X86CodeEmitter.cpp revision 193323
1//===-- X86/X86CodeEmitter.cpp - Convert X86 code to machine code ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the pass that transforms the X86 machine instructions into
11// relocatable machine code.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-emitter"
16#include "X86InstrInfo.h"
17#include "X86JITInfo.h"
18#include "X86Subtarget.h"
19#include "X86TargetMachine.h"
20#include "X86Relocations.h"
21#include "X86.h"
22#include "llvm/PassManager.h"
23#include "llvm/CodeGen/MachineCodeEmitter.h"
24#include "llvm/CodeGen/JITCodeEmitter.h"
25#include "llvm/CodeGen/MachineFunctionPass.h"
26#include "llvm/CodeGen/MachineInstr.h"
27#include "llvm/CodeGen/MachineModuleInfo.h"
28#include "llvm/CodeGen/Passes.h"
29#include "llvm/Function.h"
30#include "llvm/ADT/Statistic.h"
31#include "llvm/Support/Compiler.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/Target/TargetOptions.h"
34using namespace llvm;
35
36STATISTIC(NumEmitted, "Number of machine instructions emitted");
37
38namespace {
39template<class CodeEmitter>
40  class VISIBILITY_HIDDEN Emitter : public MachineFunctionPass {
41    const X86InstrInfo  *II;
42    const TargetData    *TD;
43    X86TargetMachine    &TM;
44    CodeEmitter         &MCE;
45    intptr_t PICBaseOffset;
46    bool Is64BitMode;
47    bool IsPIC;
48  public:
49    static char ID;
50    explicit Emitter(X86TargetMachine &tm, CodeEmitter &mce)
51      : MachineFunctionPass(&ID), II(0), TD(0), TM(tm),
52      MCE(mce), PICBaseOffset(0), Is64BitMode(false),
53      IsPIC(TM.getRelocationModel() == Reloc::PIC_) {}
54    Emitter(X86TargetMachine &tm, CodeEmitter &mce,
55            const X86InstrInfo &ii, const TargetData &td, bool is64)
56      : MachineFunctionPass(&ID), II(&ii), TD(&td), TM(tm),
57      MCE(mce), PICBaseOffset(0), Is64BitMode(is64),
58      IsPIC(TM.getRelocationModel() == Reloc::PIC_) {}
59
60    bool runOnMachineFunction(MachineFunction &MF);
61
62    virtual const char *getPassName() const {
63      return "X86 Machine Code Emitter";
64    }
65
66    void emitInstruction(const MachineInstr &MI,
67                         const TargetInstrDesc *Desc);
68
69    void getAnalysisUsage(AnalysisUsage &AU) const {
70      AU.addRequired<MachineModuleInfo>();
71      MachineFunctionPass::getAnalysisUsage(AU);
72    }
73
74  private:
75    void emitPCRelativeBlockAddress(MachineBasicBlock *MBB);
76    void emitGlobalAddress(GlobalValue *GV, unsigned Reloc,
77                           intptr_t Disp = 0, intptr_t PCAdj = 0,
78                           bool NeedStub = false, bool Indirect = false);
79    void emitExternalSymbolAddress(const char *ES, unsigned Reloc);
80    void emitConstPoolAddress(unsigned CPI, unsigned Reloc, intptr_t Disp = 0,
81                              intptr_t PCAdj = 0);
82    void emitJumpTableAddress(unsigned JTI, unsigned Reloc,
83                              intptr_t PCAdj = 0);
84
85    void emitDisplacementField(const MachineOperand *RelocOp, int DispVal,
86                               intptr_t PCAdj = 0);
87
88    void emitRegModRMByte(unsigned ModRMReg, unsigned RegOpcodeField);
89    void emitRegModRMByte(unsigned RegOpcodeField);
90    void emitSIBByte(unsigned SS, unsigned Index, unsigned Base);
91    void emitConstant(uint64_t Val, unsigned Size);
92
93    void emitMemModRMByte(const MachineInstr &MI,
94                          unsigned Op, unsigned RegOpcodeField,
95                          intptr_t PCAdj = 0);
96
97    unsigned getX86RegNum(unsigned RegNo) const;
98
99    bool gvNeedsNonLazyPtr(const GlobalValue *GV);
100  };
101
102template<class CodeEmitter>
103  char Emitter<CodeEmitter>::ID = 0;
104}
105
106/// createX86CodeEmitterPass - Return a pass that emits the collected X86 code
107/// to the specified templated MachineCodeEmitter object.
108
109namespace llvm {
110
111FunctionPass *createX86CodeEmitterPass(X86TargetMachine &TM,
112                                       MachineCodeEmitter &MCE) {
113  return new Emitter<MachineCodeEmitter>(TM, MCE);
114}
115FunctionPass *createX86JITCodeEmitterPass(X86TargetMachine &TM,
116                                          JITCodeEmitter &JCE) {
117  return new Emitter<JITCodeEmitter>(TM, JCE);
118}
119
120} // end namespace llvm
121
122template<class CodeEmitter>
123bool Emitter<CodeEmitter>::runOnMachineFunction(MachineFunction &MF) {
124
125  MCE.setModuleInfo(&getAnalysis<MachineModuleInfo>());
126
127  II = TM.getInstrInfo();
128  TD = TM.getTargetData();
129  Is64BitMode = TM.getSubtarget<X86Subtarget>().is64Bit();
130  IsPIC = TM.getRelocationModel() == Reloc::PIC_;
131
132  do {
133    DOUT << "JITTing function '" << MF.getFunction()->getName() << "'\n";
134    MCE.startFunction(MF);
135    for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
136         MBB != E; ++MBB) {
137      MCE.StartMachineBasicBlock(MBB);
138      for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end();
139           I != E; ++I) {
140        const TargetInstrDesc &Desc = I->getDesc();
141        emitInstruction(*I, &Desc);
142        // MOVPC32r is basically a call plus a pop instruction.
143        if (Desc.getOpcode() == X86::MOVPC32r)
144          emitInstruction(*I, &II->get(X86::POP32r));
145        NumEmitted++;  // Keep track of the # of mi's emitted
146      }
147    }
148  } while (MCE.finishFunction(MF));
149
150  return false;
151}
152
153/// emitPCRelativeBlockAddress - This method keeps track of the information
154/// necessary to resolve the address of this block later and emits a dummy
155/// value.
156///
157template<class CodeEmitter>
158void Emitter<CodeEmitter>::emitPCRelativeBlockAddress(MachineBasicBlock *MBB) {
159  // Remember where this reference was and where it is to so we can
160  // deal with it later.
161  MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(),
162                                             X86::reloc_pcrel_word, MBB));
163  MCE.emitWordLE(0);
164}
165
166/// emitGlobalAddress - Emit the specified address to the code stream assuming
167/// this is part of a "take the address of a global" instruction.
168///
169template<class CodeEmitter>
170void Emitter<CodeEmitter>::emitGlobalAddress(GlobalValue *GV, unsigned Reloc,
171                                intptr_t Disp /* = 0 */,
172                                intptr_t PCAdj /* = 0 */,
173                                bool NeedStub /* = false */,
174                                bool Indirect /* = false */) {
175  intptr_t RelocCST = 0;
176  if (Reloc == X86::reloc_picrel_word)
177    RelocCST = PICBaseOffset;
178  else if (Reloc == X86::reloc_pcrel_word)
179    RelocCST = PCAdj;
180  MachineRelocation MR = Indirect
181    ? MachineRelocation::getIndirectSymbol(MCE.getCurrentPCOffset(), Reloc,
182                                           GV, RelocCST, NeedStub)
183    : MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc,
184                               GV, RelocCST, NeedStub);
185  MCE.addRelocation(MR);
186  // The relocated value will be added to the displacement
187  if (Reloc == X86::reloc_absolute_dword)
188    MCE.emitDWordLE(Disp);
189  else
190    MCE.emitWordLE((int32_t)Disp);
191}
192
193/// emitExternalSymbolAddress - Arrange for the address of an external symbol to
194/// be emitted to the current location in the function, and allow it to be PC
195/// relative.
196template<class CodeEmitter>
197void Emitter<CodeEmitter>::emitExternalSymbolAddress(const char *ES,
198                                                     unsigned Reloc) {
199  intptr_t RelocCST = (Reloc == X86::reloc_picrel_word) ? PICBaseOffset : 0;
200  MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(),
201                                                 Reloc, ES, RelocCST));
202  if (Reloc == X86::reloc_absolute_dword)
203    MCE.emitDWordLE(0);
204  else
205    MCE.emitWordLE(0);
206}
207
208/// emitConstPoolAddress - Arrange for the address of an constant pool
209/// to be emitted to the current location in the function, and allow it to be PC
210/// relative.
211template<class CodeEmitter>
212void Emitter<CodeEmitter>::emitConstPoolAddress(unsigned CPI, unsigned Reloc,
213                                   intptr_t Disp /* = 0 */,
214                                   intptr_t PCAdj /* = 0 */) {
215  intptr_t RelocCST = 0;
216  if (Reloc == X86::reloc_picrel_word)
217    RelocCST = PICBaseOffset;
218  else if (Reloc == X86::reloc_pcrel_word)
219    RelocCST = PCAdj;
220  MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(),
221                                                    Reloc, CPI, RelocCST));
222  // The relocated value will be added to the displacement
223  if (Reloc == X86::reloc_absolute_dword)
224    MCE.emitDWordLE(Disp);
225  else
226    MCE.emitWordLE((int32_t)Disp);
227}
228
229/// emitJumpTableAddress - Arrange for the address of a jump table to
230/// be emitted to the current location in the function, and allow it to be PC
231/// relative.
232template<class CodeEmitter>
233void Emitter<CodeEmitter>::emitJumpTableAddress(unsigned JTI, unsigned Reloc,
234                                   intptr_t PCAdj /* = 0 */) {
235  intptr_t RelocCST = 0;
236  if (Reloc == X86::reloc_picrel_word)
237    RelocCST = PICBaseOffset;
238  else if (Reloc == X86::reloc_pcrel_word)
239    RelocCST = PCAdj;
240  MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(),
241                                                    Reloc, JTI, RelocCST));
242  // The relocated value will be added to the displacement
243  if (Reloc == X86::reloc_absolute_dword)
244    MCE.emitDWordLE(0);
245  else
246    MCE.emitWordLE(0);
247}
248
249template<class CodeEmitter>
250unsigned Emitter<CodeEmitter>::getX86RegNum(unsigned RegNo) const {
251  return II->getRegisterInfo().getX86RegNum(RegNo);
252}
253
254inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
255                                      unsigned RM) {
256  assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
257  return RM | (RegOpcode << 3) | (Mod << 6);
258}
259
260template<class CodeEmitter>
261void Emitter<CodeEmitter>::emitRegModRMByte(unsigned ModRMReg,
262                                            unsigned RegOpcodeFld){
263  MCE.emitByte(ModRMByte(3, RegOpcodeFld, getX86RegNum(ModRMReg)));
264}
265
266template<class CodeEmitter>
267void Emitter<CodeEmitter>::emitRegModRMByte(unsigned RegOpcodeFld) {
268  MCE.emitByte(ModRMByte(3, RegOpcodeFld, 0));
269}
270
271template<class CodeEmitter>
272void Emitter<CodeEmitter>::emitSIBByte(unsigned SS,
273                                       unsigned Index,
274                                       unsigned Base) {
275  // SIB byte is in the same format as the ModRMByte...
276  MCE.emitByte(ModRMByte(SS, Index, Base));
277}
278
279template<class CodeEmitter>
280void Emitter<CodeEmitter>::emitConstant(uint64_t Val, unsigned Size) {
281  // Output the constant in little endian byte order...
282  for (unsigned i = 0; i != Size; ++i) {
283    MCE.emitByte(Val & 255);
284    Val >>= 8;
285  }
286}
287
288/// isDisp8 - Return true if this signed displacement fits in a 8-bit
289/// sign-extended field.
290static bool isDisp8(int Value) {
291  return Value == (signed char)Value;
292}
293
294template<class CodeEmitter>
295bool Emitter<CodeEmitter>::gvNeedsNonLazyPtr(const GlobalValue *GV) {
296  // For Darwin, simulate the linktime GOT by using the same non-lazy-pointer
297  // mechanism as 32-bit mode.
298  return (!Is64BitMode || TM.getSubtarget<X86Subtarget>().isTargetDarwin()) &&
299    TM.getSubtarget<X86Subtarget>().GVRequiresExtraLoad(GV, TM, false);
300}
301
302template<class CodeEmitter>
303void Emitter<CodeEmitter>::emitDisplacementField(const MachineOperand *RelocOp,
304                                    int DispVal, intptr_t PCAdj) {
305  // If this is a simple integer displacement that doesn't require a relocation,
306  // emit it now.
307  if (!RelocOp) {
308    emitConstant(DispVal, 4);
309    return;
310  }
311
312  // Otherwise, this is something that requires a relocation.  Emit it as such
313  // now.
314  if (RelocOp->isGlobal()) {
315    // In 64-bit static small code model, we could potentially emit absolute.
316    // But it's probably not beneficial.
317    //  89 05 00 00 00 00     mov    %eax,0(%rip)  # PC-relative
318    //  89 04 25 00 00 00 00  mov    %eax,0x0      # Absolute
319    unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
320      : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
321    bool NeedStub = isa<Function>(RelocOp->getGlobal());
322    bool Indirect = gvNeedsNonLazyPtr(RelocOp->getGlobal());
323    emitGlobalAddress(RelocOp->getGlobal(), rt, RelocOp->getOffset(),
324                      PCAdj, NeedStub, Indirect);
325  } else if (RelocOp->isCPI()) {
326    unsigned rt = Is64BitMode ? X86::reloc_pcrel_word : X86::reloc_picrel_word;
327    emitConstPoolAddress(RelocOp->getIndex(), rt,
328                         RelocOp->getOffset(), PCAdj);
329  } else if (RelocOp->isJTI()) {
330    unsigned rt = Is64BitMode ? X86::reloc_pcrel_word : X86::reloc_picrel_word;
331    emitJumpTableAddress(RelocOp->getIndex(), rt, PCAdj);
332  } else {
333    assert(0 && "Unknown value to relocate!");
334  }
335}
336
337template<class CodeEmitter>
338void Emitter<CodeEmitter>::emitMemModRMByte(const MachineInstr &MI,
339                               unsigned Op, unsigned RegOpcodeField,
340                               intptr_t PCAdj) {
341  const MachineOperand &Op3 = MI.getOperand(Op+3);
342  int DispVal = 0;
343  const MachineOperand *DispForReloc = 0;
344
345  // Figure out what sort of displacement we have to handle here.
346  if (Op3.isGlobal()) {
347    DispForReloc = &Op3;
348  } else if (Op3.isCPI()) {
349    if (Is64BitMode || IsPIC) {
350      DispForReloc = &Op3;
351    } else {
352      DispVal += MCE.getConstantPoolEntryAddress(Op3.getIndex());
353      DispVal += Op3.getOffset();
354    }
355  } else if (Op3.isJTI()) {
356    if (Is64BitMode || IsPIC) {
357      DispForReloc = &Op3;
358    } else {
359      DispVal += MCE.getJumpTableEntryAddress(Op3.getIndex());
360    }
361  } else {
362    DispVal = Op3.getImm();
363  }
364
365  const MachineOperand &Base     = MI.getOperand(Op);
366  const MachineOperand &Scale    = MI.getOperand(Op+1);
367  const MachineOperand &IndexReg = MI.getOperand(Op+2);
368
369  unsigned BaseReg = Base.getReg();
370
371  // Is a SIB byte needed?
372  if ((!Is64BitMode || DispForReloc || BaseReg != 0) &&
373      IndexReg.getReg() == 0 &&
374      (BaseReg == 0 || getX86RegNum(BaseReg) != N86::ESP)) {
375    if (BaseReg == 0) {  // Just a displacement?
376      // Emit special case [disp32] encoding
377      MCE.emitByte(ModRMByte(0, RegOpcodeField, 5));
378
379      emitDisplacementField(DispForReloc, DispVal, PCAdj);
380    } else {
381      unsigned BaseRegNo = getX86RegNum(BaseReg);
382      if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) {
383        // Emit simple indirect register encoding... [EAX] f.e.
384        MCE.emitByte(ModRMByte(0, RegOpcodeField, BaseRegNo));
385      } else if (!DispForReloc && isDisp8(DispVal)) {
386        // Emit the disp8 encoding... [REG+disp8]
387        MCE.emitByte(ModRMByte(1, RegOpcodeField, BaseRegNo));
388        emitConstant(DispVal, 1);
389      } else {
390        // Emit the most general non-SIB encoding: [REG+disp32]
391        MCE.emitByte(ModRMByte(2, RegOpcodeField, BaseRegNo));
392        emitDisplacementField(DispForReloc, DispVal, PCAdj);
393      }
394    }
395
396  } else {  // We need a SIB byte, so start by outputting the ModR/M byte first
397    assert(IndexReg.getReg() != X86::ESP &&
398           IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
399
400    bool ForceDisp32 = false;
401    bool ForceDisp8  = false;
402    if (BaseReg == 0) {
403      // If there is no base register, we emit the special case SIB byte with
404      // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
405      MCE.emitByte(ModRMByte(0, RegOpcodeField, 4));
406      ForceDisp32 = true;
407    } else if (DispForReloc) {
408      // Emit the normal disp32 encoding.
409      MCE.emitByte(ModRMByte(2, RegOpcodeField, 4));
410      ForceDisp32 = true;
411    } else if (DispVal == 0 && getX86RegNum(BaseReg) != N86::EBP) {
412      // Emit no displacement ModR/M byte
413      MCE.emitByte(ModRMByte(0, RegOpcodeField, 4));
414    } else if (isDisp8(DispVal)) {
415      // Emit the disp8 encoding...
416      MCE.emitByte(ModRMByte(1, RegOpcodeField, 4));
417      ForceDisp8 = true;           // Make sure to force 8 bit disp if Base=EBP
418    } else {
419      // Emit the normal disp32 encoding...
420      MCE.emitByte(ModRMByte(2, RegOpcodeField, 4));
421    }
422
423    // Calculate what the SS field value should be...
424    static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
425    unsigned SS = SSTable[Scale.getImm()];
426
427    if (BaseReg == 0) {
428      // Handle the SIB byte for the case where there is no base.  The
429      // displacement has already been output.
430      unsigned IndexRegNo;
431      if (IndexReg.getReg())
432        IndexRegNo = getX86RegNum(IndexReg.getReg());
433      else
434        IndexRegNo = 4;   // For example [ESP+1*<noreg>+4]
435      emitSIBByte(SS, IndexRegNo, 5);
436    } else {
437      unsigned BaseRegNo = getX86RegNum(BaseReg);
438      unsigned IndexRegNo;
439      if (IndexReg.getReg())
440        IndexRegNo = getX86RegNum(IndexReg.getReg());
441      else
442        IndexRegNo = 4;   // For example [ESP+1*<noreg>+4]
443      emitSIBByte(SS, IndexRegNo, BaseRegNo);
444    }
445
446    // Do we need to output a displacement?
447    if (ForceDisp8) {
448      emitConstant(DispVal, 1);
449    } else if (DispVal != 0 || ForceDisp32) {
450      emitDisplacementField(DispForReloc, DispVal, PCAdj);
451    }
452  }
453}
454
455template<class CodeEmitter>
456void Emitter<CodeEmitter>::emitInstruction(
457                              const MachineInstr &MI,
458                              const TargetInstrDesc *Desc) {
459  DOUT << MI;
460
461  unsigned Opcode = Desc->Opcode;
462
463  // Emit the lock opcode prefix as needed.
464  if (Desc->TSFlags & X86II::LOCK) MCE.emitByte(0xF0);
465
466  // Emit segment override opcode prefix as needed.
467  switch (Desc->TSFlags & X86II::SegOvrMask) {
468  case X86II::FS:
469    MCE.emitByte(0x64);
470    break;
471  case X86II::GS:
472    MCE.emitByte(0x65);
473    break;
474  default: assert(0 && "Invalid segment!");
475  case 0: break;  // No segment override!
476  }
477
478  // Emit the repeat opcode prefix as needed.
479  if ((Desc->TSFlags & X86II::Op0Mask) == X86II::REP) MCE.emitByte(0xF3);
480
481  // Emit the operand size opcode prefix as needed.
482  if (Desc->TSFlags & X86II::OpSize) MCE.emitByte(0x66);
483
484  // Emit the address size opcode prefix as needed.
485  if (Desc->TSFlags & X86II::AdSize) MCE.emitByte(0x67);
486
487  bool Need0FPrefix = false;
488  switch (Desc->TSFlags & X86II::Op0Mask) {
489  case X86II::TB:  // Two-byte opcode prefix
490  case X86II::T8:  // 0F 38
491  case X86II::TA:  // 0F 3A
492    Need0FPrefix = true;
493    break;
494  case X86II::REP: break; // already handled.
495  case X86II::XS:   // F3 0F
496    MCE.emitByte(0xF3);
497    Need0FPrefix = true;
498    break;
499  case X86II::XD:   // F2 0F
500    MCE.emitByte(0xF2);
501    Need0FPrefix = true;
502    break;
503  case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB:
504  case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF:
505    MCE.emitByte(0xD8+
506                 (((Desc->TSFlags & X86II::Op0Mask)-X86II::D8)
507                                   >> X86II::Op0Shift));
508    break; // Two-byte opcode prefix
509  default: assert(0 && "Invalid prefix!");
510  case 0: break;  // No prefix!
511  }
512
513  if (Is64BitMode) {
514    // REX prefix
515    unsigned REX = X86InstrInfo::determineREX(MI);
516    if (REX)
517      MCE.emitByte(0x40 | REX);
518  }
519
520  // 0x0F escape code must be emitted just before the opcode.
521  if (Need0FPrefix)
522    MCE.emitByte(0x0F);
523
524  switch (Desc->TSFlags & X86II::Op0Mask) {
525  case X86II::T8:  // 0F 38
526    MCE.emitByte(0x38);
527    break;
528  case X86II::TA:    // 0F 3A
529    MCE.emitByte(0x3A);
530    break;
531  }
532
533  // If this is a two-address instruction, skip one of the register operands.
534  unsigned NumOps = Desc->getNumOperands();
535  unsigned CurOp = 0;
536  if (NumOps > 1 && Desc->getOperandConstraint(1, TOI::TIED_TO) != -1)
537    ++CurOp;
538  else if (NumOps > 2 && Desc->getOperandConstraint(NumOps-1, TOI::TIED_TO)== 0)
539    // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
540    --NumOps;
541
542  unsigned char BaseOpcode = II->getBaseOpcodeFor(Desc);
543  switch (Desc->TSFlags & X86II::FormMask) {
544  default: assert(0 && "Unknown FormMask value in X86 MachineCodeEmitter!");
545  case X86II::Pseudo:
546    // Remember the current PC offset, this is the PIC relocation
547    // base address.
548    switch (Opcode) {
549    default:
550      assert(0 && "psuedo instructions should be removed before code emission");
551      break;
552    case TargetInstrInfo::INLINEASM: {
553      // We allow inline assembler nodes with empty bodies - they can
554      // implicitly define registers, which is ok for JIT.
555      if (MI.getOperand(0).getSymbolName()[0]) {
556        assert(0 && "JIT does not support inline asm!\n");
557        abort();
558      }
559      break;
560    }
561    case TargetInstrInfo::DBG_LABEL:
562    case TargetInstrInfo::EH_LABEL:
563      MCE.emitLabel(MI.getOperand(0).getImm());
564      break;
565    case TargetInstrInfo::IMPLICIT_DEF:
566    case TargetInstrInfo::DECLARE:
567    case X86::DWARF_LOC:
568    case X86::FP_REG_KILL:
569      break;
570    case X86::MOVPC32r: {
571      // This emits the "call" portion of this pseudo instruction.
572      MCE.emitByte(BaseOpcode);
573      emitConstant(0, X86InstrInfo::sizeOfImm(Desc));
574      // Remember PIC base.
575      PICBaseOffset = (intptr_t) MCE.getCurrentPCOffset();
576      X86JITInfo *JTI = TM.getJITInfo();
577      JTI->setPICBase(MCE.getCurrentPCValue());
578      break;
579    }
580    }
581    CurOp = NumOps;
582    break;
583  case X86II::RawFrm:
584    MCE.emitByte(BaseOpcode);
585
586    if (CurOp != NumOps) {
587      const MachineOperand &MO = MI.getOperand(CurOp++);
588
589      DOUT << "RawFrm CurOp " << CurOp << "\n";
590      DOUT << "isMBB " << MO.isMBB() << "\n";
591      DOUT << "isGlobal " << MO.isGlobal() << "\n";
592      DOUT << "isSymbol " << MO.isSymbol() << "\n";
593      DOUT << "isImm " << MO.isImm() << "\n";
594
595      if (MO.isMBB()) {
596        emitPCRelativeBlockAddress(MO.getMBB());
597      } else if (MO.isGlobal()) {
598        // Assume undefined functions may be outside the Small codespace.
599        bool NeedStub =
600          (Is64BitMode &&
601              (TM.getCodeModel() == CodeModel::Large ||
602               TM.getSubtarget<X86Subtarget>().isTargetDarwin())) ||
603          Opcode == X86::TAILJMPd;
604        emitGlobalAddress(MO.getGlobal(), X86::reloc_pcrel_word,
605                          MO.getOffset(), 0, NeedStub);
606      } else if (MO.isSymbol()) {
607        emitExternalSymbolAddress(MO.getSymbolName(), X86::reloc_pcrel_word);
608      } else if (MO.isImm()) {
609        if (Opcode == X86::CALLpcrel32 || Opcode == X86::CALL64pcrel32) {
610          // Fix up immediate operand for pc relative calls.
611          intptr_t Imm = (intptr_t)MO.getImm();
612          Imm = Imm - MCE.getCurrentPCValue() - 4;
613          emitConstant(Imm, X86InstrInfo::sizeOfImm(Desc));
614        } else
615          emitConstant(MO.getImm(), X86InstrInfo::sizeOfImm(Desc));
616      } else {
617        assert(0 && "Unknown RawFrm operand!");
618      }
619    }
620    break;
621
622  case X86II::AddRegFrm:
623    MCE.emitByte(BaseOpcode + getX86RegNum(MI.getOperand(CurOp++).getReg()));
624
625    if (CurOp != NumOps) {
626      const MachineOperand &MO1 = MI.getOperand(CurOp++);
627      unsigned Size = X86InstrInfo::sizeOfImm(Desc);
628      if (MO1.isImm())
629        emitConstant(MO1.getImm(), Size);
630      else {
631        unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
632          : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
633        // This should not occur on Darwin for relocatable objects.
634        if (Opcode == X86::MOV64ri)
635          rt = X86::reloc_absolute_dword;  // FIXME: add X86II flag?
636        if (MO1.isGlobal()) {
637          bool NeedStub = isa<Function>(MO1.getGlobal());
638          bool Indirect = gvNeedsNonLazyPtr(MO1.getGlobal());
639          emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0,
640                            NeedStub, Indirect);
641        } else if (MO1.isSymbol())
642          emitExternalSymbolAddress(MO1.getSymbolName(), rt);
643        else if (MO1.isCPI())
644          emitConstPoolAddress(MO1.getIndex(), rt);
645        else if (MO1.isJTI())
646          emitJumpTableAddress(MO1.getIndex(), rt);
647      }
648    }
649    break;
650
651  case X86II::MRMDestReg: {
652    MCE.emitByte(BaseOpcode);
653    emitRegModRMByte(MI.getOperand(CurOp).getReg(),
654                     getX86RegNum(MI.getOperand(CurOp+1).getReg()));
655    CurOp += 2;
656    if (CurOp != NumOps)
657      emitConstant(MI.getOperand(CurOp++).getImm(), X86InstrInfo::sizeOfImm(Desc));
658    break;
659  }
660  case X86II::MRMDestMem: {
661    MCE.emitByte(BaseOpcode);
662    emitMemModRMByte(MI, CurOp,
663                     getX86RegNum(MI.getOperand(CurOp + X86AddrNumOperands)
664                                  .getReg()));
665    CurOp +=  X86AddrNumOperands + 1;
666    if (CurOp != NumOps)
667      emitConstant(MI.getOperand(CurOp++).getImm(), X86InstrInfo::sizeOfImm(Desc));
668    break;
669  }
670
671  case X86II::MRMSrcReg:
672    MCE.emitByte(BaseOpcode);
673    emitRegModRMByte(MI.getOperand(CurOp+1).getReg(),
674                     getX86RegNum(MI.getOperand(CurOp).getReg()));
675    CurOp += 2;
676    if (CurOp != NumOps)
677      emitConstant(MI.getOperand(CurOp++).getImm(),
678                   X86InstrInfo::sizeOfImm(Desc));
679    break;
680
681  case X86II::MRMSrcMem: {
682    // FIXME: Maybe lea should have its own form?
683    int AddrOperands;
684    if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r ||
685        Opcode == X86::LEA16r || Opcode == X86::LEA32r)
686      AddrOperands = X86AddrNumOperands - 1; // No segment register
687    else
688      AddrOperands = X86AddrNumOperands;
689
690    intptr_t PCAdj = (CurOp + AddrOperands + 1 != NumOps) ?
691      X86InstrInfo::sizeOfImm(Desc) : 0;
692
693    MCE.emitByte(BaseOpcode);
694    emitMemModRMByte(MI, CurOp+1, getX86RegNum(MI.getOperand(CurOp).getReg()),
695                     PCAdj);
696    CurOp += AddrOperands + 1;
697    if (CurOp != NumOps)
698      emitConstant(MI.getOperand(CurOp++).getImm(),
699                   X86InstrInfo::sizeOfImm(Desc));
700    break;
701  }
702
703  case X86II::MRM0r: case X86II::MRM1r:
704  case X86II::MRM2r: case X86II::MRM3r:
705  case X86II::MRM4r: case X86II::MRM5r:
706  case X86II::MRM6r: case X86II::MRM7r: {
707    MCE.emitByte(BaseOpcode);
708
709    // Special handling of lfence, mfence, monitor, and mwait.
710    if (Desc->getOpcode() == X86::LFENCE ||
711        Desc->getOpcode() == X86::MFENCE ||
712        Desc->getOpcode() == X86::MONITOR ||
713        Desc->getOpcode() == X86::MWAIT) {
714      emitRegModRMByte((Desc->TSFlags & X86II::FormMask)-X86II::MRM0r);
715
716      switch (Desc->getOpcode()) {
717      default: break;
718      case X86::MONITOR:
719        MCE.emitByte(0xC8);
720        break;
721      case X86::MWAIT:
722        MCE.emitByte(0xC9);
723        break;
724      }
725    } else {
726      emitRegModRMByte(MI.getOperand(CurOp++).getReg(),
727                       (Desc->TSFlags & X86II::FormMask)-X86II::MRM0r);
728    }
729
730    if (CurOp != NumOps) {
731      const MachineOperand &MO1 = MI.getOperand(CurOp++);
732      unsigned Size = X86InstrInfo::sizeOfImm(Desc);
733      if (MO1.isImm())
734        emitConstant(MO1.getImm(), Size);
735      else {
736        unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
737          : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
738        if (Opcode == X86::MOV64ri32)
739          rt = X86::reloc_absolute_word;  // FIXME: add X86II flag?
740        if (MO1.isGlobal()) {
741          bool NeedStub = isa<Function>(MO1.getGlobal());
742          bool Indirect = gvNeedsNonLazyPtr(MO1.getGlobal());
743          emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0,
744                            NeedStub, Indirect);
745        } else if (MO1.isSymbol())
746          emitExternalSymbolAddress(MO1.getSymbolName(), rt);
747        else if (MO1.isCPI())
748          emitConstPoolAddress(MO1.getIndex(), rt);
749        else if (MO1.isJTI())
750          emitJumpTableAddress(MO1.getIndex(), rt);
751      }
752    }
753    break;
754  }
755
756  case X86II::MRM0m: case X86II::MRM1m:
757  case X86II::MRM2m: case X86II::MRM3m:
758  case X86II::MRM4m: case X86II::MRM5m:
759  case X86II::MRM6m: case X86II::MRM7m: {
760    intptr_t PCAdj = (CurOp + X86AddrNumOperands != NumOps) ?
761      (MI.getOperand(CurOp+X86AddrNumOperands).isImm() ?
762          X86InstrInfo::sizeOfImm(Desc) : 4) : 0;
763
764    MCE.emitByte(BaseOpcode);
765    emitMemModRMByte(MI, CurOp, (Desc->TSFlags & X86II::FormMask)-X86II::MRM0m,
766                     PCAdj);
767    CurOp += X86AddrNumOperands;
768
769    if (CurOp != NumOps) {
770      const MachineOperand &MO = MI.getOperand(CurOp++);
771      unsigned Size = X86InstrInfo::sizeOfImm(Desc);
772      if (MO.isImm())
773        emitConstant(MO.getImm(), Size);
774      else {
775        unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
776          : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
777        if (Opcode == X86::MOV64mi32)
778          rt = X86::reloc_absolute_word;  // FIXME: add X86II flag?
779        if (MO.isGlobal()) {
780          bool NeedStub = isa<Function>(MO.getGlobal());
781          bool Indirect = gvNeedsNonLazyPtr(MO.getGlobal());
782          emitGlobalAddress(MO.getGlobal(), rt, MO.getOffset(), 0,
783                            NeedStub, Indirect);
784        } else if (MO.isSymbol())
785          emitExternalSymbolAddress(MO.getSymbolName(), rt);
786        else if (MO.isCPI())
787          emitConstPoolAddress(MO.getIndex(), rt);
788        else if (MO.isJTI())
789          emitJumpTableAddress(MO.getIndex(), rt);
790      }
791    }
792    break;
793  }
794
795  case X86II::MRMInitReg:
796    MCE.emitByte(BaseOpcode);
797    // Duplicate register, used by things like MOV8r0 (aka xor reg,reg).
798    emitRegModRMByte(MI.getOperand(CurOp).getReg(),
799                     getX86RegNum(MI.getOperand(CurOp).getReg()));
800    ++CurOp;
801    break;
802  }
803
804  if (!Desc->isVariadic() && CurOp != NumOps) {
805    cerr << "Cannot encode: ";
806    MI.dump();
807    cerr << '\n';
808    abort();
809  }
810}
811
812