X86FastISel.cpp revision 224145
1//===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the X86-specific support for the FastISel class. Much
11// of the target-specific code is generated by tablegen in the file
12// X86GenFastISel.inc, which is #included here.
13//
14//===----------------------------------------------------------------------===//
15
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86RegisterInfo.h"
20#include "X86Subtarget.h"
21#include "X86TargetMachine.h"
22#include "llvm/CallingConv.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/GlobalVariable.h"
25#include "llvm/Instructions.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/Operator.h"
28#include "llvm/CodeGen/Analysis.h"
29#include "llvm/CodeGen/FastISel.h"
30#include "llvm/CodeGen/FunctionLoweringInfo.h"
31#include "llvm/CodeGen/MachineConstantPool.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineRegisterInfo.h"
34#include "llvm/Support/CallSite.h"
35#include "llvm/Support/ErrorHandling.h"
36#include "llvm/Support/GetElementPtrTypeIterator.h"
37#include "llvm/Target/TargetOptions.h"
38using namespace llvm;
39
40namespace {
41
42class X86FastISel : public FastISel {
43  /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
44  /// make the right decision when generating code for different targets.
45  const X86Subtarget *Subtarget;
46
47  /// StackPtr - Register used as the stack pointer.
48  ///
49  unsigned StackPtr;
50
51  /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
52  /// floating point ops.
53  /// When SSE is available, use it for f32 operations.
54  /// When SSE2 is available, use it for f64 operations.
55  bool X86ScalarSSEf64;
56  bool X86ScalarSSEf32;
57
58public:
59  explicit X86FastISel(FunctionLoweringInfo &funcInfo) : FastISel(funcInfo) {
60    Subtarget = &TM.getSubtarget<X86Subtarget>();
61    StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
62    X86ScalarSSEf64 = Subtarget->hasSSE2();
63    X86ScalarSSEf32 = Subtarget->hasSSE1();
64  }
65
66  virtual bool TargetSelectInstruction(const Instruction *I);
67
68  /// TryToFoldLoad - The specified machine instr operand is a vreg, and that
69  /// vreg is being provided by the specified load instruction.  If possible,
70  /// try to fold the load as an operand to the instruction, returning true if
71  /// possible.
72  virtual bool TryToFoldLoad(MachineInstr *MI, unsigned OpNo,
73                             const LoadInst *LI);
74
75#include "X86GenFastISel.inc"
76
77private:
78  bool X86FastEmitCompare(const Value *LHS, const Value *RHS, EVT VT);
79
80  bool X86FastEmitLoad(EVT VT, const X86AddressMode &AM, unsigned &RR);
81
82  bool X86FastEmitStore(EVT VT, const Value *Val, const X86AddressMode &AM);
83  bool X86FastEmitStore(EVT VT, unsigned Val, const X86AddressMode &AM);
84
85  bool X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT,
86                         unsigned &ResultReg);
87
88  bool X86SelectAddress(const Value *V, X86AddressMode &AM);
89  bool X86SelectCallAddress(const Value *V, X86AddressMode &AM);
90
91  bool X86SelectLoad(const Instruction *I);
92
93  bool X86SelectStore(const Instruction *I);
94
95  bool X86SelectRet(const Instruction *I);
96
97  bool X86SelectCmp(const Instruction *I);
98
99  bool X86SelectZExt(const Instruction *I);
100
101  bool X86SelectBranch(const Instruction *I);
102
103  bool X86SelectShift(const Instruction *I);
104
105  bool X86SelectSelect(const Instruction *I);
106
107  bool X86SelectTrunc(const Instruction *I);
108
109  bool X86SelectFPExt(const Instruction *I);
110  bool X86SelectFPTrunc(const Instruction *I);
111
112  bool X86VisitIntrinsicCall(const IntrinsicInst &I);
113  bool X86SelectCall(const Instruction *I);
114
115  bool DoSelectCall(const Instruction *I, const char *MemIntName);
116
117  const X86InstrInfo *getInstrInfo() const {
118    return getTargetMachine()->getInstrInfo();
119  }
120  const X86TargetMachine *getTargetMachine() const {
121    return static_cast<const X86TargetMachine *>(&TM);
122  }
123
124  unsigned TargetMaterializeConstant(const Constant *C);
125
126  unsigned TargetMaterializeAlloca(const AllocaInst *C);
127
128  unsigned TargetMaterializeFloatZero(const ConstantFP *CF);
129
130  /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
131  /// computed in an SSE register, not on the X87 floating point stack.
132  bool isScalarFPTypeInSSEReg(EVT VT) const {
133    return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
134      (VT == MVT::f32 && X86ScalarSSEf32);   // f32 is when SSE1
135  }
136
137  bool isTypeLegal(const Type *Ty, MVT &VT, bool AllowI1 = false);
138
139  bool IsMemcpySmall(uint64_t Len);
140
141  bool TryEmitSmallMemcpy(X86AddressMode DestAM,
142                          X86AddressMode SrcAM, uint64_t Len);
143};
144
145} // end anonymous namespace.
146
147bool X86FastISel::isTypeLegal(const Type *Ty, MVT &VT, bool AllowI1) {
148  EVT evt = TLI.getValueType(Ty, /*HandleUnknown=*/true);
149  if (evt == MVT::Other || !evt.isSimple())
150    // Unhandled type. Halt "fast" selection and bail.
151    return false;
152
153  VT = evt.getSimpleVT();
154  // For now, require SSE/SSE2 for performing floating-point operations,
155  // since x87 requires additional work.
156  if (VT == MVT::f64 && !X86ScalarSSEf64)
157     return false;
158  if (VT == MVT::f32 && !X86ScalarSSEf32)
159     return false;
160  // Similarly, no f80 support yet.
161  if (VT == MVT::f80)
162    return false;
163  // We only handle legal types. For example, on x86-32 the instruction
164  // selector contains all of the 64-bit instructions from x86-64,
165  // under the assumption that i64 won't be used if the target doesn't
166  // support it.
167  return (AllowI1 && VT == MVT::i1) || TLI.isTypeLegal(VT);
168}
169
170#include "X86GenCallingConv.inc"
171
172/// X86FastEmitLoad - Emit a machine instruction to load a value of type VT.
173/// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV.
174/// Return true and the result register by reference if it is possible.
175bool X86FastISel::X86FastEmitLoad(EVT VT, const X86AddressMode &AM,
176                                  unsigned &ResultReg) {
177  // Get opcode and regclass of the output for the given load instruction.
178  unsigned Opc = 0;
179  const TargetRegisterClass *RC = NULL;
180  switch (VT.getSimpleVT().SimpleTy) {
181  default: return false;
182  case MVT::i1:
183  case MVT::i8:
184    Opc = X86::MOV8rm;
185    RC  = X86::GR8RegisterClass;
186    break;
187  case MVT::i16:
188    Opc = X86::MOV16rm;
189    RC  = X86::GR16RegisterClass;
190    break;
191  case MVT::i32:
192    Opc = X86::MOV32rm;
193    RC  = X86::GR32RegisterClass;
194    break;
195  case MVT::i64:
196    // Must be in x86-64 mode.
197    Opc = X86::MOV64rm;
198    RC  = X86::GR64RegisterClass;
199    break;
200  case MVT::f32:
201    if (Subtarget->hasSSE1()) {
202      Opc = X86::MOVSSrm;
203      RC  = X86::FR32RegisterClass;
204    } else {
205      Opc = X86::LD_Fp32m;
206      RC  = X86::RFP32RegisterClass;
207    }
208    break;
209  case MVT::f64:
210    if (Subtarget->hasSSE2()) {
211      Opc = X86::MOVSDrm;
212      RC  = X86::FR64RegisterClass;
213    } else {
214      Opc = X86::LD_Fp64m;
215      RC  = X86::RFP64RegisterClass;
216    }
217    break;
218  case MVT::f80:
219    // No f80 support yet.
220    return false;
221  }
222
223  ResultReg = createResultReg(RC);
224  addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
225                         DL, TII.get(Opc), ResultReg), AM);
226  return true;
227}
228
229/// X86FastEmitStore - Emit a machine instruction to store a value Val of
230/// type VT. The address is either pre-computed, consisted of a base ptr, Ptr
231/// and a displacement offset, or a GlobalAddress,
232/// i.e. V. Return true if it is possible.
233bool
234X86FastISel::X86FastEmitStore(EVT VT, unsigned Val, const X86AddressMode &AM) {
235  // Get opcode and regclass of the output for the given store instruction.
236  unsigned Opc = 0;
237  switch (VT.getSimpleVT().SimpleTy) {
238  case MVT::f80: // No f80 support yet.
239  default: return false;
240  case MVT::i1: {
241    // Mask out all but lowest bit.
242    unsigned AndResult = createResultReg(X86::GR8RegisterClass);
243    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
244            TII.get(X86::AND8ri), AndResult).addReg(Val).addImm(1);
245    Val = AndResult;
246  }
247  // FALLTHROUGH, handling i1 as i8.
248  case MVT::i8:  Opc = X86::MOV8mr;  break;
249  case MVT::i16: Opc = X86::MOV16mr; break;
250  case MVT::i32: Opc = X86::MOV32mr; break;
251  case MVT::i64: Opc = X86::MOV64mr; break; // Must be in x86-64 mode.
252  case MVT::f32:
253    Opc = Subtarget->hasSSE1() ? X86::MOVSSmr : X86::ST_Fp32m;
254    break;
255  case MVT::f64:
256    Opc = Subtarget->hasSSE2() ? X86::MOVSDmr : X86::ST_Fp64m;
257    break;
258  }
259
260  addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
261                         DL, TII.get(Opc)), AM).addReg(Val);
262  return true;
263}
264
265bool X86FastISel::X86FastEmitStore(EVT VT, const Value *Val,
266                                   const X86AddressMode &AM) {
267  // Handle 'null' like i32/i64 0.
268  if (isa<ConstantPointerNull>(Val))
269    Val = Constant::getNullValue(TD.getIntPtrType(Val->getContext()));
270
271  // If this is a store of a simple constant, fold the constant into the store.
272  if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
273    unsigned Opc = 0;
274    bool Signed = true;
275    switch (VT.getSimpleVT().SimpleTy) {
276    default: break;
277    case MVT::i1:  Signed = false;     // FALLTHROUGH to handle as i8.
278    case MVT::i8:  Opc = X86::MOV8mi;  break;
279    case MVT::i16: Opc = X86::MOV16mi; break;
280    case MVT::i32: Opc = X86::MOV32mi; break;
281    case MVT::i64:
282      // Must be a 32-bit sign extended value.
283      if ((int)CI->getSExtValue() == CI->getSExtValue())
284        Opc = X86::MOV64mi32;
285      break;
286    }
287
288    if (Opc) {
289      addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
290                             DL, TII.get(Opc)), AM)
291                             .addImm(Signed ? (uint64_t) CI->getSExtValue() :
292                                              CI->getZExtValue());
293      return true;
294    }
295  }
296
297  unsigned ValReg = getRegForValue(Val);
298  if (ValReg == 0)
299    return false;
300
301  return X86FastEmitStore(VT, ValReg, AM);
302}
303
304/// X86FastEmitExtend - Emit a machine instruction to extend a value Src of
305/// type SrcVT to type DstVT using the specified extension opcode Opc (e.g.
306/// ISD::SIGN_EXTEND).
307bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT,
308                                    unsigned Src, EVT SrcVT,
309                                    unsigned &ResultReg) {
310  unsigned RR = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc,
311                           Src, /*TODO: Kill=*/false);
312
313  if (RR != 0) {
314    ResultReg = RR;
315    return true;
316  } else
317    return false;
318}
319
320/// X86SelectAddress - Attempt to fill in an address from the given value.
321///
322bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) {
323  const User *U = NULL;
324  unsigned Opcode = Instruction::UserOp1;
325  if (const Instruction *I = dyn_cast<Instruction>(V)) {
326    // Don't walk into other basic blocks; it's possible we haven't
327    // visited them yet, so the instructions may not yet be assigned
328    // virtual registers.
329    if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(V)) ||
330        FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
331      Opcode = I->getOpcode();
332      U = I;
333    }
334  } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
335    Opcode = C->getOpcode();
336    U = C;
337  }
338
339  if (const PointerType *Ty = dyn_cast<PointerType>(V->getType()))
340    if (Ty->getAddressSpace() > 255)
341      // Fast instruction selection doesn't support the special
342      // address spaces.
343      return false;
344
345  switch (Opcode) {
346  default: break;
347  case Instruction::BitCast:
348    // Look past bitcasts.
349    return X86SelectAddress(U->getOperand(0), AM);
350
351  case Instruction::IntToPtr:
352    // Look past no-op inttoptrs.
353    if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
354      return X86SelectAddress(U->getOperand(0), AM);
355    break;
356
357  case Instruction::PtrToInt:
358    // Look past no-op ptrtoints.
359    if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
360      return X86SelectAddress(U->getOperand(0), AM);
361    break;
362
363  case Instruction::Alloca: {
364    // Do static allocas.
365    const AllocaInst *A = cast<AllocaInst>(V);
366    DenseMap<const AllocaInst*, int>::iterator SI =
367      FuncInfo.StaticAllocaMap.find(A);
368    if (SI != FuncInfo.StaticAllocaMap.end()) {
369      AM.BaseType = X86AddressMode::FrameIndexBase;
370      AM.Base.FrameIndex = SI->second;
371      return true;
372    }
373    break;
374  }
375
376  case Instruction::Add: {
377    // Adds of constants are common and easy enough.
378    if (const ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
379      uint64_t Disp = (int32_t)AM.Disp + (uint64_t)CI->getSExtValue();
380      // They have to fit in the 32-bit signed displacement field though.
381      if (isInt<32>(Disp)) {
382        AM.Disp = (uint32_t)Disp;
383        return X86SelectAddress(U->getOperand(0), AM);
384      }
385    }
386    break;
387  }
388
389  case Instruction::GetElementPtr: {
390    X86AddressMode SavedAM = AM;
391
392    // Pattern-match simple GEPs.
393    uint64_t Disp = (int32_t)AM.Disp;
394    unsigned IndexReg = AM.IndexReg;
395    unsigned Scale = AM.Scale;
396    gep_type_iterator GTI = gep_type_begin(U);
397    // Iterate through the indices, folding what we can. Constants can be
398    // folded, and one dynamic index can be handled, if the scale is supported.
399    for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
400         i != e; ++i, ++GTI) {
401      const Value *Op = *i;
402      if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
403        const StructLayout *SL = TD.getStructLayout(STy);
404        Disp += SL->getElementOffset(cast<ConstantInt>(Op)->getZExtValue());
405        continue;
406      }
407
408      // A array/variable index is always of the form i*S where S is the
409      // constant scale size.  See if we can push the scale into immediates.
410      uint64_t S = TD.getTypeAllocSize(GTI.getIndexedType());
411      for (;;) {
412        if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
413          // Constant-offset addressing.
414          Disp += CI->getSExtValue() * S;
415          break;
416        }
417        if (isa<AddOperator>(Op) &&
418            (!isa<Instruction>(Op) ||
419             FuncInfo.MBBMap[cast<Instruction>(Op)->getParent()]
420               == FuncInfo.MBB) &&
421            isa<ConstantInt>(cast<AddOperator>(Op)->getOperand(1))) {
422          // An add (in the same block) with a constant operand. Fold the
423          // constant.
424          ConstantInt *CI =
425            cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
426          Disp += CI->getSExtValue() * S;
427          // Iterate on the other operand.
428          Op = cast<AddOperator>(Op)->getOperand(0);
429          continue;
430        }
431        if (IndexReg == 0 &&
432            (!AM.GV || !Subtarget->isPICStyleRIPRel()) &&
433            (S == 1 || S == 2 || S == 4 || S == 8)) {
434          // Scaled-index addressing.
435          Scale = S;
436          IndexReg = getRegForGEPIndex(Op).first;
437          if (IndexReg == 0)
438            return false;
439          break;
440        }
441        // Unsupported.
442        goto unsupported_gep;
443      }
444    }
445    // Check for displacement overflow.
446    if (!isInt<32>(Disp))
447      break;
448    // Ok, the GEP indices were covered by constant-offset and scaled-index
449    // addressing. Update the address state and move on to examining the base.
450    AM.IndexReg = IndexReg;
451    AM.Scale = Scale;
452    AM.Disp = (uint32_t)Disp;
453    if (X86SelectAddress(U->getOperand(0), AM))
454      return true;
455
456    // If we couldn't merge the gep value into this addr mode, revert back to
457    // our address and just match the value instead of completely failing.
458    AM = SavedAM;
459    break;
460  unsupported_gep:
461    // Ok, the GEP indices weren't all covered.
462    break;
463  }
464  }
465
466  // Handle constant address.
467  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
468    // Can't handle alternate code models or TLS yet.
469    if (TM.getCodeModel() != CodeModel::Small)
470      return false;
471
472    if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
473      if (GVar->isThreadLocal())
474        return false;
475
476    // RIP-relative addresses can't have additional register operands, so if
477    // we've already folded stuff into the addressing mode, just force the
478    // global value into its own register, which we can use as the basereg.
479    if (!Subtarget->isPICStyleRIPRel() ||
480        (AM.Base.Reg == 0 && AM.IndexReg == 0)) {
481      // Okay, we've committed to selecting this global. Set up the address.
482      AM.GV = GV;
483
484      // Allow the subtarget to classify the global.
485      unsigned char GVFlags = Subtarget->ClassifyGlobalReference(GV, TM);
486
487      // If this reference is relative to the pic base, set it now.
488      if (isGlobalRelativeToPICBase(GVFlags)) {
489        // FIXME: How do we know Base.Reg is free??
490        AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
491      }
492
493      // Unless the ABI requires an extra load, return a direct reference to
494      // the global.
495      if (!isGlobalStubReference(GVFlags)) {
496        if (Subtarget->isPICStyleRIPRel()) {
497          // Use rip-relative addressing if we can.  Above we verified that the
498          // base and index registers are unused.
499          assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
500          AM.Base.Reg = X86::RIP;
501        }
502        AM.GVOpFlags = GVFlags;
503        return true;
504      }
505
506      // Ok, we need to do a load from a stub.  If we've already loaded from
507      // this stub, reuse the loaded pointer, otherwise emit the load now.
508      DenseMap<const Value*, unsigned>::iterator I = LocalValueMap.find(V);
509      unsigned LoadReg;
510      if (I != LocalValueMap.end() && I->second != 0) {
511        LoadReg = I->second;
512      } else {
513        // Issue load from stub.
514        unsigned Opc = 0;
515        const TargetRegisterClass *RC = NULL;
516        X86AddressMode StubAM;
517        StubAM.Base.Reg = AM.Base.Reg;
518        StubAM.GV = GV;
519        StubAM.GVOpFlags = GVFlags;
520
521        // Prepare for inserting code in the local-value area.
522        SavePoint SaveInsertPt = enterLocalValueArea();
523
524        if (TLI.getPointerTy() == MVT::i64) {
525          Opc = X86::MOV64rm;
526          RC  = X86::GR64RegisterClass;
527
528          if (Subtarget->isPICStyleRIPRel())
529            StubAM.Base.Reg = X86::RIP;
530        } else {
531          Opc = X86::MOV32rm;
532          RC  = X86::GR32RegisterClass;
533        }
534
535        LoadReg = createResultReg(RC);
536        MachineInstrBuilder LoadMI =
537          BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), LoadReg);
538        addFullAddress(LoadMI, StubAM);
539
540        // Ok, back to normal mode.
541        leaveLocalValueArea(SaveInsertPt);
542
543        // Prevent loading GV stub multiple times in same MBB.
544        LocalValueMap[V] = LoadReg;
545      }
546
547      // Now construct the final address. Note that the Disp, Scale,
548      // and Index values may already be set here.
549      AM.Base.Reg = LoadReg;
550      AM.GV = 0;
551      return true;
552    }
553  }
554
555  // If all else fails, try to materialize the value in a register.
556  if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
557    if (AM.Base.Reg == 0) {
558      AM.Base.Reg = getRegForValue(V);
559      return AM.Base.Reg != 0;
560    }
561    if (AM.IndexReg == 0) {
562      assert(AM.Scale == 1 && "Scale with no index!");
563      AM.IndexReg = getRegForValue(V);
564      return AM.IndexReg != 0;
565    }
566  }
567
568  return false;
569}
570
571/// X86SelectCallAddress - Attempt to fill in an address from the given value.
572///
573bool X86FastISel::X86SelectCallAddress(const Value *V, X86AddressMode &AM) {
574  const User *U = NULL;
575  unsigned Opcode = Instruction::UserOp1;
576  if (const Instruction *I = dyn_cast<Instruction>(V)) {
577    Opcode = I->getOpcode();
578    U = I;
579  } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
580    Opcode = C->getOpcode();
581    U = C;
582  }
583
584  switch (Opcode) {
585  default: break;
586  case Instruction::BitCast:
587    // Look past bitcasts.
588    return X86SelectCallAddress(U->getOperand(0), AM);
589
590  case Instruction::IntToPtr:
591    // Look past no-op inttoptrs.
592    if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
593      return X86SelectCallAddress(U->getOperand(0), AM);
594    break;
595
596  case Instruction::PtrToInt:
597    // Look past no-op ptrtoints.
598    if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
599      return X86SelectCallAddress(U->getOperand(0), AM);
600    break;
601  }
602
603  // Handle constant address.
604  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
605    // Can't handle alternate code models yet.
606    if (TM.getCodeModel() != CodeModel::Small)
607      return false;
608
609    // RIP-relative addresses can't have additional register operands.
610    if (Subtarget->isPICStyleRIPRel() &&
611        (AM.Base.Reg != 0 || AM.IndexReg != 0))
612      return false;
613
614    // Can't handle DLLImport.
615    if (GV->hasDLLImportLinkage())
616      return false;
617
618    // Can't handle TLS.
619    if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
620      if (GVar->isThreadLocal())
621        return false;
622
623    // Okay, we've committed to selecting this global. Set up the basic address.
624    AM.GV = GV;
625
626    // No ABI requires an extra load for anything other than DLLImport, which
627    // we rejected above. Return a direct reference to the global.
628    if (Subtarget->isPICStyleRIPRel()) {
629      // Use rip-relative addressing if we can.  Above we verified that the
630      // base and index registers are unused.
631      assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
632      AM.Base.Reg = X86::RIP;
633    } else if (Subtarget->isPICStyleStubPIC()) {
634      AM.GVOpFlags = X86II::MO_PIC_BASE_OFFSET;
635    } else if (Subtarget->isPICStyleGOT()) {
636      AM.GVOpFlags = X86II::MO_GOTOFF;
637    }
638
639    return true;
640  }
641
642  // If all else fails, try to materialize the value in a register.
643  if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
644    if (AM.Base.Reg == 0) {
645      AM.Base.Reg = getRegForValue(V);
646      return AM.Base.Reg != 0;
647    }
648    if (AM.IndexReg == 0) {
649      assert(AM.Scale == 1 && "Scale with no index!");
650      AM.IndexReg = getRegForValue(V);
651      return AM.IndexReg != 0;
652    }
653  }
654
655  return false;
656}
657
658
659/// X86SelectStore - Select and emit code to implement store instructions.
660bool X86FastISel::X86SelectStore(const Instruction *I) {
661  MVT VT;
662  if (!isTypeLegal(I->getOperand(0)->getType(), VT, /*AllowI1=*/true))
663    return false;
664
665  X86AddressMode AM;
666  if (!X86SelectAddress(I->getOperand(1), AM))
667    return false;
668
669  return X86FastEmitStore(VT, I->getOperand(0), AM);
670}
671
672/// X86SelectRet - Select and emit code to implement ret instructions.
673bool X86FastISel::X86SelectRet(const Instruction *I) {
674  const ReturnInst *Ret = cast<ReturnInst>(I);
675  const Function &F = *I->getParent()->getParent();
676
677  if (!FuncInfo.CanLowerReturn)
678    return false;
679
680  CallingConv::ID CC = F.getCallingConv();
681  if (CC != CallingConv::C &&
682      CC != CallingConv::Fast &&
683      CC != CallingConv::X86_FastCall)
684    return false;
685
686  if (Subtarget->isTargetWin64())
687    return false;
688
689  // Don't handle popping bytes on return for now.
690  if (FuncInfo.MF->getInfo<X86MachineFunctionInfo>()
691        ->getBytesToPopOnReturn() != 0)
692    return 0;
693
694  // fastcc with -tailcallopt is intended to provide a guaranteed
695  // tail call optimization. Fastisel doesn't know how to do that.
696  if (CC == CallingConv::Fast && GuaranteedTailCallOpt)
697    return false;
698
699  // Let SDISel handle vararg functions.
700  if (F.isVarArg())
701    return false;
702
703  if (Ret->getNumOperands() > 0) {
704    SmallVector<ISD::OutputArg, 4> Outs;
705    GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
706                  Outs, TLI);
707
708    // Analyze operands of the call, assigning locations to each operand.
709    SmallVector<CCValAssign, 16> ValLocs;
710    CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, TM, ValLocs,
711		   I->getContext());
712    CCInfo.AnalyzeReturn(Outs, RetCC_X86);
713
714    const Value *RV = Ret->getOperand(0);
715    unsigned Reg = getRegForValue(RV);
716    if (Reg == 0)
717      return false;
718
719    // Only handle a single return value for now.
720    if (ValLocs.size() != 1)
721      return false;
722
723    CCValAssign &VA = ValLocs[0];
724
725    // Don't bother handling odd stuff for now.
726    if (VA.getLocInfo() != CCValAssign::Full)
727      return false;
728    // Only handle register returns for now.
729    if (!VA.isRegLoc())
730      return false;
731
732    // The calling-convention tables for x87 returns don't tell
733    // the whole story.
734    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
735      return false;
736
737    unsigned SrcReg = Reg + VA.getValNo();
738    EVT SrcVT = TLI.getValueType(RV->getType());
739    EVT DstVT = VA.getValVT();
740    // Special handling for extended integers.
741    if (SrcVT != DstVT) {
742      if (SrcVT != MVT::i1 && SrcVT != MVT::i8 && SrcVT != MVT::i16)
743        return false;
744
745      if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt())
746        return false;
747
748      assert(DstVT == MVT::i32 && "X86 should always ext to i32");
749
750      if (SrcVT == MVT::i1) {
751        if (Outs[0].Flags.isSExt())
752          return false;
753        SrcReg = FastEmitZExtFromI1(MVT::i8, SrcReg, /*TODO: Kill=*/false);
754        SrcVT = MVT::i8;
755      }
756      unsigned Op = Outs[0].Flags.isZExt() ? ISD::ZERO_EXTEND :
757                                             ISD::SIGN_EXTEND;
758      SrcReg = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Op,
759                          SrcReg, /*TODO: Kill=*/false);
760    }
761
762    // Make the copy.
763    unsigned DstReg = VA.getLocReg();
764    const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg);
765    // Avoid a cross-class copy. This is very unlikely.
766    if (!SrcRC->contains(DstReg))
767      return false;
768    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
769            DstReg).addReg(SrcReg);
770
771    // Mark the register as live out of the function.
772    MRI.addLiveOut(VA.getLocReg());
773  }
774
775  // Now emit the RET.
776  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::RET));
777  return true;
778}
779
780/// X86SelectLoad - Select and emit code to implement load instructions.
781///
782bool X86FastISel::X86SelectLoad(const Instruction *I)  {
783  MVT VT;
784  if (!isTypeLegal(I->getType(), VT, /*AllowI1=*/true))
785    return false;
786
787  X86AddressMode AM;
788  if (!X86SelectAddress(I->getOperand(0), AM))
789    return false;
790
791  unsigned ResultReg = 0;
792  if (X86FastEmitLoad(VT, AM, ResultReg)) {
793    UpdateValueMap(I, ResultReg);
794    return true;
795  }
796  return false;
797}
798
799static unsigned X86ChooseCmpOpcode(EVT VT, const X86Subtarget *Subtarget) {
800  switch (VT.getSimpleVT().SimpleTy) {
801  default:       return 0;
802  case MVT::i8:  return X86::CMP8rr;
803  case MVT::i16: return X86::CMP16rr;
804  case MVT::i32: return X86::CMP32rr;
805  case MVT::i64: return X86::CMP64rr;
806  case MVT::f32: return Subtarget->hasSSE1() ? X86::UCOMISSrr : 0;
807  case MVT::f64: return Subtarget->hasSSE2() ? X86::UCOMISDrr : 0;
808  }
809}
810
811/// X86ChooseCmpImmediateOpcode - If we have a comparison with RHS as the RHS
812/// of the comparison, return an opcode that works for the compare (e.g.
813/// CMP32ri) otherwise return 0.
814static unsigned X86ChooseCmpImmediateOpcode(EVT VT, const ConstantInt *RHSC) {
815  switch (VT.getSimpleVT().SimpleTy) {
816  // Otherwise, we can't fold the immediate into this comparison.
817  default: return 0;
818  case MVT::i8: return X86::CMP8ri;
819  case MVT::i16: return X86::CMP16ri;
820  case MVT::i32: return X86::CMP32ri;
821  case MVT::i64:
822    // 64-bit comparisons are only valid if the immediate fits in a 32-bit sext
823    // field.
824    if ((int)RHSC->getSExtValue() == RHSC->getSExtValue())
825      return X86::CMP64ri32;
826    return 0;
827  }
828}
829
830bool X86FastISel::X86FastEmitCompare(const Value *Op0, const Value *Op1,
831                                     EVT VT) {
832  unsigned Op0Reg = getRegForValue(Op0);
833  if (Op0Reg == 0) return false;
834
835  // Handle 'null' like i32/i64 0.
836  if (isa<ConstantPointerNull>(Op1))
837    Op1 = Constant::getNullValue(TD.getIntPtrType(Op0->getContext()));
838
839  // We have two options: compare with register or immediate.  If the RHS of
840  // the compare is an immediate that we can fold into this compare, use
841  // CMPri, otherwise use CMPrr.
842  if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
843    if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, Op1C)) {
844      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CompareImmOpc))
845        .addReg(Op0Reg)
846        .addImm(Op1C->getSExtValue());
847      return true;
848    }
849  }
850
851  unsigned CompareOpc = X86ChooseCmpOpcode(VT, Subtarget);
852  if (CompareOpc == 0) return false;
853
854  unsigned Op1Reg = getRegForValue(Op1);
855  if (Op1Reg == 0) return false;
856  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CompareOpc))
857    .addReg(Op0Reg)
858    .addReg(Op1Reg);
859
860  return true;
861}
862
863bool X86FastISel::X86SelectCmp(const Instruction *I) {
864  const CmpInst *CI = cast<CmpInst>(I);
865
866  MVT VT;
867  if (!isTypeLegal(I->getOperand(0)->getType(), VT))
868    return false;
869
870  unsigned ResultReg = createResultReg(&X86::GR8RegClass);
871  unsigned SetCCOpc;
872  bool SwapArgs;  // false -> compare Op0, Op1.  true -> compare Op1, Op0.
873  switch (CI->getPredicate()) {
874  case CmpInst::FCMP_OEQ: {
875    if (!X86FastEmitCompare(CI->getOperand(0), CI->getOperand(1), VT))
876      return false;
877
878    unsigned EReg = createResultReg(&X86::GR8RegClass);
879    unsigned NPReg = createResultReg(&X86::GR8RegClass);
880    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::SETEr), EReg);
881    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
882            TII.get(X86::SETNPr), NPReg);
883    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
884            TII.get(X86::AND8rr), ResultReg).addReg(NPReg).addReg(EReg);
885    UpdateValueMap(I, ResultReg);
886    return true;
887  }
888  case CmpInst::FCMP_UNE: {
889    if (!X86FastEmitCompare(CI->getOperand(0), CI->getOperand(1), VT))
890      return false;
891
892    unsigned NEReg = createResultReg(&X86::GR8RegClass);
893    unsigned PReg = createResultReg(&X86::GR8RegClass);
894    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::SETNEr), NEReg);
895    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::SETPr), PReg);
896    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::OR8rr),ResultReg)
897      .addReg(PReg).addReg(NEReg);
898    UpdateValueMap(I, ResultReg);
899    return true;
900  }
901  case CmpInst::FCMP_OGT: SwapArgs = false; SetCCOpc = X86::SETAr;  break;
902  case CmpInst::FCMP_OGE: SwapArgs = false; SetCCOpc = X86::SETAEr; break;
903  case CmpInst::FCMP_OLT: SwapArgs = true;  SetCCOpc = X86::SETAr;  break;
904  case CmpInst::FCMP_OLE: SwapArgs = true;  SetCCOpc = X86::SETAEr; break;
905  case CmpInst::FCMP_ONE: SwapArgs = false; SetCCOpc = X86::SETNEr; break;
906  case CmpInst::FCMP_ORD: SwapArgs = false; SetCCOpc = X86::SETNPr; break;
907  case CmpInst::FCMP_UNO: SwapArgs = false; SetCCOpc = X86::SETPr;  break;
908  case CmpInst::FCMP_UEQ: SwapArgs = false; SetCCOpc = X86::SETEr;  break;
909  case CmpInst::FCMP_UGT: SwapArgs = true;  SetCCOpc = X86::SETBr;  break;
910  case CmpInst::FCMP_UGE: SwapArgs = true;  SetCCOpc = X86::SETBEr; break;
911  case CmpInst::FCMP_ULT: SwapArgs = false; SetCCOpc = X86::SETBr;  break;
912  case CmpInst::FCMP_ULE: SwapArgs = false; SetCCOpc = X86::SETBEr; break;
913
914  case CmpInst::ICMP_EQ:  SwapArgs = false; SetCCOpc = X86::SETEr;  break;
915  case CmpInst::ICMP_NE:  SwapArgs = false; SetCCOpc = X86::SETNEr; break;
916  case CmpInst::ICMP_UGT: SwapArgs = false; SetCCOpc = X86::SETAr;  break;
917  case CmpInst::ICMP_UGE: SwapArgs = false; SetCCOpc = X86::SETAEr; break;
918  case CmpInst::ICMP_ULT: SwapArgs = false; SetCCOpc = X86::SETBr;  break;
919  case CmpInst::ICMP_ULE: SwapArgs = false; SetCCOpc = X86::SETBEr; break;
920  case CmpInst::ICMP_SGT: SwapArgs = false; SetCCOpc = X86::SETGr;  break;
921  case CmpInst::ICMP_SGE: SwapArgs = false; SetCCOpc = X86::SETGEr; break;
922  case CmpInst::ICMP_SLT: SwapArgs = false; SetCCOpc = X86::SETLr;  break;
923  case CmpInst::ICMP_SLE: SwapArgs = false; SetCCOpc = X86::SETLEr; break;
924  default:
925    return false;
926  }
927
928  const Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
929  if (SwapArgs)
930    std::swap(Op0, Op1);
931
932  // Emit a compare of Op0/Op1.
933  if (!X86FastEmitCompare(Op0, Op1, VT))
934    return false;
935
936  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(SetCCOpc), ResultReg);
937  UpdateValueMap(I, ResultReg);
938  return true;
939}
940
941bool X86FastISel::X86SelectZExt(const Instruction *I) {
942  // Handle zero-extension from i1 to i8, which is common.
943  if (!I->getOperand(0)->getType()->isIntegerTy(1))
944    return false;
945
946  EVT DstVT = TLI.getValueType(I->getType());
947  if (!TLI.isTypeLegal(DstVT))
948    return false;
949
950  unsigned ResultReg = getRegForValue(I->getOperand(0));
951  if (ResultReg == 0)
952    return false;
953
954  // Set the high bits to zero.
955  ResultReg = FastEmitZExtFromI1(MVT::i8, ResultReg, /*TODO: Kill=*/false);
956  if (ResultReg == 0)
957    return false;
958
959  if (DstVT != MVT::i8) {
960    ResultReg = FastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::ZERO_EXTEND,
961                           ResultReg, /*Kill=*/true);
962    if (ResultReg == 0)
963      return false;
964  }
965
966  UpdateValueMap(I, ResultReg);
967  return true;
968}
969
970
971bool X86FastISel::X86SelectBranch(const Instruction *I) {
972  // Unconditional branches are selected by tablegen-generated code.
973  // Handle a conditional branch.
974  const BranchInst *BI = cast<BranchInst>(I);
975  MachineBasicBlock *TrueMBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
976  MachineBasicBlock *FalseMBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
977
978  // Fold the common case of a conditional branch with a comparison
979  // in the same block (values defined on other blocks may not have
980  // initialized registers).
981  if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
982    if (CI->hasOneUse() && CI->getParent() == I->getParent()) {
983      EVT VT = TLI.getValueType(CI->getOperand(0)->getType());
984
985      // Try to take advantage of fallthrough opportunities.
986      CmpInst::Predicate Predicate = CI->getPredicate();
987      if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
988        std::swap(TrueMBB, FalseMBB);
989        Predicate = CmpInst::getInversePredicate(Predicate);
990      }
991
992      bool SwapArgs;  // false -> compare Op0, Op1.  true -> compare Op1, Op0.
993      unsigned BranchOpc; // Opcode to jump on, e.g. "X86::JA"
994
995      switch (Predicate) {
996      case CmpInst::FCMP_OEQ:
997        std::swap(TrueMBB, FalseMBB);
998        Predicate = CmpInst::FCMP_UNE;
999        // FALL THROUGH
1000      case CmpInst::FCMP_UNE: SwapArgs = false; BranchOpc = X86::JNE_4; break;
1001      case CmpInst::FCMP_OGT: SwapArgs = false; BranchOpc = X86::JA_4;  break;
1002      case CmpInst::FCMP_OGE: SwapArgs = false; BranchOpc = X86::JAE_4; break;
1003      case CmpInst::FCMP_OLT: SwapArgs = true;  BranchOpc = X86::JA_4;  break;
1004      case CmpInst::FCMP_OLE: SwapArgs = true;  BranchOpc = X86::JAE_4; break;
1005      case CmpInst::FCMP_ONE: SwapArgs = false; BranchOpc = X86::JNE_4; break;
1006      case CmpInst::FCMP_ORD: SwapArgs = false; BranchOpc = X86::JNP_4; break;
1007      case CmpInst::FCMP_UNO: SwapArgs = false; BranchOpc = X86::JP_4;  break;
1008      case CmpInst::FCMP_UEQ: SwapArgs = false; BranchOpc = X86::JE_4;  break;
1009      case CmpInst::FCMP_UGT: SwapArgs = true;  BranchOpc = X86::JB_4;  break;
1010      case CmpInst::FCMP_UGE: SwapArgs = true;  BranchOpc = X86::JBE_4; break;
1011      case CmpInst::FCMP_ULT: SwapArgs = false; BranchOpc = X86::JB_4;  break;
1012      case CmpInst::FCMP_ULE: SwapArgs = false; BranchOpc = X86::JBE_4; break;
1013
1014      case CmpInst::ICMP_EQ:  SwapArgs = false; BranchOpc = X86::JE_4;  break;
1015      case CmpInst::ICMP_NE:  SwapArgs = false; BranchOpc = X86::JNE_4; break;
1016      case CmpInst::ICMP_UGT: SwapArgs = false; BranchOpc = X86::JA_4;  break;
1017      case CmpInst::ICMP_UGE: SwapArgs = false; BranchOpc = X86::JAE_4; break;
1018      case CmpInst::ICMP_ULT: SwapArgs = false; BranchOpc = X86::JB_4;  break;
1019      case CmpInst::ICMP_ULE: SwapArgs = false; BranchOpc = X86::JBE_4; break;
1020      case CmpInst::ICMP_SGT: SwapArgs = false; BranchOpc = X86::JG_4;  break;
1021      case CmpInst::ICMP_SGE: SwapArgs = false; BranchOpc = X86::JGE_4; break;
1022      case CmpInst::ICMP_SLT: SwapArgs = false; BranchOpc = X86::JL_4;  break;
1023      case CmpInst::ICMP_SLE: SwapArgs = false; BranchOpc = X86::JLE_4; break;
1024      default:
1025        return false;
1026      }
1027
1028      const Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
1029      if (SwapArgs)
1030        std::swap(Op0, Op1);
1031
1032      // Emit a compare of the LHS and RHS, setting the flags.
1033      if (!X86FastEmitCompare(Op0, Op1, VT))
1034        return false;
1035
1036      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BranchOpc))
1037        .addMBB(TrueMBB);
1038
1039      if (Predicate == CmpInst::FCMP_UNE) {
1040        // X86 requires a second branch to handle UNE (and OEQ,
1041        // which is mapped to UNE above).
1042        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::JP_4))
1043          .addMBB(TrueMBB);
1044      }
1045
1046      FastEmitBranch(FalseMBB, DL);
1047      FuncInfo.MBB->addSuccessor(TrueMBB);
1048      return true;
1049    }
1050  } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
1051    // Handle things like "%cond = trunc i32 %X to i1 / br i1 %cond", which
1052    // typically happen for _Bool and C++ bools.
1053    MVT SourceVT;
1054    if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
1055        isTypeLegal(TI->getOperand(0)->getType(), SourceVT)) {
1056      unsigned TestOpc = 0;
1057      switch (SourceVT.SimpleTy) {
1058      default: break;
1059      case MVT::i8:  TestOpc = X86::TEST8ri; break;
1060      case MVT::i16: TestOpc = X86::TEST16ri; break;
1061      case MVT::i32: TestOpc = X86::TEST32ri; break;
1062      case MVT::i64: TestOpc = X86::TEST64ri32; break;
1063      }
1064      if (TestOpc) {
1065        unsigned OpReg = getRegForValue(TI->getOperand(0));
1066        if (OpReg == 0) return false;
1067        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TestOpc))
1068          .addReg(OpReg).addImm(1);
1069
1070        unsigned JmpOpc = X86::JNE_4;
1071        if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
1072          std::swap(TrueMBB, FalseMBB);
1073          JmpOpc = X86::JE_4;
1074        }
1075
1076        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(JmpOpc))
1077          .addMBB(TrueMBB);
1078        FastEmitBranch(FalseMBB, DL);
1079        FuncInfo.MBB->addSuccessor(TrueMBB);
1080        return true;
1081      }
1082    }
1083  }
1084
1085  // Otherwise do a clumsy setcc and re-test it.
1086  // Note that i1 essentially gets ANY_EXTEND'ed to i8 where it isn't used
1087  // in an explicit cast, so make sure to handle that correctly.
1088  unsigned OpReg = getRegForValue(BI->getCondition());
1089  if (OpReg == 0) return false;
1090
1091  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::TEST8ri))
1092    .addReg(OpReg).addImm(1);
1093  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::JNE_4))
1094    .addMBB(TrueMBB);
1095  FastEmitBranch(FalseMBB, DL);
1096  FuncInfo.MBB->addSuccessor(TrueMBB);
1097  return true;
1098}
1099
1100bool X86FastISel::X86SelectShift(const Instruction *I) {
1101  unsigned CReg = 0, OpReg = 0;
1102  const TargetRegisterClass *RC = NULL;
1103  if (I->getType()->isIntegerTy(8)) {
1104    CReg = X86::CL;
1105    RC = &X86::GR8RegClass;
1106    switch (I->getOpcode()) {
1107    case Instruction::LShr: OpReg = X86::SHR8rCL; break;
1108    case Instruction::AShr: OpReg = X86::SAR8rCL; break;
1109    case Instruction::Shl:  OpReg = X86::SHL8rCL; break;
1110    default: return false;
1111    }
1112  } else if (I->getType()->isIntegerTy(16)) {
1113    CReg = X86::CX;
1114    RC = &X86::GR16RegClass;
1115    switch (I->getOpcode()) {
1116    case Instruction::LShr: OpReg = X86::SHR16rCL; break;
1117    case Instruction::AShr: OpReg = X86::SAR16rCL; break;
1118    case Instruction::Shl:  OpReg = X86::SHL16rCL; break;
1119    default: return false;
1120    }
1121  } else if (I->getType()->isIntegerTy(32)) {
1122    CReg = X86::ECX;
1123    RC = &X86::GR32RegClass;
1124    switch (I->getOpcode()) {
1125    case Instruction::LShr: OpReg = X86::SHR32rCL; break;
1126    case Instruction::AShr: OpReg = X86::SAR32rCL; break;
1127    case Instruction::Shl:  OpReg = X86::SHL32rCL; break;
1128    default: return false;
1129    }
1130  } else if (I->getType()->isIntegerTy(64)) {
1131    CReg = X86::RCX;
1132    RC = &X86::GR64RegClass;
1133    switch (I->getOpcode()) {
1134    case Instruction::LShr: OpReg = X86::SHR64rCL; break;
1135    case Instruction::AShr: OpReg = X86::SAR64rCL; break;
1136    case Instruction::Shl:  OpReg = X86::SHL64rCL; break;
1137    default: return false;
1138    }
1139  } else {
1140    return false;
1141  }
1142
1143  MVT VT;
1144  if (!isTypeLegal(I->getType(), VT))
1145    return false;
1146
1147  unsigned Op0Reg = getRegForValue(I->getOperand(0));
1148  if (Op0Reg == 0) return false;
1149
1150  unsigned Op1Reg = getRegForValue(I->getOperand(1));
1151  if (Op1Reg == 0) return false;
1152  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1153          CReg).addReg(Op1Reg);
1154
1155  // The shift instruction uses X86::CL. If we defined a super-register
1156  // of X86::CL, emit a subreg KILL to precisely describe what we're doing here.
1157  if (CReg != X86::CL)
1158    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1159            TII.get(TargetOpcode::KILL), X86::CL)
1160      .addReg(CReg, RegState::Kill);
1161
1162  unsigned ResultReg = createResultReg(RC);
1163  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(OpReg), ResultReg)
1164    .addReg(Op0Reg);
1165  UpdateValueMap(I, ResultReg);
1166  return true;
1167}
1168
1169bool X86FastISel::X86SelectSelect(const Instruction *I) {
1170  MVT VT;
1171  if (!isTypeLegal(I->getType(), VT))
1172    return false;
1173
1174  // We only use cmov here, if we don't have a cmov instruction bail.
1175  if (!Subtarget->hasCMov()) return false;
1176
1177  unsigned Opc = 0;
1178  const TargetRegisterClass *RC = NULL;
1179  if (VT == MVT::i16) {
1180    Opc = X86::CMOVE16rr;
1181    RC = &X86::GR16RegClass;
1182  } else if (VT == MVT::i32) {
1183    Opc = X86::CMOVE32rr;
1184    RC = &X86::GR32RegClass;
1185  } else if (VT == MVT::i64) {
1186    Opc = X86::CMOVE64rr;
1187    RC = &X86::GR64RegClass;
1188  } else {
1189    return false;
1190  }
1191
1192  unsigned Op0Reg = getRegForValue(I->getOperand(0));
1193  if (Op0Reg == 0) return false;
1194  unsigned Op1Reg = getRegForValue(I->getOperand(1));
1195  if (Op1Reg == 0) return false;
1196  unsigned Op2Reg = getRegForValue(I->getOperand(2));
1197  if (Op2Reg == 0) return false;
1198
1199  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::TEST8rr))
1200    .addReg(Op0Reg).addReg(Op0Reg);
1201  unsigned ResultReg = createResultReg(RC);
1202  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg)
1203    .addReg(Op1Reg).addReg(Op2Reg);
1204  UpdateValueMap(I, ResultReg);
1205  return true;
1206}
1207
1208bool X86FastISel::X86SelectFPExt(const Instruction *I) {
1209  // fpext from float to double.
1210  if (Subtarget->hasSSE2() &&
1211      I->getType()->isDoubleTy()) {
1212    const Value *V = I->getOperand(0);
1213    if (V->getType()->isFloatTy()) {
1214      unsigned OpReg = getRegForValue(V);
1215      if (OpReg == 0) return false;
1216      unsigned ResultReg = createResultReg(X86::FR64RegisterClass);
1217      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1218              TII.get(X86::CVTSS2SDrr), ResultReg)
1219        .addReg(OpReg);
1220      UpdateValueMap(I, ResultReg);
1221      return true;
1222    }
1223  }
1224
1225  return false;
1226}
1227
1228bool X86FastISel::X86SelectFPTrunc(const Instruction *I) {
1229  if (Subtarget->hasSSE2()) {
1230    if (I->getType()->isFloatTy()) {
1231      const Value *V = I->getOperand(0);
1232      if (V->getType()->isDoubleTy()) {
1233        unsigned OpReg = getRegForValue(V);
1234        if (OpReg == 0) return false;
1235        unsigned ResultReg = createResultReg(X86::FR32RegisterClass);
1236        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1237                TII.get(X86::CVTSD2SSrr), ResultReg)
1238          .addReg(OpReg);
1239        UpdateValueMap(I, ResultReg);
1240        return true;
1241      }
1242    }
1243  }
1244
1245  return false;
1246}
1247
1248bool X86FastISel::X86SelectTrunc(const Instruction *I) {
1249  EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
1250  EVT DstVT = TLI.getValueType(I->getType());
1251
1252  // This code only handles truncation to byte.
1253  if (DstVT != MVT::i8 && DstVT != MVT::i1)
1254    return false;
1255  if (!TLI.isTypeLegal(SrcVT))
1256    return false;
1257
1258  unsigned InputReg = getRegForValue(I->getOperand(0));
1259  if (!InputReg)
1260    // Unhandled operand.  Halt "fast" selection and bail.
1261    return false;
1262
1263  if (SrcVT == MVT::i8) {
1264    // Truncate from i8 to i1; no code needed.
1265    UpdateValueMap(I, InputReg);
1266    return true;
1267  }
1268
1269  if (!Subtarget->is64Bit()) {
1270    // If we're on x86-32; we can't extract an i8 from a general register.
1271    // First issue a copy to GR16_ABCD or GR32_ABCD.
1272    const TargetRegisterClass *CopyRC = (SrcVT == MVT::i16)
1273      ? X86::GR16_ABCDRegisterClass : X86::GR32_ABCDRegisterClass;
1274    unsigned CopyReg = createResultReg(CopyRC);
1275    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1276            CopyReg).addReg(InputReg);
1277    InputReg = CopyReg;
1278  }
1279
1280  // Issue an extract_subreg.
1281  unsigned ResultReg = FastEmitInst_extractsubreg(MVT::i8,
1282                                                  InputReg, /*Kill=*/true,
1283                                                  X86::sub_8bit);
1284  if (!ResultReg)
1285    return false;
1286
1287  UpdateValueMap(I, ResultReg);
1288  return true;
1289}
1290
1291bool X86FastISel::IsMemcpySmall(uint64_t Len) {
1292  return Len <= (Subtarget->is64Bit() ? 32 : 16);
1293}
1294
1295bool X86FastISel::TryEmitSmallMemcpy(X86AddressMode DestAM,
1296                                     X86AddressMode SrcAM, uint64_t Len) {
1297
1298  // Make sure we don't bloat code by inlining very large memcpy's.
1299  if (!IsMemcpySmall(Len))
1300    return false;
1301
1302  bool i64Legal = Subtarget->is64Bit();
1303
1304  // We don't care about alignment here since we just emit integer accesses.
1305  while (Len) {
1306    MVT VT;
1307    if (Len >= 8 && i64Legal)
1308      VT = MVT::i64;
1309    else if (Len >= 4)
1310      VT = MVT::i32;
1311    else if (Len >= 2)
1312      VT = MVT::i16;
1313    else {
1314      assert(Len == 1);
1315      VT = MVT::i8;
1316    }
1317
1318    unsigned Reg;
1319    bool RV = X86FastEmitLoad(VT, SrcAM, Reg);
1320    RV &= X86FastEmitStore(VT, Reg, DestAM);
1321    assert(RV && "Failed to emit load or store??");
1322
1323    unsigned Size = VT.getSizeInBits()/8;
1324    Len -= Size;
1325    DestAM.Disp += Size;
1326    SrcAM.Disp += Size;
1327  }
1328
1329  return true;
1330}
1331
1332bool X86FastISel::X86VisitIntrinsicCall(const IntrinsicInst &I) {
1333  // FIXME: Handle more intrinsics.
1334  switch (I.getIntrinsicID()) {
1335  default: return false;
1336  case Intrinsic::memcpy: {
1337    const MemCpyInst &MCI = cast<MemCpyInst>(I);
1338    // Don't handle volatile or variable length memcpys.
1339    if (MCI.isVolatile())
1340      return false;
1341
1342    if (isa<ConstantInt>(MCI.getLength())) {
1343      // Small memcpy's are common enough that we want to do them
1344      // without a call if possible.
1345      uint64_t Len = cast<ConstantInt>(MCI.getLength())->getZExtValue();
1346      if (IsMemcpySmall(Len)) {
1347        X86AddressMode DestAM, SrcAM;
1348        if (!X86SelectAddress(MCI.getRawDest(), DestAM) ||
1349            !X86SelectAddress(MCI.getRawSource(), SrcAM))
1350          return false;
1351        TryEmitSmallMemcpy(DestAM, SrcAM, Len);
1352        return true;
1353      }
1354    }
1355
1356    unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
1357    if (!MCI.getLength()->getType()->isIntegerTy(SizeWidth))
1358      return false;
1359
1360    if (MCI.getSourceAddressSpace() > 255 || MCI.getDestAddressSpace() > 255)
1361      return false;
1362
1363    return DoSelectCall(&I, "memcpy");
1364  }
1365  case Intrinsic::memset: {
1366    const MemSetInst &MSI = cast<MemSetInst>(I);
1367
1368    unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
1369    if (!MSI.getLength()->getType()->isIntegerTy(SizeWidth))
1370      return false;
1371
1372    if (MSI.getDestAddressSpace() > 255)
1373      return false;
1374
1375    return DoSelectCall(&I, "memset");
1376  }
1377  case Intrinsic::stackprotector: {
1378    // Emit code inline code to store the stack guard onto the stack.
1379    EVT PtrTy = TLI.getPointerTy();
1380
1381    const Value *Op1 = I.getArgOperand(0); // The guard's value.
1382    const AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
1383
1384    // Grab the frame index.
1385    X86AddressMode AM;
1386    if (!X86SelectAddress(Slot, AM)) return false;
1387    if (!X86FastEmitStore(PtrTy, Op1, AM)) return false;
1388    return true;
1389  }
1390  case Intrinsic::dbg_declare: {
1391    const DbgDeclareInst *DI = cast<DbgDeclareInst>(&I);
1392    X86AddressMode AM;
1393    assert(DI->getAddress() && "Null address should be checked earlier!");
1394    if (!X86SelectAddress(DI->getAddress(), AM))
1395      return false;
1396    const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
1397    // FIXME may need to add RegState::Debug to any registers produced,
1398    // although ESP/EBP should be the only ones at the moment.
1399    addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II), AM).
1400      addImm(0).addMetadata(DI->getVariable());
1401    return true;
1402  }
1403  case Intrinsic::trap: {
1404    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::TRAP));
1405    return true;
1406  }
1407  case Intrinsic::sadd_with_overflow:
1408  case Intrinsic::uadd_with_overflow: {
1409    // FIXME: Should fold immediates.
1410
1411    // Replace "add with overflow" intrinsics with an "add" instruction followed
1412    // by a seto/setc instruction.
1413    const Function *Callee = I.getCalledFunction();
1414    const Type *RetTy =
1415      cast<StructType>(Callee->getReturnType())->getTypeAtIndex(unsigned(0));
1416
1417    MVT VT;
1418    if (!isTypeLegal(RetTy, VT))
1419      return false;
1420
1421    const Value *Op1 = I.getArgOperand(0);
1422    const Value *Op2 = I.getArgOperand(1);
1423    unsigned Reg1 = getRegForValue(Op1);
1424    unsigned Reg2 = getRegForValue(Op2);
1425
1426    if (Reg1 == 0 || Reg2 == 0)
1427      // FIXME: Handle values *not* in registers.
1428      return false;
1429
1430    unsigned OpC = 0;
1431    if (VT == MVT::i32)
1432      OpC = X86::ADD32rr;
1433    else if (VT == MVT::i64)
1434      OpC = X86::ADD64rr;
1435    else
1436      return false;
1437
1438    // The call to CreateRegs builds two sequential registers, to store the
1439    // both the the returned values.
1440    unsigned ResultReg = FuncInfo.CreateRegs(I.getType());
1441    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(OpC), ResultReg)
1442      .addReg(Reg1).addReg(Reg2);
1443
1444    unsigned Opc = X86::SETBr;
1445    if (I.getIntrinsicID() == Intrinsic::sadd_with_overflow)
1446      Opc = X86::SETOr;
1447    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg+1);
1448
1449    UpdateValueMap(&I, ResultReg, 2);
1450    return true;
1451  }
1452  }
1453}
1454
1455bool X86FastISel::X86SelectCall(const Instruction *I) {
1456  const CallInst *CI = cast<CallInst>(I);
1457  const Value *Callee = CI->getCalledValue();
1458
1459  // Can't handle inline asm yet.
1460  if (isa<InlineAsm>(Callee))
1461    return false;
1462
1463  // Handle intrinsic calls.
1464  if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI))
1465    return X86VisitIntrinsicCall(*II);
1466
1467  return DoSelectCall(I, 0);
1468}
1469
1470// Select either a call, or an llvm.memcpy/memmove/memset intrinsic
1471bool X86FastISel::DoSelectCall(const Instruction *I, const char *MemIntName) {
1472  const CallInst *CI = cast<CallInst>(I);
1473  const Value *Callee = CI->getCalledValue();
1474
1475  // Handle only C and fastcc calling conventions for now.
1476  ImmutableCallSite CS(CI);
1477  CallingConv::ID CC = CS.getCallingConv();
1478  if (CC != CallingConv::C && CC != CallingConv::Fast &&
1479      CC != CallingConv::X86_FastCall)
1480    return false;
1481
1482  // fastcc with -tailcallopt is intended to provide a guaranteed
1483  // tail call optimization. Fastisel doesn't know how to do that.
1484  if (CC == CallingConv::Fast && GuaranteedTailCallOpt)
1485    return false;
1486
1487  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
1488  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
1489  bool isVarArg = FTy->isVarArg();
1490
1491  // Don't know how to handle Win64 varargs yet.  Nothing special needed for
1492  // x86-32.  Special handling for x86-64 is implemented.
1493  if (isVarArg && Subtarget->isTargetWin64())
1494    return false;
1495
1496  // Fast-isel doesn't know about callee-pop yet.
1497  if (X86::isCalleePop(CC, Subtarget->is64Bit(), isVarArg,
1498                       GuaranteedTailCallOpt))
1499    return false;
1500
1501  // Check whether the function can return without sret-demotion.
1502  SmallVector<ISD::OutputArg, 4> Outs;
1503  SmallVector<uint64_t, 4> Offsets;
1504  GetReturnInfo(I->getType(), CS.getAttributes().getRetAttributes(),
1505                Outs, TLI, &Offsets);
1506  bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
1507					   *FuncInfo.MF, FTy->isVarArg(),
1508					   Outs, FTy->getContext());
1509  if (!CanLowerReturn)
1510    return false;
1511
1512  // Materialize callee address in a register. FIXME: GV address can be
1513  // handled with a CALLpcrel32 instead.
1514  X86AddressMode CalleeAM;
1515  if (!X86SelectCallAddress(Callee, CalleeAM))
1516    return false;
1517  unsigned CalleeOp = 0;
1518  const GlobalValue *GV = 0;
1519  if (CalleeAM.GV != 0) {
1520    GV = CalleeAM.GV;
1521  } else if (CalleeAM.Base.Reg != 0) {
1522    CalleeOp = CalleeAM.Base.Reg;
1523  } else
1524    return false;
1525
1526  // Deal with call operands first.
1527  SmallVector<const Value *, 8> ArgVals;
1528  SmallVector<unsigned, 8> Args;
1529  SmallVector<MVT, 8> ArgVTs;
1530  SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
1531  Args.reserve(CS.arg_size());
1532  ArgVals.reserve(CS.arg_size());
1533  ArgVTs.reserve(CS.arg_size());
1534  ArgFlags.reserve(CS.arg_size());
1535  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
1536       i != e; ++i) {
1537    // If we're lowering a mem intrinsic instead of a regular call, skip the
1538    // last two arguments, which should not passed to the underlying functions.
1539    if (MemIntName && e-i <= 2)
1540      break;
1541    Value *ArgVal = *i;
1542    ISD::ArgFlagsTy Flags;
1543    unsigned AttrInd = i - CS.arg_begin() + 1;
1544    if (CS.paramHasAttr(AttrInd, Attribute::SExt))
1545      Flags.setSExt();
1546    if (CS.paramHasAttr(AttrInd, Attribute::ZExt))
1547      Flags.setZExt();
1548
1549    if (CS.paramHasAttr(AttrInd, Attribute::ByVal)) {
1550      const PointerType *Ty = cast<PointerType>(ArgVal->getType());
1551      const Type *ElementTy = Ty->getElementType();
1552      unsigned FrameSize = TD.getTypeAllocSize(ElementTy);
1553      unsigned FrameAlign = CS.getParamAlignment(AttrInd);
1554      if (!FrameAlign)
1555        FrameAlign = TLI.getByValTypeAlignment(ElementTy);
1556      Flags.setByVal();
1557      Flags.setByValSize(FrameSize);
1558      Flags.setByValAlign(FrameAlign);
1559      if (!IsMemcpySmall(FrameSize))
1560        return false;
1561    }
1562
1563    if (CS.paramHasAttr(AttrInd, Attribute::InReg))
1564      Flags.setInReg();
1565    if (CS.paramHasAttr(AttrInd, Attribute::Nest))
1566      Flags.setNest();
1567
1568    // If this is an i1/i8/i16 argument, promote to i32 to avoid an extra
1569    // instruction.  This is safe because it is common to all fastisel supported
1570    // calling conventions on x86.
1571    if (ConstantInt *CI = dyn_cast<ConstantInt>(ArgVal)) {
1572      if (CI->getBitWidth() == 1 || CI->getBitWidth() == 8 ||
1573          CI->getBitWidth() == 16) {
1574        if (Flags.isSExt())
1575          ArgVal = ConstantExpr::getSExt(CI,Type::getInt32Ty(CI->getContext()));
1576        else
1577          ArgVal = ConstantExpr::getZExt(CI,Type::getInt32Ty(CI->getContext()));
1578      }
1579    }
1580
1581    unsigned ArgReg;
1582
1583    // Passing bools around ends up doing a trunc to i1 and passing it.
1584    // Codegen this as an argument + "and 1".
1585    if (ArgVal->getType()->isIntegerTy(1) && isa<TruncInst>(ArgVal) &&
1586        cast<TruncInst>(ArgVal)->getParent() == I->getParent() &&
1587        ArgVal->hasOneUse()) {
1588      ArgVal = cast<TruncInst>(ArgVal)->getOperand(0);
1589      ArgReg = getRegForValue(ArgVal);
1590      if (ArgReg == 0) return false;
1591
1592      MVT ArgVT;
1593      if (!isTypeLegal(ArgVal->getType(), ArgVT)) return false;
1594
1595      ArgReg = FastEmit_ri(ArgVT, ArgVT, ISD::AND, ArgReg,
1596                           ArgVal->hasOneUse(), 1);
1597    } else {
1598      ArgReg = getRegForValue(ArgVal);
1599    }
1600
1601    if (ArgReg == 0) return false;
1602
1603    const Type *ArgTy = ArgVal->getType();
1604    MVT ArgVT;
1605    if (!isTypeLegal(ArgTy, ArgVT))
1606      return false;
1607    if (ArgVT == MVT::x86mmx)
1608      return false;
1609    unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
1610    Flags.setOrigAlign(OriginalAlignment);
1611
1612    Args.push_back(ArgReg);
1613    ArgVals.push_back(ArgVal);
1614    ArgVTs.push_back(ArgVT);
1615    ArgFlags.push_back(Flags);
1616  }
1617
1618  // Analyze operands of the call, assigning locations to each operand.
1619  SmallVector<CCValAssign, 16> ArgLocs;
1620  CCState CCInfo(CC, isVarArg, *FuncInfo.MF, TM, ArgLocs,
1621		 I->getParent()->getContext());
1622
1623  // Allocate shadow area for Win64
1624  if (Subtarget->isTargetWin64())
1625    CCInfo.AllocateStack(32, 8);
1626
1627  CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CC_X86);
1628
1629  // Get a count of how many bytes are to be pushed on the stack.
1630  unsigned NumBytes = CCInfo.getNextStackOffset();
1631
1632  // Issue CALLSEQ_START
1633  unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
1634  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(AdjStackDown))
1635    .addImm(NumBytes);
1636
1637  // Process argument: walk the register/memloc assignments, inserting
1638  // copies / loads.
1639  SmallVector<unsigned, 4> RegArgs;
1640  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1641    CCValAssign &VA = ArgLocs[i];
1642    unsigned Arg = Args[VA.getValNo()];
1643    EVT ArgVT = ArgVTs[VA.getValNo()];
1644
1645    // Promote the value if needed.
1646    switch (VA.getLocInfo()) {
1647    default: llvm_unreachable("Unknown loc info!");
1648    case CCValAssign::Full: break;
1649    case CCValAssign::SExt: {
1650      assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
1651             "Unexpected extend");
1652      bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
1653                                       Arg, ArgVT, Arg);
1654      assert(Emitted && "Failed to emit a sext!"); (void)Emitted;
1655      ArgVT = VA.getLocVT();
1656      break;
1657    }
1658    case CCValAssign::ZExt: {
1659      assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
1660             "Unexpected extend");
1661      bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
1662                                       Arg, ArgVT, Arg);
1663      assert(Emitted && "Failed to emit a zext!"); (void)Emitted;
1664      ArgVT = VA.getLocVT();
1665      break;
1666    }
1667    case CCValAssign::AExt: {
1668      assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
1669             "Unexpected extend");
1670      bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(),
1671                                       Arg, ArgVT, Arg);
1672      if (!Emitted)
1673        Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
1674                                    Arg, ArgVT, Arg);
1675      if (!Emitted)
1676        Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
1677                                    Arg, ArgVT, Arg);
1678
1679      assert(Emitted && "Failed to emit a aext!"); (void)Emitted;
1680      ArgVT = VA.getLocVT();
1681      break;
1682    }
1683    case CCValAssign::BCvt: {
1684      unsigned BC = FastEmit_r(ArgVT.getSimpleVT(), VA.getLocVT(),
1685                               ISD::BITCAST, Arg, /*TODO: Kill=*/false);
1686      assert(BC != 0 && "Failed to emit a bitcast!");
1687      Arg = BC;
1688      ArgVT = VA.getLocVT();
1689      break;
1690    }
1691    }
1692
1693    if (VA.isRegLoc()) {
1694      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1695              VA.getLocReg()).addReg(Arg);
1696      RegArgs.push_back(VA.getLocReg());
1697    } else {
1698      unsigned LocMemOffset = VA.getLocMemOffset();
1699      X86AddressMode AM;
1700      AM.Base.Reg = StackPtr;
1701      AM.Disp = LocMemOffset;
1702      const Value *ArgVal = ArgVals[VA.getValNo()];
1703      ISD::ArgFlagsTy Flags = ArgFlags[VA.getValNo()];
1704
1705      if (Flags.isByVal()) {
1706        X86AddressMode SrcAM;
1707        SrcAM.Base.Reg = Arg;
1708        bool Res = TryEmitSmallMemcpy(AM, SrcAM, Flags.getByValSize());
1709        assert(Res && "memcpy length already checked!"); (void)Res;
1710      } else if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal)) {
1711        // If this is a really simple value, emit this with the Value* version
1712        //of X86FastEmitStore.  If it isn't simple, we don't want to do this,
1713        // as it can cause us to reevaluate the argument.
1714        X86FastEmitStore(ArgVT, ArgVal, AM);
1715      } else {
1716        X86FastEmitStore(ArgVT, Arg, AM);
1717      }
1718    }
1719  }
1720
1721  // ELF / PIC requires GOT in the EBX register before function calls via PLT
1722  // GOT pointer.
1723  if (Subtarget->isPICStyleGOT()) {
1724    unsigned Base = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
1725    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1726            X86::EBX).addReg(Base);
1727  }
1728
1729  if (Subtarget->is64Bit() && isVarArg && !Subtarget->isTargetWin64()) {
1730    // Count the number of XMM registers allocated.
1731    static const unsigned XMMArgRegs[] = {
1732      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1733      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1734    };
1735    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1736    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::MOV8ri),
1737            X86::AL).addImm(NumXMMRegs);
1738  }
1739
1740  // Issue the call.
1741  MachineInstrBuilder MIB;
1742  if (CalleeOp) {
1743    // Register-indirect call.
1744    unsigned CallOpc;
1745    if (Subtarget->isTargetWin64())
1746      CallOpc = X86::WINCALL64r;
1747    else if (Subtarget->is64Bit())
1748      CallOpc = X86::CALL64r;
1749    else
1750      CallOpc = X86::CALL32r;
1751    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CallOpc))
1752      .addReg(CalleeOp);
1753
1754  } else {
1755    // Direct call.
1756    assert(GV && "Not a direct call");
1757    unsigned CallOpc;
1758    if (Subtarget->isTargetWin64())
1759      CallOpc = X86::WINCALL64pcrel32;
1760    else if (Subtarget->is64Bit())
1761      CallOpc = X86::CALL64pcrel32;
1762    else
1763      CallOpc = X86::CALLpcrel32;
1764
1765    // See if we need any target-specific flags on the GV operand.
1766    unsigned char OpFlags = 0;
1767
1768    // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
1769    // external symbols most go through the PLT in PIC mode.  If the symbol
1770    // has hidden or protected visibility, or if it is static or local, then
1771    // we don't need to use the PLT - we can directly call it.
1772    if (Subtarget->isTargetELF() &&
1773        TM.getRelocationModel() == Reloc::PIC_ &&
1774        GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
1775      OpFlags = X86II::MO_PLT;
1776    } else if (Subtarget->isPICStyleStubAny() &&
1777               (GV->isDeclaration() || GV->isWeakForLinker()) &&
1778               (!Subtarget->getTargetTriple().isMacOSX() ||
1779                Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
1780      // PC-relative references to external symbols should go through $stub,
1781      // unless we're building with the leopard linker or later, which
1782      // automatically synthesizes these stubs.
1783      OpFlags = X86II::MO_DARWIN_STUB;
1784    }
1785
1786
1787    MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CallOpc));
1788    if (MemIntName)
1789      MIB.addExternalSymbol(MemIntName, OpFlags);
1790    else
1791      MIB.addGlobalAddress(GV, 0, OpFlags);
1792  }
1793
1794  // Add an implicit use GOT pointer in EBX.
1795  if (Subtarget->isPICStyleGOT())
1796    MIB.addReg(X86::EBX);
1797
1798  if (Subtarget->is64Bit() && isVarArg && !Subtarget->isTargetWin64())
1799    MIB.addReg(X86::AL);
1800
1801  // Add implicit physical register uses to the call.
1802  for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
1803    MIB.addReg(RegArgs[i]);
1804
1805  // Issue CALLSEQ_END
1806  unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
1807  unsigned NumBytesCallee = 0;
1808  if (!Subtarget->is64Bit() && CS.paramHasAttr(1, Attribute::StructRet))
1809    NumBytesCallee = 4;
1810  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(AdjStackUp))
1811    .addImm(NumBytes).addImm(NumBytesCallee);
1812
1813  // Build info for return calling conv lowering code.
1814  // FIXME: This is practically a copy-paste from TargetLowering::LowerCallTo.
1815  SmallVector<ISD::InputArg, 32> Ins;
1816  SmallVector<EVT, 4> RetTys;
1817  ComputeValueVTs(TLI, I->getType(), RetTys);
1818  for (unsigned i = 0, e = RetTys.size(); i != e; ++i) {
1819    EVT VT = RetTys[i];
1820    EVT RegisterVT = TLI.getRegisterType(I->getParent()->getContext(), VT);
1821    unsigned NumRegs = TLI.getNumRegisters(I->getParent()->getContext(), VT);
1822    for (unsigned j = 0; j != NumRegs; ++j) {
1823      ISD::InputArg MyFlags;
1824      MyFlags.VT = RegisterVT.getSimpleVT();
1825      MyFlags.Used = !CS.getInstruction()->use_empty();
1826      if (CS.paramHasAttr(0, Attribute::SExt))
1827        MyFlags.Flags.setSExt();
1828      if (CS.paramHasAttr(0, Attribute::ZExt))
1829        MyFlags.Flags.setZExt();
1830      if (CS.paramHasAttr(0, Attribute::InReg))
1831        MyFlags.Flags.setInReg();
1832      Ins.push_back(MyFlags);
1833    }
1834  }
1835
1836  // Now handle call return values.
1837  SmallVector<unsigned, 4> UsedRegs;
1838  SmallVector<CCValAssign, 16> RVLocs;
1839  CCState CCRetInfo(CC, false, *FuncInfo.MF, TM, RVLocs,
1840		    I->getParent()->getContext());
1841  unsigned ResultReg = FuncInfo.CreateRegs(I->getType());
1842  CCRetInfo.AnalyzeCallResult(Ins, RetCC_X86);
1843  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1844    EVT CopyVT = RVLocs[i].getValVT();
1845    unsigned CopyReg = ResultReg + i;
1846
1847    // If this is a call to a function that returns an fp value on the x87 fp
1848    // stack, but where we prefer to use the value in xmm registers, copy it
1849    // out as F80 and use a truncate to move it from fp stack reg to xmm reg.
1850    if ((RVLocs[i].getLocReg() == X86::ST0 ||
1851         RVLocs[i].getLocReg() == X86::ST1)) {
1852      if (isScalarFPTypeInSSEReg(RVLocs[i].getValVT())) {
1853        CopyVT = MVT::f80;
1854        CopyReg = createResultReg(X86::RFP80RegisterClass);
1855      }
1856      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::FpPOP_RETVAL),
1857              CopyReg);
1858    } else {
1859      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1860              CopyReg).addReg(RVLocs[i].getLocReg());
1861      UsedRegs.push_back(RVLocs[i].getLocReg());
1862    }
1863
1864    if (CopyVT != RVLocs[i].getValVT()) {
1865      // Round the F80 the right size, which also moves to the appropriate xmm
1866      // register. This is accomplished by storing the F80 value in memory and
1867      // then loading it back. Ewww...
1868      EVT ResVT = RVLocs[i].getValVT();
1869      unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64;
1870      unsigned MemSize = ResVT.getSizeInBits()/8;
1871      int FI = MFI.CreateStackObject(MemSize, MemSize, false);
1872      addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1873                                TII.get(Opc)), FI)
1874        .addReg(CopyReg);
1875      Opc = ResVT == MVT::f32 ? X86::MOVSSrm : X86::MOVSDrm;
1876      addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1877                                TII.get(Opc), ResultReg + i), FI);
1878    }
1879  }
1880
1881  if (RVLocs.size())
1882    UpdateValueMap(I, ResultReg, RVLocs.size());
1883
1884  // Set all unused physreg defs as dead.
1885  static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
1886
1887  return true;
1888}
1889
1890
1891bool
1892X86FastISel::TargetSelectInstruction(const Instruction *I)  {
1893  switch (I->getOpcode()) {
1894  default: break;
1895  case Instruction::Load:
1896    return X86SelectLoad(I);
1897  case Instruction::Store:
1898    return X86SelectStore(I);
1899  case Instruction::Ret:
1900    return X86SelectRet(I);
1901  case Instruction::ICmp:
1902  case Instruction::FCmp:
1903    return X86SelectCmp(I);
1904  case Instruction::ZExt:
1905    return X86SelectZExt(I);
1906  case Instruction::Br:
1907    return X86SelectBranch(I);
1908  case Instruction::Call:
1909    return X86SelectCall(I);
1910  case Instruction::LShr:
1911  case Instruction::AShr:
1912  case Instruction::Shl:
1913    return X86SelectShift(I);
1914  case Instruction::Select:
1915    return X86SelectSelect(I);
1916  case Instruction::Trunc:
1917    return X86SelectTrunc(I);
1918  case Instruction::FPExt:
1919    return X86SelectFPExt(I);
1920  case Instruction::FPTrunc:
1921    return X86SelectFPTrunc(I);
1922  case Instruction::IntToPtr: // Deliberate fall-through.
1923  case Instruction::PtrToInt: {
1924    EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
1925    EVT DstVT = TLI.getValueType(I->getType());
1926    if (DstVT.bitsGT(SrcVT))
1927      return X86SelectZExt(I);
1928    if (DstVT.bitsLT(SrcVT))
1929      return X86SelectTrunc(I);
1930    unsigned Reg = getRegForValue(I->getOperand(0));
1931    if (Reg == 0) return false;
1932    UpdateValueMap(I, Reg);
1933    return true;
1934  }
1935  }
1936
1937  return false;
1938}
1939
1940unsigned X86FastISel::TargetMaterializeConstant(const Constant *C) {
1941  MVT VT;
1942  if (!isTypeLegal(C->getType(), VT))
1943    return false;
1944
1945  // Get opcode and regclass of the output for the given load instruction.
1946  unsigned Opc = 0;
1947  const TargetRegisterClass *RC = NULL;
1948  switch (VT.SimpleTy) {
1949  default: return false;
1950  case MVT::i8:
1951    Opc = X86::MOV8rm;
1952    RC  = X86::GR8RegisterClass;
1953    break;
1954  case MVT::i16:
1955    Opc = X86::MOV16rm;
1956    RC  = X86::GR16RegisterClass;
1957    break;
1958  case MVT::i32:
1959    Opc = X86::MOV32rm;
1960    RC  = X86::GR32RegisterClass;
1961    break;
1962  case MVT::i64:
1963    // Must be in x86-64 mode.
1964    Opc = X86::MOV64rm;
1965    RC  = X86::GR64RegisterClass;
1966    break;
1967  case MVT::f32:
1968    if (Subtarget->hasSSE1()) {
1969      Opc = X86::MOVSSrm;
1970      RC  = X86::FR32RegisterClass;
1971    } else {
1972      Opc = X86::LD_Fp32m;
1973      RC  = X86::RFP32RegisterClass;
1974    }
1975    break;
1976  case MVT::f64:
1977    if (Subtarget->hasSSE2()) {
1978      Opc = X86::MOVSDrm;
1979      RC  = X86::FR64RegisterClass;
1980    } else {
1981      Opc = X86::LD_Fp64m;
1982      RC  = X86::RFP64RegisterClass;
1983    }
1984    break;
1985  case MVT::f80:
1986    // No f80 support yet.
1987    return false;
1988  }
1989
1990  // Materialize addresses with LEA instructions.
1991  if (isa<GlobalValue>(C)) {
1992    X86AddressMode AM;
1993    if (X86SelectAddress(C, AM)) {
1994      // If the expression is just a basereg, then we're done, otherwise we need
1995      // to emit an LEA.
1996      if (AM.BaseType == X86AddressMode::RegBase &&
1997          AM.IndexReg == 0 && AM.Disp == 0 && AM.GV == 0)
1998        return AM.Base.Reg;
1999
2000      Opc = TLI.getPointerTy() == MVT::i32 ? X86::LEA32r : X86::LEA64r;
2001      unsigned ResultReg = createResultReg(RC);
2002      addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
2003                             TII.get(Opc), ResultReg), AM);
2004      return ResultReg;
2005    }
2006    return 0;
2007  }
2008
2009  // MachineConstantPool wants an explicit alignment.
2010  unsigned Align = TD.getPrefTypeAlignment(C->getType());
2011  if (Align == 0) {
2012    // Alignment of vector types.  FIXME!
2013    Align = TD.getTypeAllocSize(C->getType());
2014  }
2015
2016  // x86-32 PIC requires a PIC base register for constant pools.
2017  unsigned PICBase = 0;
2018  unsigned char OpFlag = 0;
2019  if (Subtarget->isPICStyleStubPIC()) { // Not dynamic-no-pic
2020    OpFlag = X86II::MO_PIC_BASE_OFFSET;
2021    PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
2022  } else if (Subtarget->isPICStyleGOT()) {
2023    OpFlag = X86II::MO_GOTOFF;
2024    PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
2025  } else if (Subtarget->isPICStyleRIPRel() &&
2026             TM.getCodeModel() == CodeModel::Small) {
2027    PICBase = X86::RIP;
2028  }
2029
2030  // Create the load from the constant pool.
2031  unsigned MCPOffset = MCP.getConstantPoolIndex(C, Align);
2032  unsigned ResultReg = createResultReg(RC);
2033  addConstantPoolReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
2034                                   TII.get(Opc), ResultReg),
2035                           MCPOffset, PICBase, OpFlag);
2036
2037  return ResultReg;
2038}
2039
2040unsigned X86FastISel::TargetMaterializeAlloca(const AllocaInst *C) {
2041  // Fail on dynamic allocas. At this point, getRegForValue has already
2042  // checked its CSE maps, so if we're here trying to handle a dynamic
2043  // alloca, we're not going to succeed. X86SelectAddress has a
2044  // check for dynamic allocas, because it's called directly from
2045  // various places, but TargetMaterializeAlloca also needs a check
2046  // in order to avoid recursion between getRegForValue,
2047  // X86SelectAddrss, and TargetMaterializeAlloca.
2048  if (!FuncInfo.StaticAllocaMap.count(C))
2049    return 0;
2050
2051  X86AddressMode AM;
2052  if (!X86SelectAddress(C, AM))
2053    return 0;
2054  unsigned Opc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
2055  TargetRegisterClass* RC = TLI.getRegClassFor(TLI.getPointerTy());
2056  unsigned ResultReg = createResultReg(RC);
2057  addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
2058                         TII.get(Opc), ResultReg), AM);
2059  return ResultReg;
2060}
2061
2062unsigned X86FastISel::TargetMaterializeFloatZero(const ConstantFP *CF) {
2063  MVT VT;
2064  if (!isTypeLegal(CF->getType(), VT))
2065    return false;
2066
2067  // Get opcode and regclass for the given zero.
2068  unsigned Opc = 0;
2069  const TargetRegisterClass *RC = NULL;
2070  switch (VT.SimpleTy) {
2071    default: return false;
2072    case MVT::f32:
2073      if (Subtarget->hasSSE1()) {
2074        Opc = X86::FsFLD0SS;
2075        RC  = X86::FR32RegisterClass;
2076      } else {
2077        Opc = X86::LD_Fp032;
2078        RC  = X86::RFP32RegisterClass;
2079      }
2080      break;
2081    case MVT::f64:
2082      if (Subtarget->hasSSE2()) {
2083        Opc = X86::FsFLD0SD;
2084        RC  = X86::FR64RegisterClass;
2085      } else {
2086        Opc = X86::LD_Fp064;
2087        RC  = X86::RFP64RegisterClass;
2088      }
2089      break;
2090    case MVT::f80:
2091      // No f80 support yet.
2092      return false;
2093  }
2094
2095  unsigned ResultReg = createResultReg(RC);
2096  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg);
2097  return ResultReg;
2098}
2099
2100
2101/// TryToFoldLoad - The specified machine instr operand is a vreg, and that
2102/// vreg is being provided by the specified load instruction.  If possible,
2103/// try to fold the load as an operand to the instruction, returning true if
2104/// possible.
2105bool X86FastISel::TryToFoldLoad(MachineInstr *MI, unsigned OpNo,
2106                                const LoadInst *LI) {
2107  X86AddressMode AM;
2108  if (!X86SelectAddress(LI->getOperand(0), AM))
2109    return false;
2110
2111  X86InstrInfo &XII = (X86InstrInfo&)TII;
2112
2113  unsigned Size = TD.getTypeAllocSize(LI->getType());
2114  unsigned Alignment = LI->getAlignment();
2115
2116  SmallVector<MachineOperand, 8> AddrOps;
2117  AM.getFullAddress(AddrOps);
2118
2119  MachineInstr *Result =
2120    XII.foldMemoryOperandImpl(*FuncInfo.MF, MI, OpNo, AddrOps, Size, Alignment);
2121  if (Result == 0) return false;
2122
2123  FuncInfo.MBB->insert(FuncInfo.InsertPt, Result);
2124  MI->eraseFromParent();
2125  return true;
2126}
2127
2128
2129namespace llvm {
2130  llvm::FastISel *X86::createFastISel(FunctionLoweringInfo &funcInfo) {
2131    return new X86FastISel(funcInfo);
2132  }
2133}
2134