X86ISelLowering.h revision 218893
1//===-- X86ISelLowering.h - X86 DAG Lowering Interface ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef X86ISELLOWERING_H
16#define X86ISELLOWERING_H
17
18#include "X86Subtarget.h"
19#include "X86RegisterInfo.h"
20#include "X86MachineFunctionInfo.h"
21#include "llvm/Target/TargetLowering.h"
22#include "llvm/Target/TargetOptions.h"
23#include "llvm/CodeGen/FastISel.h"
24#include "llvm/CodeGen/SelectionDAG.h"
25#include "llvm/CodeGen/CallingConvLower.h"
26
27namespace llvm {
28  namespace X86ISD {
29    // X86 Specific DAG Nodes
30    enum NodeType {
31      // Start the numbering where the builtin ops leave off.
32      FIRST_NUMBER = ISD::BUILTIN_OP_END,
33
34      /// BSF - Bit scan forward.
35      /// BSR - Bit scan reverse.
36      BSF,
37      BSR,
38
39      /// SHLD, SHRD - Double shift instructions. These correspond to
40      /// X86::SHLDxx and X86::SHRDxx instructions.
41      SHLD,
42      SHRD,
43
44      /// FAND - Bitwise logical AND of floating point values. This corresponds
45      /// to X86::ANDPS or X86::ANDPD.
46      FAND,
47
48      /// FOR - Bitwise logical OR of floating point values. This corresponds
49      /// to X86::ORPS or X86::ORPD.
50      FOR,
51
52      /// FXOR - Bitwise logical XOR of floating point values. This corresponds
53      /// to X86::XORPS or X86::XORPD.
54      FXOR,
55
56      /// FSRL - Bitwise logical right shift of floating point values. These
57      /// corresponds to X86::PSRLDQ.
58      FSRL,
59
60      /// CALL - These operations represent an abstract X86 call
61      /// instruction, which includes a bunch of information.  In particular the
62      /// operands of these node are:
63      ///
64      ///     #0 - The incoming token chain
65      ///     #1 - The callee
66      ///     #2 - The number of arg bytes the caller pushes on the stack.
67      ///     #3 - The number of arg bytes the callee pops off the stack.
68      ///     #4 - The value to pass in AL/AX/EAX (optional)
69      ///     #5 - The value to pass in DL/DX/EDX (optional)
70      ///
71      /// The result values of these nodes are:
72      ///
73      ///     #0 - The outgoing token chain
74      ///     #1 - The first register result value (optional)
75      ///     #2 - The second register result value (optional)
76      ///
77      CALL,
78
79      /// RDTSC_DAG - This operation implements the lowering for
80      /// readcyclecounter
81      RDTSC_DAG,
82
83      /// X86 compare and logical compare instructions.
84      CMP, COMI, UCOMI,
85
86      /// X86 bit-test instructions.
87      BT,
88
89      /// X86 SetCC. Operand 0 is condition code, and operand 1 is the EFLAGS
90      /// operand, usually produced by a CMP instruction.
91      SETCC,
92
93      // Same as SETCC except it's materialized with a sbb and the value is all
94      // one's or all zero's.
95      SETCC_CARRY,  // R = carry_bit ? ~0 : 0
96
97      /// X86 conditional moves. Operand 0 and operand 1 are the two values
98      /// to select from. Operand 2 is the condition code, and operand 3 is the
99      /// flag operand produced by a CMP or TEST instruction. It also writes a
100      /// flag result.
101      CMOV,
102
103      /// X86 conditional branches. Operand 0 is the chain operand, operand 1
104      /// is the block to branch if condition is true, operand 2 is the
105      /// condition code, and operand 3 is the flag operand produced by a CMP
106      /// or TEST instruction.
107      BRCOND,
108
109      /// Return with a flag operand. Operand 0 is the chain operand, operand
110      /// 1 is the number of bytes of stack to pop.
111      RET_FLAG,
112
113      /// REP_STOS - Repeat fill, corresponds to X86::REP_STOSx.
114      REP_STOS,
115
116      /// REP_MOVS - Repeat move, corresponds to X86::REP_MOVSx.
117      REP_MOVS,
118
119      /// GlobalBaseReg - On Darwin, this node represents the result of the popl
120      /// at function entry, used for PIC code.
121      GlobalBaseReg,
122
123      /// Wrapper - A wrapper node for TargetConstantPool,
124      /// TargetExternalSymbol, and TargetGlobalAddress.
125      Wrapper,
126
127      /// WrapperRIP - Special wrapper used under X86-64 PIC mode for RIP
128      /// relative displacements.
129      WrapperRIP,
130
131      /// MOVQ2DQ - Copies a 64-bit value from an MMX vector to the low word
132      /// of an XMM vector, with the high word zero filled.
133      MOVQ2DQ,
134
135      /// MOVDQ2Q - Copies a 64-bit value from the low word of an XMM vector
136      /// to an MMX vector.  If you think this is too close to the previous
137      /// mnemonic, so do I; blame Intel.
138      MOVDQ2Q,
139
140      /// PEXTRB - Extract an 8-bit value from a vector and zero extend it to
141      /// i32, corresponds to X86::PEXTRB.
142      PEXTRB,
143
144      /// PEXTRW - Extract a 16-bit value from a vector and zero extend it to
145      /// i32, corresponds to X86::PEXTRW.
146      PEXTRW,
147
148      /// INSERTPS - Insert any element of a 4 x float vector into any element
149      /// of a destination 4 x floatvector.
150      INSERTPS,
151
152      /// PINSRB - Insert the lower 8-bits of a 32-bit value to a vector,
153      /// corresponds to X86::PINSRB.
154      PINSRB,
155
156      /// PINSRW - Insert the lower 16-bits of a 32-bit value to a vector,
157      /// corresponds to X86::PINSRW.
158      PINSRW, MMX_PINSRW,
159
160      /// PSHUFB - Shuffle 16 8-bit values within a vector.
161      PSHUFB,
162
163      /// PANDN - and with not'd value.
164      PANDN,
165
166      /// PSIGNB/W/D - Copy integer sign.
167      PSIGNB, PSIGNW, PSIGND,
168
169      /// PBLENDVB - Variable blend
170      PBLENDVB,
171
172      /// FMAX, FMIN - Floating point max and min.
173      ///
174      FMAX, FMIN,
175
176      /// FRSQRT, FRCP - Floating point reciprocal-sqrt and reciprocal
177      /// approximation.  Note that these typically require refinement
178      /// in order to obtain suitable precision.
179      FRSQRT, FRCP,
180
181      // TLSADDR - Thread Local Storage.
182      TLSADDR,
183
184      // TLSCALL - Thread Local Storage.  When calling to an OS provided
185      // thunk at the address from an earlier relocation.
186      TLSCALL,
187
188      // EH_RETURN - Exception Handling helpers.
189      EH_RETURN,
190
191      /// TC_RETURN - Tail call return.
192      ///   operand #0 chain
193      ///   operand #1 callee (register or absolute)
194      ///   operand #2 stack adjustment
195      ///   operand #3 optional in flag
196      TC_RETURN,
197
198      // VZEXT_MOVL - Vector move low and zero extend.
199      VZEXT_MOVL,
200
201      // VSHL, VSRL - Vector logical left / right shift.
202      VSHL, VSRL,
203
204      // CMPPD, CMPPS - Vector double/float comparison.
205      // CMPPD, CMPPS - Vector double/float comparison.
206      CMPPD, CMPPS,
207
208      // PCMP* - Vector integer comparisons.
209      PCMPEQB, PCMPEQW, PCMPEQD, PCMPEQQ,
210      PCMPGTB, PCMPGTW, PCMPGTD, PCMPGTQ,
211
212      // ADD, SUB, SMUL, etc. - Arithmetic operations with FLAGS results.
213      ADD, SUB, ADC, SBB, SMUL,
214      INC, DEC, OR, XOR, AND,
215
216      UMUL, // LOW, HI, FLAGS = umul LHS, RHS
217
218      // MUL_IMM - X86 specific multiply by immediate.
219      MUL_IMM,
220
221      // PTEST - Vector bitwise comparisons
222      PTEST,
223
224      // TESTP - Vector packed fp sign bitwise comparisons
225      TESTP,
226
227      // Several flavors of instructions with vector shuffle behaviors.
228      PALIGN,
229      PSHUFD,
230      PSHUFHW,
231      PSHUFLW,
232      PSHUFHW_LD,
233      PSHUFLW_LD,
234      SHUFPD,
235      SHUFPS,
236      MOVDDUP,
237      MOVSHDUP,
238      MOVSLDUP,
239      MOVSHDUP_LD,
240      MOVSLDUP_LD,
241      MOVLHPS,
242      MOVLHPD,
243      MOVHLPS,
244      MOVHLPD,
245      MOVLPS,
246      MOVLPD,
247      MOVSD,
248      MOVSS,
249      UNPCKLPS,
250      UNPCKLPD,
251      UNPCKHPS,
252      UNPCKHPD,
253      PUNPCKLBW,
254      PUNPCKLWD,
255      PUNPCKLDQ,
256      PUNPCKLQDQ,
257      PUNPCKHBW,
258      PUNPCKHWD,
259      PUNPCKHDQ,
260      PUNPCKHQDQ,
261
262      // VASTART_SAVE_XMM_REGS - Save xmm argument registers to the stack,
263      // according to %al. An operator is needed so that this can be expanded
264      // with control flow.
265      VASTART_SAVE_XMM_REGS,
266
267      // WIN_ALLOCA - Windows's _chkstk call to do stack probing.
268      WIN_ALLOCA,
269
270      // Memory barrier
271      MEMBARRIER,
272      MFENCE,
273      SFENCE,
274      LFENCE,
275
276      // ATOMADD64_DAG, ATOMSUB64_DAG, ATOMOR64_DAG, ATOMAND64_DAG,
277      // ATOMXOR64_DAG, ATOMNAND64_DAG, ATOMSWAP64_DAG -
278      // Atomic 64-bit binary operations.
279      ATOMADD64_DAG = ISD::FIRST_TARGET_MEMORY_OPCODE,
280      ATOMSUB64_DAG,
281      ATOMOR64_DAG,
282      ATOMXOR64_DAG,
283      ATOMAND64_DAG,
284      ATOMNAND64_DAG,
285      ATOMSWAP64_DAG,
286
287      // LCMPXCHG_DAG, LCMPXCHG8_DAG - Compare and swap.
288      LCMPXCHG_DAG,
289      LCMPXCHG8_DAG,
290
291      // VZEXT_LOAD - Load, scalar_to_vector, and zero extend.
292      VZEXT_LOAD,
293
294      // FNSTCW16m - Store FP control world into i16 memory.
295      FNSTCW16m,
296
297      /// FP_TO_INT*_IN_MEM - This instruction implements FP_TO_SINT with the
298      /// integer destination in memory and a FP reg source.  This corresponds
299      /// to the X86::FIST*m instructions and the rounding mode change stuff. It
300      /// has two inputs (token chain and address) and two outputs (int value
301      /// and token chain).
302      FP_TO_INT16_IN_MEM,
303      FP_TO_INT32_IN_MEM,
304      FP_TO_INT64_IN_MEM,
305
306      /// FILD, FILD_FLAG - This instruction implements SINT_TO_FP with the
307      /// integer source in memory and FP reg result.  This corresponds to the
308      /// X86::FILD*m instructions. It has three inputs (token chain, address,
309      /// and source type) and two outputs (FP value and token chain). FILD_FLAG
310      /// also produces a flag).
311      FILD,
312      FILD_FLAG,
313
314      /// FLD - This instruction implements an extending load to FP stack slots.
315      /// This corresponds to the X86::FLD32m / X86::FLD64m. It takes a chain
316      /// operand, ptr to load from, and a ValueType node indicating the type
317      /// to load to.
318      FLD,
319
320      /// FST - This instruction implements a truncating store to FP stack
321      /// slots. This corresponds to the X86::FST32m / X86::FST64m. It takes a
322      /// chain operand, value to store, address, and a ValueType to store it
323      /// as.
324      FST,
325
326      /// VAARG_64 - This instruction grabs the address of the next argument
327      /// from a va_list. (reads and modifies the va_list in memory)
328      VAARG_64
329
330      // WARNING: Do not add anything in the end unless you want the node to
331      // have memop! In fact, starting from ATOMADD64_DAG all opcodes will be
332      // thought as target memory ops!
333    };
334  }
335
336  /// Define some predicates that are used for node matching.
337  namespace X86 {
338    /// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
339    /// specifies a shuffle of elements that is suitable for input to PSHUFD.
340    bool isPSHUFDMask(ShuffleVectorSDNode *N);
341
342    /// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
343    /// specifies a shuffle of elements that is suitable for input to PSHUFD.
344    bool isPSHUFHWMask(ShuffleVectorSDNode *N);
345
346    /// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
347    /// specifies a shuffle of elements that is suitable for input to PSHUFD.
348    bool isPSHUFLWMask(ShuffleVectorSDNode *N);
349
350    /// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
351    /// specifies a shuffle of elements that is suitable for input to SHUFP*.
352    bool isSHUFPMask(ShuffleVectorSDNode *N);
353
354    /// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
355    /// specifies a shuffle of elements that is suitable for input to MOVHLPS.
356    bool isMOVHLPSMask(ShuffleVectorSDNode *N);
357
358    /// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
359    /// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
360    /// <2, 3, 2, 3>
361    bool isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N);
362
363    /// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
364    /// specifies a shuffle of elements that is suitable for MOVLP{S|D}.
365    bool isMOVLPMask(ShuffleVectorSDNode *N);
366
367    /// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
368    /// specifies a shuffle of elements that is suitable for MOVHP{S|D}.
369    /// as well as MOVLHPS.
370    bool isMOVLHPSMask(ShuffleVectorSDNode *N);
371
372    /// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
373    /// specifies a shuffle of elements that is suitable for input to UNPCKL.
374    bool isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat = false);
375
376    /// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
377    /// specifies a shuffle of elements that is suitable for input to UNPCKH.
378    bool isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat = false);
379
380    /// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
381    /// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
382    /// <0, 0, 1, 1>
383    bool isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N);
384
385    /// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
386    /// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
387    /// <2, 2, 3, 3>
388    bool isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N);
389
390    /// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
391    /// specifies a shuffle of elements that is suitable for input to MOVSS,
392    /// MOVSD, and MOVD, i.e. setting the lowest element.
393    bool isMOVLMask(ShuffleVectorSDNode *N);
394
395    /// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
396    /// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
397    bool isMOVSHDUPMask(ShuffleVectorSDNode *N);
398
399    /// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
400    /// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
401    bool isMOVSLDUPMask(ShuffleVectorSDNode *N);
402
403    /// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
404    /// specifies a shuffle of elements that is suitable for input to MOVDDUP.
405    bool isMOVDDUPMask(ShuffleVectorSDNode *N);
406
407    /// isPALIGNRMask - Return true if the specified VECTOR_SHUFFLE operand
408    /// specifies a shuffle of elements that is suitable for input to PALIGNR.
409    bool isPALIGNRMask(ShuffleVectorSDNode *N);
410
411    /// isVEXTRACTF128Index - Return true if the specified
412    /// EXTRACT_SUBVECTOR operand specifies a vector extract that is
413    /// suitable for input to VEXTRACTF128.
414    bool isVEXTRACTF128Index(SDNode *N);
415
416    /// isVINSERTF128Index - Return true if the specified
417    /// INSERT_SUBVECTOR operand specifies a subvector insert that is
418    /// suitable for input to VINSERTF128.
419    bool isVINSERTF128Index(SDNode *N);
420
421    /// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
422    /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
423    /// instructions.
424    unsigned getShuffleSHUFImmediate(SDNode *N);
425
426    /// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
427    /// the specified VECTOR_SHUFFLE mask with PSHUFHW instruction.
428    unsigned getShufflePSHUFHWImmediate(SDNode *N);
429
430    /// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
431    /// the specified VECTOR_SHUFFLE mask with PSHUFLW instruction.
432    unsigned getShufflePSHUFLWImmediate(SDNode *N);
433
434    /// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
435    /// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
436    unsigned getShufflePALIGNRImmediate(SDNode *N);
437
438    /// getExtractVEXTRACTF128Immediate - Return the appropriate
439    /// immediate to extract the specified EXTRACT_SUBVECTOR index
440    /// with VEXTRACTF128 instructions.
441    unsigned getExtractVEXTRACTF128Immediate(SDNode *N);
442
443    /// getInsertVINSERTF128Immediate - Return the appropriate
444    /// immediate to insert at the specified INSERT_SUBVECTOR index
445    /// with VINSERTF128 instructions.
446    unsigned getInsertVINSERTF128Immediate(SDNode *N);
447
448    /// isZeroNode - Returns true if Elt is a constant zero or a floating point
449    /// constant +0.0.
450    bool isZeroNode(SDValue Elt);
451
452    /// isOffsetSuitableForCodeModel - Returns true of the given offset can be
453    /// fit into displacement field of the instruction.
454    bool isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
455                                      bool hasSymbolicDisplacement = true);
456  }
457
458  //===--------------------------------------------------------------------===//
459  //  X86TargetLowering - X86 Implementation of the TargetLowering interface
460  class X86TargetLowering : public TargetLowering {
461  public:
462    explicit X86TargetLowering(X86TargetMachine &TM);
463
464    virtual unsigned getJumpTableEncoding() const;
465
466    virtual const MCExpr *
467    LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
468                              const MachineBasicBlock *MBB, unsigned uid,
469                              MCContext &Ctx) const;
470
471    /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
472    /// jumptable.
473    virtual SDValue getPICJumpTableRelocBase(SDValue Table,
474                                             SelectionDAG &DAG) const;
475    virtual const MCExpr *
476    getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
477                                 unsigned JTI, MCContext &Ctx) const;
478
479    /// getStackPtrReg - Return the stack pointer register we are using: either
480    /// ESP or RSP.
481    unsigned getStackPtrReg() const { return X86StackPtr; }
482
483    /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
484    /// function arguments in the caller parameter area. For X86, aggregates
485    /// that contains are placed at 16-byte boundaries while the rest are at
486    /// 4-byte boundaries.
487    virtual unsigned getByValTypeAlignment(const Type *Ty) const;
488
489    /// getOptimalMemOpType - Returns the target specific optimal type for load
490    /// and store operations as a result of memset, memcpy, and memmove
491    /// lowering. If DstAlign is zero that means it's safe to destination
492    /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
493    /// means there isn't a need to check it against alignment requirement,
494    /// probably because the source does not need to be loaded. If
495    /// 'NonScalarIntSafe' is true, that means it's safe to return a
496    /// non-scalar-integer type, e.g. empty string source, constant, or loaded
497    /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
498    /// constant so it does not need to be loaded.
499    /// It returns EVT::Other if the type should be determined using generic
500    /// target-independent logic.
501    virtual EVT
502    getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign,
503                        bool NonScalarIntSafe, bool MemcpyStrSrc,
504                        MachineFunction &MF) const;
505
506    /// allowsUnalignedMemoryAccesses - Returns true if the target allows
507    /// unaligned memory accesses. of the specified type.
508    virtual bool allowsUnalignedMemoryAccesses(EVT VT) const {
509      return true;
510    }
511
512    /// LowerOperation - Provide custom lowering hooks for some operations.
513    ///
514    virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
515
516    /// ReplaceNodeResults - Replace the results of node with an illegal result
517    /// type with new values built out of custom code.
518    ///
519    virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
520                                    SelectionDAG &DAG) const;
521
522
523    virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
524
525    /// isTypeDesirableForOp - Return true if the target has native support for
526    /// the specified value type and it is 'desirable' to use the type for the
527    /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
528    /// instruction encodings are longer and some i16 instructions are slow.
529    virtual bool isTypeDesirableForOp(unsigned Opc, EVT VT) const;
530
531    /// isTypeDesirable - Return true if the target has native support for the
532    /// specified value type and it is 'desirable' to use the type. e.g. On x86
533    /// i16 is legal, but undesirable since i16 instruction encodings are longer
534    /// and some i16 instructions are slow.
535    virtual bool IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const;
536
537    virtual MachineBasicBlock *
538      EmitInstrWithCustomInserter(MachineInstr *MI,
539                                  MachineBasicBlock *MBB) const;
540
541
542    /// getTargetNodeName - This method returns the name of a target specific
543    /// DAG node.
544    virtual const char *getTargetNodeName(unsigned Opcode) const;
545
546    /// getSetCCResultType - Return the ISD::SETCC ValueType
547    virtual MVT::SimpleValueType getSetCCResultType(EVT VT) const;
548
549    /// computeMaskedBitsForTargetNode - Determine which of the bits specified
550    /// in Mask are known to be either zero or one and return them in the
551    /// KnownZero/KnownOne bitsets.
552    virtual void computeMaskedBitsForTargetNode(const SDValue Op,
553                                                const APInt &Mask,
554                                                APInt &KnownZero,
555                                                APInt &KnownOne,
556                                                const SelectionDAG &DAG,
557                                                unsigned Depth = 0) const;
558
559    // ComputeNumSignBitsForTargetNode - Determine the number of bits in the
560    // operation that are sign bits.
561    virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
562                                                     unsigned Depth) const;
563
564    virtual bool
565    isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
566
567    SDValue getReturnAddressFrameIndex(SelectionDAG &DAG) const;
568
569    virtual bool ExpandInlineAsm(CallInst *CI) const;
570
571    ConstraintType getConstraintType(const std::string &Constraint) const;
572
573    /// Examine constraint string and operand type and determine a weight value.
574    /// The operand object must already have been set up with the operand type.
575    virtual ConstraintWeight getSingleConstraintMatchWeight(
576      AsmOperandInfo &info, const char *constraint) const;
577
578    std::vector<unsigned>
579      getRegClassForInlineAsmConstraint(const std::string &Constraint,
580                                        EVT VT) const;
581
582    virtual const char *LowerXConstraint(EVT ConstraintVT) const;
583
584    /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
585    /// vector.  If it is invalid, don't add anything to Ops. If hasMemory is
586    /// true it means one of the asm constraint of the inline asm instruction
587    /// being processed is 'm'.
588    virtual void LowerAsmOperandForConstraint(SDValue Op,
589                                              char ConstraintLetter,
590                                              std::vector<SDValue> &Ops,
591                                              SelectionDAG &DAG) const;
592
593    /// getRegForInlineAsmConstraint - Given a physical register constraint
594    /// (e.g. {edx}), return the register number and the register class for the
595    /// register.  This should only be used for C_Register constraints.  On
596    /// error, this returns a register number of 0.
597    std::pair<unsigned, const TargetRegisterClass*>
598      getRegForInlineAsmConstraint(const std::string &Constraint,
599                                   EVT VT) const;
600
601    /// isLegalAddressingMode - Return true if the addressing mode represented
602    /// by AM is legal for this target, for a load/store of the specified type.
603    virtual bool isLegalAddressingMode(const AddrMode &AM, const Type *Ty)const;
604
605    /// isTruncateFree - Return true if it's free to truncate a value of
606    /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
607    /// register EAX to i16 by referencing its sub-register AX.
608    virtual bool isTruncateFree(const Type *Ty1, const Type *Ty2) const;
609    virtual bool isTruncateFree(EVT VT1, EVT VT2) const;
610
611    /// isZExtFree - Return true if any actual instruction that defines a
612    /// value of type Ty1 implicit zero-extends the value to Ty2 in the result
613    /// register. This does not necessarily include registers defined in
614    /// unknown ways, such as incoming arguments, or copies from unknown
615    /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
616    /// does not necessarily apply to truncate instructions. e.g. on x86-64,
617    /// all instructions that define 32-bit values implicit zero-extend the
618    /// result out to 64 bits.
619    virtual bool isZExtFree(const Type *Ty1, const Type *Ty2) const;
620    virtual bool isZExtFree(EVT VT1, EVT VT2) const;
621
622    /// isNarrowingProfitable - Return true if it's profitable to narrow
623    /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
624    /// from i32 to i8 but not from i32 to i16.
625    virtual bool isNarrowingProfitable(EVT VT1, EVT VT2) const;
626
627    /// isFPImmLegal - Returns true if the target can instruction select the
628    /// specified FP immediate natively. If false, the legalizer will
629    /// materialize the FP immediate as a load from a constant pool.
630    virtual bool isFPImmLegal(const APFloat &Imm, EVT VT) const;
631
632    /// isShuffleMaskLegal - Targets can use this to indicate that they only
633    /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
634    /// By default, if a target supports the VECTOR_SHUFFLE node, all mask
635    /// values are assumed to be legal.
636    virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &Mask,
637                                    EVT VT) const;
638
639    /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
640    /// used by Targets can use this to indicate if there is a suitable
641    /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
642    /// pool entry.
643    virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
644                                        EVT VT) const;
645
646    /// ShouldShrinkFPConstant - If true, then instruction selection should
647    /// seek to shrink the FP constant of the specified type to a smaller type
648    /// in order to save space and / or reduce runtime.
649    virtual bool ShouldShrinkFPConstant(EVT VT) const {
650      // Don't shrink FP constpool if SSE2 is available since cvtss2sd is more
651      // expensive than a straight movsd. On the other hand, it's important to
652      // shrink long double fp constant since fldt is very slow.
653      return !X86ScalarSSEf64 || VT == MVT::f80;
654    }
655
656    const X86Subtarget* getSubtarget() const {
657      return Subtarget;
658    }
659
660    /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
661    /// computed in an SSE register, not on the X87 floating point stack.
662    bool isScalarFPTypeInSSEReg(EVT VT) const {
663      return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
664      (VT == MVT::f32 && X86ScalarSSEf32);   // f32 is when SSE1
665    }
666
667    /// createFastISel - This method returns a target specific FastISel object,
668    /// or null if the target does not support "fast" ISel.
669    virtual FastISel *createFastISel(FunctionLoweringInfo &funcInfo) const;
670
671    /// getFunctionAlignment - Return the Log2 alignment of this function.
672    virtual unsigned getFunctionAlignment(const Function *F) const;
673
674    unsigned getRegPressureLimit(const TargetRegisterClass *RC,
675                                 MachineFunction &MF) const;
676
677    /// getStackCookieLocation - Return true if the target stores stack
678    /// protector cookies at a fixed offset in some non-standard address
679    /// space, and populates the address space and offset as
680    /// appropriate.
681    virtual bool getStackCookieLocation(unsigned &AddressSpace, unsigned &Offset) const;
682
683  protected:
684    std::pair<const TargetRegisterClass*, uint8_t>
685    findRepresentativeClass(EVT VT) const;
686
687  private:
688    /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
689    /// make the right decision when generating code for different targets.
690    const X86Subtarget *Subtarget;
691    const X86RegisterInfo *RegInfo;
692    const TargetData *TD;
693
694    /// X86StackPtr - X86 physical register used as stack ptr.
695    unsigned X86StackPtr;
696
697    /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
698    /// floating point ops.
699    /// When SSE is available, use it for f32 operations.
700    /// When SSE2 is available, use it for f64 operations.
701    bool X86ScalarSSEf32;
702    bool X86ScalarSSEf64;
703
704    /// LegalFPImmediates - A list of legal fp immediates.
705    std::vector<APFloat> LegalFPImmediates;
706
707    /// addLegalFPImmediate - Indicate that this x86 target can instruction
708    /// select the specified FP immediate natively.
709    void addLegalFPImmediate(const APFloat& Imm) {
710      LegalFPImmediates.push_back(Imm);
711    }
712
713    SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
714                            CallingConv::ID CallConv, bool isVarArg,
715                            const SmallVectorImpl<ISD::InputArg> &Ins,
716                            DebugLoc dl, SelectionDAG &DAG,
717                            SmallVectorImpl<SDValue> &InVals) const;
718    SDValue LowerMemArgument(SDValue Chain,
719                             CallingConv::ID CallConv,
720                             const SmallVectorImpl<ISD::InputArg> &ArgInfo,
721                             DebugLoc dl, SelectionDAG &DAG,
722                             const CCValAssign &VA,  MachineFrameInfo *MFI,
723                              unsigned i) const;
724    SDValue LowerMemOpCallTo(SDValue Chain, SDValue StackPtr, SDValue Arg,
725                             DebugLoc dl, SelectionDAG &DAG,
726                             const CCValAssign &VA,
727                             ISD::ArgFlagsTy Flags) const;
728
729    // Call lowering helpers.
730
731    /// IsEligibleForTailCallOptimization - Check whether the call is eligible
732    /// for tail call optimization. Targets which want to do tail call
733    /// optimization should implement this function.
734    bool IsEligibleForTailCallOptimization(SDValue Callee,
735                                           CallingConv::ID CalleeCC,
736                                           bool isVarArg,
737                                           bool isCalleeStructRet,
738                                           bool isCallerStructRet,
739                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
740                                    const SmallVectorImpl<SDValue> &OutVals,
741                                    const SmallVectorImpl<ISD::InputArg> &Ins,
742                                           SelectionDAG& DAG) const;
743    bool IsCalleePop(bool isVarArg, CallingConv::ID CallConv) const;
744    SDValue EmitTailCallLoadRetAddr(SelectionDAG &DAG, SDValue &OutRetAddr,
745                                SDValue Chain, bool IsTailCall, bool Is64Bit,
746                                int FPDiff, DebugLoc dl) const;
747
748    unsigned GetAlignedArgumentStackSize(unsigned StackSize,
749                                         SelectionDAG &DAG) const;
750
751    std::pair<SDValue,SDValue> FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG,
752                                               bool isSigned) const;
753
754    SDValue LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
755                                   SelectionDAG &DAG) const;
756    SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
757    SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const;
758    SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
759    SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
760    SDValue LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) const;
761    SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
762    SDValue LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) const;
763    SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const;
764    SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const;
765    SDValue LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const;
766    SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
767    SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
768    SDValue LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
769                               int64_t Offset, SelectionDAG &DAG) const;
770    SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
771    SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
772    SDValue LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const;
773    SDValue LowerShift(SDValue Op, SelectionDAG &DAG) const;
774    SDValue BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain, SDValue StackSlot,
775                      SelectionDAG &DAG) const;
776    SDValue LowerBITCAST(SDValue op, SelectionDAG &DAG) const;
777    SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
778    SDValue LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
779    SDValue LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG) const;
780    SDValue LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG) const;
781    SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) const;
782    SDValue LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) const;
783    SDValue LowerFABS(SDValue Op, SelectionDAG &DAG) const;
784    SDValue LowerFNEG(SDValue Op, SelectionDAG &DAG) const;
785    SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const;
786    SDValue LowerToBT(SDValue And, ISD::CondCode CC,
787                      DebugLoc dl, SelectionDAG &DAG) const;
788    SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
789    SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) const;
790    SDValue LowerSELECT(SDValue Op, SelectionDAG &DAG) const;
791    SDValue LowerBRCOND(SDValue Op, SelectionDAG &DAG) const;
792    SDValue LowerMEMSET(SDValue Op, SelectionDAG &DAG) const;
793    SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
794    SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
795    SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const;
796    SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) const;
797    SDValue LowerVACOPY(SDValue Op, SelectionDAG &DAG) const;
798    SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
799    SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
800    SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
801    SDValue LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const;
802    SDValue LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const;
803    SDValue LowerTRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
804    SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const;
805    SDValue LowerCTLZ(SDValue Op, SelectionDAG &DAG) const;
806    SDValue LowerCTTZ(SDValue Op, SelectionDAG &DAG) const;
807    SDValue LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) const;
808    SDValue LowerSHL(SDValue Op, SelectionDAG &DAG) const;
809    SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) const;
810
811    SDValue LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const;
812    SDValue LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const;
813    SDValue LowerREADCYCLECOUNTER(SDValue Op, SelectionDAG &DAG) const;
814    SDValue LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const;
815
816    // Utility functions to help LowerVECTOR_SHUFFLE
817    SDValue LowerVECTOR_SHUFFLEv8i16(SDValue Op, SelectionDAG &DAG) const;
818
819    virtual SDValue
820      LowerFormalArguments(SDValue Chain,
821                           CallingConv::ID CallConv, bool isVarArg,
822                           const SmallVectorImpl<ISD::InputArg> &Ins,
823                           DebugLoc dl, SelectionDAG &DAG,
824                           SmallVectorImpl<SDValue> &InVals) const;
825    virtual SDValue
826      LowerCall(SDValue Chain, SDValue Callee,
827                CallingConv::ID CallConv, bool isVarArg, bool &isTailCall,
828                const SmallVectorImpl<ISD::OutputArg> &Outs,
829                const SmallVectorImpl<SDValue> &OutVals,
830                const SmallVectorImpl<ISD::InputArg> &Ins,
831                DebugLoc dl, SelectionDAG &DAG,
832                SmallVectorImpl<SDValue> &InVals) const;
833
834    virtual SDValue
835      LowerReturn(SDValue Chain,
836                  CallingConv::ID CallConv, bool isVarArg,
837                  const SmallVectorImpl<ISD::OutputArg> &Outs,
838                  const SmallVectorImpl<SDValue> &OutVals,
839                  DebugLoc dl, SelectionDAG &DAG) const;
840
841    virtual bool isUsedByReturnOnly(SDNode *N) const;
842
843    virtual bool
844      CanLowerReturn(CallingConv::ID CallConv, bool isVarArg,
845                     const SmallVectorImpl<ISD::OutputArg> &Outs,
846                     LLVMContext &Context) const;
847
848    void ReplaceATOMIC_BINARY_64(SDNode *N, SmallVectorImpl<SDValue> &Results,
849                                 SelectionDAG &DAG, unsigned NewOp) const;
850
851    /// Utility function to emit string processing sse4.2 instructions
852    /// that return in xmm0.
853    /// This takes the instruction to expand, the associated machine basic
854    /// block, the number of args, and whether or not the second arg is
855    /// in memory or not.
856    MachineBasicBlock *EmitPCMP(MachineInstr *BInstr, MachineBasicBlock *BB,
857                                unsigned argNum, bool inMem) const;
858
859    /// Utility functions to emit monitor and mwait instructions. These
860    /// need to make sure that the arguments to the intrinsic are in the
861    /// correct registers.
862    MachineBasicBlock *EmitMonitor(MachineInstr *MI,
863                                   MachineBasicBlock *BB) const;
864    MachineBasicBlock *EmitMwait(MachineInstr *MI, MachineBasicBlock *BB) const;
865
866    /// Utility function to emit atomic bitwise operations (and, or, xor).
867    /// It takes the bitwise instruction to expand, the associated machine basic
868    /// block, and the associated X86 opcodes for reg/reg and reg/imm.
869    MachineBasicBlock *EmitAtomicBitwiseWithCustomInserter(
870                                                    MachineInstr *BInstr,
871                                                    MachineBasicBlock *BB,
872                                                    unsigned regOpc,
873                                                    unsigned immOpc,
874                                                    unsigned loadOpc,
875                                                    unsigned cxchgOpc,
876                                                    unsigned notOpc,
877                                                    unsigned EAXreg,
878                                                    TargetRegisterClass *RC,
879                                                    bool invSrc = false) const;
880
881    MachineBasicBlock *EmitAtomicBit6432WithCustomInserter(
882                                                    MachineInstr *BInstr,
883                                                    MachineBasicBlock *BB,
884                                                    unsigned regOpcL,
885                                                    unsigned regOpcH,
886                                                    unsigned immOpcL,
887                                                    unsigned immOpcH,
888                                                    bool invSrc = false) const;
889
890    /// Utility function to emit atomic min and max.  It takes the min/max
891    /// instruction to expand, the associated basic block, and the associated
892    /// cmov opcode for moving the min or max value.
893    MachineBasicBlock *EmitAtomicMinMaxWithCustomInserter(MachineInstr *BInstr,
894                                                          MachineBasicBlock *BB,
895                                                        unsigned cmovOpc) const;
896
897    // Utility function to emit the low-level va_arg code for X86-64.
898    MachineBasicBlock *EmitVAARG64WithCustomInserter(
899                       MachineInstr *MI,
900                       MachineBasicBlock *MBB) const;
901
902    /// Utility function to emit the xmm reg save portion of va_start.
903    MachineBasicBlock *EmitVAStartSaveXMMRegsWithCustomInserter(
904                                                   MachineInstr *BInstr,
905                                                   MachineBasicBlock *BB) const;
906
907    MachineBasicBlock *EmitLoweredSelect(MachineInstr *I,
908                                         MachineBasicBlock *BB) const;
909
910    MachineBasicBlock *EmitLoweredWinAlloca(MachineInstr *MI,
911                                              MachineBasicBlock *BB) const;
912
913    MachineBasicBlock *EmitLoweredTLSCall(MachineInstr *MI,
914                                          MachineBasicBlock *BB) const;
915
916    MachineBasicBlock *emitLoweredTLSAddr(MachineInstr *MI,
917                                          MachineBasicBlock *BB) const;
918
919    /// Emit nodes that will be selected as "test Op0,Op0", or something
920    /// equivalent, for use with the given x86 condition code.
921    SDValue EmitTest(SDValue Op0, unsigned X86CC, SelectionDAG &DAG) const;
922
923    /// Emit nodes that will be selected as "cmp Op0,Op1", or something
924    /// equivalent, for use with the given x86 condition code.
925    SDValue EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
926                    SelectionDAG &DAG) const;
927  };
928
929  namespace X86 {
930    FastISel *createFastISel(FunctionLoweringInfo &funcInfo);
931  }
932}
933
934#endif    // X86ISELLOWERING_H
935