM.getInstrInfo();
3628  // Operand of MovePCtoStack is completely ignored by asm printer. It's
3629  // only used in JIT code emission as displacement to pc.
3630  BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
3631
3632  // If we're using vanilla 'GOT' PIC style, we should use relative addressing
3633  // not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
3634  if (TM.getSubtarget<X86Subtarget>().isPICStyleGOT()) {
3635    GlobalBaseReg = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
3636    // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], %some_register
3637    BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
3638      .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
3639                                    X86II::MO_GOT_ABSOLUTE_ADDRESS);
3640  } else {
3641    GlobalBaseReg = PC;
3642  }
3643
3644  X86FI->setGlobalBaseReg(GlobalBaseReg);
3645  return GlobalBaseReg;
3646}
3647