X86ISelLowering.h revision 204642
1//===-- X86ISelLowering.h - X86 DAG Lowering Interface ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef X86ISELLOWERING_H
16#define X86ISELLOWERING_H
17
18#include "X86Subtarget.h"
19#include "X86RegisterInfo.h"
20#include "X86MachineFunctionInfo.h"
21#include "llvm/Target/TargetLowering.h"
22#include "llvm/Target/TargetOptions.h"
23#include "llvm/CodeGen/FastISel.h"
24#include "llvm/CodeGen/SelectionDAG.h"
25#include "llvm/CodeGen/CallingConvLower.h"
26
27namespace llvm {
28  namespace X86ISD {
29    // X86 Specific DAG Nodes
30    enum NodeType {
31      // Start the numbering where the builtin ops leave off.
32      FIRST_NUMBER = ISD::BUILTIN_OP_END,
33
34      /// BSF - Bit scan forward.
35      /// BSR - Bit scan reverse.
36      BSF,
37      BSR,
38
39      /// SHLD, SHRD - Double shift instructions. These correspond to
40      /// X86::SHLDxx and X86::SHRDxx instructions.
41      SHLD,
42      SHRD,
43
44      /// FAND - Bitwise logical AND of floating point values. This corresponds
45      /// to X86::ANDPS or X86::ANDPD.
46      FAND,
47
48      /// FOR - Bitwise logical OR of floating point values. This corresponds
49      /// to X86::ORPS or X86::ORPD.
50      FOR,
51
52      /// FXOR - Bitwise logical XOR of floating point values. This corresponds
53      /// to X86::XORPS or X86::XORPD.
54      FXOR,
55
56      /// FSRL - Bitwise logical right shift of floating point values. These
57      /// corresponds to X86::PSRLDQ.
58      FSRL,
59
60      /// FILD, FILD_FLAG - This instruction implements SINT_TO_FP with the
61      /// integer source in memory and FP reg result.  This corresponds to the
62      /// X86::FILD*m instructions. It has three inputs (token chain, address,
63      /// and source type) and two outputs (FP value and token chain). FILD_FLAG
64      /// also produces a flag).
65      FILD,
66      FILD_FLAG,
67
68      /// FP_TO_INT*_IN_MEM - This instruction implements FP_TO_SINT with the
69      /// integer destination in memory and a FP reg source.  This corresponds
70      /// to the X86::FIST*m instructions and the rounding mode change stuff. It
71      /// has two inputs (token chain and address) and two outputs (int value
72      /// and token chain).
73      FP_TO_INT16_IN_MEM,
74      FP_TO_INT32_IN_MEM,
75      FP_TO_INT64_IN_MEM,
76
77      /// FLD - This instruction implements an extending load to FP stack slots.
78      /// This corresponds to the X86::FLD32m / X86::FLD64m. It takes a chain
79      /// operand, ptr to load from, and a ValueType node indicating the type
80      /// to load to.
81      FLD,
82
83      /// FST - This instruction implements a truncating store to FP stack
84      /// slots. This corresponds to the X86::FST32m / X86::FST64m. It takes a
85      /// chain operand, value to store, address, and a ValueType to store it
86      /// as.
87      FST,
88
89      /// CALL - These operations represent an abstract X86 call
90      /// instruction, which includes a bunch of information.  In particular the
91      /// operands of these node are:
92      ///
93      ///     #0 - The incoming token chain
94      ///     #1 - The callee
95      ///     #2 - The number of arg bytes the caller pushes on the stack.
96      ///     #3 - The number of arg bytes the callee pops off the stack.
97      ///     #4 - The value to pass in AL/AX/EAX (optional)
98      ///     #5 - The value to pass in DL/DX/EDX (optional)
99      ///
100      /// The result values of these nodes are:
101      ///
102      ///     #0 - The outgoing token chain
103      ///     #1 - The first register result value (optional)
104      ///     #2 - The second register result value (optional)
105      ///
106      CALL,
107
108      /// RDTSC_DAG - This operation implements the lowering for
109      /// readcyclecounter
110      RDTSC_DAG,
111
112      /// X86 compare and logical compare instructions.
113      CMP, COMI, UCOMI,
114
115      /// X86 bit-test instructions.
116      BT,
117
118      /// X86 SetCC. Operand 0 is condition code, and operand 1 is the flag
119      /// operand produced by a CMP instruction.
120      SETCC,
121
122      // Same as SETCC except it's materialized with a sbb and the value is all
123      // one's or all zero's.
124      SETCC_CARRY,
125
126      /// X86 conditional moves. Operand 0 and operand 1 are the two values
127      /// to select from. Operand 2 is the condition code, and operand 3 is the
128      /// flag operand produced by a CMP or TEST instruction. It also writes a
129      /// flag result.
130      CMOV,
131
132      /// X86 conditional branches. Operand 0 is the chain operand, operand 1
133      /// is the block to branch if condition is true, operand 2 is the
134      /// condition code, and operand 3 is the flag operand produced by a CMP
135      /// or TEST instruction.
136      BRCOND,
137
138      /// Return with a flag operand. Operand 0 is the chain operand, operand
139      /// 1 is the number of bytes of stack to pop.
140      RET_FLAG,
141
142      /// REP_STOS - Repeat fill, corresponds to X86::REP_STOSx.
143      REP_STOS,
144
145      /// REP_MOVS - Repeat move, corresponds to X86::REP_MOVSx.
146      REP_MOVS,
147
148      /// GlobalBaseReg - On Darwin, this node represents the result of the popl
149      /// at function entry, used for PIC code.
150      GlobalBaseReg,
151
152      /// Wrapper - A wrapper node for TargetConstantPool,
153      /// TargetExternalSymbol, and TargetGlobalAddress.
154      Wrapper,
155
156      /// WrapperRIP - Special wrapper used under X86-64 PIC mode for RIP
157      /// relative displacements.
158      WrapperRIP,
159
160      /// MOVQ2DQ - Copies a 64-bit value from a vector to another vector.
161      /// Can be used to move a vector value from a MMX register to a XMM
162      /// register.
163      MOVQ2DQ,
164
165      /// PEXTRB - Extract an 8-bit value from a vector and zero extend it to
166      /// i32, corresponds to X86::PEXTRB.
167      PEXTRB,
168
169      /// PEXTRW - Extract a 16-bit value from a vector and zero extend it to
170      /// i32, corresponds to X86::PEXTRW.
171      PEXTRW,
172
173      /// INSERTPS - Insert any element of a 4 x float vector into any element
174      /// of a destination 4 x floatvector.
175      INSERTPS,
176
177      /// PINSRB - Insert the lower 8-bits of a 32-bit value to a vector,
178      /// corresponds to X86::PINSRB.
179      PINSRB,
180
181      /// PINSRW - Insert the lower 16-bits of a 32-bit value to a vector,
182      /// corresponds to X86::PINSRW.
183      PINSRW, MMX_PINSRW,
184
185      /// PSHUFB - Shuffle 16 8-bit values within a vector.
186      PSHUFB,
187
188      /// FMAX, FMIN - Floating point max and min.
189      ///
190      FMAX, FMIN,
191
192      /// FRSQRT, FRCP - Floating point reciprocal-sqrt and reciprocal
193      /// approximation.  Note that these typically require refinement
194      /// in order to obtain suitable precision.
195      FRSQRT, FRCP,
196
197      // TLSADDR - Thread Local Storage.
198      TLSADDR,
199
200      // SegmentBaseAddress - The address segment:0
201      SegmentBaseAddress,
202
203      // EH_RETURN - Exception Handling helpers.
204      EH_RETURN,
205
206      /// TC_RETURN - Tail call return.
207      ///   operand #0 chain
208      ///   operand #1 callee (register or absolute)
209      ///   operand #2 stack adjustment
210      ///   operand #3 optional in flag
211      TC_RETURN,
212
213      // LCMPXCHG_DAG, LCMPXCHG8_DAG - Compare and swap.
214      LCMPXCHG_DAG,
215      LCMPXCHG8_DAG,
216
217      // FNSTCW16m - Store FP control world into i16 memory.
218      FNSTCW16m,
219
220      // VZEXT_MOVL - Vector move low and zero extend.
221      VZEXT_MOVL,
222
223      // VZEXT_LOAD - Load, scalar_to_vector, and zero extend.
224      VZEXT_LOAD,
225
226      // VSHL, VSRL - Vector logical left / right shift.
227      VSHL, VSRL,
228
229      // CMPPD, CMPPS - Vector double/float comparison.
230      // CMPPD, CMPPS - Vector double/float comparison.
231      CMPPD, CMPPS,
232
233      // PCMP* - Vector integer comparisons.
234      PCMPEQB, PCMPEQW, PCMPEQD, PCMPEQQ,
235      PCMPGTB, PCMPGTW, PCMPGTD, PCMPGTQ,
236
237      // ADD, SUB, SMUL, UMUL, etc. - Arithmetic operations with FLAGS results.
238      ADD, SUB, SMUL, UMUL,
239      INC, DEC, OR, XOR, AND,
240
241      // MUL_IMM - X86 specific multiply by immediate.
242      MUL_IMM,
243
244      // PTEST - Vector bitwise comparisons
245      PTEST,
246
247      // VASTART_SAVE_XMM_REGS - Save xmm argument registers to the stack,
248      // according to %al. An operator is needed so that this can be expanded
249      // with control flow.
250      VASTART_SAVE_XMM_REGS,
251
252      // ATOMADD64_DAG, ATOMSUB64_DAG, ATOMOR64_DAG, ATOMAND64_DAG,
253      // ATOMXOR64_DAG, ATOMNAND64_DAG, ATOMSWAP64_DAG -
254      // Atomic 64-bit binary operations.
255      ATOMADD64_DAG = ISD::FIRST_TARGET_MEMORY_OPCODE,
256      ATOMSUB64_DAG,
257      ATOMOR64_DAG,
258      ATOMXOR64_DAG,
259      ATOMAND64_DAG,
260      ATOMNAND64_DAG,
261      ATOMSWAP64_DAG
262    };
263  }
264
265  /// Define some predicates that are used for node matching.
266  namespace X86 {
267    /// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
268    /// specifies a shuffle of elements that is suitable for input to PSHUFD.
269    bool isPSHUFDMask(ShuffleVectorSDNode *N);
270
271    /// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
272    /// specifies a shuffle of elements that is suitable for input to PSHUFD.
273    bool isPSHUFHWMask(ShuffleVectorSDNode *N);
274
275    /// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
276    /// specifies a shuffle of elements that is suitable for input to PSHUFD.
277    bool isPSHUFLWMask(ShuffleVectorSDNode *N);
278
279    /// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
280    /// specifies a shuffle of elements that is suitable for input to SHUFP*.
281    bool isSHUFPMask(ShuffleVectorSDNode *N);
282
283    /// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
284    /// specifies a shuffle of elements that is suitable for input to MOVHLPS.
285    bool isMOVHLPSMask(ShuffleVectorSDNode *N);
286
287    /// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
288    /// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
289    /// <2, 3, 2, 3>
290    bool isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N);
291
292    /// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
293    /// specifies a shuffle of elements that is suitable for MOVLP{S|D}.
294    bool isMOVLPMask(ShuffleVectorSDNode *N);
295
296    /// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
297    /// specifies a shuffle of elements that is suitable for MOVHP{S|D}.
298    /// as well as MOVLHPS.
299    bool isMOVLHPSMask(ShuffleVectorSDNode *N);
300
301    /// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
302    /// specifies a shuffle of elements that is suitable for input to UNPCKL.
303    bool isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat = false);
304
305    /// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
306    /// specifies a shuffle of elements that is suitable for input to UNPCKH.
307    bool isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat = false);
308
309    /// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
310    /// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
311    /// <0, 0, 1, 1>
312    bool isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N);
313
314    /// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
315    /// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
316    /// <2, 2, 3, 3>
317    bool isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N);
318
319    /// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
320    /// specifies a shuffle of elements that is suitable for input to MOVSS,
321    /// MOVSD, and MOVD, i.e. setting the lowest element.
322    bool isMOVLMask(ShuffleVectorSDNode *N);
323
324    /// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
325    /// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
326    bool isMOVSHDUPMask(ShuffleVectorSDNode *N);
327
328    /// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
329    /// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
330    bool isMOVSLDUPMask(ShuffleVectorSDNode *N);
331
332    /// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
333    /// specifies a shuffle of elements that is suitable for input to MOVDDUP.
334    bool isMOVDDUPMask(ShuffleVectorSDNode *N);
335
336    /// isPALIGNRMask - Return true if the specified VECTOR_SHUFFLE operand
337    /// specifies a shuffle of elements that is suitable for input to PALIGNR.
338    bool isPALIGNRMask(ShuffleVectorSDNode *N);
339
340    /// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
341    /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
342    /// instructions.
343    unsigned getShuffleSHUFImmediate(SDNode *N);
344
345    /// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
346    /// the specified VECTOR_SHUFFLE mask with PSHUFHW instruction.
347    unsigned getShufflePSHUFHWImmediate(SDNode *N);
348
349    /// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
350    /// the specified VECTOR_SHUFFLE mask with PSHUFLW instruction.
351    unsigned getShufflePSHUFLWImmediate(SDNode *N);
352
353    /// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
354    /// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
355    unsigned getShufflePALIGNRImmediate(SDNode *N);
356
357    /// isZeroNode - Returns true if Elt is a constant zero or a floating point
358    /// constant +0.0.
359    bool isZeroNode(SDValue Elt);
360
361    /// isOffsetSuitableForCodeModel - Returns true of the given offset can be
362    /// fit into displacement field of the instruction.
363    bool isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
364                                      bool hasSymbolicDisplacement = true);
365  }
366
367  //===--------------------------------------------------------------------===//
368  //  X86TargetLowering - X86 Implementation of the TargetLowering interface
369  class X86TargetLowering : public TargetLowering {
370    int VarArgsFrameIndex;            // FrameIndex for start of varargs area.
371    int RegSaveFrameIndex;            // X86-64 vararg func register save area.
372    unsigned VarArgsGPOffset;         // X86-64 vararg func int reg offset.
373    unsigned VarArgsFPOffset;         // X86-64 vararg func fp reg offset.
374    int BytesToPopOnReturn;           // Number of arg bytes ret should pop.
375
376  public:
377    explicit X86TargetLowering(X86TargetMachine &TM);
378
379    /// getPICBaseSymbol - Return the X86-32 PIC base.
380    MCSymbol *getPICBaseSymbol(const MachineFunction *MF, MCContext &Ctx) const;
381
382    virtual unsigned getJumpTableEncoding() const;
383
384    virtual const MCExpr *
385    LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
386                              const MachineBasicBlock *MBB, unsigned uid,
387                              MCContext &Ctx) const;
388
389    /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
390    /// jumptable.
391    virtual SDValue getPICJumpTableRelocBase(SDValue Table,
392                                             SelectionDAG &DAG) const;
393    virtual const MCExpr *
394    getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
395                                 unsigned JTI, MCContext &Ctx) const;
396
397    // Return the number of bytes that a function should pop when it returns (in
398    // addition to the space used by the return address).
399    //
400    unsigned getBytesToPopOnReturn() const { return BytesToPopOnReturn; }
401
402    /// getStackPtrReg - Return the stack pointer register we are using: either
403    /// ESP or RSP.
404    unsigned getStackPtrReg() const { return X86StackPtr; }
405
406    /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
407    /// function arguments in the caller parameter area. For X86, aggregates
408    /// that contains are placed at 16-byte boundaries while the rest are at
409    /// 4-byte boundaries.
410    virtual unsigned getByValTypeAlignment(const Type *Ty) const;
411
412    /// getOptimalMemOpType - Returns the target specific optimal type for load
413    /// and store operations as a result of memset, memcpy, and memmove
414    /// lowering. It returns EVT::iAny if SelectionDAG should be responsible for
415    /// determining it.
416    virtual EVT getOptimalMemOpType(uint64_t Size, unsigned Align,
417                                    bool isSrcConst, bool isSrcStr,
418                                    SelectionDAG &DAG) const;
419
420    /// allowsUnalignedMemoryAccesses - Returns true if the target allows
421    /// unaligned memory accesses. of the specified type.
422    virtual bool allowsUnalignedMemoryAccesses(EVT VT) const {
423      return true;
424    }
425
426    /// LowerOperation - Provide custom lowering hooks for some operations.
427    ///
428    virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG);
429
430    /// ReplaceNodeResults - Replace the results of node with an illegal result
431    /// type with new values built out of custom code.
432    ///
433    virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
434                                    SelectionDAG &DAG);
435
436
437    virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
438
439    virtual MachineBasicBlock *EmitInstrWithCustomInserter(MachineInstr *MI,
440                                                         MachineBasicBlock *MBB,
441                    DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const;
442
443
444    /// getTargetNodeName - This method returns the name of a target specific
445    /// DAG node.
446    virtual const char *getTargetNodeName(unsigned Opcode) const;
447
448    /// getSetCCResultType - Return the ISD::SETCC ValueType
449    virtual MVT::SimpleValueType getSetCCResultType(EVT VT) const;
450
451    /// computeMaskedBitsForTargetNode - Determine which of the bits specified
452    /// in Mask are known to be either zero or one and return them in the
453    /// KnownZero/KnownOne bitsets.
454    virtual void computeMaskedBitsForTargetNode(const SDValue Op,
455                                                const APInt &Mask,
456                                                APInt &KnownZero,
457                                                APInt &KnownOne,
458                                                const SelectionDAG &DAG,
459                                                unsigned Depth = 0) const;
460
461    virtual bool
462    isGAPlusOffset(SDNode *N, GlobalValue* &GA, int64_t &Offset) const;
463
464    SDValue getReturnAddressFrameIndex(SelectionDAG &DAG);
465
466    virtual bool ExpandInlineAsm(CallInst *CI) const;
467
468    ConstraintType getConstraintType(const std::string &Constraint) const;
469
470    std::vector<unsigned>
471      getRegClassForInlineAsmConstraint(const std::string &Constraint,
472                                        EVT VT) const;
473
474    virtual const char *LowerXConstraint(EVT ConstraintVT) const;
475
476    /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
477    /// vector.  If it is invalid, don't add anything to Ops. If hasMemory is
478    /// true it means one of the asm constraint of the inline asm instruction
479    /// being processed is 'm'.
480    virtual void LowerAsmOperandForConstraint(SDValue Op,
481                                              char ConstraintLetter,
482                                              bool hasMemory,
483                                              std::vector<SDValue> &Ops,
484                                              SelectionDAG &DAG) const;
485
486    /// getRegForInlineAsmConstraint - Given a physical register constraint
487    /// (e.g. {edx}), return the register number and the register class for the
488    /// register.  This should only be used for C_Register constraints.  On
489    /// error, this returns a register number of 0.
490    std::pair<unsigned, const TargetRegisterClass*>
491      getRegForInlineAsmConstraint(const std::string &Constraint,
492                                   EVT VT) const;
493
494    /// isLegalAddressingMode - Return true if the addressing mode represented
495    /// by AM is legal for this target, for a load/store of the specified type.
496    virtual bool isLegalAddressingMode(const AddrMode &AM, const Type *Ty)const;
497
498    /// isTruncateFree - Return true if it's free to truncate a value of
499    /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
500    /// register EAX to i16 by referencing its sub-register AX.
501    virtual bool isTruncateFree(const Type *Ty1, const Type *Ty2) const;
502    virtual bool isTruncateFree(EVT VT1, EVT VT2) const;
503
504    /// isZExtFree - Return true if any actual instruction that defines a
505    /// value of type Ty1 implicit zero-extends the value to Ty2 in the result
506    /// register. This does not necessarily include registers defined in
507    /// unknown ways, such as incoming arguments, or copies from unknown
508    /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
509    /// does not necessarily apply to truncate instructions. e.g. on x86-64,
510    /// all instructions that define 32-bit values implicit zero-extend the
511    /// result out to 64 bits.
512    virtual bool isZExtFree(const Type *Ty1, const Type *Ty2) const;
513    virtual bool isZExtFree(EVT VT1, EVT VT2) const;
514
515    /// isNarrowingProfitable - Return true if it's profitable to narrow
516    /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
517    /// from i32 to i8 but not from i32 to i16.
518    virtual bool isNarrowingProfitable(EVT VT1, EVT VT2) const;
519
520    /// isFPImmLegal - Returns true if the target can instruction select the
521    /// specified FP immediate natively. If false, the legalizer will
522    /// materialize the FP immediate as a load from a constant pool.
523    virtual bool isFPImmLegal(const APFloat &Imm, EVT VT) const;
524
525    /// isShuffleMaskLegal - Targets can use this to indicate that they only
526    /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
527    /// By default, if a target supports the VECTOR_SHUFFLE node, all mask
528    /// values are assumed to be legal.
529    virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &Mask,
530                                    EVT VT) const;
531
532    /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
533    /// used by Targets can use this to indicate if there is a suitable
534    /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
535    /// pool entry.
536    virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
537                                        EVT VT) const;
538
539    /// ShouldShrinkFPConstant - If true, then instruction selection should
540    /// seek to shrink the FP constant of the specified type to a smaller type
541    /// in order to save space and / or reduce runtime.
542    virtual bool ShouldShrinkFPConstant(EVT VT) const {
543      // Don't shrink FP constpool if SSE2 is available since cvtss2sd is more
544      // expensive than a straight movsd. On the other hand, it's important to
545      // shrink long double fp constant since fldt is very slow.
546      return !X86ScalarSSEf64 || VT == MVT::f80;
547    }
548
549    virtual const X86Subtarget* getSubtarget() {
550      return Subtarget;
551    }
552
553    /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
554    /// computed in an SSE register, not on the X87 floating point stack.
555    bool isScalarFPTypeInSSEReg(EVT VT) const {
556      return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
557      (VT == MVT::f32 && X86ScalarSSEf32);   // f32 is when SSE1
558    }
559
560    /// getWidenVectorType: given a vector type, returns the type to widen
561    /// to (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
562    /// If there is no vector type that we want to widen to, returns EVT::Other
563    /// When and were to widen is target dependent based on the cost of
564    /// scalarizing vs using the wider vector type.
565    virtual EVT getWidenVectorType(EVT VT) const;
566
567    /// createFastISel - This method returns a target specific FastISel object,
568    /// or null if the target does not support "fast" ISel.
569    virtual FastISel *
570    createFastISel(MachineFunction &mf,
571                   MachineModuleInfo *mmi, DwarfWriter *dw,
572                   DenseMap<const Value *, unsigned> &,
573                   DenseMap<const BasicBlock *, MachineBasicBlock *> &,
574                   DenseMap<const AllocaInst *, int> &
575#ifndef NDEBUG
576                   , SmallSet<Instruction*, 8> &
577#endif
578                   );
579
580    /// getFunctionAlignment - Return the Log2 alignment of this function.
581    virtual unsigned getFunctionAlignment(const Function *F) const;
582
583  private:
584    /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
585    /// make the right decision when generating code for different targets.
586    const X86Subtarget *Subtarget;
587    const X86RegisterInfo *RegInfo;
588    const TargetData *TD;
589
590    /// X86StackPtr - X86 physical register used as stack ptr.
591    unsigned X86StackPtr;
592
593    /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
594    /// floating point ops.
595    /// When SSE is available, use it for f32 operations.
596    /// When SSE2 is available, use it for f64 operations.
597    bool X86ScalarSSEf32;
598    bool X86ScalarSSEf64;
599
600    /// LegalFPImmediates - A list of legal fp immediates.
601    std::vector<APFloat> LegalFPImmediates;
602
603    /// addLegalFPImmediate - Indicate that this x86 target can instruction
604    /// select the specified FP immediate natively.
605    void addLegalFPImmediate(const APFloat& Imm) {
606      LegalFPImmediates.push_back(Imm);
607    }
608
609    SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
610                            CallingConv::ID CallConv, bool isVarArg,
611                            const SmallVectorImpl<ISD::InputArg> &Ins,
612                            DebugLoc dl, SelectionDAG &DAG,
613                            SmallVectorImpl<SDValue> &InVals);
614    SDValue LowerMemArgument(SDValue Chain,
615                             CallingConv::ID CallConv,
616                             const SmallVectorImpl<ISD::InputArg> &ArgInfo,
617                             DebugLoc dl, SelectionDAG &DAG,
618                             const CCValAssign &VA,  MachineFrameInfo *MFI,
619                              unsigned i);
620    SDValue LowerMemOpCallTo(SDValue Chain, SDValue StackPtr, SDValue Arg,
621                             DebugLoc dl, SelectionDAG &DAG,
622                             const CCValAssign &VA,
623                             ISD::ArgFlagsTy Flags);
624
625    // Call lowering helpers.
626
627    /// IsEligibleForTailCallOptimization - Check whether the call is eligible
628    /// for tail call optimization. Targets which want to do tail call
629    /// optimization should implement this function.
630    bool IsEligibleForTailCallOptimization(SDValue Callee,
631                                           CallingConv::ID CalleeCC,
632                                           bool isVarArg,
633                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
634                                    const SmallVectorImpl<ISD::InputArg> &Ins,
635                                           SelectionDAG& DAG) const;
636    bool IsCalleePop(bool isVarArg, CallingConv::ID CallConv);
637    SDValue EmitTailCallLoadRetAddr(SelectionDAG &DAG, SDValue &OutRetAddr,
638                                SDValue Chain, bool IsTailCall, bool Is64Bit,
639                                int FPDiff, DebugLoc dl);
640
641    CCAssignFn *CCAssignFnForNode(CallingConv::ID CallConv) const;
642    unsigned GetAlignedArgumentStackSize(unsigned StackSize, SelectionDAG &DAG);
643
644    std::pair<SDValue,SDValue> FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG,
645                                               bool isSigned);
646
647    SDValue LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
648                                   SelectionDAG &DAG);
649    SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG);
650    SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG);
651    SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG);
652    SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG);
653    SDValue LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG);
654    SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG);
655    SDValue LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG);
656    SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG);
657    SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG);
658    SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG);
659    SDValue LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
660                               int64_t Offset, SelectionDAG &DAG) const;
661    SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG);
662    SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG);
663    SDValue LowerExternalSymbol(SDValue Op, SelectionDAG &DAG);
664    SDValue LowerShift(SDValue Op, SelectionDAG &DAG);
665    SDValue BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain, SDValue StackSlot,
666                      SelectionDAG &DAG);
667    SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG);
668    SDValue LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG);
669    SDValue LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG);
670    SDValue LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG);
671    SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG);
672    SDValue LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG);
673    SDValue LowerFABS(SDValue Op, SelectionDAG &DAG);
674    SDValue LowerFNEG(SDValue Op, SelectionDAG &DAG);
675    SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG);
676    SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG);
677    SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG);
678    SDValue LowerSELECT(SDValue Op, SelectionDAG &DAG);
679    SDValue LowerBRCOND(SDValue Op, SelectionDAG &DAG);
680    SDValue LowerMEMSET(SDValue Op, SelectionDAG &DAG);
681    SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG);
682    SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG);
683    SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG);
684    SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG);
685    SDValue LowerVACOPY(SDValue Op, SelectionDAG &DAG);
686    SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG);
687    SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG);
688    SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG);
689    SDValue LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG);
690    SDValue LowerEH_RETURN(SDValue Op, SelectionDAG &DAG);
691    SDValue LowerTRAMPOLINE(SDValue Op, SelectionDAG &DAG);
692    SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG);
693    SDValue LowerCTLZ(SDValue Op, SelectionDAG &DAG);
694    SDValue LowerCTTZ(SDValue Op, SelectionDAG &DAG);
695    SDValue LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG);
696    SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG);
697
698    SDValue LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG);
699    SDValue LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG);
700    SDValue LowerREADCYCLECOUNTER(SDValue Op, SelectionDAG &DAG);
701
702    virtual SDValue
703      LowerFormalArguments(SDValue Chain,
704                           CallingConv::ID CallConv, bool isVarArg,
705                           const SmallVectorImpl<ISD::InputArg> &Ins,
706                           DebugLoc dl, SelectionDAG &DAG,
707                           SmallVectorImpl<SDValue> &InVals);
708    virtual SDValue
709      LowerCall(SDValue Chain, SDValue Callee,
710                CallingConv::ID CallConv, bool isVarArg, bool &isTailCall,
711                const SmallVectorImpl<ISD::OutputArg> &Outs,
712                const SmallVectorImpl<ISD::InputArg> &Ins,
713                DebugLoc dl, SelectionDAG &DAG,
714                SmallVectorImpl<SDValue> &InVals);
715
716    virtual SDValue
717      LowerReturn(SDValue Chain,
718                  CallingConv::ID CallConv, bool isVarArg,
719                  const SmallVectorImpl<ISD::OutputArg> &Outs,
720                  DebugLoc dl, SelectionDAG &DAG);
721
722    virtual bool
723      CanLowerReturn(CallingConv::ID CallConv, bool isVarArg,
724                     const SmallVectorImpl<EVT> &OutTys,
725                     const SmallVectorImpl<ISD::ArgFlagsTy> &ArgsFlags,
726                     SelectionDAG &DAG);
727
728    void ReplaceATOMIC_BINARY_64(SDNode *N, SmallVectorImpl<SDValue> &Results,
729                                 SelectionDAG &DAG, unsigned NewOp);
730
731    SDValue EmitTargetCodeForMemset(SelectionDAG &DAG, DebugLoc dl,
732                                    SDValue Chain,
733                                    SDValue Dst, SDValue Src,
734                                    SDValue Size, unsigned Align,
735                                    const Value *DstSV, uint64_t DstSVOff);
736    SDValue EmitTargetCodeForMemcpy(SelectionDAG &DAG, DebugLoc dl,
737                                    SDValue Chain,
738                                    SDValue Dst, SDValue Src,
739                                    SDValue Size, unsigned Align,
740                                    bool AlwaysInline,
741                                    const Value *DstSV, uint64_t DstSVOff,
742                                    const Value *SrcSV, uint64_t SrcSVOff);
743
744    /// Utility function to emit string processing sse4.2 instructions
745    /// that return in xmm0.
746    /// This takes the instruction to expand, the associated machine basic
747    /// block, the number of args, and whether or not the second arg is
748    /// in memory or not.
749    MachineBasicBlock *EmitPCMP(MachineInstr *BInstr, MachineBasicBlock *BB,
750				unsigned argNum, bool inMem) const;
751
752    /// Utility function to emit atomic bitwise operations (and, or, xor).
753    /// It takes the bitwise instruction to expand, the associated machine basic
754    /// block, and the associated X86 opcodes for reg/reg and reg/imm.
755    MachineBasicBlock *EmitAtomicBitwiseWithCustomInserter(
756                                                    MachineInstr *BInstr,
757                                                    MachineBasicBlock *BB,
758                                                    unsigned regOpc,
759                                                    unsigned immOpc,
760                                                    unsigned loadOpc,
761                                                    unsigned cxchgOpc,
762                                                    unsigned copyOpc,
763                                                    unsigned notOpc,
764                                                    unsigned EAXreg,
765                                                    TargetRegisterClass *RC,
766                                                    bool invSrc = false) const;
767
768    MachineBasicBlock *EmitAtomicBit6432WithCustomInserter(
769                                                    MachineInstr *BInstr,
770                                                    MachineBasicBlock *BB,
771                                                    unsigned regOpcL,
772                                                    unsigned regOpcH,
773                                                    unsigned immOpcL,
774                                                    unsigned immOpcH,
775                                                    bool invSrc = false) const;
776
777    /// Utility function to emit atomic min and max.  It takes the min/max
778    /// instruction to expand, the associated basic block, and the associated
779    /// cmov opcode for moving the min or max value.
780    MachineBasicBlock *EmitAtomicMinMaxWithCustomInserter(MachineInstr *BInstr,
781                                                          MachineBasicBlock *BB,
782                                                        unsigned cmovOpc) const;
783
784    /// Utility function to emit the xmm reg save portion of va_start.
785    MachineBasicBlock *EmitVAStartSaveXMMRegsWithCustomInserter(
786                                                   MachineInstr *BInstr,
787                                                   MachineBasicBlock *BB) const;
788
789    MachineBasicBlock *EmitLoweredSelect(MachineInstr *I,
790                                         MachineBasicBlock *BB,
791                    DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const;
792
793    /// Emit nodes that will be selected as "test Op0,Op0", or something
794    /// equivalent, for use with the given x86 condition code.
795    SDValue EmitTest(SDValue Op0, unsigned X86CC, SelectionDAG &DAG);
796
797    /// Emit nodes that will be selected as "cmp Op0,Op1", or something
798    /// equivalent, for use with the given x86 condition code.
799    SDValue EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
800                    SelectionDAG &DAG);
801  };
802
803  namespace X86 {
804    FastISel *createFastISel(MachineFunction &mf,
805                           MachineModuleInfo *mmi, DwarfWriter *dw,
806                           DenseMap<const Value *, unsigned> &,
807                           DenseMap<const BasicBlock *, MachineBasicBlock *> &,
808                           DenseMap<const AllocaInst *, int> &
809#ifndef NDEBUG
810                           , SmallSet<Instruction*, 8> &
811#endif
812                           );
813  }
814}
815
816#endif    // X86ISELLOWERING_H
817