X86CodeEmitter.cpp revision 218893
1//===-- X86/X86CodeEmitter.cpp - Convert X86 code to machine code ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the pass that transforms the X86 machine instructions into
11// relocatable machine code.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-emitter"
16#include "X86InstrInfo.h"
17#include "X86JITInfo.h"
18#include "X86Subtarget.h"
19#include "X86TargetMachine.h"
20#include "X86Relocations.h"
21#include "X86.h"
22#include "llvm/LLVMContext.h"
23#include "llvm/PassManager.h"
24#include "llvm/CodeGen/JITCodeEmitter.h"
25#include "llvm/CodeGen/MachineFunctionPass.h"
26#include "llvm/CodeGen/MachineInstr.h"
27#include "llvm/CodeGen/MachineModuleInfo.h"
28#include "llvm/CodeGen/Passes.h"
29#include "llvm/Function.h"
30#include "llvm/ADT/Statistic.h"
31#include "llvm/MC/MCCodeEmitter.h"
32#include "llvm/MC/MCExpr.h"
33#include "llvm/MC/MCInst.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Support/ErrorHandling.h"
36#include "llvm/Support/raw_ostream.h"
37#include "llvm/Target/TargetOptions.h"
38using namespace llvm;
39
40STATISTIC(NumEmitted, "Number of machine instructions emitted");
41
42namespace {
43  template<class CodeEmitter>
44  class Emitter : public MachineFunctionPass {
45    const X86InstrInfo  *II;
46    const TargetData    *TD;
47    X86TargetMachine    &TM;
48    CodeEmitter         &MCE;
49    MachineModuleInfo   *MMI;
50    intptr_t PICBaseOffset;
51    bool Is64BitMode;
52    bool IsPIC;
53  public:
54    static char ID;
55    explicit Emitter(X86TargetMachine &tm, CodeEmitter &mce)
56      : MachineFunctionPass(ID), II(0), TD(0), TM(tm),
57      MCE(mce), PICBaseOffset(0), Is64BitMode(false),
58      IsPIC(TM.getRelocationModel() == Reloc::PIC_) {}
59    Emitter(X86TargetMachine &tm, CodeEmitter &mce,
60            const X86InstrInfo &ii, const TargetData &td, bool is64)
61      : MachineFunctionPass(ID), II(&ii), TD(&td), TM(tm),
62      MCE(mce), PICBaseOffset(0), Is64BitMode(is64),
63      IsPIC(TM.getRelocationModel() == Reloc::PIC_) {}
64
65    bool runOnMachineFunction(MachineFunction &MF);
66
67    virtual const char *getPassName() const {
68      return "X86 Machine Code Emitter";
69    }
70
71    void emitInstruction(MachineInstr &MI, const TargetInstrDesc *Desc);
72
73    void getAnalysisUsage(AnalysisUsage &AU) const {
74      AU.setPreservesAll();
75      AU.addRequired<MachineModuleInfo>();
76      MachineFunctionPass::getAnalysisUsage(AU);
77    }
78
79  private:
80    void emitPCRelativeBlockAddress(MachineBasicBlock *MBB);
81    void emitGlobalAddress(const GlobalValue *GV, unsigned Reloc,
82                           intptr_t Disp = 0, intptr_t PCAdj = 0,
83                           bool Indirect = false);
84    void emitExternalSymbolAddress(const char *ES, unsigned Reloc);
85    void emitConstPoolAddress(unsigned CPI, unsigned Reloc, intptr_t Disp = 0,
86                              intptr_t PCAdj = 0);
87    void emitJumpTableAddress(unsigned JTI, unsigned Reloc,
88                              intptr_t PCAdj = 0);
89
90    void emitDisplacementField(const MachineOperand *RelocOp, int DispVal,
91                               intptr_t Adj = 0, bool IsPCRel = true);
92
93    void emitRegModRMByte(unsigned ModRMReg, unsigned RegOpcodeField);
94    void emitRegModRMByte(unsigned RegOpcodeField);
95    void emitSIBByte(unsigned SS, unsigned Index, unsigned Base);
96    void emitConstant(uint64_t Val, unsigned Size);
97
98    void emitMemModRMByte(const MachineInstr &MI,
99                          unsigned Op, unsigned RegOpcodeField,
100                          intptr_t PCAdj = 0);
101
102    unsigned getX86RegNum(unsigned RegNo) const;
103  };
104
105template<class CodeEmitter>
106  char Emitter<CodeEmitter>::ID = 0;
107} // end anonymous namespace.
108
109/// createX86CodeEmitterPass - Return a pass that emits the collected X86 code
110/// to the specified templated MachineCodeEmitter object.
111FunctionPass *llvm::createX86JITCodeEmitterPass(X86TargetMachine &TM,
112                                                JITCodeEmitter &JCE) {
113  return new Emitter<JITCodeEmitter>(TM, JCE);
114}
115
116template<class CodeEmitter>
117bool Emitter<CodeEmitter>::runOnMachineFunction(MachineFunction &MF) {
118  MMI = &getAnalysis<MachineModuleInfo>();
119  MCE.setModuleInfo(MMI);
120
121  II = TM.getInstrInfo();
122  TD = TM.getTargetData();
123  Is64BitMode = TM.getSubtarget<X86Subtarget>().is64Bit();
124  IsPIC = TM.getRelocationModel() == Reloc::PIC_;
125
126  do {
127    DEBUG(dbgs() << "JITTing function '"
128          << MF.getFunction()->getName() << "'\n");
129    MCE.startFunction(MF);
130    for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
131         MBB != E; ++MBB) {
132      MCE.StartMachineBasicBlock(MBB);
133      for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
134           I != E; ++I) {
135        const TargetInstrDesc &Desc = I->getDesc();
136        emitInstruction(*I, &Desc);
137        // MOVPC32r is basically a call plus a pop instruction.
138        if (Desc.getOpcode() == X86::MOVPC32r)
139          emitInstruction(*I, &II->get(X86::POP32r));
140        ++NumEmitted;  // Keep track of the # of mi's emitted
141      }
142    }
143  } while (MCE.finishFunction(MF));
144
145  return false;
146}
147
148/// determineREX - Determine if the MachineInstr has to be encoded with a X86-64
149/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
150/// size, and 3) use of X86-64 extended registers.
151static unsigned determineREX(const MachineInstr &MI) {
152  unsigned REX = 0;
153  const TargetInstrDesc &Desc = MI.getDesc();
154
155  // Pseudo instructions do not need REX prefix byte.
156  if ((Desc.TSFlags & X86II::FormMask) == X86II::Pseudo)
157    return 0;
158  if (Desc.TSFlags & X86II::REX_W)
159    REX |= 1 << 3;
160
161  unsigned NumOps = Desc.getNumOperands();
162  if (NumOps) {
163    bool isTwoAddr = NumOps > 1 &&
164    Desc.getOperandConstraint(1, TOI::TIED_TO) != -1;
165
166    // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
167    unsigned i = isTwoAddr ? 1 : 0;
168    for (unsigned e = NumOps; i != e; ++i) {
169      const MachineOperand& MO = MI.getOperand(i);
170      if (MO.isReg()) {
171        unsigned Reg = MO.getReg();
172        if (X86InstrInfo::isX86_64NonExtLowByteReg(Reg))
173          REX |= 0x40;
174      }
175    }
176
177    switch (Desc.TSFlags & X86II::FormMask) {
178      case X86II::MRMInitReg:
179        if (X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0)))
180          REX |= (1 << 0) | (1 << 2);
181        break;
182      case X86II::MRMSrcReg: {
183        if (X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0)))
184          REX |= 1 << 2;
185        i = isTwoAddr ? 2 : 1;
186        for (unsigned e = NumOps; i != e; ++i) {
187          const MachineOperand& MO = MI.getOperand(i);
188          if (X86InstrInfo::isX86_64ExtendedReg(MO))
189            REX |= 1 << 0;
190        }
191        break;
192      }
193      case X86II::MRMSrcMem: {
194        if (X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0)))
195          REX |= 1 << 2;
196        unsigned Bit = 0;
197        i = isTwoAddr ? 2 : 1;
198        for (; i != NumOps; ++i) {
199          const MachineOperand& MO = MI.getOperand(i);
200          if (MO.isReg()) {
201            if (X86InstrInfo::isX86_64ExtendedReg(MO))
202              REX |= 1 << Bit;
203            Bit++;
204          }
205        }
206        break;
207      }
208      case X86II::MRM0m: case X86II::MRM1m:
209      case X86II::MRM2m: case X86II::MRM3m:
210      case X86II::MRM4m: case X86II::MRM5m:
211      case X86II::MRM6m: case X86II::MRM7m:
212      case X86II::MRMDestMem: {
213        unsigned e = (isTwoAddr ? X86::AddrNumOperands+1 : X86::AddrNumOperands);
214        i = isTwoAddr ? 1 : 0;
215        if (NumOps > e && X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(e)))
216          REX |= 1 << 2;
217        unsigned Bit = 0;
218        for (; i != e; ++i) {
219          const MachineOperand& MO = MI.getOperand(i);
220          if (MO.isReg()) {
221            if (X86InstrInfo::isX86_64ExtendedReg(MO))
222              REX |= 1 << Bit;
223            Bit++;
224          }
225        }
226        break;
227      }
228      default: {
229        if (X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0)))
230          REX |= 1 << 0;
231        i = isTwoAddr ? 2 : 1;
232        for (unsigned e = NumOps; i != e; ++i) {
233          const MachineOperand& MO = MI.getOperand(i);
234          if (X86InstrInfo::isX86_64ExtendedReg(MO))
235            REX |= 1 << 2;
236        }
237        break;
238      }
239    }
240  }
241  return REX;
242}
243
244
245/// emitPCRelativeBlockAddress - This method keeps track of the information
246/// necessary to resolve the address of this block later and emits a dummy
247/// value.
248///
249template<class CodeEmitter>
250void Emitter<CodeEmitter>::emitPCRelativeBlockAddress(MachineBasicBlock *MBB) {
251  // Remember where this reference was and where it is to so we can
252  // deal with it later.
253  MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(),
254                                             X86::reloc_pcrel_word, MBB));
255  MCE.emitWordLE(0);
256}
257
258/// emitGlobalAddress - Emit the specified address to the code stream assuming
259/// this is part of a "take the address of a global" instruction.
260///
261template<class CodeEmitter>
262void Emitter<CodeEmitter>::emitGlobalAddress(const GlobalValue *GV,
263                                unsigned Reloc,
264                                intptr_t Disp /* = 0 */,
265                                intptr_t PCAdj /* = 0 */,
266                                bool Indirect /* = false */) {
267  intptr_t RelocCST = Disp;
268  if (Reloc == X86::reloc_picrel_word)
269    RelocCST = PICBaseOffset;
270  else if (Reloc == X86::reloc_pcrel_word)
271    RelocCST = PCAdj;
272  MachineRelocation MR = Indirect
273    ? MachineRelocation::getIndirectSymbol(MCE.getCurrentPCOffset(), Reloc,
274                                           const_cast<GlobalValue *>(GV),
275                                           RelocCST, false)
276    : MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc,
277                               const_cast<GlobalValue *>(GV), RelocCST, false);
278  MCE.addRelocation(MR);
279  // The relocated value will be added to the displacement
280  if (Reloc == X86::reloc_absolute_dword)
281    MCE.emitDWordLE(Disp);
282  else
283    MCE.emitWordLE((int32_t)Disp);
284}
285
286/// emitExternalSymbolAddress - Arrange for the address of an external symbol to
287/// be emitted to the current location in the function, and allow it to be PC
288/// relative.
289template<class CodeEmitter>
290void Emitter<CodeEmitter>::emitExternalSymbolAddress(const char *ES,
291                                                     unsigned Reloc) {
292  intptr_t RelocCST = (Reloc == X86::reloc_picrel_word) ? PICBaseOffset : 0;
293
294  // X86 never needs stubs because instruction selection will always pick
295  // an instruction sequence that is large enough to hold any address
296  // to a symbol.
297  // (see X86ISelLowering.cpp, near 2039: X86TargetLowering::LowerCall)
298  bool NeedStub = false;
299  MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(),
300                                                 Reloc, ES, RelocCST,
301                                                 0, NeedStub));
302  if (Reloc == X86::reloc_absolute_dword)
303    MCE.emitDWordLE(0);
304  else
305    MCE.emitWordLE(0);
306}
307
308/// emitConstPoolAddress - Arrange for the address of an constant pool
309/// to be emitted to the current location in the function, and allow it to be PC
310/// relative.
311template<class CodeEmitter>
312void Emitter<CodeEmitter>::emitConstPoolAddress(unsigned CPI, unsigned Reloc,
313                                   intptr_t Disp /* = 0 */,
314                                   intptr_t PCAdj /* = 0 */) {
315  intptr_t RelocCST = 0;
316  if (Reloc == X86::reloc_picrel_word)
317    RelocCST = PICBaseOffset;
318  else if (Reloc == X86::reloc_pcrel_word)
319    RelocCST = PCAdj;
320  MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(),
321                                                    Reloc, CPI, RelocCST));
322  // The relocated value will be added to the displacement
323  if (Reloc == X86::reloc_absolute_dword)
324    MCE.emitDWordLE(Disp);
325  else
326    MCE.emitWordLE((int32_t)Disp);
327}
328
329/// emitJumpTableAddress - Arrange for the address of a jump table to
330/// be emitted to the current location in the function, and allow it to be PC
331/// relative.
332template<class CodeEmitter>
333void Emitter<CodeEmitter>::emitJumpTableAddress(unsigned JTI, unsigned Reloc,
334                                   intptr_t PCAdj /* = 0 */) {
335  intptr_t RelocCST = 0;
336  if (Reloc == X86::reloc_picrel_word)
337    RelocCST = PICBaseOffset;
338  else if (Reloc == X86::reloc_pcrel_word)
339    RelocCST = PCAdj;
340  MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(),
341                                                    Reloc, JTI, RelocCST));
342  // The relocated value will be added to the displacement
343  if (Reloc == X86::reloc_absolute_dword)
344    MCE.emitDWordLE(0);
345  else
346    MCE.emitWordLE(0);
347}
348
349template<class CodeEmitter>
350unsigned Emitter<CodeEmitter>::getX86RegNum(unsigned RegNo) const {
351  return X86RegisterInfo::getX86RegNum(RegNo);
352}
353
354inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
355                                      unsigned RM) {
356  assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
357  return RM | (RegOpcode << 3) | (Mod << 6);
358}
359
360template<class CodeEmitter>
361void Emitter<CodeEmitter>::emitRegModRMByte(unsigned ModRMReg,
362                                            unsigned RegOpcodeFld){
363  MCE.emitByte(ModRMByte(3, RegOpcodeFld, getX86RegNum(ModRMReg)));
364}
365
366template<class CodeEmitter>
367void Emitter<CodeEmitter>::emitRegModRMByte(unsigned RegOpcodeFld) {
368  MCE.emitByte(ModRMByte(3, RegOpcodeFld, 0));
369}
370
371template<class CodeEmitter>
372void Emitter<CodeEmitter>::emitSIBByte(unsigned SS,
373                                       unsigned Index,
374                                       unsigned Base) {
375  // SIB byte is in the same format as the ModRMByte...
376  MCE.emitByte(ModRMByte(SS, Index, Base));
377}
378
379template<class CodeEmitter>
380void Emitter<CodeEmitter>::emitConstant(uint64_t Val, unsigned Size) {
381  // Output the constant in little endian byte order...
382  for (unsigned i = 0; i != Size; ++i) {
383    MCE.emitByte(Val & 255);
384    Val >>= 8;
385  }
386}
387
388/// isDisp8 - Return true if this signed displacement fits in a 8-bit
389/// sign-extended field.
390static bool isDisp8(int Value) {
391  return Value == (signed char)Value;
392}
393
394static bool gvNeedsNonLazyPtr(const MachineOperand &GVOp,
395                              const TargetMachine &TM) {
396  // For Darwin-64, simulate the linktime GOT by using the same non-lazy-pointer
397  // mechanism as 32-bit mode.
398  if (TM.getSubtarget<X86Subtarget>().is64Bit() &&
399      !TM.getSubtarget<X86Subtarget>().isTargetDarwin())
400    return false;
401
402  // Return true if this is a reference to a stub containing the address of the
403  // global, not the global itself.
404  return isGlobalStubReference(GVOp.getTargetFlags());
405}
406
407template<class CodeEmitter>
408void Emitter<CodeEmitter>::emitDisplacementField(const MachineOperand *RelocOp,
409                                                 int DispVal,
410                                                 intptr_t Adj /* = 0 */,
411                                                 bool IsPCRel /* = true */) {
412  // If this is a simple integer displacement that doesn't require a relocation,
413  // emit it now.
414  if (!RelocOp) {
415    emitConstant(DispVal, 4);
416    return;
417  }
418
419  // Otherwise, this is something that requires a relocation.  Emit it as such
420  // now.
421  unsigned RelocType = Is64BitMode ?
422    (IsPCRel ? X86::reloc_pcrel_word : X86::reloc_absolute_word_sext)
423    : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
424  if (RelocOp->isGlobal()) {
425    // In 64-bit static small code model, we could potentially emit absolute.
426    // But it's probably not beneficial. If the MCE supports using RIP directly
427    // do it, otherwise fallback to absolute (this is determined by IsPCRel).
428    //  89 05 00 00 00 00     mov    %eax,0(%rip)  # PC-relative
429    //  89 04 25 00 00 00 00  mov    %eax,0x0      # Absolute
430    bool Indirect = gvNeedsNonLazyPtr(*RelocOp, TM);
431    emitGlobalAddress(RelocOp->getGlobal(), RelocType, RelocOp->getOffset(),
432                      Adj, Indirect);
433  } else if (RelocOp->isSymbol()) {
434    emitExternalSymbolAddress(RelocOp->getSymbolName(), RelocType);
435  } else if (RelocOp->isCPI()) {
436    emitConstPoolAddress(RelocOp->getIndex(), RelocType,
437                         RelocOp->getOffset(), Adj);
438  } else {
439    assert(RelocOp->isJTI() && "Unexpected machine operand!");
440    emitJumpTableAddress(RelocOp->getIndex(), RelocType, Adj);
441  }
442}
443
444template<class CodeEmitter>
445void Emitter<CodeEmitter>::emitMemModRMByte(const MachineInstr &MI,
446                                            unsigned Op,unsigned RegOpcodeField,
447                                            intptr_t PCAdj) {
448  const MachineOperand &Op3 = MI.getOperand(Op+3);
449  int DispVal = 0;
450  const MachineOperand *DispForReloc = 0;
451
452  // Figure out what sort of displacement we have to handle here.
453  if (Op3.isGlobal()) {
454    DispForReloc = &Op3;
455  } else if (Op3.isSymbol()) {
456    DispForReloc = &Op3;
457  } else if (Op3.isCPI()) {
458    if (!MCE.earlyResolveAddresses() || Is64BitMode || IsPIC) {
459      DispForReloc = &Op3;
460    } else {
461      DispVal += MCE.getConstantPoolEntryAddress(Op3.getIndex());
462      DispVal += Op3.getOffset();
463    }
464  } else if (Op3.isJTI()) {
465    if (!MCE.earlyResolveAddresses() || Is64BitMode || IsPIC) {
466      DispForReloc = &Op3;
467    } else {
468      DispVal += MCE.getJumpTableEntryAddress(Op3.getIndex());
469    }
470  } else {
471    DispVal = Op3.getImm();
472  }
473
474  const MachineOperand &Base     = MI.getOperand(Op);
475  const MachineOperand &Scale    = MI.getOperand(Op+1);
476  const MachineOperand &IndexReg = MI.getOperand(Op+2);
477
478  unsigned BaseReg = Base.getReg();
479
480  // Handle %rip relative addressing.
481  if (BaseReg == X86::RIP ||
482      (Is64BitMode && DispForReloc)) { // [disp32+RIP] in X86-64 mode
483    assert(IndexReg.getReg() == 0 && Is64BitMode &&
484           "Invalid rip-relative address");
485    MCE.emitByte(ModRMByte(0, RegOpcodeField, 5));
486    emitDisplacementField(DispForReloc, DispVal, PCAdj, true);
487    return;
488  }
489
490  // Indicate that the displacement will use an pcrel or absolute reference
491  // by default. MCEs able to resolve addresses on-the-fly use pcrel by default
492  // while others, unless explicit asked to use RIP, use absolute references.
493  bool IsPCRel = MCE.earlyResolveAddresses() ? true : false;
494
495  // Is a SIB byte needed?
496  // If no BaseReg, issue a RIP relative instruction only if the MCE can
497  // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
498  // 2-7) and absolute references.
499  unsigned BaseRegNo = -1U;
500  if (BaseReg != 0 && BaseReg != X86::RIP)
501    BaseRegNo = getX86RegNum(BaseReg);
502
503  if (// The SIB byte must be used if there is an index register.
504      IndexReg.getReg() == 0 &&
505      // The SIB byte must be used if the base is ESP/RSP/R12, all of which
506      // encode to an R/M value of 4, which indicates that a SIB byte is
507      // present.
508      BaseRegNo != N86::ESP &&
509      // If there is no base register and we're in 64-bit mode, we need a SIB
510      // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
511      (!Is64BitMode || BaseReg != 0)) {
512    if (BaseReg == 0 ||          // [disp32]     in X86-32 mode
513        BaseReg == X86::RIP) {   // [disp32+RIP] in X86-64 mode
514      MCE.emitByte(ModRMByte(0, RegOpcodeField, 5));
515      emitDisplacementField(DispForReloc, DispVal, PCAdj, true);
516      return;
517    }
518
519    // If the base is not EBP/ESP and there is no displacement, use simple
520    // indirect register encoding, this handles addresses like [EAX].  The
521    // encoding for [EBP] with no displacement means [disp32] so we handle it
522    // by emitting a displacement of 0 below.
523    if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) {
524      MCE.emitByte(ModRMByte(0, RegOpcodeField, BaseRegNo));
525      return;
526    }
527
528    // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
529    if (!DispForReloc && isDisp8(DispVal)) {
530      MCE.emitByte(ModRMByte(1, RegOpcodeField, BaseRegNo));
531      emitConstant(DispVal, 1);
532      return;
533    }
534
535    // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
536    MCE.emitByte(ModRMByte(2, RegOpcodeField, BaseRegNo));
537    emitDisplacementField(DispForReloc, DispVal, PCAdj, IsPCRel);
538    return;
539  }
540
541  // Otherwise we need a SIB byte, so start by outputting the ModR/M byte first.
542  assert(IndexReg.getReg() != X86::ESP &&
543         IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
544
545  bool ForceDisp32 = false;
546  bool ForceDisp8  = false;
547  if (BaseReg == 0) {
548    // If there is no base register, we emit the special case SIB byte with
549    // MOD=0, BASE=4, to JUST get the index, scale, and displacement.
550    MCE.emitByte(ModRMByte(0, RegOpcodeField, 4));
551    ForceDisp32 = true;
552  } else if (DispForReloc) {
553    // Emit the normal disp32 encoding.
554    MCE.emitByte(ModRMByte(2, RegOpcodeField, 4));
555    ForceDisp32 = true;
556  } else if (DispVal == 0 && BaseRegNo != N86::EBP) {
557    // Emit no displacement ModR/M byte
558    MCE.emitByte(ModRMByte(0, RegOpcodeField, 4));
559  } else if (isDisp8(DispVal)) {
560    // Emit the disp8 encoding...
561    MCE.emitByte(ModRMByte(1, RegOpcodeField, 4));
562    ForceDisp8 = true;           // Make sure to force 8 bit disp if Base=EBP
563  } else {
564    // Emit the normal disp32 encoding...
565    MCE.emitByte(ModRMByte(2, RegOpcodeField, 4));
566  }
567
568  // Calculate what the SS field value should be...
569  static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
570  unsigned SS = SSTable[Scale.getImm()];
571
572  if (BaseReg == 0) {
573    // Handle the SIB byte for the case where there is no base, see Intel
574    // Manual 2A, table 2-7. The displacement has already been output.
575    unsigned IndexRegNo;
576    if (IndexReg.getReg())
577      IndexRegNo = getX86RegNum(IndexReg.getReg());
578    else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
579      IndexRegNo = 4;
580    emitSIBByte(SS, IndexRegNo, 5);
581  } else {
582    unsigned BaseRegNo = getX86RegNum(BaseReg);
583    unsigned IndexRegNo;
584    if (IndexReg.getReg())
585      IndexRegNo = getX86RegNum(IndexReg.getReg());
586    else
587      IndexRegNo = 4;   // For example [ESP+1*<noreg>+4]
588    emitSIBByte(SS, IndexRegNo, BaseRegNo);
589  }
590
591  // Do we need to output a displacement?
592  if (ForceDisp8) {
593    emitConstant(DispVal, 1);
594  } else if (DispVal != 0 || ForceDisp32) {
595    emitDisplacementField(DispForReloc, DispVal, PCAdj, IsPCRel);
596  }
597}
598
599template<class CodeEmitter>
600void Emitter<CodeEmitter>::emitInstruction(MachineInstr &MI,
601                                           const TargetInstrDesc *Desc) {
602  DEBUG(dbgs() << MI);
603
604  // If this is a pseudo instruction, lower it.
605  switch (Desc->getOpcode()) {
606  case X86::ADD16rr_DB:   Desc = &II->get(X86::OR16rr); MI.setDesc(*Desc);break;
607  case X86::ADD32rr_DB:   Desc = &II->get(X86::OR32rr); MI.setDesc(*Desc);break;
608  case X86::ADD64rr_DB:   Desc = &II->get(X86::OR64rr); MI.setDesc(*Desc);break;
609  case X86::ADD16ri_DB:   Desc = &II->get(X86::OR16ri); MI.setDesc(*Desc);break;
610  case X86::ADD32ri_DB:   Desc = &II->get(X86::OR32ri); MI.setDesc(*Desc);break;
611  case X86::ADD64ri32_DB:Desc = &II->get(X86::OR64ri32);MI.setDesc(*Desc);break;
612  case X86::ADD16ri8_DB:  Desc = &II->get(X86::OR16ri8);MI.setDesc(*Desc);break;
613  case X86::ADD32ri8_DB:  Desc = &II->get(X86::OR32ri8);MI.setDesc(*Desc);break;
614  case X86::ADD64ri8_DB:  Desc = &II->get(X86::OR64ri8);MI.setDesc(*Desc);break;
615  }
616
617
618  MCE.processDebugLoc(MI.getDebugLoc(), true);
619
620  unsigned Opcode = Desc->Opcode;
621
622  // Emit the lock opcode prefix as needed.
623  if (Desc->TSFlags & X86II::LOCK)
624    MCE.emitByte(0xF0);
625
626  // Emit segment override opcode prefix as needed.
627  switch (Desc->TSFlags & X86II::SegOvrMask) {
628  case X86II::FS:
629    MCE.emitByte(0x64);
630    break;
631  case X86II::GS:
632    MCE.emitByte(0x65);
633    break;
634  default: llvm_unreachable("Invalid segment!");
635  case 0: break;  // No segment override!
636  }
637
638  // Emit the repeat opcode prefix as needed.
639  if ((Desc->TSFlags & X86II::Op0Mask) == X86II::REP)
640    MCE.emitByte(0xF3);
641
642  // Emit the operand size opcode prefix as needed.
643  if (Desc->TSFlags & X86II::OpSize)
644    MCE.emitByte(0x66);
645
646  // Emit the address size opcode prefix as needed.
647  if (Desc->TSFlags & X86II::AdSize)
648    MCE.emitByte(0x67);
649
650  bool Need0FPrefix = false;
651  switch (Desc->TSFlags & X86II::Op0Mask) {
652  case X86II::TB:  // Two-byte opcode prefix
653  case X86II::T8:  // 0F 38
654  case X86II::TA:  // 0F 3A
655    Need0FPrefix = true;
656    break;
657  case X86II::TF: // F2 0F 38
658    MCE.emitByte(0xF2);
659    Need0FPrefix = true;
660    break;
661  case X86II::REP: break; // already handled.
662  case X86II::XS:   // F3 0F
663    MCE.emitByte(0xF3);
664    Need0FPrefix = true;
665    break;
666  case X86II::XD:   // F2 0F
667    MCE.emitByte(0xF2);
668    Need0FPrefix = true;
669    break;
670  case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB:
671  case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF:
672    MCE.emitByte(0xD8+
673                 (((Desc->TSFlags & X86II::Op0Mask)-X86II::D8)
674                                   >> X86II::Op0Shift));
675    break; // Two-byte opcode prefix
676  default: llvm_unreachable("Invalid prefix!");
677  case 0: break;  // No prefix!
678  }
679
680  // Handle REX prefix.
681  if (Is64BitMode) {
682    if (unsigned REX = determineREX(MI))
683      MCE.emitByte(0x40 | REX);
684  }
685
686  // 0x0F escape code must be emitted just before the opcode.
687  if (Need0FPrefix)
688    MCE.emitByte(0x0F);
689
690  switch (Desc->TSFlags & X86II::Op0Mask) {
691  case X86II::TF:    // F2 0F 38
692  case X86II::T8:    // 0F 38
693    MCE.emitByte(0x38);
694    break;
695  case X86II::TA:    // 0F 3A
696    MCE.emitByte(0x3A);
697    break;
698  }
699
700  // If this is a two-address instruction, skip one of the register operands.
701  unsigned NumOps = Desc->getNumOperands();
702  unsigned CurOp = 0;
703  if (NumOps > 1 && Desc->getOperandConstraint(1, TOI::TIED_TO) != -1)
704    ++CurOp;
705  else if (NumOps > 2 && Desc->getOperandConstraint(NumOps-1, TOI::TIED_TO)== 0)
706    // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
707    --NumOps;
708
709  unsigned char BaseOpcode = X86II::getBaseOpcodeFor(Desc->TSFlags);
710  switch (Desc->TSFlags & X86II::FormMask) {
711  default:
712    llvm_unreachable("Unknown FormMask value in X86 MachineCodeEmitter!");
713  case X86II::Pseudo:
714    // Remember the current PC offset, this is the PIC relocation
715    // base address.
716    switch (Opcode) {
717    default:
718      llvm_unreachable("pseudo instructions should be removed before code"
719                       " emission");
720      break;
721    // Do nothing for Int_MemBarrier - it's just a comment.  Add a debug
722    // to make it slightly easier to see.
723    case X86::Int_MemBarrier:
724      DEBUG(dbgs() << "#MEMBARRIER\n");
725      break;
726
727    case TargetOpcode::INLINEASM:
728      // We allow inline assembler nodes with empty bodies - they can
729      // implicitly define registers, which is ok for JIT.
730      if (MI.getOperand(0).getSymbolName()[0])
731        report_fatal_error("JIT does not support inline asm!");
732      break;
733    case TargetOpcode::PROLOG_LABEL:
734    case TargetOpcode::GC_LABEL:
735    case TargetOpcode::EH_LABEL:
736      MCE.emitLabel(MI.getOperand(0).getMCSymbol());
737      break;
738
739    case TargetOpcode::IMPLICIT_DEF:
740    case TargetOpcode::KILL:
741      break;
742    case X86::MOVPC32r: {
743      // This emits the "call" portion of this pseudo instruction.
744      MCE.emitByte(BaseOpcode);
745      emitConstant(0, X86II::getSizeOfImm(Desc->TSFlags));
746      // Remember PIC base.
747      PICBaseOffset = (intptr_t) MCE.getCurrentPCOffset();
748      X86JITInfo *JTI = TM.getJITInfo();
749      JTI->setPICBase(MCE.getCurrentPCValue());
750      break;
751    }
752    }
753    CurOp = NumOps;
754    break;
755  case X86II::RawFrm: {
756    MCE.emitByte(BaseOpcode);
757
758    if (CurOp == NumOps)
759      break;
760
761    const MachineOperand &MO = MI.getOperand(CurOp++);
762
763    DEBUG(dbgs() << "RawFrm CurOp " << CurOp << "\n");
764    DEBUG(dbgs() << "isMBB " << MO.isMBB() << "\n");
765    DEBUG(dbgs() << "isGlobal " << MO.isGlobal() << "\n");
766    DEBUG(dbgs() << "isSymbol " << MO.isSymbol() << "\n");
767    DEBUG(dbgs() << "isImm " << MO.isImm() << "\n");
768
769    if (MO.isMBB()) {
770      emitPCRelativeBlockAddress(MO.getMBB());
771      break;
772    }
773
774    if (MO.isGlobal()) {
775      emitGlobalAddress(MO.getGlobal(), X86::reloc_pcrel_word,
776                        MO.getOffset(), 0);
777      break;
778    }
779
780    if (MO.isSymbol()) {
781      emitExternalSymbolAddress(MO.getSymbolName(), X86::reloc_pcrel_word);
782      break;
783    }
784
785    // FIXME: Only used by hackish MCCodeEmitter, remove when dead.
786    if (MO.isJTI()) {
787      emitJumpTableAddress(MO.getIndex(), X86::reloc_pcrel_word);
788      break;
789    }
790
791    assert(MO.isImm() && "Unknown RawFrm operand!");
792    if (Opcode == X86::CALLpcrel32 || Opcode == X86::CALL64pcrel32 ||
793        Opcode == X86::WINCALL64pcrel32) {
794      // Fix up immediate operand for pc relative calls.
795      intptr_t Imm = (intptr_t)MO.getImm();
796      Imm = Imm - MCE.getCurrentPCValue() - 4;
797      emitConstant(Imm, X86II::getSizeOfImm(Desc->TSFlags));
798    } else
799      emitConstant(MO.getImm(), X86II::getSizeOfImm(Desc->TSFlags));
800    break;
801  }
802
803  case X86II::AddRegFrm: {
804    MCE.emitByte(BaseOpcode + getX86RegNum(MI.getOperand(CurOp++).getReg()));
805
806    if (CurOp == NumOps)
807      break;
808
809    const MachineOperand &MO1 = MI.getOperand(CurOp++);
810    unsigned Size = X86II::getSizeOfImm(Desc->TSFlags);
811    if (MO1.isImm()) {
812      emitConstant(MO1.getImm(), Size);
813      break;
814    }
815
816    unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
817      : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
818    if (Opcode == X86::MOV64ri64i32)
819      rt = X86::reloc_absolute_word;  // FIXME: add X86II flag?
820    // This should not occur on Darwin for relocatable objects.
821    if (Opcode == X86::MOV64ri)
822      rt = X86::reloc_absolute_dword;  // FIXME: add X86II flag?
823    if (MO1.isGlobal()) {
824      bool Indirect = gvNeedsNonLazyPtr(MO1, TM);
825      emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0,
826                        Indirect);
827    } else if (MO1.isSymbol())
828      emitExternalSymbolAddress(MO1.getSymbolName(), rt);
829    else if (MO1.isCPI())
830      emitConstPoolAddress(MO1.getIndex(), rt);
831    else if (MO1.isJTI())
832      emitJumpTableAddress(MO1.getIndex(), rt);
833    break;
834  }
835
836  case X86II::MRMDestReg: {
837    MCE.emitByte(BaseOpcode);
838    emitRegModRMByte(MI.getOperand(CurOp).getReg(),
839                     getX86RegNum(MI.getOperand(CurOp+1).getReg()));
840    CurOp += 2;
841    if (CurOp != NumOps)
842      emitConstant(MI.getOperand(CurOp++).getImm(),
843                   X86II::getSizeOfImm(Desc->TSFlags));
844    break;
845  }
846  case X86II::MRMDestMem: {
847    MCE.emitByte(BaseOpcode);
848    emitMemModRMByte(MI, CurOp,
849                     getX86RegNum(MI.getOperand(CurOp + X86::AddrNumOperands)
850                                  .getReg()));
851    CurOp +=  X86::AddrNumOperands + 1;
852    if (CurOp != NumOps)
853      emitConstant(MI.getOperand(CurOp++).getImm(),
854                   X86II::getSizeOfImm(Desc->TSFlags));
855    break;
856  }
857
858  case X86II::MRMSrcReg:
859    MCE.emitByte(BaseOpcode);
860    emitRegModRMByte(MI.getOperand(CurOp+1).getReg(),
861                     getX86RegNum(MI.getOperand(CurOp).getReg()));
862    CurOp += 2;
863    if (CurOp != NumOps)
864      emitConstant(MI.getOperand(CurOp++).getImm(),
865                   X86II::getSizeOfImm(Desc->TSFlags));
866    break;
867
868  case X86II::MRMSrcMem: {
869    int AddrOperands = X86::AddrNumOperands;
870
871    intptr_t PCAdj = (CurOp + AddrOperands + 1 != NumOps) ?
872      X86II::getSizeOfImm(Desc->TSFlags) : 0;
873
874    MCE.emitByte(BaseOpcode);
875    emitMemModRMByte(MI, CurOp+1, getX86RegNum(MI.getOperand(CurOp).getReg()),
876                     PCAdj);
877    CurOp += AddrOperands + 1;
878    if (CurOp != NumOps)
879      emitConstant(MI.getOperand(CurOp++).getImm(),
880                   X86II::getSizeOfImm(Desc->TSFlags));
881    break;
882  }
883
884  case X86II::MRM0r: case X86II::MRM1r:
885  case X86II::MRM2r: case X86II::MRM3r:
886  case X86II::MRM4r: case X86II::MRM5r:
887  case X86II::MRM6r: case X86II::MRM7r: {
888    MCE.emitByte(BaseOpcode);
889    emitRegModRMByte(MI.getOperand(CurOp++).getReg(),
890                     (Desc->TSFlags & X86II::FormMask)-X86II::MRM0r);
891
892    if (CurOp == NumOps)
893      break;
894
895    const MachineOperand &MO1 = MI.getOperand(CurOp++);
896    unsigned Size = X86II::getSizeOfImm(Desc->TSFlags);
897    if (MO1.isImm()) {
898      emitConstant(MO1.getImm(), Size);
899      break;
900    }
901
902    unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
903      : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
904    if (Opcode == X86::MOV64ri32)
905      rt = X86::reloc_absolute_word_sext;  // FIXME: add X86II flag?
906    if (MO1.isGlobal()) {
907      bool Indirect = gvNeedsNonLazyPtr(MO1, TM);
908      emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0,
909                        Indirect);
910    } else if (MO1.isSymbol())
911      emitExternalSymbolAddress(MO1.getSymbolName(), rt);
912    else if (MO1.isCPI())
913      emitConstPoolAddress(MO1.getIndex(), rt);
914    else if (MO1.isJTI())
915      emitJumpTableAddress(MO1.getIndex(), rt);
916    break;
917  }
918
919  case X86II::MRM0m: case X86II::MRM1m:
920  case X86II::MRM2m: case X86II::MRM3m:
921  case X86II::MRM4m: case X86II::MRM5m:
922  case X86II::MRM6m: case X86II::MRM7m: {
923    intptr_t PCAdj = (CurOp + X86::AddrNumOperands != NumOps) ?
924      (MI.getOperand(CurOp+X86::AddrNumOperands).isImm() ?
925          X86II::getSizeOfImm(Desc->TSFlags) : 4) : 0;
926
927    MCE.emitByte(BaseOpcode);
928    emitMemModRMByte(MI, CurOp, (Desc->TSFlags & X86II::FormMask)-X86II::MRM0m,
929                     PCAdj);
930    CurOp += X86::AddrNumOperands;
931
932    if (CurOp == NumOps)
933      break;
934
935    const MachineOperand &MO = MI.getOperand(CurOp++);
936    unsigned Size = X86II::getSizeOfImm(Desc->TSFlags);
937    if (MO.isImm()) {
938      emitConstant(MO.getImm(), Size);
939      break;
940    }
941
942    unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
943      : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
944    if (Opcode == X86::MOV64mi32)
945      rt = X86::reloc_absolute_word_sext;  // FIXME: add X86II flag?
946    if (MO.isGlobal()) {
947      bool Indirect = gvNeedsNonLazyPtr(MO, TM);
948      emitGlobalAddress(MO.getGlobal(), rt, MO.getOffset(), 0,
949                        Indirect);
950    } else if (MO.isSymbol())
951      emitExternalSymbolAddress(MO.getSymbolName(), rt);
952    else if (MO.isCPI())
953      emitConstPoolAddress(MO.getIndex(), rt);
954    else if (MO.isJTI())
955      emitJumpTableAddress(MO.getIndex(), rt);
956    break;
957  }
958
959  case X86II::MRMInitReg:
960    MCE.emitByte(BaseOpcode);
961    // Duplicate register, used by things like MOV8r0 (aka xor reg,reg).
962    emitRegModRMByte(MI.getOperand(CurOp).getReg(),
963                     getX86RegNum(MI.getOperand(CurOp).getReg()));
964    ++CurOp;
965    break;
966
967  case X86II::MRM_C1:
968    MCE.emitByte(BaseOpcode);
969    MCE.emitByte(0xC1);
970    break;
971  case X86II::MRM_C8:
972    MCE.emitByte(BaseOpcode);
973    MCE.emitByte(0xC8);
974    break;
975  case X86II::MRM_C9:
976    MCE.emitByte(BaseOpcode);
977    MCE.emitByte(0xC9);
978    break;
979  case X86II::MRM_E8:
980    MCE.emitByte(BaseOpcode);
981    MCE.emitByte(0xE8);
982    break;
983  case X86II::MRM_F0:
984    MCE.emitByte(BaseOpcode);
985    MCE.emitByte(0xF0);
986    break;
987  }
988
989  if (!Desc->isVariadic() && CurOp != NumOps) {
990#ifndef NDEBUG
991    dbgs() << "Cannot encode all operands of: " << MI << "\n";
992#endif
993    llvm_unreachable(0);
994  }
995
996  MCE.processDebugLoc(MI.getDebugLoc(), false);
997}
998