X86CodeEmitter.cpp revision 228379
1219820Sjeff//===-- X86/X86CodeEmitter.cpp - Convert X86 code to machine code ---------===//
2219820Sjeff//
3219820Sjeff//                     The LLVM Compiler Infrastructure
4219820Sjeff//
5219820Sjeff// This file is distributed under the University of Illinois Open Source
6219820Sjeff// License. See LICENSE.TXT for details.
7219820Sjeff//
8219820Sjeff//===----------------------------------------------------------------------===//
9219820Sjeff//
10219820Sjeff// This file contains the pass that transforms the X86 machine instructions into
11219820Sjeff// relocatable machine code.
12219820Sjeff//
13219820Sjeff//===----------------------------------------------------------------------===//
14219820Sjeff
15219820Sjeff#define DEBUG_TYPE "x86-emitter"
16219820Sjeff#include "X86InstrInfo.h"
17219820Sjeff#include "X86JITInfo.h"
18219820Sjeff#include "X86Subtarget.h"
19219820Sjeff#include "X86TargetMachine.h"
20219820Sjeff#include "X86Relocations.h"
21219820Sjeff#include "X86.h"
22219820Sjeff#include "llvm/LLVMContext.h"
23219820Sjeff#include "llvm/PassManager.h"
24219820Sjeff#include "llvm/CodeGen/JITCodeEmitter.h"
25219820Sjeff#include "llvm/CodeGen/MachineFunctionPass.h"
26219820Sjeff#include "llvm/CodeGen/MachineInstr.h"
27219820Sjeff#include "llvm/CodeGen/MachineModuleInfo.h"
28219820Sjeff#include "llvm/CodeGen/Passes.h"
29219820Sjeff#include "llvm/Function.h"
30219820Sjeff#include "llvm/ADT/Statistic.h"
31219820Sjeff#include "llvm/MC/MCCodeEmitter.h"
32219820Sjeff#include "llvm/MC/MCExpr.h"
33219820Sjeff#include "llvm/MC/MCInst.h"
34219820Sjeff#include "llvm/Support/Debug.h"
35219820Sjeff#include "llvm/Support/ErrorHandling.h"
36219820Sjeff#include "llvm/Support/raw_ostream.h"
37219820Sjeff#include "llvm/Target/TargetOptions.h"
38219820Sjeffusing namespace llvm;
39219820Sjeff
40219820SjeffSTATISTIC(NumEmitted, "Number of machine instructions emitted");
41219820Sjeff
42219820Sjeffnamespace {
43219820Sjeff  template<class CodeEmitter>
44219820Sjeff  class Emitter : public MachineFunctionPass {
45219820Sjeff    const X86InstrInfo  *II;
46219820Sjeff    const TargetData    *TD;
47219820Sjeff    X86TargetMachine    &TM;
48219820Sjeff    CodeEmitter         &MCE;
49219820Sjeff    MachineModuleInfo   *MMI;
50219820Sjeff    intptr_t PICBaseOffset;
51219820Sjeff    bool Is64BitMode;
52219820Sjeff    bool IsPIC;
53219820Sjeff  public:
54219820Sjeff    static char ID;
55219820Sjeff    explicit Emitter(X86TargetMachine &tm, CodeEmitter &mce)
56219820Sjeff      : MachineFunctionPass(ID), II(0), TD(0), TM(tm),
57219820Sjeff      MCE(mce), PICBaseOffset(0), Is64BitMode(false),
58219820Sjeff      IsPIC(TM.getRelocationModel() == Reloc::PIC_) {}
59219820Sjeff    Emitter(X86TargetMachine &tm, CodeEmitter &mce,
60219820Sjeff            const X86InstrInfo &ii, const TargetData &td, bool is64)
61219820Sjeff      : MachineFunctionPass(ID), II(&ii), TD(&td), TM(tm),
62219820Sjeff      MCE(mce), PICBaseOffset(0), Is64BitMode(is64),
63219820Sjeff      IsPIC(TM.getRelocationModel() == Reloc::PIC_) {}
64219820Sjeff
65219820Sjeff    bool runOnMachineFunction(MachineFunction &MF);
66219820Sjeff
67219820Sjeff    virtual const char *getPassName() const {
68219820Sjeff      return "X86 Machine Code Emitter";
69219820Sjeff    }
70219820Sjeff
71219820Sjeff    void emitInstruction(MachineInstr &MI, const MCInstrDesc *Desc);
72219820Sjeff
73219820Sjeff    void getAnalysisUsage(AnalysisUsage &AU) const {
74219820Sjeff      AU.setPreservesAll();
75219820Sjeff      AU.addRequired<MachineModuleInfo>();
76219820Sjeff      MachineFunctionPass::getAnalysisUsage(AU);
77219820Sjeff    }
78219820Sjeff
79219820Sjeff  private:
80219820Sjeff    void emitPCRelativeBlockAddress(MachineBasicBlock *MBB);
81219820Sjeff    void emitGlobalAddress(const GlobalValue *GV, unsigned Reloc,
82219820Sjeff                           intptr_t Disp = 0, intptr_t PCAdj = 0,
83219820Sjeff                           bool Indirect = false);
84219820Sjeff    void emitExternalSymbolAddress(const char *ES, unsigned Reloc);
85219820Sjeff    void emitConstPoolAddress(unsigned CPI, unsigned Reloc, intptr_t Disp = 0,
86219820Sjeff                              intptr_t PCAdj = 0);
87219820Sjeff    void emitJumpTableAddress(unsigned JTI, unsigned Reloc,
88219820Sjeff                              intptr_t PCAdj = 0);
89219820Sjeff
90219820Sjeff    void emitDisplacementField(const MachineOperand *RelocOp, int DispVal,
91219820Sjeff                               intptr_t Adj = 0, bool IsPCRel = true);
92219820Sjeff
93219820Sjeff    void emitRegModRMByte(unsigned ModRMReg, unsigned RegOpcodeField);
94219820Sjeff    void emitRegModRMByte(unsigned RegOpcodeField);
95219820Sjeff    void emitSIBByte(unsigned SS, unsigned Index, unsigned Base);
96219820Sjeff    void emitConstant(uint64_t Val, unsigned Size);
97219820Sjeff
98219820Sjeff    void emitMemModRMByte(const MachineInstr &MI,
99219820Sjeff                          unsigned Op, unsigned RegOpcodeField,
100219820Sjeff                          intptr_t PCAdj = 0);
101219820Sjeff  };
102219820Sjeff
103219820Sjefftemplate<class CodeEmitter>
104219820Sjeff  char Emitter<CodeEmitter>::ID = 0;
105219820Sjeff} // end anonymous namespace.
106219820Sjeff
107219820Sjeff/// createX86CodeEmitterPass - Return a pass that emits the collected X86 code
108219820Sjeff/// to the specified templated MachineCodeEmitter object.
109219820SjeffFunctionPass *llvm::createX86JITCodeEmitterPass(X86TargetMachine &TM,
110219820Sjeff                                                JITCodeEmitter &JCE) {
111219820Sjeff  return new Emitter<JITCodeEmitter>(TM, JCE);
112219820Sjeff}
113219820Sjeff
114219820Sjefftemplate<class CodeEmitter>
115219820Sjeffbool Emitter<CodeEmitter>::runOnMachineFunction(MachineFunction &MF) {
116219820Sjeff  MMI = &getAnalysis<MachineModuleInfo>();
117219820Sjeff  MCE.setModuleInfo(MMI);
118219820Sjeff
119219820Sjeff  II = TM.getInstrInfo();
120219820Sjeff  TD = TM.getTargetData();
121219820Sjeff  Is64BitMode = TM.getSubtarget<X86Subtarget>().is64Bit();
122219820Sjeff  IsPIC = TM.getRelocationModel() == Reloc::PIC_;
123219820Sjeff
124219820Sjeff  do {
125219820Sjeff    DEBUG(dbgs() << "JITTing function '"
126219820Sjeff          << MF.getFunction()->getName() << "'\n");
127219820Sjeff    MCE.startFunction(MF);
128219820Sjeff    for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
129219820Sjeff         MBB != E; ++MBB) {
130219820Sjeff      MCE.StartMachineBasicBlock(MBB);
131219820Sjeff      for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
132219820Sjeff           I != E; ++I) {
133219820Sjeff        const MCInstrDesc &Desc = I->getDesc();
134219820Sjeff        emitInstruction(*I, &Desc);
135219820Sjeff        // MOVPC32r is basically a call plus a pop instruction.
136219820Sjeff        if (Desc.getOpcode() == X86::MOVPC32r)
137219820Sjeff          emitInstruction(*I, &II->get(X86::POP32r));
138219820Sjeff        ++NumEmitted;  // Keep track of the # of mi's emitted
139219820Sjeff      }
140219820Sjeff    }
141219820Sjeff  } while (MCE.finishFunction(MF));
142219820Sjeff
143219820Sjeff  return false;
144219820Sjeff}
145219820Sjeff
146219820Sjeff/// determineREX - Determine if the MachineInstr has to be encoded with a X86-64
147219820Sjeff/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
148219820Sjeff/// size, and 3) use of X86-64 extended registers.
149219820Sjeffstatic unsigned determineREX(const MachineInstr &MI) {
150219820Sjeff  unsigned REX = 0;
151219820Sjeff  const MCInstrDesc &Desc = MI.getDesc();
152219820Sjeff
153219820Sjeff  // Pseudo instructions do not need REX prefix byte.
154219820Sjeff  if ((Desc.TSFlags & X86II::FormMask) == X86II::Pseudo)
155219820Sjeff    return 0;
156219820Sjeff  if (Desc.TSFlags & X86II::REX_W)
157219820Sjeff    REX |= 1 << 3;
158219820Sjeff
159219820Sjeff  unsigned NumOps = Desc.getNumOperands();
160219820Sjeff  if (NumOps) {
161219820Sjeff    bool isTwoAddr = NumOps > 1 &&
162219820Sjeff    Desc.getOperandConstraint(1, MCOI::TIED_TO) != -1;
163219820Sjeff
164219820Sjeff    // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
165219820Sjeff    unsigned i = isTwoAddr ? 1 : 0;
166219820Sjeff    for (unsigned e = NumOps; i != e; ++i) {
167219820Sjeff      const MachineOperand& MO = MI.getOperand(i);
168219820Sjeff      if (MO.isReg()) {
169219820Sjeff        unsigned Reg = MO.getReg();
170219820Sjeff        if (X86II::isX86_64NonExtLowByteReg(Reg))
171219820Sjeff          REX |= 0x40;
172219820Sjeff      }
173219820Sjeff    }
174219820Sjeff
175219820Sjeff    switch (Desc.TSFlags & X86II::FormMask) {
176219820Sjeff      case X86II::MRMInitReg:
177219820Sjeff        if (X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0)))
178219820Sjeff          REX |= (1 << 0) | (1 << 2);
179219820Sjeff        break;
180219820Sjeff      case X86II::MRMSrcReg: {
181219820Sjeff        if (X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0)))
182219820Sjeff          REX |= 1 << 2;
183219820Sjeff        i = isTwoAddr ? 2 : 1;
184219820Sjeff        for (unsigned e = NumOps; i != e; ++i) {
185219820Sjeff          const MachineOperand& MO = MI.getOperand(i);
186219820Sjeff          if (X86InstrInfo::isX86_64ExtendedReg(MO))
187219820Sjeff            REX |= 1 << 0;
188219820Sjeff        }
189219820Sjeff        break;
190219820Sjeff      }
191219820Sjeff      case X86II::MRMSrcMem: {
192219820Sjeff        if (X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0)))
193219820Sjeff          REX |= 1 << 2;
194219820Sjeff        unsigned Bit = 0;
195219820Sjeff        i = isTwoAddr ? 2 : 1;
196219820Sjeff        for (; i != NumOps; ++i) {
197219820Sjeff          const MachineOperand& MO = MI.getOperand(i);
198219820Sjeff          if (MO.isReg()) {
199219820Sjeff            if (X86InstrInfo::isX86_64ExtendedReg(MO))
200219820Sjeff              REX |= 1 << Bit;
201219820Sjeff            Bit++;
202219820Sjeff          }
203219820Sjeff        }
204219820Sjeff        break;
205219820Sjeff      }
206219820Sjeff      case X86II::MRM0m: case X86II::MRM1m:
207219820Sjeff      case X86II::MRM2m: case X86II::MRM3m:
208219820Sjeff      case X86II::MRM4m: case X86II::MRM5m:
209219820Sjeff      case X86II::MRM6m: case X86II::MRM7m:
210219820Sjeff      case X86II::MRMDestMem: {
211219820Sjeff        unsigned e = (isTwoAddr ? X86::AddrNumOperands+1 : X86::AddrNumOperands);
212219820Sjeff        i = isTwoAddr ? 1 : 0;
213219820Sjeff        if (NumOps > e && X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(e)))
214219820Sjeff          REX |= 1 << 2;
215219820Sjeff        unsigned Bit = 0;
216219820Sjeff        for (; i != e; ++i) {
217219820Sjeff          const MachineOperand& MO = MI.getOperand(i);
218219820Sjeff          if (MO.isReg()) {
219219820Sjeff            if (X86InstrInfo::isX86_64ExtendedReg(MO))
220219820Sjeff              REX |= 1 << Bit;
221219820Sjeff            Bit++;
222219820Sjeff          }
223219820Sjeff        }
224219820Sjeff        break;
225219820Sjeff      }
226219820Sjeff      default: {
227219820Sjeff        if (X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0)))
228219820Sjeff          REX |= 1 << 0;
229219820Sjeff        i = isTwoAddr ? 2 : 1;
230219820Sjeff        for (unsigned e = NumOps; i != e; ++i) {
231219820Sjeff          const MachineOperand& MO = MI.getOperand(i);
232219820Sjeff          if (X86InstrInfo::isX86_64ExtendedReg(MO))
233219820Sjeff            REX |= 1 << 2;
234219820Sjeff        }
235219820Sjeff        break;
236219820Sjeff      }
237219820Sjeff    }
238219820Sjeff  }
239219820Sjeff  return REX;
240219820Sjeff}
241219820Sjeff
242219820Sjeff
243219820Sjeff/// emitPCRelativeBlockAddress - This method keeps track of the information
244219820Sjeff/// necessary to resolve the address of this block later and emits a dummy
245219820Sjeff/// value.
246219820Sjeff///
247219820Sjefftemplate<class CodeEmitter>
248219820Sjeffvoid Emitter<CodeEmitter>::emitPCRelativeBlockAddress(MachineBasicBlock *MBB) {
249219820Sjeff  // Remember where this reference was and where it is to so we can
250219820Sjeff  // deal with it later.
251219820Sjeff  MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(),
252219820Sjeff                                             X86::reloc_pcrel_word, MBB));
253219820Sjeff  MCE.emitWordLE(0);
254219820Sjeff}
255219820Sjeff
256219820Sjeff/// emitGlobalAddress - Emit the specified address to the code stream assuming
257219820Sjeff/// this is part of a "take the address of a global" instruction.
258219820Sjeff///
259219820Sjefftemplate<class CodeEmitter>
260219820Sjeffvoid Emitter<CodeEmitter>::emitGlobalAddress(const GlobalValue *GV,
261219820Sjeff                                unsigned Reloc,
262219820Sjeff                                intptr_t Disp /* = 0 */,
263219820Sjeff                                intptr_t PCAdj /* = 0 */,
264219820Sjeff                                bool Indirect /* = false */) {
265219820Sjeff  intptr_t RelocCST = Disp;
266219820Sjeff  if (Reloc == X86::reloc_picrel_word)
267219820Sjeff    RelocCST = PICBaseOffset;
268219820Sjeff  else if (Reloc == X86::reloc_pcrel_word)
269219820Sjeff    RelocCST = PCAdj;
270219820Sjeff  MachineRelocation MR = Indirect
271219820Sjeff    ? MachineRelocation::getIndirectSymbol(MCE.getCurrentPCOffset(), Reloc,
272219820Sjeff                                           const_cast<GlobalValue *>(GV),
273219820Sjeff                                           RelocCST, false)
274219820Sjeff    : MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc,
275219820Sjeff                               const_cast<GlobalValue *>(GV), RelocCST, false);
276219820Sjeff  MCE.addRelocation(MR);
277219820Sjeff  // The relocated value will be added to the displacement
278219820Sjeff  if (Reloc == X86::reloc_absolute_dword)
279219820Sjeff    MCE.emitDWordLE(Disp);
280219820Sjeff  else
281219820Sjeff    MCE.emitWordLE((int32_t)Disp);
282219820Sjeff}
283219820Sjeff
284219820Sjeff/// emitExternalSymbolAddress - Arrange for the address of an external symbol to
285219820Sjeff/// be emitted to the current location in the function, and allow it to be PC
286219820Sjeff/// relative.
287219820Sjefftemplate<class CodeEmitter>
288219820Sjeffvoid Emitter<CodeEmitter>::emitExternalSymbolAddress(const char *ES,
289219820Sjeff                                                     unsigned Reloc) {
290219820Sjeff  intptr_t RelocCST = (Reloc == X86::reloc_picrel_word) ? PICBaseOffset : 0;
291219820Sjeff
292219820Sjeff  // X86 never needs stubs because instruction selection will always pick
293219820Sjeff  // an instruction sequence that is large enough to hold any address
294219820Sjeff  // to a symbol.
295219820Sjeff  // (see X86ISelLowering.cpp, near 2039: X86TargetLowering::LowerCall)
296219820Sjeff  bool NeedStub = false;
297219820Sjeff  MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(),
298219820Sjeff                                                 Reloc, ES, RelocCST,
299219820Sjeff                                                 0, NeedStub));
300219820Sjeff  if (Reloc == X86::reloc_absolute_dword)
301219820Sjeff    MCE.emitDWordLE(0);
302219820Sjeff  else
303219820Sjeff    MCE.emitWordLE(0);
304219820Sjeff}
305219820Sjeff
306219820Sjeff/// emitConstPoolAddress - Arrange for the address of an constant pool
307219820Sjeff/// to be emitted to the current location in the function, and allow it to be PC
308219820Sjeff/// relative.
309219820Sjefftemplate<class CodeEmitter>
310219820Sjeffvoid Emitter<CodeEmitter>::emitConstPoolAddress(unsigned CPI, unsigned Reloc,
311219820Sjeff                                   intptr_t Disp /* = 0 */,
312219820Sjeff                                   intptr_t PCAdj /* = 0 */) {
313219820Sjeff  intptr_t RelocCST = 0;
314219820Sjeff  if (Reloc == X86::reloc_picrel_word)
315219820Sjeff    RelocCST = PICBaseOffset;
316219820Sjeff  else if (Reloc == X86::reloc_pcrel_word)
317219820Sjeff    RelocCST = PCAdj;
318219820Sjeff  MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(),
319219820Sjeff                                                    Reloc, CPI, RelocCST));
320219820Sjeff  // The relocated value will be added to the displacement
321219820Sjeff  if (Reloc == X86::reloc_absolute_dword)
322219820Sjeff    MCE.emitDWordLE(Disp);
323219820Sjeff  else
324219820Sjeff    MCE.emitWordLE((int32_t)Disp);
325219820Sjeff}
326219820Sjeff
327219820Sjeff/// emitJumpTableAddress - Arrange for the address of a jump table to
328219820Sjeff/// be emitted to the current location in the function, and allow it to be PC
329219820Sjeff/// relative.
330219820Sjefftemplate<class CodeEmitter>
331219820Sjeffvoid Emitter<CodeEmitter>::emitJumpTableAddress(unsigned JTI, unsigned Reloc,
332219820Sjeff                                   intptr_t PCAdj /* = 0 */) {
333219820Sjeff  intptr_t RelocCST = 0;
334219820Sjeff  if (Reloc == X86::reloc_picrel_word)
335219820Sjeff    RelocCST = PICBaseOffset;
336219820Sjeff  else if (Reloc == X86::reloc_pcrel_word)
337219820Sjeff    RelocCST = PCAdj;
338219820Sjeff  MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(),
339219820Sjeff                                                    Reloc, JTI, RelocCST));
340219820Sjeff  // The relocated value will be added to the displacement
341219820Sjeff  if (Reloc == X86::reloc_absolute_dword)
342219820Sjeff    MCE.emitDWordLE(0);
343219820Sjeff  else
344219820Sjeff    MCE.emitWordLE(0);
345219820Sjeff}
346219820Sjeff
347219820Sjeffinline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
348219820Sjeff                                      unsigned RM) {
349219820Sjeff  assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
350219820Sjeff  return RM | (RegOpcode << 3) | (Mod << 6);
351219820Sjeff}
352219820Sjeff
353219820Sjefftemplate<class CodeEmitter>
354219820Sjeffvoid Emitter<CodeEmitter>::emitRegModRMByte(unsigned ModRMReg,
355219820Sjeff                                            unsigned RegOpcodeFld){
356219820Sjeff  MCE.emitByte(ModRMByte(3, RegOpcodeFld, X86_MC::getX86RegNum(ModRMReg)));
357219820Sjeff}
358219820Sjeff
359219820Sjefftemplate<class CodeEmitter>
360219820Sjeffvoid Emitter<CodeEmitter>::emitRegModRMByte(unsigned RegOpcodeFld) {
361219820Sjeff  MCE.emitByte(ModRMByte(3, RegOpcodeFld, 0));
362219820Sjeff}
363219820Sjeff
364219820Sjefftemplate<class CodeEmitter>
365219820Sjeffvoid Emitter<CodeEmitter>::emitSIBByte(unsigned SS,
366219820Sjeff                                       unsigned Index,
367219820Sjeff                                       unsigned Base) {
368219820Sjeff  // SIB byte is in the same format as the ModRMByte...
369219820Sjeff  MCE.emitByte(ModRMByte(SS, Index, Base));
370219820Sjeff}
371219820Sjeff
372219820Sjefftemplate<class CodeEmitter>
373219820Sjeffvoid Emitter<CodeEmitter>::emitConstant(uint64_t Val, unsigned Size) {
374219820Sjeff  // Output the constant in little endian byte order...
375219820Sjeff  for (unsigned i = 0; i != Size; ++i) {
376219820Sjeff    MCE.emitByte(Val & 255);
377219820Sjeff    Val >>= 8;
378219820Sjeff  }
379219820Sjeff}
380219820Sjeff
381219820Sjeff/// isDisp8 - Return true if this signed displacement fits in a 8-bit
382219820Sjeff/// sign-extended field.
383219820Sjeffstatic bool isDisp8(int Value) {
384219820Sjeff  return Value == (signed char)Value;
385219820Sjeff}
386219820Sjeff
387219820Sjeffstatic bool gvNeedsNonLazyPtr(const MachineOperand &GVOp,
388219820Sjeff                              const TargetMachine &TM) {
389219820Sjeff  // For Darwin-64, simulate the linktime GOT by using the same non-lazy-pointer
390219820Sjeff  // mechanism as 32-bit mode.
391219820Sjeff  if (TM.getSubtarget<X86Subtarget>().is64Bit() &&
392219820Sjeff      !TM.getSubtarget<X86Subtarget>().isTargetDarwin())
393    return false;
394
395  // Return true if this is a reference to a stub containing the address of the
396  // global, not the global itself.
397  return isGlobalStubReference(GVOp.getTargetFlags());
398}
399
400template<class CodeEmitter>
401void Emitter<CodeEmitter>::emitDisplacementField(const MachineOperand *RelocOp,
402                                                 int DispVal,
403                                                 intptr_t Adj /* = 0 */,
404                                                 bool IsPCRel /* = true */) {
405  // If this is a simple integer displacement that doesn't require a relocation,
406  // emit it now.
407  if (!RelocOp) {
408    emitConstant(DispVal, 4);
409    return;
410  }
411
412  // Otherwise, this is something that requires a relocation.  Emit it as such
413  // now.
414  unsigned RelocType = Is64BitMode ?
415    (IsPCRel ? X86::reloc_pcrel_word : X86::reloc_absolute_word_sext)
416    : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
417  if (RelocOp->isGlobal()) {
418    // In 64-bit static small code model, we could potentially emit absolute.
419    // But it's probably not beneficial. If the MCE supports using RIP directly
420    // do it, otherwise fallback to absolute (this is determined by IsPCRel).
421    //  89 05 00 00 00 00     mov    %eax,0(%rip)  # PC-relative
422    //  89 04 25 00 00 00 00  mov    %eax,0x0      # Absolute
423    bool Indirect = gvNeedsNonLazyPtr(*RelocOp, TM);
424    emitGlobalAddress(RelocOp->getGlobal(), RelocType, RelocOp->getOffset(),
425                      Adj, Indirect);
426  } else if (RelocOp->isSymbol()) {
427    emitExternalSymbolAddress(RelocOp->getSymbolName(), RelocType);
428  } else if (RelocOp->isCPI()) {
429    emitConstPoolAddress(RelocOp->getIndex(), RelocType,
430                         RelocOp->getOffset(), Adj);
431  } else {
432    assert(RelocOp->isJTI() && "Unexpected machine operand!");
433    emitJumpTableAddress(RelocOp->getIndex(), RelocType, Adj);
434  }
435}
436
437template<class CodeEmitter>
438void Emitter<CodeEmitter>::emitMemModRMByte(const MachineInstr &MI,
439                                            unsigned Op,unsigned RegOpcodeField,
440                                            intptr_t PCAdj) {
441  const MachineOperand &Op3 = MI.getOperand(Op+3);
442  int DispVal = 0;
443  const MachineOperand *DispForReloc = 0;
444
445  // Figure out what sort of displacement we have to handle here.
446  if (Op3.isGlobal()) {
447    DispForReloc = &Op3;
448  } else if (Op3.isSymbol()) {
449    DispForReloc = &Op3;
450  } else if (Op3.isCPI()) {
451    if (!MCE.earlyResolveAddresses() || Is64BitMode || IsPIC) {
452      DispForReloc = &Op3;
453    } else {
454      DispVal += MCE.getConstantPoolEntryAddress(Op3.getIndex());
455      DispVal += Op3.getOffset();
456    }
457  } else if (Op3.isJTI()) {
458    if (!MCE.earlyResolveAddresses() || Is64BitMode || IsPIC) {
459      DispForReloc = &Op3;
460    } else {
461      DispVal += MCE.getJumpTableEntryAddress(Op3.getIndex());
462    }
463  } else {
464    DispVal = Op3.getImm();
465  }
466
467  const MachineOperand &Base     = MI.getOperand(Op);
468  const MachineOperand &Scale    = MI.getOperand(Op+1);
469  const MachineOperand &IndexReg = MI.getOperand(Op+2);
470
471  unsigned BaseReg = Base.getReg();
472
473  // Handle %rip relative addressing.
474  if (BaseReg == X86::RIP ||
475      (Is64BitMode && DispForReloc)) { // [disp32+RIP] in X86-64 mode
476    assert(IndexReg.getReg() == 0 && Is64BitMode &&
477           "Invalid rip-relative address");
478    MCE.emitByte(ModRMByte(0, RegOpcodeField, 5));
479    emitDisplacementField(DispForReloc, DispVal, PCAdj, true);
480    return;
481  }
482
483  // Indicate that the displacement will use an pcrel or absolute reference
484  // by default. MCEs able to resolve addresses on-the-fly use pcrel by default
485  // while others, unless explicit asked to use RIP, use absolute references.
486  bool IsPCRel = MCE.earlyResolveAddresses() ? true : false;
487
488  // Is a SIB byte needed?
489  // If no BaseReg, issue a RIP relative instruction only if the MCE can
490  // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
491  // 2-7) and absolute references.
492  unsigned BaseRegNo = -1U;
493  if (BaseReg != 0 && BaseReg != X86::RIP)
494    BaseRegNo = X86_MC::getX86RegNum(BaseReg);
495
496  if (// The SIB byte must be used if there is an index register.
497      IndexReg.getReg() == 0 &&
498      // The SIB byte must be used if the base is ESP/RSP/R12, all of which
499      // encode to an R/M value of 4, which indicates that a SIB byte is
500      // present.
501      BaseRegNo != N86::ESP &&
502      // If there is no base register and we're in 64-bit mode, we need a SIB
503      // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
504      (!Is64BitMode || BaseReg != 0)) {
505    if (BaseReg == 0 ||          // [disp32]     in X86-32 mode
506        BaseReg == X86::RIP) {   // [disp32+RIP] in X86-64 mode
507      MCE.emitByte(ModRMByte(0, RegOpcodeField, 5));
508      emitDisplacementField(DispForReloc, DispVal, PCAdj, true);
509      return;
510    }
511
512    // If the base is not EBP/ESP and there is no displacement, use simple
513    // indirect register encoding, this handles addresses like [EAX].  The
514    // encoding for [EBP] with no displacement means [disp32] so we handle it
515    // by emitting a displacement of 0 below.
516    if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) {
517      MCE.emitByte(ModRMByte(0, RegOpcodeField, BaseRegNo));
518      return;
519    }
520
521    // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
522    if (!DispForReloc && isDisp8(DispVal)) {
523      MCE.emitByte(ModRMByte(1, RegOpcodeField, BaseRegNo));
524      emitConstant(DispVal, 1);
525      return;
526    }
527
528    // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
529    MCE.emitByte(ModRMByte(2, RegOpcodeField, BaseRegNo));
530    emitDisplacementField(DispForReloc, DispVal, PCAdj, IsPCRel);
531    return;
532  }
533
534  // Otherwise we need a SIB byte, so start by outputting the ModR/M byte first.
535  assert(IndexReg.getReg() != X86::ESP &&
536         IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
537
538  bool ForceDisp32 = false;
539  bool ForceDisp8  = false;
540  if (BaseReg == 0) {
541    // If there is no base register, we emit the special case SIB byte with
542    // MOD=0, BASE=4, to JUST get the index, scale, and displacement.
543    MCE.emitByte(ModRMByte(0, RegOpcodeField, 4));
544    ForceDisp32 = true;
545  } else if (DispForReloc) {
546    // Emit the normal disp32 encoding.
547    MCE.emitByte(ModRMByte(2, RegOpcodeField, 4));
548    ForceDisp32 = true;
549  } else if (DispVal == 0 && BaseRegNo != N86::EBP) {
550    // Emit no displacement ModR/M byte
551    MCE.emitByte(ModRMByte(0, RegOpcodeField, 4));
552  } else if (isDisp8(DispVal)) {
553    // Emit the disp8 encoding...
554    MCE.emitByte(ModRMByte(1, RegOpcodeField, 4));
555    ForceDisp8 = true;           // Make sure to force 8 bit disp if Base=EBP
556  } else {
557    // Emit the normal disp32 encoding...
558    MCE.emitByte(ModRMByte(2, RegOpcodeField, 4));
559  }
560
561  // Calculate what the SS field value should be...
562  static const unsigned SSTable[] = { ~0U, 0, 1, ~0U, 2, ~0U, ~0U, ~0U, 3 };
563  unsigned SS = SSTable[Scale.getImm()];
564
565  if (BaseReg == 0) {
566    // Handle the SIB byte for the case where there is no base, see Intel
567    // Manual 2A, table 2-7. The displacement has already been output.
568    unsigned IndexRegNo;
569    if (IndexReg.getReg())
570      IndexRegNo = X86_MC::getX86RegNum(IndexReg.getReg());
571    else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
572      IndexRegNo = 4;
573    emitSIBByte(SS, IndexRegNo, 5);
574  } else {
575    unsigned BaseRegNo = X86_MC::getX86RegNum(BaseReg);
576    unsigned IndexRegNo;
577    if (IndexReg.getReg())
578      IndexRegNo = X86_MC::getX86RegNum(IndexReg.getReg());
579    else
580      IndexRegNo = 4;   // For example [ESP+1*<noreg>+4]
581    emitSIBByte(SS, IndexRegNo, BaseRegNo);
582  }
583
584  // Do we need to output a displacement?
585  if (ForceDisp8) {
586    emitConstant(DispVal, 1);
587  } else if (DispVal != 0 || ForceDisp32) {
588    emitDisplacementField(DispForReloc, DispVal, PCAdj, IsPCRel);
589  }
590}
591
592static const MCInstrDesc *UpdateOp(MachineInstr &MI, const X86InstrInfo *II,
593                                   unsigned Opcode) {
594  const MCInstrDesc *Desc = &II->get(Opcode);
595  MI.setDesc(*Desc);
596  return Desc;
597}
598
599template<class CodeEmitter>
600void Emitter<CodeEmitter>::emitInstruction(MachineInstr &MI,
601                                           const MCInstrDesc *Desc) {
602  DEBUG(dbgs() << MI);
603
604  // If this is a pseudo instruction, lower it.
605  switch (Desc->getOpcode()) {
606  case X86::ADD16rr_DB:      Desc = UpdateOp(MI, II, X86::OR16rr); break;
607  case X86::ADD32rr_DB:      Desc = UpdateOp(MI, II, X86::OR32rr); break;
608  case X86::ADD64rr_DB:      Desc = UpdateOp(MI, II, X86::OR64rr); break;
609  case X86::ADD16ri_DB:      Desc = UpdateOp(MI, II, X86::OR16ri); break;
610  case X86::ADD32ri_DB:      Desc = UpdateOp(MI, II, X86::OR32ri); break;
611  case X86::ADD64ri32_DB:    Desc = UpdateOp(MI, II, X86::OR64ri32); break;
612  case X86::ADD16ri8_DB:     Desc = UpdateOp(MI, II, X86::OR16ri8); break;
613  case X86::ADD32ri8_DB:     Desc = UpdateOp(MI, II, X86::OR32ri8); break;
614  case X86::ADD64ri8_DB:     Desc = UpdateOp(MI, II, X86::OR64ri8); break;
615  case X86::ACQUIRE_MOV8rm:  Desc = UpdateOp(MI, II, X86::MOV8rm); break;
616  case X86::ACQUIRE_MOV16rm: Desc = UpdateOp(MI, II, X86::MOV16rm); break;
617  case X86::ACQUIRE_MOV32rm: Desc = UpdateOp(MI, II, X86::MOV32rm); break;
618  case X86::ACQUIRE_MOV64rm: Desc = UpdateOp(MI, II, X86::MOV64rm); break;
619  case X86::RELEASE_MOV8mr:  Desc = UpdateOp(MI, II, X86::MOV8mr); break;
620  case X86::RELEASE_MOV16mr: Desc = UpdateOp(MI, II, X86::MOV16mr); break;
621  case X86::RELEASE_MOV32mr: Desc = UpdateOp(MI, II, X86::MOV32mr); break;
622  case X86::RELEASE_MOV64mr: Desc = UpdateOp(MI, II, X86::MOV64mr); break;
623  }
624
625
626  MCE.processDebugLoc(MI.getDebugLoc(), true);
627
628  unsigned Opcode = Desc->Opcode;
629
630  // Emit the lock opcode prefix as needed.
631  if (Desc->TSFlags & X86II::LOCK)
632    MCE.emitByte(0xF0);
633
634  // Emit segment override opcode prefix as needed.
635  switch (Desc->TSFlags & X86II::SegOvrMask) {
636  case X86II::FS:
637    MCE.emitByte(0x64);
638    break;
639  case X86II::GS:
640    MCE.emitByte(0x65);
641    break;
642  default: llvm_unreachable("Invalid segment!");
643  case 0: break;  // No segment override!
644  }
645
646  // Emit the repeat opcode prefix as needed.
647  if ((Desc->TSFlags & X86II::Op0Mask) == X86II::REP)
648    MCE.emitByte(0xF3);
649
650  // Emit the operand size opcode prefix as needed.
651  if (Desc->TSFlags & X86II::OpSize)
652    MCE.emitByte(0x66);
653
654  // Emit the address size opcode prefix as needed.
655  if (Desc->TSFlags & X86II::AdSize)
656    MCE.emitByte(0x67);
657
658  bool Need0FPrefix = false;
659  switch (Desc->TSFlags & X86II::Op0Mask) {
660  case X86II::TB:  // Two-byte opcode prefix
661  case X86II::T8:  // 0F 38
662  case X86II::TA:  // 0F 3A
663  case X86II::A6:  // 0F A6
664  case X86II::A7:  // 0F A7
665    Need0FPrefix = true;
666    break;
667  case X86II::TF: // F2 0F 38
668    MCE.emitByte(0xF2);
669    Need0FPrefix = true;
670    break;
671  case X86II::REP: break; // already handled.
672  case X86II::XS:   // F3 0F
673    MCE.emitByte(0xF3);
674    Need0FPrefix = true;
675    break;
676  case X86II::XD:   // F2 0F
677    MCE.emitByte(0xF2);
678    Need0FPrefix = true;
679    break;
680  case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB:
681  case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF:
682    MCE.emitByte(0xD8+
683                 (((Desc->TSFlags & X86II::Op0Mask)-X86II::D8)
684                                   >> X86II::Op0Shift));
685    break; // Two-byte opcode prefix
686  default: llvm_unreachable("Invalid prefix!");
687  case 0: break;  // No prefix!
688  }
689
690  // Handle REX prefix.
691  if (Is64BitMode) {
692    if (unsigned REX = determineREX(MI))
693      MCE.emitByte(0x40 | REX);
694  }
695
696  // 0x0F escape code must be emitted just before the opcode.
697  if (Need0FPrefix)
698    MCE.emitByte(0x0F);
699
700  switch (Desc->TSFlags & X86II::Op0Mask) {
701  case X86II::TF:    // F2 0F 38
702  case X86II::T8:    // 0F 38
703    MCE.emitByte(0x38);
704    break;
705  case X86II::TA:    // 0F 3A
706    MCE.emitByte(0x3A);
707    break;
708  case X86II::A6:    // 0F A6
709    MCE.emitByte(0xA6);
710    break;
711  case X86II::A7:    // 0F A7
712    MCE.emitByte(0xA7);
713    break;
714  }
715
716  // If this is a two-address instruction, skip one of the register operands.
717  unsigned NumOps = Desc->getNumOperands();
718  unsigned CurOp = 0;
719  if (NumOps > 1 && Desc->getOperandConstraint(1, MCOI::TIED_TO) != -1)
720    ++CurOp;
721  else if (NumOps > 2 && Desc->getOperandConstraint(NumOps-1,MCOI::TIED_TO)== 0)
722    // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
723    --NumOps;
724
725  unsigned char BaseOpcode = X86II::getBaseOpcodeFor(Desc->TSFlags);
726  switch (Desc->TSFlags & X86II::FormMask) {
727  default:
728    llvm_unreachable("Unknown FormMask value in X86 MachineCodeEmitter!");
729  case X86II::Pseudo:
730    // Remember the current PC offset, this is the PIC relocation
731    // base address.
732    switch (Opcode) {
733    default:
734      llvm_unreachable("pseudo instructions should be removed before code"
735                       " emission");
736      break;
737    // Do nothing for Int_MemBarrier - it's just a comment.  Add a debug
738    // to make it slightly easier to see.
739    case X86::Int_MemBarrier:
740      DEBUG(dbgs() << "#MEMBARRIER\n");
741      break;
742
743    case TargetOpcode::INLINEASM:
744      // We allow inline assembler nodes with empty bodies - they can
745      // implicitly define registers, which is ok for JIT.
746      if (MI.getOperand(0).getSymbolName()[0])
747        report_fatal_error("JIT does not support inline asm!");
748      break;
749    case TargetOpcode::PROLOG_LABEL:
750    case TargetOpcode::GC_LABEL:
751    case TargetOpcode::EH_LABEL:
752      MCE.emitLabel(MI.getOperand(0).getMCSymbol());
753      break;
754
755    case TargetOpcode::IMPLICIT_DEF:
756    case TargetOpcode::KILL:
757      break;
758    case X86::MOVPC32r: {
759      // This emits the "call" portion of this pseudo instruction.
760      MCE.emitByte(BaseOpcode);
761      emitConstant(0, X86II::getSizeOfImm(Desc->TSFlags));
762      // Remember PIC base.
763      PICBaseOffset = (intptr_t) MCE.getCurrentPCOffset();
764      X86JITInfo *JTI = TM.getJITInfo();
765      JTI->setPICBase(MCE.getCurrentPCValue());
766      break;
767    }
768    }
769    CurOp = NumOps;
770    break;
771  case X86II::RawFrm: {
772    MCE.emitByte(BaseOpcode);
773
774    if (CurOp == NumOps)
775      break;
776
777    const MachineOperand &MO = MI.getOperand(CurOp++);
778
779    DEBUG(dbgs() << "RawFrm CurOp " << CurOp << "\n");
780    DEBUG(dbgs() << "isMBB " << MO.isMBB() << "\n");
781    DEBUG(dbgs() << "isGlobal " << MO.isGlobal() << "\n");
782    DEBUG(dbgs() << "isSymbol " << MO.isSymbol() << "\n");
783    DEBUG(dbgs() << "isImm " << MO.isImm() << "\n");
784
785    if (MO.isMBB()) {
786      emitPCRelativeBlockAddress(MO.getMBB());
787      break;
788    }
789
790    if (MO.isGlobal()) {
791      emitGlobalAddress(MO.getGlobal(), X86::reloc_pcrel_word,
792                        MO.getOffset(), 0);
793      break;
794    }
795
796    if (MO.isSymbol()) {
797      emitExternalSymbolAddress(MO.getSymbolName(), X86::reloc_pcrel_word);
798      break;
799    }
800
801    // FIXME: Only used by hackish MCCodeEmitter, remove when dead.
802    if (MO.isJTI()) {
803      emitJumpTableAddress(MO.getIndex(), X86::reloc_pcrel_word);
804      break;
805    }
806
807    assert(MO.isImm() && "Unknown RawFrm operand!");
808    if (Opcode == X86::CALLpcrel32 || Opcode == X86::CALL64pcrel32 ||
809        Opcode == X86::WINCALL64pcrel32) {
810      // Fix up immediate operand for pc relative calls.
811      intptr_t Imm = (intptr_t)MO.getImm();
812      Imm = Imm - MCE.getCurrentPCValue() - 4;
813      emitConstant(Imm, X86II::getSizeOfImm(Desc->TSFlags));
814    } else
815      emitConstant(MO.getImm(), X86II::getSizeOfImm(Desc->TSFlags));
816    break;
817  }
818
819  case X86II::AddRegFrm: {
820    MCE.emitByte(BaseOpcode +
821                 X86_MC::getX86RegNum(MI.getOperand(CurOp++).getReg()));
822
823    if (CurOp == NumOps)
824      break;
825
826    const MachineOperand &MO1 = MI.getOperand(CurOp++);
827    unsigned Size = X86II::getSizeOfImm(Desc->TSFlags);
828    if (MO1.isImm()) {
829      emitConstant(MO1.getImm(), Size);
830      break;
831    }
832
833    unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
834      : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
835    if (Opcode == X86::MOV64ri64i32)
836      rt = X86::reloc_absolute_word;  // FIXME: add X86II flag?
837    // This should not occur on Darwin for relocatable objects.
838    if (Opcode == X86::MOV64ri)
839      rt = X86::reloc_absolute_dword;  // FIXME: add X86II flag?
840    if (MO1.isGlobal()) {
841      bool Indirect = gvNeedsNonLazyPtr(MO1, TM);
842      emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0,
843                        Indirect);
844    } else if (MO1.isSymbol())
845      emitExternalSymbolAddress(MO1.getSymbolName(), rt);
846    else if (MO1.isCPI())
847      emitConstPoolAddress(MO1.getIndex(), rt);
848    else if (MO1.isJTI())
849      emitJumpTableAddress(MO1.getIndex(), rt);
850    break;
851  }
852
853  case X86II::MRMDestReg: {
854    MCE.emitByte(BaseOpcode);
855    emitRegModRMByte(MI.getOperand(CurOp).getReg(),
856                     X86_MC::getX86RegNum(MI.getOperand(CurOp+1).getReg()));
857    CurOp += 2;
858    if (CurOp != NumOps)
859      emitConstant(MI.getOperand(CurOp++).getImm(),
860                   X86II::getSizeOfImm(Desc->TSFlags));
861    break;
862  }
863  case X86II::MRMDestMem: {
864    MCE.emitByte(BaseOpcode);
865    emitMemModRMByte(MI, CurOp,
866                X86_MC::getX86RegNum(MI.getOperand(CurOp + X86::AddrNumOperands)
867                                  .getReg()));
868    CurOp +=  X86::AddrNumOperands + 1;
869    if (CurOp != NumOps)
870      emitConstant(MI.getOperand(CurOp++).getImm(),
871                   X86II::getSizeOfImm(Desc->TSFlags));
872    break;
873  }
874
875  case X86II::MRMSrcReg:
876    MCE.emitByte(BaseOpcode);
877    emitRegModRMByte(MI.getOperand(CurOp+1).getReg(),
878                     X86_MC::getX86RegNum(MI.getOperand(CurOp).getReg()));
879    CurOp += 2;
880    if (CurOp != NumOps)
881      emitConstant(MI.getOperand(CurOp++).getImm(),
882                   X86II::getSizeOfImm(Desc->TSFlags));
883    break;
884
885  case X86II::MRMSrcMem: {
886    int AddrOperands = X86::AddrNumOperands;
887
888    intptr_t PCAdj = (CurOp + AddrOperands + 1 != NumOps) ?
889      X86II::getSizeOfImm(Desc->TSFlags) : 0;
890
891    MCE.emitByte(BaseOpcode);
892    emitMemModRMByte(MI, CurOp+1,
893                     X86_MC::getX86RegNum(MI.getOperand(CurOp).getReg()),PCAdj);
894    CurOp += AddrOperands + 1;
895    if (CurOp != NumOps)
896      emitConstant(MI.getOperand(CurOp++).getImm(),
897                   X86II::getSizeOfImm(Desc->TSFlags));
898    break;
899  }
900
901  case X86II::MRM0r: case X86II::MRM1r:
902  case X86II::MRM2r: case X86II::MRM3r:
903  case X86II::MRM4r: case X86II::MRM5r:
904  case X86II::MRM6r: case X86II::MRM7r: {
905    MCE.emitByte(BaseOpcode);
906    emitRegModRMByte(MI.getOperand(CurOp++).getReg(),
907                     (Desc->TSFlags & X86II::FormMask)-X86II::MRM0r);
908
909    if (CurOp == NumOps)
910      break;
911
912    const MachineOperand &MO1 = MI.getOperand(CurOp++);
913    unsigned Size = X86II::getSizeOfImm(Desc->TSFlags);
914    if (MO1.isImm()) {
915      emitConstant(MO1.getImm(), Size);
916      break;
917    }
918
919    unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
920      : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
921    if (Opcode == X86::MOV64ri32)
922      rt = X86::reloc_absolute_word_sext;  // FIXME: add X86II flag?
923    if (MO1.isGlobal()) {
924      bool Indirect = gvNeedsNonLazyPtr(MO1, TM);
925      emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0,
926                        Indirect);
927    } else if (MO1.isSymbol())
928      emitExternalSymbolAddress(MO1.getSymbolName(), rt);
929    else if (MO1.isCPI())
930      emitConstPoolAddress(MO1.getIndex(), rt);
931    else if (MO1.isJTI())
932      emitJumpTableAddress(MO1.getIndex(), rt);
933    break;
934  }
935
936  case X86II::MRM0m: case X86II::MRM1m:
937  case X86II::MRM2m: case X86II::MRM3m:
938  case X86II::MRM4m: case X86II::MRM5m:
939  case X86II::MRM6m: case X86II::MRM7m: {
940    intptr_t PCAdj = (CurOp + X86::AddrNumOperands != NumOps) ?
941      (MI.getOperand(CurOp+X86::AddrNumOperands).isImm() ?
942          X86II::getSizeOfImm(Desc->TSFlags) : 4) : 0;
943
944    MCE.emitByte(BaseOpcode);
945    emitMemModRMByte(MI, CurOp, (Desc->TSFlags & X86II::FormMask)-X86II::MRM0m,
946                     PCAdj);
947    CurOp += X86::AddrNumOperands;
948
949    if (CurOp == NumOps)
950      break;
951
952    const MachineOperand &MO = MI.getOperand(CurOp++);
953    unsigned Size = X86II::getSizeOfImm(Desc->TSFlags);
954    if (MO.isImm()) {
955      emitConstant(MO.getImm(), Size);
956      break;
957    }
958
959    unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
960      : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
961    if (Opcode == X86::MOV64mi32)
962      rt = X86::reloc_absolute_word_sext;  // FIXME: add X86II flag?
963    if (MO.isGlobal()) {
964      bool Indirect = gvNeedsNonLazyPtr(MO, TM);
965      emitGlobalAddress(MO.getGlobal(), rt, MO.getOffset(), 0,
966                        Indirect);
967    } else if (MO.isSymbol())
968      emitExternalSymbolAddress(MO.getSymbolName(), rt);
969    else if (MO.isCPI())
970      emitConstPoolAddress(MO.getIndex(), rt);
971    else if (MO.isJTI())
972      emitJumpTableAddress(MO.getIndex(), rt);
973    break;
974  }
975
976  case X86II::MRMInitReg:
977    MCE.emitByte(BaseOpcode);
978    // Duplicate register, used by things like MOV8r0 (aka xor reg,reg).
979    emitRegModRMByte(MI.getOperand(CurOp).getReg(),
980                     X86_MC::getX86RegNum(MI.getOperand(CurOp).getReg()));
981    ++CurOp;
982    break;
983
984  case X86II::MRM_C1:
985    MCE.emitByte(BaseOpcode);
986    MCE.emitByte(0xC1);
987    break;
988  case X86II::MRM_C8:
989    MCE.emitByte(BaseOpcode);
990    MCE.emitByte(0xC8);
991    break;
992  case X86II::MRM_C9:
993    MCE.emitByte(BaseOpcode);
994    MCE.emitByte(0xC9);
995    break;
996  case X86II::MRM_E8:
997    MCE.emitByte(BaseOpcode);
998    MCE.emitByte(0xE8);
999    break;
1000  case X86II::MRM_F0:
1001    MCE.emitByte(BaseOpcode);
1002    MCE.emitByte(0xF0);
1003    break;
1004  }
1005
1006  if (!Desc->isVariadic() && CurOp != NumOps) {
1007#ifndef NDEBUG
1008    dbgs() << "Cannot encode all operands of: " << MI << "\n";
1009#endif
1010    llvm_unreachable(0);
1011  }
1012
1013  MCE.processDebugLoc(MI.getDebugLoc(), false);
1014}
1015