X86FastISel.cpp revision 195098
1//===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the X86-specific support for the FastISel class. Much
11// of the target-specific code is generated by tablegen in the file
12// X86GenFastISel.inc, which is #included here.
13//
14//===----------------------------------------------------------------------===//
15
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86RegisterInfo.h"
20#include "X86Subtarget.h"
21#include "X86TargetMachine.h"
22#include "llvm/CallingConv.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/GlobalVariable.h"
25#include "llvm/Instructions.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/CodeGen/FastISel.h"
28#include "llvm/CodeGen/MachineConstantPool.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineRegisterInfo.h"
31#include "llvm/Support/CallSite.h"
32#include "llvm/Support/GetElementPtrTypeIterator.h"
33#include "llvm/Target/TargetOptions.h"
34using namespace llvm;
35
36namespace {
37
38class X86FastISel : public FastISel {
39  /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
40  /// make the right decision when generating code for different targets.
41  const X86Subtarget *Subtarget;
42
43  /// StackPtr - Register used as the stack pointer.
44  ///
45  unsigned StackPtr;
46
47  /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
48  /// floating point ops.
49  /// When SSE is available, use it for f32 operations.
50  /// When SSE2 is available, use it for f64 operations.
51  bool X86ScalarSSEf64;
52  bool X86ScalarSSEf32;
53
54public:
55  explicit X86FastISel(MachineFunction &mf,
56                       MachineModuleInfo *mmi,
57                       DwarfWriter *dw,
58                       DenseMap<const Value *, unsigned> &vm,
59                       DenseMap<const BasicBlock *, MachineBasicBlock *> &bm,
60                       DenseMap<const AllocaInst *, int> &am
61#ifndef NDEBUG
62                       , SmallSet<Instruction*, 8> &cil
63#endif
64                       )
65    : FastISel(mf, mmi, dw, vm, bm, am
66#ifndef NDEBUG
67               , cil
68#endif
69               ) {
70    Subtarget = &TM.getSubtarget<X86Subtarget>();
71    StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
72    X86ScalarSSEf64 = Subtarget->hasSSE2();
73    X86ScalarSSEf32 = Subtarget->hasSSE1();
74  }
75
76  virtual bool TargetSelectInstruction(Instruction *I);
77
78#include "X86GenFastISel.inc"
79
80private:
81  bool X86FastEmitCompare(Value *LHS, Value *RHS, MVT VT);
82
83  bool X86FastEmitLoad(MVT VT, const X86AddressMode &AM, unsigned &RR);
84
85  bool X86FastEmitStore(MVT VT, Value *Val,
86                        const X86AddressMode &AM);
87  bool X86FastEmitStore(MVT VT, unsigned Val,
88                        const X86AddressMode &AM);
89
90  bool X86FastEmitExtend(ISD::NodeType Opc, MVT DstVT, unsigned Src, MVT SrcVT,
91                         unsigned &ResultReg);
92
93  bool X86SelectAddress(Value *V, X86AddressMode &AM, bool isCall);
94
95  bool X86SelectLoad(Instruction *I);
96
97  bool X86SelectStore(Instruction *I);
98
99  bool X86SelectCmp(Instruction *I);
100
101  bool X86SelectZExt(Instruction *I);
102
103  bool X86SelectBranch(Instruction *I);
104
105  bool X86SelectShift(Instruction *I);
106
107  bool X86SelectSelect(Instruction *I);
108
109  bool X86SelectTrunc(Instruction *I);
110
111  bool X86SelectFPExt(Instruction *I);
112  bool X86SelectFPTrunc(Instruction *I);
113
114  bool X86SelectExtractValue(Instruction *I);
115
116  bool X86VisitIntrinsicCall(IntrinsicInst &I);
117  bool X86SelectCall(Instruction *I);
118
119  CCAssignFn *CCAssignFnForCall(unsigned CC, bool isTailCall = false);
120
121  const X86InstrInfo *getInstrInfo() const {
122    return getTargetMachine()->getInstrInfo();
123  }
124  const X86TargetMachine *getTargetMachine() const {
125    return static_cast<const X86TargetMachine *>(&TM);
126  }
127
128  unsigned TargetMaterializeConstant(Constant *C);
129
130  unsigned TargetMaterializeAlloca(AllocaInst *C);
131
132  /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
133  /// computed in an SSE register, not on the X87 floating point stack.
134  bool isScalarFPTypeInSSEReg(MVT VT) const {
135    return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
136      (VT == MVT::f32 && X86ScalarSSEf32);   // f32 is when SSE1
137  }
138
139  bool isTypeLegal(const Type *Ty, MVT &VT, bool AllowI1 = false);
140};
141
142} // end anonymous namespace.
143
144bool X86FastISel::isTypeLegal(const Type *Ty, MVT &VT, bool AllowI1) {
145  VT = TLI.getValueType(Ty, /*HandleUnknown=*/true);
146  if (VT == MVT::Other || !VT.isSimple())
147    // Unhandled type. Halt "fast" selection and bail.
148    return false;
149
150  // For now, require SSE/SSE2 for performing floating-point operations,
151  // since x87 requires additional work.
152  if (VT == MVT::f64 && !X86ScalarSSEf64)
153     return false;
154  if (VT == MVT::f32 && !X86ScalarSSEf32)
155     return false;
156  // Similarly, no f80 support yet.
157  if (VT == MVT::f80)
158    return false;
159  // We only handle legal types. For example, on x86-32 the instruction
160  // selector contains all of the 64-bit instructions from x86-64,
161  // under the assumption that i64 won't be used if the target doesn't
162  // support it.
163  return (AllowI1 && VT == MVT::i1) || TLI.isTypeLegal(VT);
164}
165
166#include "X86GenCallingConv.inc"
167
168/// CCAssignFnForCall - Selects the correct CCAssignFn for a given calling
169/// convention.
170CCAssignFn *X86FastISel::CCAssignFnForCall(unsigned CC, bool isTaillCall) {
171  if (Subtarget->is64Bit()) {
172    if (Subtarget->isTargetWin64())
173      return CC_X86_Win64_C;
174    else
175      return CC_X86_64_C;
176  }
177
178  if (CC == CallingConv::X86_FastCall)
179    return CC_X86_32_FastCall;
180  else if (CC == CallingConv::Fast)
181    return CC_X86_32_FastCC;
182  else
183    return CC_X86_32_C;
184}
185
186/// X86FastEmitLoad - Emit a machine instruction to load a value of type VT.
187/// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV.
188/// Return true and the result register by reference if it is possible.
189bool X86FastISel::X86FastEmitLoad(MVT VT, const X86AddressMode &AM,
190                                  unsigned &ResultReg) {
191  // Get opcode and regclass of the output for the given load instruction.
192  unsigned Opc = 0;
193  const TargetRegisterClass *RC = NULL;
194  switch (VT.getSimpleVT()) {
195  default: return false;
196  case MVT::i8:
197    Opc = X86::MOV8rm;
198    RC  = X86::GR8RegisterClass;
199    break;
200  case MVT::i16:
201    Opc = X86::MOV16rm;
202    RC  = X86::GR16RegisterClass;
203    break;
204  case MVT::i32:
205    Opc = X86::MOV32rm;
206    RC  = X86::GR32RegisterClass;
207    break;
208  case MVT::i64:
209    // Must be in x86-64 mode.
210    Opc = X86::MOV64rm;
211    RC  = X86::GR64RegisterClass;
212    break;
213  case MVT::f32:
214    if (Subtarget->hasSSE1()) {
215      Opc = X86::MOVSSrm;
216      RC  = X86::FR32RegisterClass;
217    } else {
218      Opc = X86::LD_Fp32m;
219      RC  = X86::RFP32RegisterClass;
220    }
221    break;
222  case MVT::f64:
223    if (Subtarget->hasSSE2()) {
224      Opc = X86::MOVSDrm;
225      RC  = X86::FR64RegisterClass;
226    } else {
227      Opc = X86::LD_Fp64m;
228      RC  = X86::RFP64RegisterClass;
229    }
230    break;
231  case MVT::f80:
232    // No f80 support yet.
233    return false;
234  }
235
236  ResultReg = createResultReg(RC);
237  addFullAddress(BuildMI(MBB, DL, TII.get(Opc), ResultReg), AM);
238  return true;
239}
240
241/// X86FastEmitStore - Emit a machine instruction to store a value Val of
242/// type VT. The address is either pre-computed, consisted of a base ptr, Ptr
243/// and a displacement offset, or a GlobalAddress,
244/// i.e. V. Return true if it is possible.
245bool
246X86FastISel::X86FastEmitStore(MVT VT, unsigned Val,
247                              const X86AddressMode &AM) {
248  // Get opcode and regclass of the output for the given store instruction.
249  unsigned Opc = 0;
250  switch (VT.getSimpleVT()) {
251  case MVT::f80: // No f80 support yet.
252  default: return false;
253  case MVT::i8:  Opc = X86::MOV8mr;  break;
254  case MVT::i16: Opc = X86::MOV16mr; break;
255  case MVT::i32: Opc = X86::MOV32mr; break;
256  case MVT::i64: Opc = X86::MOV64mr; break; // Must be in x86-64 mode.
257  case MVT::f32:
258    Opc = Subtarget->hasSSE1() ? X86::MOVSSmr : X86::ST_Fp32m;
259    break;
260  case MVT::f64:
261    Opc = Subtarget->hasSSE2() ? X86::MOVSDmr : X86::ST_Fp64m;
262    break;
263  }
264
265  addFullAddress(BuildMI(MBB, DL, TII.get(Opc)), AM).addReg(Val);
266  return true;
267}
268
269bool X86FastISel::X86FastEmitStore(MVT VT, Value *Val,
270                                   const X86AddressMode &AM) {
271  // Handle 'null' like i32/i64 0.
272  if (isa<ConstantPointerNull>(Val))
273    Val = Constant::getNullValue(TD.getIntPtrType());
274
275  // If this is a store of a simple constant, fold the constant into the store.
276  if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
277    unsigned Opc = 0;
278    switch (VT.getSimpleVT()) {
279    default: break;
280    case MVT::i8:  Opc = X86::MOV8mi;  break;
281    case MVT::i16: Opc = X86::MOV16mi; break;
282    case MVT::i32: Opc = X86::MOV32mi; break;
283    case MVT::i64:
284      // Must be a 32-bit sign extended value.
285      if ((int)CI->getSExtValue() == CI->getSExtValue())
286        Opc = X86::MOV64mi32;
287      break;
288    }
289
290    if (Opc) {
291      addFullAddress(BuildMI(MBB, DL, TII.get(Opc)), AM)
292                             .addImm(CI->getSExtValue());
293      return true;
294    }
295  }
296
297  unsigned ValReg = getRegForValue(Val);
298  if (ValReg == 0)
299    return false;
300
301  return X86FastEmitStore(VT, ValReg, AM);
302}
303
304/// X86FastEmitExtend - Emit a machine instruction to extend a value Src of
305/// type SrcVT to type DstVT using the specified extension opcode Opc (e.g.
306/// ISD::SIGN_EXTEND).
307bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, MVT DstVT,
308                                    unsigned Src, MVT SrcVT,
309                                    unsigned &ResultReg) {
310  unsigned RR = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc, Src);
311
312  if (RR != 0) {
313    ResultReg = RR;
314    return true;
315  } else
316    return false;
317}
318
319/// X86SelectAddress - Attempt to fill in an address from the given value.
320///
321bool X86FastISel::X86SelectAddress(Value *V, X86AddressMode &AM, bool isCall) {
322  User *U = NULL;
323  unsigned Opcode = Instruction::UserOp1;
324  if (Instruction *I = dyn_cast<Instruction>(V)) {
325    Opcode = I->getOpcode();
326    U = I;
327  } else if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
328    Opcode = C->getOpcode();
329    U = C;
330  }
331
332  switch (Opcode) {
333  default: break;
334  case Instruction::BitCast:
335    // Look past bitcasts.
336    return X86SelectAddress(U->getOperand(0), AM, isCall);
337
338  case Instruction::IntToPtr:
339    // Look past no-op inttoptrs.
340    if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
341      return X86SelectAddress(U->getOperand(0), AM, isCall);
342    break;
343
344  case Instruction::PtrToInt:
345    // Look past no-op ptrtoints.
346    if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
347      return X86SelectAddress(U->getOperand(0), AM, isCall);
348    break;
349
350  case Instruction::Alloca: {
351    if (isCall) break;
352    // Do static allocas.
353    const AllocaInst *A = cast<AllocaInst>(V);
354    DenseMap<const AllocaInst*, int>::iterator SI = StaticAllocaMap.find(A);
355    if (SI != StaticAllocaMap.end()) {
356      AM.BaseType = X86AddressMode::FrameIndexBase;
357      AM.Base.FrameIndex = SI->second;
358      return true;
359    }
360    break;
361  }
362
363  case Instruction::Add: {
364    if (isCall) break;
365    // Adds of constants are common and easy enough.
366    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
367      uint64_t Disp = (int32_t)AM.Disp + (uint64_t)CI->getSExtValue();
368      // They have to fit in the 32-bit signed displacement field though.
369      if (isInt32(Disp)) {
370        AM.Disp = (uint32_t)Disp;
371        return X86SelectAddress(U->getOperand(0), AM, isCall);
372      }
373    }
374    break;
375  }
376
377  case Instruction::GetElementPtr: {
378    if (isCall) break;
379    // Pattern-match simple GEPs.
380    uint64_t Disp = (int32_t)AM.Disp;
381    unsigned IndexReg = AM.IndexReg;
382    unsigned Scale = AM.Scale;
383    gep_type_iterator GTI = gep_type_begin(U);
384    // Iterate through the indices, folding what we can. Constants can be
385    // folded, and one dynamic index can be handled, if the scale is supported.
386    for (User::op_iterator i = U->op_begin() + 1, e = U->op_end();
387         i != e; ++i, ++GTI) {
388      Value *Op = *i;
389      if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
390        const StructLayout *SL = TD.getStructLayout(STy);
391        unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
392        Disp += SL->getElementOffset(Idx);
393      } else {
394        uint64_t S = TD.getTypeAllocSize(GTI.getIndexedType());
395        if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
396          // Constant-offset addressing.
397          Disp += CI->getSExtValue() * S;
398        } else if (IndexReg == 0 &&
399                   (!AM.GV || !Subtarget->isPICStyleRIPRel()) &&
400                   (S == 1 || S == 2 || S == 4 || S == 8)) {
401          // Scaled-index addressing.
402          Scale = S;
403          IndexReg = getRegForGEPIndex(Op);
404          if (IndexReg == 0)
405            return false;
406        } else
407          // Unsupported.
408          goto unsupported_gep;
409      }
410    }
411    // Check for displacement overflow.
412    if (!isInt32(Disp))
413      break;
414    // Ok, the GEP indices were covered by constant-offset and scaled-index
415    // addressing. Update the address state and move on to examining the base.
416    AM.IndexReg = IndexReg;
417    AM.Scale = Scale;
418    AM.Disp = (uint32_t)Disp;
419    return X86SelectAddress(U->getOperand(0), AM, isCall);
420  unsupported_gep:
421    // Ok, the GEP indices weren't all covered.
422    break;
423  }
424  }
425
426  // Handle constant address.
427  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
428    // Can't handle alternate code models yet.
429    if (TM.getCodeModel() != CodeModel::Default &&
430        TM.getCodeModel() != CodeModel::Small)
431      return false;
432
433    // RIP-relative addresses can't have additional register operands.
434    if (Subtarget->isPICStyleRIPRel() &&
435        (AM.Base.Reg != 0 || AM.IndexReg != 0))
436      return false;
437
438    // Can't handle TLS yet.
439    if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
440      if (GVar->isThreadLocal())
441        return false;
442
443    // Set up the basic address.
444    AM.GV = GV;
445
446    if (!isCall &&
447        TM.getRelocationModel() == Reloc::PIC_ &&
448        !Subtarget->is64Bit())
449      AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(&MF);
450
451    // Emit an extra load if the ABI requires it.
452    if (Subtarget->GVRequiresExtraLoad(GV, TM, isCall)) {
453      // Check to see if we've already materialized this
454      // value in a register in this block.
455      if (unsigned Reg = LocalValueMap[V]) {
456        AM.Base.Reg = Reg;
457        AM.GV = 0;
458        return true;
459      }
460      // Issue load from stub if necessary.
461      unsigned Opc = 0;
462      const TargetRegisterClass *RC = NULL;
463      if (TLI.getPointerTy() == MVT::i32) {
464        Opc = X86::MOV32rm;
465        RC  = X86::GR32RegisterClass;
466      } else {
467        Opc = X86::MOV64rm;
468        RC  = X86::GR64RegisterClass;
469      }
470
471      X86AddressMode StubAM;
472      StubAM.Base.Reg = AM.Base.Reg;
473      StubAM.GV = AM.GV;
474      unsigned ResultReg = createResultReg(RC);
475      addFullAddress(BuildMI(MBB, DL, TII.get(Opc), ResultReg), StubAM);
476
477      // Now construct the final address. Note that the Disp, Scale,
478      // and Index values may already be set here.
479      AM.Base.Reg = ResultReg;
480      AM.GV = 0;
481
482      // Prevent loading GV stub multiple times in same MBB.
483      LocalValueMap[V] = AM.Base.Reg;
484    } else if (Subtarget->isPICStyleRIPRel()) {
485      // Use rip-relative addressing if we can.
486      AM.Base.Reg = X86::RIP;
487    }
488
489    return true;
490  }
491
492  // If all else fails, try to materialize the value in a register.
493  if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
494    if (AM.Base.Reg == 0) {
495      AM.Base.Reg = getRegForValue(V);
496      return AM.Base.Reg != 0;
497    }
498    if (AM.IndexReg == 0) {
499      assert(AM.Scale == 1 && "Scale with no index!");
500      AM.IndexReg = getRegForValue(V);
501      return AM.IndexReg != 0;
502    }
503  }
504
505  return false;
506}
507
508/// X86SelectStore - Select and emit code to implement store instructions.
509bool X86FastISel::X86SelectStore(Instruction* I) {
510  MVT VT;
511  if (!isTypeLegal(I->getOperand(0)->getType(), VT))
512    return false;
513
514  X86AddressMode AM;
515  if (!X86SelectAddress(I->getOperand(1), AM, false))
516    return false;
517
518  return X86FastEmitStore(VT, I->getOperand(0), AM);
519}
520
521/// X86SelectLoad - Select and emit code to implement load instructions.
522///
523bool X86FastISel::X86SelectLoad(Instruction *I)  {
524  MVT VT;
525  if (!isTypeLegal(I->getType(), VT))
526    return false;
527
528  X86AddressMode AM;
529  if (!X86SelectAddress(I->getOperand(0), AM, false))
530    return false;
531
532  unsigned ResultReg = 0;
533  if (X86FastEmitLoad(VT, AM, ResultReg)) {
534    UpdateValueMap(I, ResultReg);
535    return true;
536  }
537  return false;
538}
539
540static unsigned X86ChooseCmpOpcode(MVT VT) {
541  switch (VT.getSimpleVT()) {
542  default:       return 0;
543  case MVT::i8:  return X86::CMP8rr;
544  case MVT::i16: return X86::CMP16rr;
545  case MVT::i32: return X86::CMP32rr;
546  case MVT::i64: return X86::CMP64rr;
547  case MVT::f32: return X86::UCOMISSrr;
548  case MVT::f64: return X86::UCOMISDrr;
549  }
550}
551
552/// X86ChooseCmpImmediateOpcode - If we have a comparison with RHS as the RHS
553/// of the comparison, return an opcode that works for the compare (e.g.
554/// CMP32ri) otherwise return 0.
555static unsigned X86ChooseCmpImmediateOpcode(MVT VT, ConstantInt *RHSC) {
556  switch (VT.getSimpleVT()) {
557  // Otherwise, we can't fold the immediate into this comparison.
558  default: return 0;
559  case MVT::i8: return X86::CMP8ri;
560  case MVT::i16: return X86::CMP16ri;
561  case MVT::i32: return X86::CMP32ri;
562  case MVT::i64:
563    // 64-bit comparisons are only valid if the immediate fits in a 32-bit sext
564    // field.
565    if ((int)RHSC->getSExtValue() == RHSC->getSExtValue())
566      return X86::CMP64ri32;
567    return 0;
568  }
569}
570
571bool X86FastISel::X86FastEmitCompare(Value *Op0, Value *Op1, MVT VT) {
572  unsigned Op0Reg = getRegForValue(Op0);
573  if (Op0Reg == 0) return false;
574
575  // Handle 'null' like i32/i64 0.
576  if (isa<ConstantPointerNull>(Op1))
577    Op1 = Constant::getNullValue(TD.getIntPtrType());
578
579  // We have two options: compare with register or immediate.  If the RHS of
580  // the compare is an immediate that we can fold into this compare, use
581  // CMPri, otherwise use CMPrr.
582  if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
583    if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, Op1C)) {
584      BuildMI(MBB, DL, TII.get(CompareImmOpc)).addReg(Op0Reg)
585                                          .addImm(Op1C->getSExtValue());
586      return true;
587    }
588  }
589
590  unsigned CompareOpc = X86ChooseCmpOpcode(VT);
591  if (CompareOpc == 0) return false;
592
593  unsigned Op1Reg = getRegForValue(Op1);
594  if (Op1Reg == 0) return false;
595  BuildMI(MBB, DL, TII.get(CompareOpc)).addReg(Op0Reg).addReg(Op1Reg);
596
597  return true;
598}
599
600bool X86FastISel::X86SelectCmp(Instruction *I) {
601  CmpInst *CI = cast<CmpInst>(I);
602
603  MVT VT;
604  if (!isTypeLegal(I->getOperand(0)->getType(), VT))
605    return false;
606
607  unsigned ResultReg = createResultReg(&X86::GR8RegClass);
608  unsigned SetCCOpc;
609  bool SwapArgs;  // false -> compare Op0, Op1.  true -> compare Op1, Op0.
610  switch (CI->getPredicate()) {
611  case CmpInst::FCMP_OEQ: {
612    if (!X86FastEmitCompare(CI->getOperand(0), CI->getOperand(1), VT))
613      return false;
614
615    unsigned EReg = createResultReg(&X86::GR8RegClass);
616    unsigned NPReg = createResultReg(&X86::GR8RegClass);
617    BuildMI(MBB, DL, TII.get(X86::SETEr), EReg);
618    BuildMI(MBB, DL, TII.get(X86::SETNPr), NPReg);
619    BuildMI(MBB, DL,
620            TII.get(X86::AND8rr), ResultReg).addReg(NPReg).addReg(EReg);
621    UpdateValueMap(I, ResultReg);
622    return true;
623  }
624  case CmpInst::FCMP_UNE: {
625    if (!X86FastEmitCompare(CI->getOperand(0), CI->getOperand(1), VT))
626      return false;
627
628    unsigned NEReg = createResultReg(&X86::GR8RegClass);
629    unsigned PReg = createResultReg(&X86::GR8RegClass);
630    BuildMI(MBB, DL, TII.get(X86::SETNEr), NEReg);
631    BuildMI(MBB, DL, TII.get(X86::SETPr), PReg);
632    BuildMI(MBB, DL, TII.get(X86::OR8rr), ResultReg).addReg(PReg).addReg(NEReg);
633    UpdateValueMap(I, ResultReg);
634    return true;
635  }
636  case CmpInst::FCMP_OGT: SwapArgs = false; SetCCOpc = X86::SETAr;  break;
637  case CmpInst::FCMP_OGE: SwapArgs = false; SetCCOpc = X86::SETAEr; break;
638  case CmpInst::FCMP_OLT: SwapArgs = true;  SetCCOpc = X86::SETAr;  break;
639  case CmpInst::FCMP_OLE: SwapArgs = true;  SetCCOpc = X86::SETAEr; break;
640  case CmpInst::FCMP_ONE: SwapArgs = false; SetCCOpc = X86::SETNEr; break;
641  case CmpInst::FCMP_ORD: SwapArgs = false; SetCCOpc = X86::SETNPr; break;
642  case CmpInst::FCMP_UNO: SwapArgs = false; SetCCOpc = X86::SETPr;  break;
643  case CmpInst::FCMP_UEQ: SwapArgs = false; SetCCOpc = X86::SETEr;  break;
644  case CmpInst::FCMP_UGT: SwapArgs = true;  SetCCOpc = X86::SETBr;  break;
645  case CmpInst::FCMP_UGE: SwapArgs = true;  SetCCOpc = X86::SETBEr; break;
646  case CmpInst::FCMP_ULT: SwapArgs = false; SetCCOpc = X86::SETBr;  break;
647  case CmpInst::FCMP_ULE: SwapArgs = false; SetCCOpc = X86::SETBEr; break;
648
649  case CmpInst::ICMP_EQ:  SwapArgs = false; SetCCOpc = X86::SETEr;  break;
650  case CmpInst::ICMP_NE:  SwapArgs = false; SetCCOpc = X86::SETNEr; break;
651  case CmpInst::ICMP_UGT: SwapArgs = false; SetCCOpc = X86::SETAr;  break;
652  case CmpInst::ICMP_UGE: SwapArgs = false; SetCCOpc = X86::SETAEr; break;
653  case CmpInst::ICMP_ULT: SwapArgs = false; SetCCOpc = X86::SETBr;  break;
654  case CmpInst::ICMP_ULE: SwapArgs = false; SetCCOpc = X86::SETBEr; break;
655  case CmpInst::ICMP_SGT: SwapArgs = false; SetCCOpc = X86::SETGr;  break;
656  case CmpInst::ICMP_SGE: SwapArgs = false; SetCCOpc = X86::SETGEr; break;
657  case CmpInst::ICMP_SLT: SwapArgs = false; SetCCOpc = X86::SETLr;  break;
658  case CmpInst::ICMP_SLE: SwapArgs = false; SetCCOpc = X86::SETLEr; break;
659  default:
660    return false;
661  }
662
663  Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
664  if (SwapArgs)
665    std::swap(Op0, Op1);
666
667  // Emit a compare of Op0/Op1.
668  if (!X86FastEmitCompare(Op0, Op1, VT))
669    return false;
670
671  BuildMI(MBB, DL, TII.get(SetCCOpc), ResultReg);
672  UpdateValueMap(I, ResultReg);
673  return true;
674}
675
676bool X86FastISel::X86SelectZExt(Instruction *I) {
677  // Handle zero-extension from i1 to i8, which is common.
678  if (I->getType() == Type::Int8Ty &&
679      I->getOperand(0)->getType() == Type::Int1Ty) {
680    unsigned ResultReg = getRegForValue(I->getOperand(0));
681    if (ResultReg == 0) return false;
682    // Set the high bits to zero.
683    ResultReg = FastEmitZExtFromI1(MVT::i8, ResultReg);
684    if (ResultReg == 0) return false;
685    UpdateValueMap(I, ResultReg);
686    return true;
687  }
688
689  return false;
690}
691
692
693bool X86FastISel::X86SelectBranch(Instruction *I) {
694  // Unconditional branches are selected by tablegen-generated code.
695  // Handle a conditional branch.
696  BranchInst *BI = cast<BranchInst>(I);
697  MachineBasicBlock *TrueMBB = MBBMap[BI->getSuccessor(0)];
698  MachineBasicBlock *FalseMBB = MBBMap[BI->getSuccessor(1)];
699
700  // Fold the common case of a conditional branch with a comparison.
701  if (CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
702    if (CI->hasOneUse()) {
703      MVT VT = TLI.getValueType(CI->getOperand(0)->getType());
704
705      // Try to take advantage of fallthrough opportunities.
706      CmpInst::Predicate Predicate = CI->getPredicate();
707      if (MBB->isLayoutSuccessor(TrueMBB)) {
708        std::swap(TrueMBB, FalseMBB);
709        Predicate = CmpInst::getInversePredicate(Predicate);
710      }
711
712      bool SwapArgs;  // false -> compare Op0, Op1.  true -> compare Op1, Op0.
713      unsigned BranchOpc; // Opcode to jump on, e.g. "X86::JA"
714
715      switch (Predicate) {
716      case CmpInst::FCMP_OEQ:
717        std::swap(TrueMBB, FalseMBB);
718        Predicate = CmpInst::FCMP_UNE;
719        // FALL THROUGH
720      case CmpInst::FCMP_UNE: SwapArgs = false; BranchOpc = X86::JNE; break;
721      case CmpInst::FCMP_OGT: SwapArgs = false; BranchOpc = X86::JA;  break;
722      case CmpInst::FCMP_OGE: SwapArgs = false; BranchOpc = X86::JAE; break;
723      case CmpInst::FCMP_OLT: SwapArgs = true;  BranchOpc = X86::JA;  break;
724      case CmpInst::FCMP_OLE: SwapArgs = true;  BranchOpc = X86::JAE; break;
725      case CmpInst::FCMP_ONE: SwapArgs = false; BranchOpc = X86::JNE; break;
726      case CmpInst::FCMP_ORD: SwapArgs = false; BranchOpc = X86::JNP; break;
727      case CmpInst::FCMP_UNO: SwapArgs = false; BranchOpc = X86::JP;  break;
728      case CmpInst::FCMP_UEQ: SwapArgs = false; BranchOpc = X86::JE;  break;
729      case CmpInst::FCMP_UGT: SwapArgs = true;  BranchOpc = X86::JB;  break;
730      case CmpInst::FCMP_UGE: SwapArgs = true;  BranchOpc = X86::JBE; break;
731      case CmpInst::FCMP_ULT: SwapArgs = false; BranchOpc = X86::JB;  break;
732      case CmpInst::FCMP_ULE: SwapArgs = false; BranchOpc = X86::JBE; break;
733
734      case CmpInst::ICMP_EQ:  SwapArgs = false; BranchOpc = X86::JE;  break;
735      case CmpInst::ICMP_NE:  SwapArgs = false; BranchOpc = X86::JNE; break;
736      case CmpInst::ICMP_UGT: SwapArgs = false; BranchOpc = X86::JA;  break;
737      case CmpInst::ICMP_UGE: SwapArgs = false; BranchOpc = X86::JAE; break;
738      case CmpInst::ICMP_ULT: SwapArgs = false; BranchOpc = X86::JB;  break;
739      case CmpInst::ICMP_ULE: SwapArgs = false; BranchOpc = X86::JBE; break;
740      case CmpInst::ICMP_SGT: SwapArgs = false; BranchOpc = X86::JG;  break;
741      case CmpInst::ICMP_SGE: SwapArgs = false; BranchOpc = X86::JGE; break;
742      case CmpInst::ICMP_SLT: SwapArgs = false; BranchOpc = X86::JL;  break;
743      case CmpInst::ICMP_SLE: SwapArgs = false; BranchOpc = X86::JLE; break;
744      default:
745        return false;
746      }
747
748      Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
749      if (SwapArgs)
750        std::swap(Op0, Op1);
751
752      // Emit a compare of the LHS and RHS, setting the flags.
753      if (!X86FastEmitCompare(Op0, Op1, VT))
754        return false;
755
756      BuildMI(MBB, DL, TII.get(BranchOpc)).addMBB(TrueMBB);
757
758      if (Predicate == CmpInst::FCMP_UNE) {
759        // X86 requires a second branch to handle UNE (and OEQ,
760        // which is mapped to UNE above).
761        BuildMI(MBB, DL, TII.get(X86::JP)).addMBB(TrueMBB);
762      }
763
764      FastEmitBranch(FalseMBB);
765      MBB->addSuccessor(TrueMBB);
766      return true;
767    }
768  } else if (ExtractValueInst *EI =
769             dyn_cast<ExtractValueInst>(BI->getCondition())) {
770    // Check to see if the branch instruction is from an "arithmetic with
771    // overflow" intrinsic. The main way these intrinsics are used is:
772    //
773    //   %t = call { i32, i1 } @llvm.sadd.with.overflow.i32(i32 %v1, i32 %v2)
774    //   %sum = extractvalue { i32, i1 } %t, 0
775    //   %obit = extractvalue { i32, i1 } %t, 1
776    //   br i1 %obit, label %overflow, label %normal
777    //
778    // The %sum and %obit are converted in an ADD and a SETO/SETB before
779    // reaching the branch. Therefore, we search backwards through the MBB
780    // looking for the SETO/SETB instruction. If an instruction modifies the
781    // EFLAGS register before we reach the SETO/SETB instruction, then we can't
782    // convert the branch into a JO/JB instruction.
783    if (IntrinsicInst *CI = dyn_cast<IntrinsicInst>(EI->getAggregateOperand())){
784      if (CI->getIntrinsicID() == Intrinsic::sadd_with_overflow ||
785          CI->getIntrinsicID() == Intrinsic::uadd_with_overflow) {
786        const MachineInstr *SetMI = 0;
787        unsigned Reg = lookUpRegForValue(EI);
788
789        for (MachineBasicBlock::const_reverse_iterator
790               RI = MBB->rbegin(), RE = MBB->rend(); RI != RE; ++RI) {
791          const MachineInstr &MI = *RI;
792
793          if (MI.modifiesRegister(Reg)) {
794            unsigned Src, Dst, SrcSR, DstSR;
795
796            if (getInstrInfo()->isMoveInstr(MI, Src, Dst, SrcSR, DstSR)) {
797              Reg = Src;
798              continue;
799            }
800
801            SetMI = &MI;
802            break;
803          }
804
805          const TargetInstrDesc &TID = MI.getDesc();
806          if (TID.hasUnmodeledSideEffects() ||
807              TID.hasImplicitDefOfPhysReg(X86::EFLAGS))
808            break;
809        }
810
811        if (SetMI) {
812          unsigned OpCode = SetMI->getOpcode();
813
814          if (OpCode == X86::SETOr || OpCode == X86::SETBr) {
815            BuildMI(MBB, DL, TII.get(OpCode == X86::SETOr ? X86::JO : X86::JB))
816              .addMBB(TrueMBB);
817            FastEmitBranch(FalseMBB);
818            MBB->addSuccessor(TrueMBB);
819            return true;
820          }
821        }
822      }
823    }
824  }
825
826  // Otherwise do a clumsy setcc and re-test it.
827  unsigned OpReg = getRegForValue(BI->getCondition());
828  if (OpReg == 0) return false;
829
830  BuildMI(MBB, DL, TII.get(X86::TEST8rr)).addReg(OpReg).addReg(OpReg);
831  BuildMI(MBB, DL, TII.get(X86::JNE)).addMBB(TrueMBB);
832  FastEmitBranch(FalseMBB);
833  MBB->addSuccessor(TrueMBB);
834  return true;
835}
836
837bool X86FastISel::X86SelectShift(Instruction *I) {
838  unsigned CReg = 0, OpReg = 0, OpImm = 0;
839  const TargetRegisterClass *RC = NULL;
840  if (I->getType() == Type::Int8Ty) {
841    CReg = X86::CL;
842    RC = &X86::GR8RegClass;
843    switch (I->getOpcode()) {
844    case Instruction::LShr: OpReg = X86::SHR8rCL; OpImm = X86::SHR8ri; break;
845    case Instruction::AShr: OpReg = X86::SAR8rCL; OpImm = X86::SAR8ri; break;
846    case Instruction::Shl:  OpReg = X86::SHL8rCL; OpImm = X86::SHL8ri; break;
847    default: return false;
848    }
849  } else if (I->getType() == Type::Int16Ty) {
850    CReg = X86::CX;
851    RC = &X86::GR16RegClass;
852    switch (I->getOpcode()) {
853    case Instruction::LShr: OpReg = X86::SHR16rCL; OpImm = X86::SHR16ri; break;
854    case Instruction::AShr: OpReg = X86::SAR16rCL; OpImm = X86::SAR16ri; break;
855    case Instruction::Shl:  OpReg = X86::SHL16rCL; OpImm = X86::SHL16ri; break;
856    default: return false;
857    }
858  } else if (I->getType() == Type::Int32Ty) {
859    CReg = X86::ECX;
860    RC = &X86::GR32RegClass;
861    switch (I->getOpcode()) {
862    case Instruction::LShr: OpReg = X86::SHR32rCL; OpImm = X86::SHR32ri; break;
863    case Instruction::AShr: OpReg = X86::SAR32rCL; OpImm = X86::SAR32ri; break;
864    case Instruction::Shl:  OpReg = X86::SHL32rCL; OpImm = X86::SHL32ri; break;
865    default: return false;
866    }
867  } else if (I->getType() == Type::Int64Ty) {
868    CReg = X86::RCX;
869    RC = &X86::GR64RegClass;
870    switch (I->getOpcode()) {
871    case Instruction::LShr: OpReg = X86::SHR64rCL; OpImm = X86::SHR64ri; break;
872    case Instruction::AShr: OpReg = X86::SAR64rCL; OpImm = X86::SAR64ri; break;
873    case Instruction::Shl:  OpReg = X86::SHL64rCL; OpImm = X86::SHL64ri; break;
874    default: return false;
875    }
876  } else {
877    return false;
878  }
879
880  MVT VT = TLI.getValueType(I->getType(), /*HandleUnknown=*/true);
881  if (VT == MVT::Other || !isTypeLegal(I->getType(), VT))
882    return false;
883
884  unsigned Op0Reg = getRegForValue(I->getOperand(0));
885  if (Op0Reg == 0) return false;
886
887  // Fold immediate in shl(x,3).
888  if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
889    unsigned ResultReg = createResultReg(RC);
890    BuildMI(MBB, DL, TII.get(OpImm),
891            ResultReg).addReg(Op0Reg).addImm(CI->getZExtValue() & 0xff);
892    UpdateValueMap(I, ResultReg);
893    return true;
894  }
895
896  unsigned Op1Reg = getRegForValue(I->getOperand(1));
897  if (Op1Reg == 0) return false;
898  TII.copyRegToReg(*MBB, MBB->end(), CReg, Op1Reg, RC, RC);
899
900  // The shift instruction uses X86::CL. If we defined a super-register
901  // of X86::CL, emit an EXTRACT_SUBREG to precisely describe what
902  // we're doing here.
903  if (CReg != X86::CL)
904    BuildMI(MBB, DL, TII.get(TargetInstrInfo::EXTRACT_SUBREG), X86::CL)
905      .addReg(CReg).addImm(X86::SUBREG_8BIT);
906
907  unsigned ResultReg = createResultReg(RC);
908  BuildMI(MBB, DL, TII.get(OpReg), ResultReg).addReg(Op0Reg);
909  UpdateValueMap(I, ResultReg);
910  return true;
911}
912
913bool X86FastISel::X86SelectSelect(Instruction *I) {
914  MVT VT = TLI.getValueType(I->getType(), /*HandleUnknown=*/true);
915  if (VT == MVT::Other || !isTypeLegal(I->getType(), VT))
916    return false;
917
918  unsigned Opc = 0;
919  const TargetRegisterClass *RC = NULL;
920  if (VT.getSimpleVT() == MVT::i16) {
921    Opc = X86::CMOVE16rr;
922    RC = &X86::GR16RegClass;
923  } else if (VT.getSimpleVT() == MVT::i32) {
924    Opc = X86::CMOVE32rr;
925    RC = &X86::GR32RegClass;
926  } else if (VT.getSimpleVT() == MVT::i64) {
927    Opc = X86::CMOVE64rr;
928    RC = &X86::GR64RegClass;
929  } else {
930    return false;
931  }
932
933  unsigned Op0Reg = getRegForValue(I->getOperand(0));
934  if (Op0Reg == 0) return false;
935  unsigned Op1Reg = getRegForValue(I->getOperand(1));
936  if (Op1Reg == 0) return false;
937  unsigned Op2Reg = getRegForValue(I->getOperand(2));
938  if (Op2Reg == 0) return false;
939
940  BuildMI(MBB, DL, TII.get(X86::TEST8rr)).addReg(Op0Reg).addReg(Op0Reg);
941  unsigned ResultReg = createResultReg(RC);
942  BuildMI(MBB, DL, TII.get(Opc), ResultReg).addReg(Op1Reg).addReg(Op2Reg);
943  UpdateValueMap(I, ResultReg);
944  return true;
945}
946
947bool X86FastISel::X86SelectFPExt(Instruction *I) {
948  // fpext from float to double.
949  if (Subtarget->hasSSE2() && I->getType() == Type::DoubleTy) {
950    Value *V = I->getOperand(0);
951    if (V->getType() == Type::FloatTy) {
952      unsigned OpReg = getRegForValue(V);
953      if (OpReg == 0) return false;
954      unsigned ResultReg = createResultReg(X86::FR64RegisterClass);
955      BuildMI(MBB, DL, TII.get(X86::CVTSS2SDrr), ResultReg).addReg(OpReg);
956      UpdateValueMap(I, ResultReg);
957      return true;
958    }
959  }
960
961  return false;
962}
963
964bool X86FastISel::X86SelectFPTrunc(Instruction *I) {
965  if (Subtarget->hasSSE2()) {
966    if (I->getType() == Type::FloatTy) {
967      Value *V = I->getOperand(0);
968      if (V->getType() == Type::DoubleTy) {
969        unsigned OpReg = getRegForValue(V);
970        if (OpReg == 0) return false;
971        unsigned ResultReg = createResultReg(X86::FR32RegisterClass);
972        BuildMI(MBB, DL, TII.get(X86::CVTSD2SSrr), ResultReg).addReg(OpReg);
973        UpdateValueMap(I, ResultReg);
974        return true;
975      }
976    }
977  }
978
979  return false;
980}
981
982bool X86FastISel::X86SelectTrunc(Instruction *I) {
983  if (Subtarget->is64Bit())
984    // All other cases should be handled by the tblgen generated code.
985    return false;
986  MVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
987  MVT DstVT = TLI.getValueType(I->getType());
988
989  // This code only handles truncation to byte right now.
990  if (DstVT != MVT::i8 && DstVT != MVT::i1)
991    // All other cases should be handled by the tblgen generated code.
992    return false;
993  if (SrcVT != MVT::i16 && SrcVT != MVT::i32)
994    // All other cases should be handled by the tblgen generated code.
995    return false;
996
997  unsigned InputReg = getRegForValue(I->getOperand(0));
998  if (!InputReg)
999    // Unhandled operand.  Halt "fast" selection and bail.
1000    return false;
1001
1002  // First issue a copy to GR16_ABCD or GR32_ABCD.
1003  unsigned CopyOpc = (SrcVT == MVT::i16) ? X86::MOV16rr : X86::MOV32rr;
1004  const TargetRegisterClass *CopyRC = (SrcVT == MVT::i16)
1005    ? X86::GR16_ABCDRegisterClass : X86::GR32_ABCDRegisterClass;
1006  unsigned CopyReg = createResultReg(CopyRC);
1007  BuildMI(MBB, DL, TII.get(CopyOpc), CopyReg).addReg(InputReg);
1008
1009  // Then issue an extract_subreg.
1010  unsigned ResultReg = FastEmitInst_extractsubreg(MVT::i8,
1011                                                  CopyReg, X86::SUBREG_8BIT);
1012  if (!ResultReg)
1013    return false;
1014
1015  UpdateValueMap(I, ResultReg);
1016  return true;
1017}
1018
1019bool X86FastISel::X86SelectExtractValue(Instruction *I) {
1020  ExtractValueInst *EI = cast<ExtractValueInst>(I);
1021  Value *Agg = EI->getAggregateOperand();
1022
1023  if (IntrinsicInst *CI = dyn_cast<IntrinsicInst>(Agg)) {
1024    switch (CI->getIntrinsicID()) {
1025    default: break;
1026    case Intrinsic::sadd_with_overflow:
1027    case Intrinsic::uadd_with_overflow:
1028      // Cheat a little. We know that the registers for "add" and "seto" are
1029      // allocated sequentially. However, we only keep track of the register
1030      // for "add" in the value map. Use extractvalue's index to get the
1031      // correct register for "seto".
1032      UpdateValueMap(I, lookUpRegForValue(Agg) + *EI->idx_begin());
1033      return true;
1034    }
1035  }
1036
1037  return false;
1038}
1039
1040bool X86FastISel::X86VisitIntrinsicCall(IntrinsicInst &I) {
1041  // FIXME: Handle more intrinsics.
1042  switch (I.getIntrinsicID()) {
1043  default: return false;
1044  case Intrinsic::sadd_with_overflow:
1045  case Intrinsic::uadd_with_overflow: {
1046    // Replace "add with overflow" intrinsics with an "add" instruction followed
1047    // by a seto/setc instruction. Later on, when the "extractvalue"
1048    // instructions are encountered, we use the fact that two registers were
1049    // created sequentially to get the correct registers for the "sum" and the
1050    // "overflow bit".
1051    const Function *Callee = I.getCalledFunction();
1052    const Type *RetTy =
1053      cast<StructType>(Callee->getReturnType())->getTypeAtIndex(unsigned(0));
1054
1055    MVT VT;
1056    if (!isTypeLegal(RetTy, VT))
1057      return false;
1058
1059    Value *Op1 = I.getOperand(1);
1060    Value *Op2 = I.getOperand(2);
1061    unsigned Reg1 = getRegForValue(Op1);
1062    unsigned Reg2 = getRegForValue(Op2);
1063
1064    if (Reg1 == 0 || Reg2 == 0)
1065      // FIXME: Handle values *not* in registers.
1066      return false;
1067
1068    unsigned OpC = 0;
1069    if (VT == MVT::i32)
1070      OpC = X86::ADD32rr;
1071    else if (VT == MVT::i64)
1072      OpC = X86::ADD64rr;
1073    else
1074      return false;
1075
1076    unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
1077    BuildMI(MBB, DL, TII.get(OpC), ResultReg).addReg(Reg1).addReg(Reg2);
1078    unsigned DestReg1 = UpdateValueMap(&I, ResultReg);
1079
1080    // If the add with overflow is an intra-block value then we just want to
1081    // create temporaries for it like normal.  If it is a cross-block value then
1082    // UpdateValueMap will return the cross-block register used.  Since we
1083    // *really* want the value to be live in the register pair known by
1084    // UpdateValueMap, we have to use DestReg1+1 as the destination register in
1085    // the cross block case.  In the non-cross-block case, we should just make
1086    // another register for the value.
1087    if (DestReg1 != ResultReg)
1088      ResultReg = DestReg1+1;
1089    else
1090      ResultReg = createResultReg(TLI.getRegClassFor(MVT::i8));
1091
1092    unsigned Opc = X86::SETBr;
1093    if (I.getIntrinsicID() == Intrinsic::sadd_with_overflow)
1094      Opc = X86::SETOr;
1095    BuildMI(MBB, DL, TII.get(Opc), ResultReg);
1096    return true;
1097  }
1098  }
1099}
1100
1101bool X86FastISel::X86SelectCall(Instruction *I) {
1102  CallInst *CI = cast<CallInst>(I);
1103  Value *Callee = I->getOperand(0);
1104
1105  // Can't handle inline asm yet.
1106  if (isa<InlineAsm>(Callee))
1107    return false;
1108
1109  // Handle intrinsic calls.
1110  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI))
1111    return X86VisitIntrinsicCall(*II);
1112
1113  // Handle only C and fastcc calling conventions for now.
1114  CallSite CS(CI);
1115  unsigned CC = CS.getCallingConv();
1116  if (CC != CallingConv::C &&
1117      CC != CallingConv::Fast &&
1118      CC != CallingConv::X86_FastCall)
1119    return false;
1120
1121  // On X86, -tailcallopt changes the fastcc ABI. FastISel doesn't
1122  // handle this for now.
1123  if (CC == CallingConv::Fast && PerformTailCallOpt)
1124    return false;
1125
1126  // Let SDISel handle vararg functions.
1127  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
1128  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
1129  if (FTy->isVarArg())
1130    return false;
1131
1132  // Handle *simple* calls for now.
1133  const Type *RetTy = CS.getType();
1134  MVT RetVT;
1135  if (RetTy == Type::VoidTy)
1136    RetVT = MVT::isVoid;
1137  else if (!isTypeLegal(RetTy, RetVT, true))
1138    return false;
1139
1140  // Materialize callee address in a register. FIXME: GV address can be
1141  // handled with a CALLpcrel32 instead.
1142  X86AddressMode CalleeAM;
1143  if (!X86SelectAddress(Callee, CalleeAM, true))
1144    return false;
1145  unsigned CalleeOp = 0;
1146  GlobalValue *GV = 0;
1147  if (CalleeAM.GV != 0) {
1148    GV = CalleeAM.GV;
1149  } else if (CalleeAM.Base.Reg != 0) {
1150    CalleeOp = CalleeAM.Base.Reg;
1151  } else
1152    return false;
1153
1154  // Allow calls which produce i1 results.
1155  bool AndToI1 = false;
1156  if (RetVT == MVT::i1) {
1157    RetVT = MVT::i8;
1158    AndToI1 = true;
1159  }
1160
1161  // Deal with call operands first.
1162  SmallVector<Value*, 8> ArgVals;
1163  SmallVector<unsigned, 8> Args;
1164  SmallVector<MVT, 8> ArgVTs;
1165  SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
1166  Args.reserve(CS.arg_size());
1167  ArgVals.reserve(CS.arg_size());
1168  ArgVTs.reserve(CS.arg_size());
1169  ArgFlags.reserve(CS.arg_size());
1170  for (CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
1171       i != e; ++i) {
1172    unsigned Arg = getRegForValue(*i);
1173    if (Arg == 0)
1174      return false;
1175    ISD::ArgFlagsTy Flags;
1176    unsigned AttrInd = i - CS.arg_begin() + 1;
1177    if (CS.paramHasAttr(AttrInd, Attribute::SExt))
1178      Flags.setSExt();
1179    if (CS.paramHasAttr(AttrInd, Attribute::ZExt))
1180      Flags.setZExt();
1181
1182    // FIXME: Only handle *easy* calls for now.
1183    if (CS.paramHasAttr(AttrInd, Attribute::InReg) ||
1184        CS.paramHasAttr(AttrInd, Attribute::StructRet) ||
1185        CS.paramHasAttr(AttrInd, Attribute::Nest) ||
1186        CS.paramHasAttr(AttrInd, Attribute::ByVal))
1187      return false;
1188
1189    const Type *ArgTy = (*i)->getType();
1190    MVT ArgVT;
1191    if (!isTypeLegal(ArgTy, ArgVT))
1192      return false;
1193    unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
1194    Flags.setOrigAlign(OriginalAlignment);
1195
1196    Args.push_back(Arg);
1197    ArgVals.push_back(*i);
1198    ArgVTs.push_back(ArgVT);
1199    ArgFlags.push_back(Flags);
1200  }
1201
1202  // Analyze operands of the call, assigning locations to each operand.
1203  SmallVector<CCValAssign, 16> ArgLocs;
1204  CCState CCInfo(CC, false, TM, ArgLocs);
1205  CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CCAssignFnForCall(CC));
1206
1207  // Get a count of how many bytes are to be pushed on the stack.
1208  unsigned NumBytes = CCInfo.getNextStackOffset();
1209
1210  // Issue CALLSEQ_START
1211  unsigned AdjStackDown = TM.getRegisterInfo()->getCallFrameSetupOpcode();
1212  BuildMI(MBB, DL, TII.get(AdjStackDown)).addImm(NumBytes);
1213
1214  // Process argument: walk the register/memloc assignments, inserting
1215  // copies / loads.
1216  SmallVector<unsigned, 4> RegArgs;
1217  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1218    CCValAssign &VA = ArgLocs[i];
1219    unsigned Arg = Args[VA.getValNo()];
1220    MVT ArgVT = ArgVTs[VA.getValNo()];
1221
1222    // Promote the value if needed.
1223    switch (VA.getLocInfo()) {
1224    default: assert(0 && "Unknown loc info!");
1225    case CCValAssign::Full: break;
1226    case CCValAssign::SExt: {
1227      bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
1228                                       Arg, ArgVT, Arg);
1229      assert(Emitted && "Failed to emit a sext!"); Emitted=Emitted;
1230      Emitted = true;
1231      ArgVT = VA.getLocVT();
1232      break;
1233    }
1234    case CCValAssign::ZExt: {
1235      bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
1236                                       Arg, ArgVT, Arg);
1237      assert(Emitted && "Failed to emit a zext!"); Emitted=Emitted;
1238      Emitted = true;
1239      ArgVT = VA.getLocVT();
1240      break;
1241    }
1242    case CCValAssign::AExt: {
1243      bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(),
1244                                       Arg, ArgVT, Arg);
1245      if (!Emitted)
1246        Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
1247                                    Arg, ArgVT, Arg);
1248      if (!Emitted)
1249        Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
1250                                    Arg, ArgVT, Arg);
1251
1252      assert(Emitted && "Failed to emit a aext!"); Emitted=Emitted;
1253      ArgVT = VA.getLocVT();
1254      break;
1255    }
1256    }
1257
1258    if (VA.isRegLoc()) {
1259      TargetRegisterClass* RC = TLI.getRegClassFor(ArgVT);
1260      bool Emitted = TII.copyRegToReg(*MBB, MBB->end(), VA.getLocReg(),
1261                                      Arg, RC, RC);
1262      assert(Emitted && "Failed to emit a copy instruction!"); Emitted=Emitted;
1263      Emitted = true;
1264      RegArgs.push_back(VA.getLocReg());
1265    } else {
1266      unsigned LocMemOffset = VA.getLocMemOffset();
1267      X86AddressMode AM;
1268      AM.Base.Reg = StackPtr;
1269      AM.Disp = LocMemOffset;
1270      Value *ArgVal = ArgVals[VA.getValNo()];
1271
1272      // If this is a really simple value, emit this with the Value* version of
1273      // X86FastEmitStore.  If it isn't simple, we don't want to do this, as it
1274      // can cause us to reevaluate the argument.
1275      if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal))
1276        X86FastEmitStore(ArgVT, ArgVal, AM);
1277      else
1278        X86FastEmitStore(ArgVT, Arg, AM);
1279    }
1280  }
1281
1282  // ELF / PIC requires GOT in the EBX register before function calls via PLT
1283  // GOT pointer.
1284  if (!Subtarget->is64Bit() &&
1285      TM.getRelocationModel() == Reloc::PIC_ &&
1286      Subtarget->isPICStyleGOT()) {
1287    TargetRegisterClass *RC = X86::GR32RegisterClass;
1288    unsigned Base = getInstrInfo()->getGlobalBaseReg(&MF);
1289    bool Emitted = TII.copyRegToReg(*MBB, MBB->end(), X86::EBX, Base, RC, RC);
1290    assert(Emitted && "Failed to emit a copy instruction!"); Emitted=Emitted;
1291    Emitted = true;
1292  }
1293
1294  // Issue the call.
1295  unsigned CallOpc = CalleeOp
1296    ? (Subtarget->is64Bit() ? X86::CALL64r       : X86::CALL32r)
1297    : (Subtarget->is64Bit() ? X86::CALL64pcrel32 : X86::CALLpcrel32);
1298  MachineInstrBuilder MIB = CalleeOp
1299    ? BuildMI(MBB, DL, TII.get(CallOpc)).addReg(CalleeOp)
1300    : BuildMI(MBB, DL, TII.get(CallOpc)).addGlobalAddress(GV);
1301
1302  // Add an implicit use GOT pointer in EBX.
1303  if (!Subtarget->is64Bit() &&
1304      TM.getRelocationModel() == Reloc::PIC_ &&
1305      Subtarget->isPICStyleGOT())
1306    MIB.addReg(X86::EBX);
1307
1308  // Add implicit physical register uses to the call.
1309  for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
1310    MIB.addReg(RegArgs[i]);
1311
1312  // Issue CALLSEQ_END
1313  unsigned AdjStackUp = TM.getRegisterInfo()->getCallFrameDestroyOpcode();
1314  BuildMI(MBB, DL, TII.get(AdjStackUp)).addImm(NumBytes).addImm(0);
1315
1316  // Now handle call return value (if any).
1317  if (RetVT.getSimpleVT() != MVT::isVoid) {
1318    SmallVector<CCValAssign, 16> RVLocs;
1319    CCState CCInfo(CC, false, TM, RVLocs);
1320    CCInfo.AnalyzeCallResult(RetVT, RetCC_X86);
1321
1322    // Copy all of the result registers out of their specified physreg.
1323    assert(RVLocs.size() == 1 && "Can't handle multi-value calls!");
1324    MVT CopyVT = RVLocs[0].getValVT();
1325    TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
1326    TargetRegisterClass *SrcRC = DstRC;
1327
1328    // If this is a call to a function that returns an fp value on the x87 fp
1329    // stack, but where we prefer to use the value in xmm registers, copy it
1330    // out as F80 and use a truncate to move it from fp stack reg to xmm reg.
1331    if ((RVLocs[0].getLocReg() == X86::ST0 ||
1332         RVLocs[0].getLocReg() == X86::ST1) &&
1333        isScalarFPTypeInSSEReg(RVLocs[0].getValVT())) {
1334      CopyVT = MVT::f80;
1335      SrcRC = X86::RSTRegisterClass;
1336      DstRC = X86::RFP80RegisterClass;
1337    }
1338
1339    unsigned ResultReg = createResultReg(DstRC);
1340    bool Emitted = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
1341                                    RVLocs[0].getLocReg(), DstRC, SrcRC);
1342    assert(Emitted && "Failed to emit a copy instruction!"); Emitted=Emitted;
1343    Emitted = true;
1344    if (CopyVT != RVLocs[0].getValVT()) {
1345      // Round the F80 the right size, which also moves to the appropriate xmm
1346      // register. This is accomplished by storing the F80 value in memory and
1347      // then loading it back. Ewww...
1348      MVT ResVT = RVLocs[0].getValVT();
1349      unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64;
1350      unsigned MemSize = ResVT.getSizeInBits()/8;
1351      int FI = MFI.CreateStackObject(MemSize, MemSize);
1352      addFrameReference(BuildMI(MBB, DL, TII.get(Opc)), FI).addReg(ResultReg);
1353      DstRC = ResVT == MVT::f32
1354        ? X86::FR32RegisterClass : X86::FR64RegisterClass;
1355      Opc = ResVT == MVT::f32 ? X86::MOVSSrm : X86::MOVSDrm;
1356      ResultReg = createResultReg(DstRC);
1357      addFrameReference(BuildMI(MBB, DL, TII.get(Opc), ResultReg), FI);
1358    }
1359
1360    if (AndToI1) {
1361      // Mask out all but lowest bit for some call which produces an i1.
1362      unsigned AndResult = createResultReg(X86::GR8RegisterClass);
1363      BuildMI(MBB, DL,
1364              TII.get(X86::AND8ri), AndResult).addReg(ResultReg).addImm(1);
1365      ResultReg = AndResult;
1366    }
1367
1368    UpdateValueMap(I, ResultReg);
1369  }
1370
1371  return true;
1372}
1373
1374
1375bool
1376X86FastISel::TargetSelectInstruction(Instruction *I)  {
1377  switch (I->getOpcode()) {
1378  default: break;
1379  case Instruction::Load:
1380    return X86SelectLoad(I);
1381  case Instruction::Store:
1382    return X86SelectStore(I);
1383  case Instruction::ICmp:
1384  case Instruction::FCmp:
1385    return X86SelectCmp(I);
1386  case Instruction::ZExt:
1387    return X86SelectZExt(I);
1388  case Instruction::Br:
1389    return X86SelectBranch(I);
1390  case Instruction::Call:
1391    return X86SelectCall(I);
1392  case Instruction::LShr:
1393  case Instruction::AShr:
1394  case Instruction::Shl:
1395    return X86SelectShift(I);
1396  case Instruction::Select:
1397    return X86SelectSelect(I);
1398  case Instruction::Trunc:
1399    return X86SelectTrunc(I);
1400  case Instruction::FPExt:
1401    return X86SelectFPExt(I);
1402  case Instruction::FPTrunc:
1403    return X86SelectFPTrunc(I);
1404  case Instruction::ExtractValue:
1405    return X86SelectExtractValue(I);
1406  case Instruction::IntToPtr: // Deliberate fall-through.
1407  case Instruction::PtrToInt: {
1408    MVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
1409    MVT DstVT = TLI.getValueType(I->getType());
1410    if (DstVT.bitsGT(SrcVT))
1411      return X86SelectZExt(I);
1412    if (DstVT.bitsLT(SrcVT))
1413      return X86SelectTrunc(I);
1414    unsigned Reg = getRegForValue(I->getOperand(0));
1415    if (Reg == 0) return false;
1416    UpdateValueMap(I, Reg);
1417    return true;
1418  }
1419  }
1420
1421  return false;
1422}
1423
1424unsigned X86FastISel::TargetMaterializeConstant(Constant *C) {
1425  MVT VT;
1426  if (!isTypeLegal(C->getType(), VT))
1427    return false;
1428
1429  // Get opcode and regclass of the output for the given load instruction.
1430  unsigned Opc = 0;
1431  const TargetRegisterClass *RC = NULL;
1432  switch (VT.getSimpleVT()) {
1433  default: return false;
1434  case MVT::i8:
1435    Opc = X86::MOV8rm;
1436    RC  = X86::GR8RegisterClass;
1437    break;
1438  case MVT::i16:
1439    Opc = X86::MOV16rm;
1440    RC  = X86::GR16RegisterClass;
1441    break;
1442  case MVT::i32:
1443    Opc = X86::MOV32rm;
1444    RC  = X86::GR32RegisterClass;
1445    break;
1446  case MVT::i64:
1447    // Must be in x86-64 mode.
1448    Opc = X86::MOV64rm;
1449    RC  = X86::GR64RegisterClass;
1450    break;
1451  case MVT::f32:
1452    if (Subtarget->hasSSE1()) {
1453      Opc = X86::MOVSSrm;
1454      RC  = X86::FR32RegisterClass;
1455    } else {
1456      Opc = X86::LD_Fp32m;
1457      RC  = X86::RFP32RegisterClass;
1458    }
1459    break;
1460  case MVT::f64:
1461    if (Subtarget->hasSSE2()) {
1462      Opc = X86::MOVSDrm;
1463      RC  = X86::FR64RegisterClass;
1464    } else {
1465      Opc = X86::LD_Fp64m;
1466      RC  = X86::RFP64RegisterClass;
1467    }
1468    break;
1469  case MVT::f80:
1470    // No f80 support yet.
1471    return false;
1472  }
1473
1474  // Materialize addresses with LEA instructions.
1475  if (isa<GlobalValue>(C)) {
1476    X86AddressMode AM;
1477    if (X86SelectAddress(C, AM, false)) {
1478      if (TLI.getPointerTy() == MVT::i32)
1479        Opc = X86::LEA32r;
1480      else
1481        Opc = X86::LEA64r;
1482      unsigned ResultReg = createResultReg(RC);
1483      addLeaAddress(BuildMI(MBB, DL, TII.get(Opc), ResultReg), AM);
1484      return ResultReg;
1485    }
1486    return 0;
1487  }
1488
1489  // MachineConstantPool wants an explicit alignment.
1490  unsigned Align = TD.getPrefTypeAlignment(C->getType());
1491  if (Align == 0) {
1492    // Alignment of vector types.  FIXME!
1493    Align = TD.getTypeAllocSize(C->getType());
1494  }
1495
1496  // x86-32 PIC requires a PIC base register for constant pools.
1497  unsigned PICBase = 0;
1498  unsigned char OpFlag = 0;
1499  if (TM.getRelocationModel() == Reloc::PIC_) {
1500    if (Subtarget->isPICStyleStub()) {
1501      OpFlag = X86II::MO_PIC_BASE_OFFSET;
1502      PICBase = getInstrInfo()->getGlobalBaseReg(&MF);
1503    } else if (Subtarget->isPICStyleGOT()) {
1504      OpFlag = X86II::MO_GOTOFF;
1505      PICBase = getInstrInfo()->getGlobalBaseReg(&MF);
1506    }
1507  }
1508
1509  // Create the load from the constant pool.
1510  unsigned MCPOffset = MCP.getConstantPoolIndex(C, Align);
1511  unsigned ResultReg = createResultReg(RC);
1512  addConstantPoolReference(BuildMI(MBB, DL, TII.get(Opc), ResultReg),
1513                           MCPOffset, PICBase, OpFlag);
1514
1515  return ResultReg;
1516}
1517
1518unsigned X86FastISel::TargetMaterializeAlloca(AllocaInst *C) {
1519  // Fail on dynamic allocas. At this point, getRegForValue has already
1520  // checked its CSE maps, so if we're here trying to handle a dynamic
1521  // alloca, we're not going to succeed. X86SelectAddress has a
1522  // check for dynamic allocas, because it's called directly from
1523  // various places, but TargetMaterializeAlloca also needs a check
1524  // in order to avoid recursion between getRegForValue,
1525  // X86SelectAddrss, and TargetMaterializeAlloca.
1526  if (!StaticAllocaMap.count(C))
1527    return 0;
1528
1529  X86AddressMode AM;
1530  if (!X86SelectAddress(C, AM, false))
1531    return 0;
1532  unsigned Opc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
1533  TargetRegisterClass* RC = TLI.getRegClassFor(TLI.getPointerTy());
1534  unsigned ResultReg = createResultReg(RC);
1535  addLeaAddress(BuildMI(MBB, DL, TII.get(Opc), ResultReg), AM);
1536  return ResultReg;
1537}
1538
1539namespace llvm {
1540  llvm::FastISel *X86::createFastISel(MachineFunction &mf,
1541                        MachineModuleInfo *mmi,
1542                        DwarfWriter *dw,
1543                        DenseMap<const Value *, unsigned> &vm,
1544                        DenseMap<const BasicBlock *, MachineBasicBlock *> &bm,
1545                        DenseMap<const AllocaInst *, int> &am
1546#ifndef NDEBUG
1547                        , SmallSet<Instruction*, 8> &cil
1548#endif
1549                        ) {
1550    return new X86FastISel(mf, mmi, dw, vm, bm, am
1551#ifndef NDEBUG
1552                           , cil
1553#endif
1554                           );
1555  }
1556}
1557