R600Instructions.td revision 249423
1//===-- R600Instructions.td - R600 Instruction defs  -------*- tablegen -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// R600 Tablegen instruction definitions
11//
12//===----------------------------------------------------------------------===//
13
14include "R600Intrinsics.td"
15
16class InstR600 <bits<11> inst, dag outs, dag ins, string asm, list<dag> pattern,
17                InstrItinClass itin>
18    : AMDGPUInst <outs, ins, asm, pattern> {
19
20  field bits<64> Inst;
21  bit Trig = 0;
22  bit Op3 = 0;
23  bit isVector = 0;
24  bits<2> FlagOperandIdx = 0;
25  bit Op1 = 0;
26  bit Op2 = 0;
27  bit HasNativeOperands = 0;
28
29  bits<11> op_code = inst;
30  //let Inst = inst;
31  let Namespace = "AMDGPU";
32  let OutOperandList = outs;
33  let InOperandList = ins;
34  let AsmString = asm;
35  let Pattern = pattern;
36  let Itinerary = itin;
37
38  let TSFlags{4} = Trig;
39  let TSFlags{5} = Op3;
40
41  // Vector instructions are instructions that must fill all slots in an
42  // instruction group
43  let TSFlags{6} = isVector;
44  let TSFlags{8-7} = FlagOperandIdx;
45  let TSFlags{9} = HasNativeOperands;
46  let TSFlags{10} = Op1;
47  let TSFlags{11} = Op2;
48}
49
50class InstR600ISA <dag outs, dag ins, string asm, list<dag> pattern> :
51    AMDGPUInst <outs, ins, asm, pattern> {
52  field bits<64> Inst;
53
54  let Namespace = "AMDGPU";
55}
56
57def MEMxi : Operand<iPTR> {
58  let MIOperandInfo = (ops R600_TReg32_X:$ptr, i32imm:$index);
59  let PrintMethod = "printMemOperand";
60}
61
62def MEMrr : Operand<iPTR> {
63  let MIOperandInfo = (ops R600_Reg32:$ptr, R600_Reg32:$index);
64}
65
66// Operands for non-registers
67
68class InstFlag<string PM = "printOperand", int Default = 0>
69    : OperandWithDefaultOps <i32, (ops (i32 Default))> {
70  let PrintMethod = PM;
71}
72
73// src_sel for ALU src operands, see also ALU_CONST, ALU_PARAM registers
74def SEL : OperandWithDefaultOps <i32, (ops (i32 -1))> {
75  let PrintMethod = "printSel";
76}
77
78def LITERAL : InstFlag<"printLiteral">;
79
80def WRITE : InstFlag <"printWrite", 1>;
81def OMOD : InstFlag <"printOMOD">;
82def REL : InstFlag <"printRel">;
83def CLAMP : InstFlag <"printClamp">;
84def NEG : InstFlag <"printNeg">;
85def ABS : InstFlag <"printAbs">;
86def UEM : InstFlag <"printUpdateExecMask">;
87def UP : InstFlag <"printUpdatePred">;
88
89// XXX: The r600g finalizer in Mesa expects last to be one in most cases.
90// Once we start using the packetizer in this backend we should have this
91// default to 0.
92def LAST : InstFlag<"printLast", 1>;
93
94def FRAMEri : Operand<iPTR> {
95  let MIOperandInfo = (ops R600_Reg32:$ptr, i32imm:$index);
96}
97
98def ADDRParam : ComplexPattern<i32, 2, "SelectADDRParam", [], []>;
99def ADDRDWord : ComplexPattern<i32, 1, "SelectADDRDWord", [], []>;
100def ADDRVTX_READ : ComplexPattern<i32, 2, "SelectADDRVTX_READ", [], []>;
101def ADDRGA_CONST_OFFSET : ComplexPattern<i32, 1, "SelectGlobalValueConstantOffset", [], []>;
102def ADDRGA_VAR_OFFSET : ComplexPattern<i32, 2, "SelectGlobalValueVariableOffset", [], []>;
103def ADDRIndirect : ComplexPattern<iPTR, 2, "SelectADDRIndirect", [], []>;
104
105class R600ALU_Word0 {
106  field bits<32> Word0;
107
108  bits<11> src0;
109  bits<1>  src0_neg;
110  bits<1>  src0_rel;
111  bits<11> src1;
112  bits<1>  src1_rel;
113  bits<1>  src1_neg;
114  bits<3>  index_mode = 0;
115  bits<2>  pred_sel;
116  bits<1>  last;
117
118  bits<9>  src0_sel  = src0{8-0};
119  bits<2>  src0_chan = src0{10-9};
120  bits<9>  src1_sel  = src1{8-0};
121  bits<2>  src1_chan = src1{10-9};
122
123  let Word0{8-0}   = src0_sel;
124  let Word0{9}     = src0_rel;
125  let Word0{11-10} = src0_chan;
126  let Word0{12}    = src0_neg;
127  let Word0{21-13} = src1_sel;
128  let Word0{22}    = src1_rel;
129  let Word0{24-23} = src1_chan;
130  let Word0{25}    = src1_neg;
131  let Word0{28-26} = index_mode;
132  let Word0{30-29} = pred_sel;
133  let Word0{31}    = last;
134}
135
136class R600ALU_Word1 {
137  field bits<32> Word1;
138
139  bits<11> dst;
140  bits<3>  bank_swizzle = 0;
141  bits<1>  dst_rel;
142  bits<1>  clamp;
143
144  bits<7>  dst_sel  = dst{6-0};
145  bits<2>  dst_chan = dst{10-9};
146
147  let Word1{20-18} = bank_swizzle;
148  let Word1{27-21} = dst_sel;
149  let Word1{28}    = dst_rel;
150  let Word1{30-29} = dst_chan;
151  let Word1{31}    = clamp;
152}
153
154class R600ALU_Word1_OP2 <bits<11> alu_inst> : R600ALU_Word1{
155
156  bits<1>  src0_abs;
157  bits<1>  src1_abs;
158  bits<1>  update_exec_mask;
159  bits<1>  update_pred;
160  bits<1>  write;
161  bits<2>  omod;
162
163  let Word1{0}     = src0_abs;
164  let Word1{1}     = src1_abs;
165  let Word1{2}     = update_exec_mask;
166  let Word1{3}     = update_pred;
167  let Word1{4}     = write;
168  let Word1{6-5}   = omod;
169  let Word1{17-7}  = alu_inst;
170}
171
172class R600ALU_Word1_OP3 <bits<5> alu_inst> : R600ALU_Word1{
173
174  bits<11> src2;
175  bits<1>  src2_rel;
176  bits<1>  src2_neg;
177
178  bits<9>  src2_sel = src2{8-0};
179  bits<2>  src2_chan = src2{10-9};
180
181  let Word1{8-0}   = src2_sel;
182  let Word1{9}     = src2_rel;
183  let Word1{11-10} = src2_chan;
184  let Word1{12}    = src2_neg;
185  let Word1{17-13} = alu_inst;
186}
187
188class VTX_WORD0 {
189  field bits<32> Word0;
190  bits<7> SRC_GPR;
191  bits<5> VC_INST;
192  bits<2> FETCH_TYPE;
193  bits<1> FETCH_WHOLE_QUAD;
194  bits<8> BUFFER_ID;
195  bits<1> SRC_REL;
196  bits<2> SRC_SEL_X;
197  bits<6> MEGA_FETCH_COUNT;
198
199  let Word0{4-0}   = VC_INST;
200  let Word0{6-5}   = FETCH_TYPE;
201  let Word0{7}     = FETCH_WHOLE_QUAD;
202  let Word0{15-8}  = BUFFER_ID;
203  let Word0{22-16} = SRC_GPR;
204  let Word0{23}    = SRC_REL;
205  let Word0{25-24} = SRC_SEL_X;
206  let Word0{31-26} = MEGA_FETCH_COUNT;
207}
208
209class VTX_WORD1_GPR {
210  field bits<32> Word1;
211  bits<7> DST_GPR;
212  bits<1> DST_REL;
213  bits<3> DST_SEL_X;
214  bits<3> DST_SEL_Y;
215  bits<3> DST_SEL_Z;
216  bits<3> DST_SEL_W;
217  bits<1> USE_CONST_FIELDS;
218  bits<6> DATA_FORMAT;
219  bits<2> NUM_FORMAT_ALL;
220  bits<1> FORMAT_COMP_ALL;
221  bits<1> SRF_MODE_ALL;
222
223  let Word1{6-0} = DST_GPR;
224  let Word1{7}    = DST_REL;
225  let Word1{8}    = 0; // Reserved
226  let Word1{11-9} = DST_SEL_X;
227  let Word1{14-12} = DST_SEL_Y;
228  let Word1{17-15} = DST_SEL_Z;
229  let Word1{20-18} = DST_SEL_W;
230  let Word1{21}    = USE_CONST_FIELDS;
231  let Word1{27-22} = DATA_FORMAT;
232  let Word1{29-28} = NUM_FORMAT_ALL;
233  let Word1{30}    = FORMAT_COMP_ALL;
234  let Word1{31}    = SRF_MODE_ALL;
235}
236
237class TEX_WORD0 {
238  field bits<32> Word0;
239
240  bits<5> TEX_INST;
241  bits<2> INST_MOD;
242  bits<1> FETCH_WHOLE_QUAD;
243  bits<8> RESOURCE_ID;
244  bits<7> SRC_GPR;
245  bits<1> SRC_REL;
246  bits<1> ALT_CONST;
247  bits<2> RESOURCE_INDEX_MODE;
248  bits<2> SAMPLER_INDEX_MODE;
249
250  let Word0{4-0} = TEX_INST;
251  let Word0{6-5} = INST_MOD;
252  let Word0{7} = FETCH_WHOLE_QUAD;
253  let Word0{15-8} = RESOURCE_ID;
254  let Word0{22-16} = SRC_GPR;
255  let Word0{23} = SRC_REL;
256  let Word0{24} = ALT_CONST;
257  let Word0{26-25} = RESOURCE_INDEX_MODE;
258  let Word0{28-27} = SAMPLER_INDEX_MODE;
259}
260
261class TEX_WORD1 {
262  field bits<32> Word1;
263
264  bits<7> DST_GPR;
265  bits<1> DST_REL;
266  bits<3> DST_SEL_X;
267  bits<3> DST_SEL_Y;
268  bits<3> DST_SEL_Z;
269  bits<3> DST_SEL_W;
270  bits<7> LOD_BIAS;
271  bits<1> COORD_TYPE_X;
272  bits<1> COORD_TYPE_Y;
273  bits<1> COORD_TYPE_Z;
274  bits<1> COORD_TYPE_W;
275
276  let Word1{6-0} = DST_GPR;
277  let Word1{7} = DST_REL;
278  let Word1{11-9} = DST_SEL_X;
279  let Word1{14-12} = DST_SEL_Y;
280  let Word1{17-15} = DST_SEL_Z;
281  let Word1{20-18} = DST_SEL_W;
282  let Word1{27-21} = LOD_BIAS;
283  let Word1{28} = COORD_TYPE_X;
284  let Word1{29} = COORD_TYPE_Y;
285  let Word1{30} = COORD_TYPE_Z;
286  let Word1{31} = COORD_TYPE_W;
287}
288
289class TEX_WORD2 {
290  field bits<32> Word2;
291
292  bits<5> OFFSET_X;
293  bits<5> OFFSET_Y;
294  bits<5> OFFSET_Z;
295  bits<5> SAMPLER_ID;
296  bits<3> SRC_SEL_X;
297  bits<3> SRC_SEL_Y;
298  bits<3> SRC_SEL_Z;
299  bits<3> SRC_SEL_W;
300
301  let Word2{4-0} = OFFSET_X;
302  let Word2{9-5} = OFFSET_Y;
303  let Word2{14-10} = OFFSET_Z;
304  let Word2{19-15} = SAMPLER_ID;
305  let Word2{22-20} = SRC_SEL_X;
306  let Word2{25-23} = SRC_SEL_Y;
307  let Word2{28-26} = SRC_SEL_Z;
308  let Word2{31-29} = SRC_SEL_W;
309}
310
311/*
312XXX: R600 subtarget uses a slightly different encoding than the other
313subtargets.  We currently handle this in R600MCCodeEmitter, but we may
314want to use these instruction classes in the future.
315
316class R600ALU_Word1_OP2_r600 : R600ALU_Word1_OP2 {
317
318  bits<1>  fog_merge;
319  bits<10> alu_inst;
320
321  let Inst{37}    = fog_merge;
322  let Inst{39-38} = omod;
323  let Inst{49-40} = alu_inst;
324}
325
326class R600ALU_Word1_OP2_r700 : R600ALU_Word1_OP2 {
327
328  bits<11> alu_inst;
329
330  let Inst{38-37} = omod;
331  let Inst{49-39} = alu_inst;
332}
333*/
334
335def R600_Pred : PredicateOperand<i32, (ops R600_Predicate),
336                                     (ops PRED_SEL_OFF)>;
337
338
339let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in {
340
341// Class for instructions with only one source register.
342// If you add new ins to this instruction, make sure they are listed before
343// $literal, because the backend currently assumes that the last operand is
344// a literal.  Also be sure to update the enum R600Op1OperandIndex::ROI in
345// R600Defines.h, R600InstrInfo::buildDefaultInstruction(),
346// and R600InstrInfo::getOperandIdx().
347class R600_1OP <bits<11> inst, string opName, list<dag> pattern,
348                InstrItinClass itin = AnyALU> :
349    InstR600 <0,
350              (outs R600_Reg32:$dst),
351              (ins WRITE:$write, OMOD:$omod, REL:$dst_rel, CLAMP:$clamp,
352                   R600_Reg32:$src0, NEG:$src0_neg, REL:$src0_rel, ABS:$src0_abs, SEL:$src0_sel,
353                   LAST:$last, R600_Pred:$pred_sel, LITERAL:$literal),
354              !strconcat("  ", opName,
355                   "$clamp $dst$write$dst_rel$omod, "
356                   "$src0_neg$src0_abs$src0$src0_abs$src0_rel, "
357                   "$literal $pred_sel$last"),
358              pattern,
359              itin>,
360    R600ALU_Word0,
361    R600ALU_Word1_OP2 <inst> {
362
363  let src1 = 0;
364  let src1_rel = 0;
365  let src1_neg = 0;
366  let src1_abs = 0;
367  let update_exec_mask = 0;
368  let update_pred = 0;
369  let HasNativeOperands = 1;
370  let Op1 = 1;
371  let DisableEncoding = "$literal";
372
373  let Inst{31-0}  = Word0;
374  let Inst{63-32} = Word1;
375}
376
377class R600_1OP_Helper <bits<11> inst, string opName, SDPatternOperator node,
378                    InstrItinClass itin = AnyALU> :
379    R600_1OP <inst, opName,
380              [(set R600_Reg32:$dst, (node R600_Reg32:$src0))]
381>;
382
383// If you add our change the operands for R600_2OP instructions, you must
384// also update the R600Op2OperandIndex::ROI enum in R600Defines.h,
385// R600InstrInfo::buildDefaultInstruction(), and R600InstrInfo::getOperandIdx().
386class R600_2OP <bits<11> inst, string opName, list<dag> pattern,
387                InstrItinClass itin = AnyALU> :
388  InstR600 <inst,
389          (outs R600_Reg32:$dst),
390          (ins UEM:$update_exec_mask, UP:$update_pred, WRITE:$write,
391               OMOD:$omod, REL:$dst_rel, CLAMP:$clamp,
392               R600_Reg32:$src0, NEG:$src0_neg, REL:$src0_rel, ABS:$src0_abs, SEL:$src0_sel,
393               R600_Reg32:$src1, NEG:$src1_neg, REL:$src1_rel, ABS:$src1_abs, SEL:$src1_sel,
394               LAST:$last, R600_Pred:$pred_sel, LITERAL:$literal),
395          !strconcat("  ", opName,
396                "$clamp $update_exec_mask$update_pred$dst$write$dst_rel$omod, "
397                "$src0_neg$src0_abs$src0$src0_abs$src0_rel, "
398                "$src1_neg$src1_abs$src1$src1_abs$src1_rel, "
399                "$literal $pred_sel$last"),
400          pattern,
401          itin>,
402    R600ALU_Word0,
403    R600ALU_Word1_OP2 <inst> {
404
405  let HasNativeOperands = 1;
406  let Op2 = 1;
407  let DisableEncoding = "$literal";
408
409  let Inst{31-0}  = Word0;
410  let Inst{63-32} = Word1;
411}
412
413class R600_2OP_Helper <bits<11> inst, string opName, SDPatternOperator node,
414                       InstrItinClass itim = AnyALU> :
415    R600_2OP <inst, opName,
416              [(set R600_Reg32:$dst, (node R600_Reg32:$src0,
417                                           R600_Reg32:$src1))]
418>;
419
420// If you add our change the operands for R600_3OP instructions, you must
421// also update the R600Op3OperandIndex::ROI enum in R600Defines.h,
422// R600InstrInfo::buildDefaultInstruction(), and
423// R600InstrInfo::getOperandIdx().
424class R600_3OP <bits<5> inst, string opName, list<dag> pattern,
425                InstrItinClass itin = AnyALU> :
426  InstR600 <0,
427          (outs R600_Reg32:$dst),
428          (ins REL:$dst_rel, CLAMP:$clamp,
429               R600_Reg32:$src0, NEG:$src0_neg, REL:$src0_rel, SEL:$src0_sel,
430               R600_Reg32:$src1, NEG:$src1_neg, REL:$src1_rel, SEL:$src1_sel,
431               R600_Reg32:$src2, NEG:$src2_neg, REL:$src2_rel, SEL:$src2_sel,
432               LAST:$last, R600_Pred:$pred_sel, LITERAL:$literal),
433          !strconcat("  ", opName, "$clamp $dst$dst_rel, "
434                             "$src0_neg$src0$src0_rel, "
435                             "$src1_neg$src1$src1_rel, "
436                             "$src2_neg$src2$src2_rel, "
437                             "$literal $pred_sel$last"),
438          pattern,
439          itin>,
440    R600ALU_Word0,
441    R600ALU_Word1_OP3<inst>{
442
443  let HasNativeOperands = 1;
444  let DisableEncoding = "$literal";
445  let Op3 = 1;
446
447  let Inst{31-0}  = Word0;
448  let Inst{63-32} = Word1;
449}
450
451class R600_REDUCTION <bits<11> inst, dag ins, string asm, list<dag> pattern,
452                      InstrItinClass itin = VecALU> :
453  InstR600 <inst,
454          (outs R600_Reg32:$dst),
455          ins,
456          asm,
457          pattern,
458          itin>;
459
460class R600_TEX <bits<11> inst, string opName, list<dag> pattern,
461                InstrItinClass itin = AnyALU> :
462  InstR600 <inst,
463          (outs R600_Reg128:$DST_GPR),
464          (ins R600_Reg128:$SRC_GPR, i32imm:$RESOURCE_ID, i32imm:$SAMPLER_ID, i32imm:$textureTarget),
465          !strconcat(opName, "$DST_GPR, $SRC_GPR, $RESOURCE_ID, $SAMPLER_ID, $textureTarget"),
466          pattern,
467          itin>, TEX_WORD0, TEX_WORD1, TEX_WORD2 {
468    let Inst{31-0} = Word0;
469    let Inst{63-32} = Word1;
470
471    let TEX_INST = inst{4-0};
472    let SRC_REL = 0;
473    let DST_REL = 0;
474    let DST_SEL_X = 0;
475    let DST_SEL_Y = 1;
476    let DST_SEL_Z = 2;
477    let DST_SEL_W = 3;
478    let LOD_BIAS = 0;
479
480    let INST_MOD = 0;
481    let FETCH_WHOLE_QUAD = 0;
482    let ALT_CONST = 0;
483    let SAMPLER_INDEX_MODE = 0;
484
485    let COORD_TYPE_X = 0;
486    let COORD_TYPE_Y = 0;
487    let COORD_TYPE_Z = 0;
488    let COORD_TYPE_W = 0;
489  }
490
491} // End mayLoad = 1, mayStore = 0, hasSideEffects = 0
492
493def TEX_SHADOW : PatLeaf<
494  (imm),
495  [{uint32_t TType = (uint32_t)N->getZExtValue();
496    return (TType >= 6 && TType <= 8) || (TType >= 11 && TType <= 13);
497  }]
498>;
499
500def TEX_RECT : PatLeaf<
501  (imm),
502  [{uint32_t TType = (uint32_t)N->getZExtValue();
503    return TType == 5;
504  }]
505>;
506
507def TEX_ARRAY : PatLeaf<
508  (imm),
509  [{uint32_t TType = (uint32_t)N->getZExtValue();
510    return TType == 9 || TType == 10 || TType == 15 || TType == 16;
511  }]
512>;
513
514def TEX_SHADOW_ARRAY : PatLeaf<
515  (imm),
516  [{uint32_t TType = (uint32_t)N->getZExtValue();
517    return TType == 11 || TType == 12 || TType == 17;
518  }]
519>;
520
521class EG_CF_RAT <bits <8> cf_inst, bits <6> rat_inst, bits<4> rat_id, dag outs,
522                 dag ins, string asm, list<dag> pattern> :
523    InstR600ISA <outs, ins, asm, pattern> {
524  bits<7>  RW_GPR;
525  bits<7>  INDEX_GPR;
526
527  bits<2>  RIM;
528  bits<2>  TYPE;
529  bits<1>  RW_REL;
530  bits<2>  ELEM_SIZE;
531
532  bits<12> ARRAY_SIZE;
533  bits<4>  COMP_MASK;
534  bits<4>  BURST_COUNT;
535  bits<1>  VPM;
536  bits<1>  eop;
537  bits<1>  MARK;
538  bits<1>  BARRIER;
539
540  // CF_ALLOC_EXPORT_WORD0_RAT
541  let Inst{3-0}   = rat_id;
542  let Inst{9-4}   = rat_inst;
543  let Inst{10}    = 0; // Reserved
544  let Inst{12-11} = RIM;
545  let Inst{14-13} = TYPE;
546  let Inst{21-15} = RW_GPR;
547  let Inst{22}    = RW_REL;
548  let Inst{29-23} = INDEX_GPR;
549  let Inst{31-30} = ELEM_SIZE;
550
551  // CF_ALLOC_EXPORT_WORD1_BUF
552  let Inst{43-32} = ARRAY_SIZE;
553  let Inst{47-44} = COMP_MASK;
554  let Inst{51-48} = BURST_COUNT;
555  let Inst{52}    = VPM;
556  let Inst{53}    = eop;
557  let Inst{61-54} = cf_inst;
558  let Inst{62}    = MARK;
559  let Inst{63}    = BARRIER;
560}
561
562class LoadParamFrag <PatFrag load_type> : PatFrag <
563  (ops node:$ptr), (load_type node:$ptr),
564  [{ return isParamLoad(dyn_cast<LoadSDNode>(N)); }]
565>;
566
567def load_param : LoadParamFrag<load>;
568def load_param_zexti8 : LoadParamFrag<zextloadi8>;
569def load_param_zexti16 : LoadParamFrag<zextloadi16>;
570
571def isR600 : Predicate<"Subtarget.device()"
572                            "->getGeneration() == AMDGPUDeviceInfo::HD4XXX">;
573def isR700 : Predicate<"Subtarget.device()"
574                            "->getGeneration() == AMDGPUDeviceInfo::HD4XXX &&"
575                            "Subtarget.device()->getDeviceFlag()"
576                            ">= OCL_DEVICE_RV710">;
577def isEG : Predicate<
578  "Subtarget.device()->getGeneration() >= AMDGPUDeviceInfo::HD5XXX && "
579  "Subtarget.device()->getGeneration() < AMDGPUDeviceInfo::HD7XXX && "
580  "Subtarget.device()->getDeviceFlag() != OCL_DEVICE_CAYMAN">;
581
582def isCayman : Predicate<"Subtarget.device()"
583                            "->getDeviceFlag() == OCL_DEVICE_CAYMAN">;
584def isEGorCayman : Predicate<"Subtarget.device()"
585                            "->getGeneration() == AMDGPUDeviceInfo::HD5XXX"
586                            "|| Subtarget.device()->getGeneration() =="
587                            "AMDGPUDeviceInfo::HD6XXX">;
588
589def isR600toCayman : Predicate<
590                     "Subtarget.device()->getGeneration() <= AMDGPUDeviceInfo::HD6XXX">;
591
592//===----------------------------------------------------------------------===//
593// R600 SDNodes
594//===----------------------------------------------------------------------===//
595
596def INTERP_PAIR_XY :  AMDGPUShaderInst <
597  (outs R600_TReg32_X:$dst0, R600_TReg32_Y:$dst1),
598  (ins i32imm:$src0, R600_Reg32:$src1, R600_Reg32:$src2),
599  "INTERP_PAIR_XY $src0 $src1 $src2 : $dst0 dst1",
600  []>;
601
602def INTERP_PAIR_ZW :  AMDGPUShaderInst <
603  (outs R600_TReg32_Z:$dst0, R600_TReg32_W:$dst1),
604  (ins i32imm:$src0, R600_Reg32:$src1, R600_Reg32:$src2),
605  "INTERP_PAIR_ZW $src0 $src1 $src2 : $dst0 dst1",
606  []>;
607
608def CONST_ADDRESS: SDNode<"AMDGPUISD::CONST_ADDRESS",
609  SDTypeProfile<1, -1, [SDTCisInt<0>, SDTCisPtrTy<1>]>,
610  [SDNPVariadic]
611>;
612
613//===----------------------------------------------------------------------===//
614// Interpolation Instructions
615//===----------------------------------------------------------------------===//
616
617def INTERP_VEC_LOAD :  AMDGPUShaderInst <
618  (outs R600_Reg128:$dst),
619  (ins i32imm:$src0),
620  "INTERP_LOAD $src0 : $dst",
621  []>;
622
623def INTERP_XY : R600_2OP <0xD6, "INTERP_XY", []> {
624  let bank_swizzle = 5;
625}
626
627def INTERP_ZW : R600_2OP <0xD7, "INTERP_ZW", []> {
628  let bank_swizzle = 5;
629}
630
631def INTERP_LOAD_P0 : R600_1OP <0xE0, "INTERP_LOAD_P0", []>;
632
633//===----------------------------------------------------------------------===//
634// Export Instructions
635//===----------------------------------------------------------------------===//
636
637def ExportType : SDTypeProfile<0, 7, [SDTCisFP<0>, SDTCisInt<1>]>;
638
639def EXPORT: SDNode<"AMDGPUISD::EXPORT", ExportType,
640  [SDNPHasChain, SDNPSideEffect]>;
641
642class ExportWord0 {
643  field bits<32> Word0;
644
645  bits<13> arraybase;
646  bits<2> type;
647  bits<7> gpr;
648  bits<2> elem_size;
649
650  let Word0{12-0} = arraybase;
651  let Word0{14-13} = type;
652  let Word0{21-15} = gpr;
653  let Word0{22} = 0; // RW_REL
654  let Word0{29-23} = 0; // INDEX_GPR
655  let Word0{31-30} = elem_size;
656}
657
658class ExportSwzWord1 {
659  field bits<32> Word1;
660
661  bits<3> sw_x;
662  bits<3> sw_y;
663  bits<3> sw_z;
664  bits<3> sw_w;
665  bits<1> eop;
666  bits<8> inst;
667
668  let Word1{2-0} = sw_x;
669  let Word1{5-3} = sw_y;
670  let Word1{8-6} = sw_z;
671  let Word1{11-9} = sw_w;
672}
673
674class ExportBufWord1 {
675  field bits<32> Word1;
676
677  bits<12> arraySize;
678  bits<4> compMask;
679  bits<1> eop;
680  bits<8> inst;
681
682  let Word1{11-0} = arraySize;
683  let Word1{15-12} = compMask;
684}
685
686multiclass ExportPattern<Instruction ExportInst, bits<8> cf_inst> {
687  def : Pat<(int_R600_store_pixel_depth R600_Reg32:$reg),
688    (ExportInst
689        (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), R600_Reg32:$reg, sub0),
690        0, 61, 0, 7, 7, 7, cf_inst, 0)
691  >;
692
693  def : Pat<(int_R600_store_pixel_stencil R600_Reg32:$reg),
694    (ExportInst
695        (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), R600_Reg32:$reg, sub0),
696        0, 61, 7, 0, 7, 7, cf_inst, 0)
697  >;
698
699  def : Pat<(int_R600_store_dummy (i32 imm:$type)),
700    (ExportInst
701        (v4f32 (IMPLICIT_DEF)), imm:$type, 0, 7, 7, 7, 7, cf_inst, 0)
702  >;
703
704  def : Pat<(int_R600_store_dummy 1),
705    (ExportInst
706        (v4f32 (IMPLICIT_DEF)), 1, 60, 7, 7, 7, 7, cf_inst, 0)
707  >;
708
709  def : Pat<(EXPORT (v4f32 R600_Reg128:$src), (i32 imm:$base), (i32 imm:$type),
710    (i32 imm:$swz_x), (i32 imm:$swz_y), (i32 imm:$swz_z), (i32 imm:$swz_w)),
711        (ExportInst R600_Reg128:$src, imm:$type, imm:$base,
712        imm:$swz_x, imm:$swz_y, imm:$swz_z, imm:$swz_w, cf_inst, 0)
713  >;
714
715}
716
717multiclass SteamOutputExportPattern<Instruction ExportInst,
718    bits<8> buf0inst, bits<8> buf1inst, bits<8> buf2inst, bits<8> buf3inst> {
719// Stream0
720  def : Pat<(int_R600_store_stream_output (v4f32 R600_Reg128:$src),
721      (i32 imm:$arraybase), (i32 0), (i32 imm:$mask)),
722      (ExportInst R600_Reg128:$src, 0, imm:$arraybase,
723      4095, imm:$mask, buf0inst, 0)>;
724// Stream1
725  def : Pat<(int_R600_store_stream_output (v4f32 R600_Reg128:$src),
726      (i32 imm:$arraybase), (i32 1), (i32 imm:$mask)),
727      (ExportInst R600_Reg128:$src, 0, imm:$arraybase,
728      4095, imm:$mask, buf1inst, 0)>;
729// Stream2
730  def : Pat<(int_R600_store_stream_output (v4f32 R600_Reg128:$src),
731      (i32 imm:$arraybase), (i32 2), (i32 imm:$mask)),
732      (ExportInst R600_Reg128:$src, 0, imm:$arraybase,
733      4095, imm:$mask, buf2inst, 0)>;
734// Stream3
735  def : Pat<(int_R600_store_stream_output (v4f32 R600_Reg128:$src),
736      (i32 imm:$arraybase), (i32 3), (i32 imm:$mask)),
737      (ExportInst R600_Reg128:$src, 0, imm:$arraybase,
738      4095, imm:$mask, buf3inst, 0)>;
739}
740
741let usesCustomInserter = 1 in {
742
743class ExportSwzInst : InstR600ISA<(
744    outs),
745    (ins R600_Reg128:$gpr, i32imm:$type, i32imm:$arraybase,
746    i32imm:$sw_x, i32imm:$sw_y, i32imm:$sw_z, i32imm:$sw_w, i32imm:$inst,
747    i32imm:$eop),
748    !strconcat("EXPORT", " $gpr"),
749    []>, ExportWord0, ExportSwzWord1 {
750  let elem_size = 3;
751  let Inst{31-0} = Word0;
752  let Inst{63-32} = Word1;
753}
754
755} // End usesCustomInserter = 1
756
757class ExportBufInst : InstR600ISA<(
758    outs),
759    (ins R600_Reg128:$gpr, i32imm:$type, i32imm:$arraybase,
760    i32imm:$arraySize, i32imm:$compMask, i32imm:$inst, i32imm:$eop),
761    !strconcat("EXPORT", " $gpr"),
762    []>, ExportWord0, ExportBufWord1 {
763  let elem_size = 0;
764  let Inst{31-0} = Word0;
765  let Inst{63-32} = Word1;
766}
767
768//===----------------------------------------------------------------------===//
769// Control Flow Instructions
770//===----------------------------------------------------------------------===//
771
772class CF_ALU_WORD0 {
773  field bits<32> Word0;
774
775  bits<22> ADDR;
776  bits<4> KCACHE_BANK0;
777  bits<4> KCACHE_BANK1;
778  bits<2> KCACHE_MODE0;
779
780  let Word0{21-0} = ADDR;
781  let Word0{25-22} = KCACHE_BANK0;
782  let Word0{29-26} = KCACHE_BANK1;
783  let Word0{31-30} = KCACHE_MODE0;
784}
785
786class CF_ALU_WORD1 {
787  field bits<32> Word1;
788
789  bits<2> KCACHE_MODE1;
790  bits<8> KCACHE_ADDR0;
791  bits<8> KCACHE_ADDR1;
792  bits<7> COUNT;
793  bits<1> ALT_CONST;
794  bits<4> CF_INST;
795  bits<1> WHOLE_QUAD_MODE;
796  bits<1> BARRIER;
797
798  let Word1{1-0} = KCACHE_MODE1;
799  let Word1{9-2} = KCACHE_ADDR0;
800  let Word1{17-10} = KCACHE_ADDR1;
801  let Word1{24-18} = COUNT;
802  let Word1{25} = ALT_CONST;
803  let Word1{29-26} = CF_INST;
804  let Word1{30} = WHOLE_QUAD_MODE;
805  let Word1{31} = BARRIER;
806}
807
808class ALU_CLAUSE<bits<4> inst, string OpName> : AMDGPUInst <(outs),
809(ins i32imm:$ADDR, i32imm:$KCACHE_BANK0, i32imm:$KCACHE_BANK1, i32imm:$KCACHE_MODE0, i32imm:$KCACHE_MODE1,
810i32imm:$KCACHE_ADDR0, i32imm:$KCACHE_ADDR1, i32imm:$COUNT),
811!strconcat(OpName, " $COUNT, @$ADDR, "
812"KC0[CB$KCACHE_BANK0:$KCACHE_ADDR0-$KCACHE_ADDR0+32]"
813", KC1[CB$KCACHE_BANK1:$KCACHE_ADDR1-$KCACHE_ADDR1+32]"),
814[] >, CF_ALU_WORD0, CF_ALU_WORD1 {
815  field bits<64> Inst;
816
817  let CF_INST = inst;
818  let ALT_CONST = 0;
819  let WHOLE_QUAD_MODE = 0;
820  let BARRIER = 1;
821
822  let Inst{31-0} = Word0;
823  let Inst{63-32} = Word1;
824}
825
826class CF_WORD0 {
827  field bits<32> Word0;
828
829  bits<24> ADDR;
830  bits<3> JUMPTABLE_SEL;
831
832  let Word0{23-0} = ADDR;
833  let Word0{26-24} = JUMPTABLE_SEL;
834}
835
836class CF_WORD1 {
837  field bits<32> Word1;
838
839  bits<3> POP_COUNT;
840  bits<5> CF_CONST;
841  bits<2> COND;
842  bits<6> COUNT;
843  bits<1> VALID_PIXEL_MODE;
844  bits<8> CF_INST;
845  bits<1> BARRIER;
846
847  let Word1{2-0} = POP_COUNT;
848  let Word1{7-3} = CF_CONST;
849  let Word1{9-8} = COND;
850  let Word1{15-10} = COUNT;
851  let Word1{20} = VALID_PIXEL_MODE;
852  let Word1{29-22} = CF_INST;
853  let Word1{31} = BARRIER;
854}
855
856class CF_CLAUSE <bits<8> inst, dag ins, string AsmPrint> : AMDGPUInst <(outs),
857ins, AsmPrint, [] >, CF_WORD0, CF_WORD1 {
858  field bits<64> Inst;
859
860  let CF_INST = inst;
861  let BARRIER = 1;
862  let JUMPTABLE_SEL = 0;
863  let CF_CONST = 0;
864  let VALID_PIXEL_MODE = 0;
865  let COND = 0;
866
867  let Inst{31-0} = Word0;
868  let Inst{63-32} = Word1;
869}
870
871def CF_TC : CF_CLAUSE<1, (ins i32imm:$ADDR, i32imm:$COUNT),
872"TEX $COUNT @$ADDR"> {
873  let POP_COUNT = 0;
874}
875
876def CF_VC : CF_CLAUSE<2, (ins i32imm:$ADDR, i32imm:$COUNT),
877"VTX $COUNT @$ADDR"> {
878  let POP_COUNT = 0;
879}
880
881def WHILE_LOOP : CF_CLAUSE<6, (ins i32imm:$ADDR), "LOOP_START_DX10 @$ADDR"> {
882  let POP_COUNT = 0;
883  let COUNT = 0;
884}
885
886def END_LOOP : CF_CLAUSE<5, (ins i32imm:$ADDR), "END_LOOP @$ADDR"> {
887  let POP_COUNT = 0;
888  let COUNT = 0;
889}
890
891def LOOP_BREAK : CF_CLAUSE<9, (ins i32imm:$ADDR), "LOOP_BREAK @$ADDR"> {
892  let POP_COUNT = 0;
893  let COUNT = 0;
894}
895
896def CF_CONTINUE : CF_CLAUSE<8, (ins i32imm:$ADDR), "CONTINUE @$ADDR"> {
897  let POP_COUNT = 0;
898  let COUNT = 0;
899}
900
901def CF_JUMP : CF_CLAUSE<10, (ins i32imm:$ADDR, i32imm:$POP_COUNT), "JUMP @$ADDR POP:$POP_COUNT"> {
902  let COUNT = 0;
903}
904
905def CF_ELSE : CF_CLAUSE<13, (ins i32imm:$ADDR, i32imm:$POP_COUNT), "ELSE @$ADDR POP:$POP_COUNT"> {
906  let COUNT = 0;
907}
908
909def CF_CALL_FS : CF_CLAUSE<19, (ins), "CALL_FS"> {
910  let ADDR = 0;
911  let COUNT = 0;
912  let POP_COUNT = 0;
913}
914
915def POP : CF_CLAUSE<14, (ins i32imm:$ADDR, i32imm:$POP_COUNT), "POP @$ADDR POP:$POP_COUNT"> {
916  let COUNT = 0;
917}
918
919def CF_ALU : ALU_CLAUSE<8, "ALU">;
920def CF_ALU_PUSH_BEFORE : ALU_CLAUSE<9, "ALU_PUSH_BEFORE">;
921
922def STACK_SIZE : AMDGPUInst <(outs),
923(ins i32imm:$num), "nstack $num", [] > {
924  field bits<8> Inst;
925  bits<8> num;
926  let Inst = num;
927}
928
929let Predicates = [isR600toCayman] in {
930
931//===----------------------------------------------------------------------===//
932// Common Instructions R600, R700, Evergreen, Cayman
933//===----------------------------------------------------------------------===//
934
935def ADD : R600_2OP_Helper <0x0, "ADD", fadd>;
936// Non-IEEE MUL: 0 * anything = 0
937def MUL : R600_2OP_Helper <0x1, "MUL NON-IEEE", int_AMDGPU_mul>;
938def MUL_IEEE : R600_2OP_Helper <0x2, "MUL_IEEE", fmul>;
939def MAX : R600_2OP_Helper <0x3, "MAX", AMDGPUfmax>;
940def MIN : R600_2OP_Helper <0x4, "MIN", AMDGPUfmin>;
941
942// For the SET* instructions there is a naming conflict in TargetSelectionDAG.td,
943// so some of the instruction names don't match the asm string.
944// XXX: Use the defs in TargetSelectionDAG.td instead of intrinsics.
945def SETE : R600_2OP <
946  0x08, "SETE",
947  [(set R600_Reg32:$dst,
948   (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO,
949             COND_EQ))]
950>;
951
952def SGT : R600_2OP <
953  0x09, "SETGT",
954  [(set R600_Reg32:$dst,
955   (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO,
956              COND_GT))]
957>;
958
959def SGE : R600_2OP <
960  0xA, "SETGE",
961  [(set R600_Reg32:$dst,
962   (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO,
963              COND_GE))]
964>;
965
966def SNE : R600_2OP <
967  0xB, "SETNE",
968  [(set R600_Reg32:$dst,
969   (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO,
970    COND_NE))]
971>;
972
973def SETE_DX10 : R600_2OP <
974  0xC, "SETE_DX10",
975  [(set R600_Reg32:$dst,
976   (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, (i32 -1), (i32 0),
977    COND_EQ))]
978>;
979
980def SETGT_DX10 : R600_2OP <
981  0xD, "SETGT_DX10",
982  [(set R600_Reg32:$dst,
983   (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, (i32 -1), (i32 0),
984    COND_GT))]
985>;
986
987def SETGE_DX10 : R600_2OP <
988  0xE, "SETGE_DX10",
989  [(set R600_Reg32:$dst,
990   (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, (i32 -1), (i32 0),
991    COND_GE))]
992>;
993
994def SETNE_DX10 : R600_2OP <
995  0xF, "SETNE_DX10",
996  [(set R600_Reg32:$dst,
997    (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, (i32 -1), (i32 0),
998     COND_NE))]
999>;
1000
1001def FRACT : R600_1OP_Helper <0x10, "FRACT", AMDGPUfract>;
1002def TRUNC : R600_1OP_Helper <0x11, "TRUNC", int_AMDGPU_trunc>;
1003def CEIL : R600_1OP_Helper <0x12, "CEIL", fceil>;
1004def RNDNE : R600_1OP_Helper <0x13, "RNDNE", frint>;
1005def FLOOR : R600_1OP_Helper <0x14, "FLOOR", ffloor>;
1006
1007def MOV : R600_1OP <0x19, "MOV", []>;
1008
1009let isPseudo = 1, isCodeGenOnly = 1, usesCustomInserter = 1 in {
1010
1011class MOV_IMM <ValueType vt, Operand immType> : AMDGPUInst <
1012  (outs R600_Reg32:$dst),
1013  (ins immType:$imm),
1014  "",
1015  []
1016>;
1017
1018} // end let isPseudo = 1, isCodeGenOnly = 1, usesCustomInserter = 1
1019
1020def MOV_IMM_I32 : MOV_IMM<i32, i32imm>;
1021def : Pat <
1022  (imm:$val),
1023  (MOV_IMM_I32 imm:$val)
1024>;
1025
1026def MOV_IMM_F32 : MOV_IMM<f32, f32imm>;
1027def : Pat <
1028  (fpimm:$val),
1029  (MOV_IMM_F32  fpimm:$val)
1030>;
1031
1032def PRED_SETE : R600_2OP <0x20, "PRED_SETE", []>;
1033def PRED_SETGT : R600_2OP <0x21, "PRED_SETGT", []>;
1034def PRED_SETGE : R600_2OP <0x22, "PRED_SETGE", []>;
1035def PRED_SETNE : R600_2OP <0x23, "PRED_SETNE", []>;
1036
1037let hasSideEffects = 1 in {
1038
1039def KILLGT : R600_2OP <0x2D, "KILLGT", []>;
1040
1041} // end hasSideEffects
1042
1043def AND_INT : R600_2OP_Helper <0x30, "AND_INT", and>;
1044def OR_INT : R600_2OP_Helper <0x31, "OR_INT", or>;
1045def XOR_INT : R600_2OP_Helper <0x32, "XOR_INT", xor>;
1046def NOT_INT : R600_1OP_Helper <0x33, "NOT_INT", not>;
1047def ADD_INT : R600_2OP_Helper <0x34, "ADD_INT", add>;
1048def SUB_INT : R600_2OP_Helper <0x35, "SUB_INT", sub>;
1049def MAX_INT : R600_2OP_Helper <0x36, "MAX_INT", AMDGPUsmax>;
1050def MIN_INT : R600_2OP_Helper <0x37, "MIN_INT", AMDGPUsmin>;
1051def MAX_UINT : R600_2OP_Helper <0x38, "MAX_UINT", AMDGPUumax>;
1052def MIN_UINT : R600_2OP_Helper <0x39, "MIN_UINT", AMDGPUumin>;
1053
1054def SETE_INT : R600_2OP <
1055  0x3A, "SETE_INT",
1056  [(set (i32 R600_Reg32:$dst),
1057   (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETEQ))]
1058>;
1059
1060def SETGT_INT : R600_2OP <
1061  0x3B, "SETGT_INT",
1062  [(set (i32 R600_Reg32:$dst),
1063   (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETGT))]
1064>;
1065
1066def SETGE_INT : R600_2OP <
1067  0x3C, "SETGE_INT",
1068  [(set (i32 R600_Reg32:$dst),
1069   (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETGE))]
1070>;
1071
1072def SETNE_INT : R600_2OP <
1073  0x3D, "SETNE_INT",
1074  [(set (i32 R600_Reg32:$dst),
1075   (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETNE))]
1076>;
1077
1078def SETGT_UINT : R600_2OP <
1079  0x3E, "SETGT_UINT",
1080  [(set (i32 R600_Reg32:$dst),
1081   (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETUGT))]
1082>;
1083
1084def SETGE_UINT : R600_2OP <
1085  0x3F, "SETGE_UINT",
1086  [(set (i32 R600_Reg32:$dst),
1087    (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETUGE))]
1088>;
1089
1090def PRED_SETE_INT : R600_2OP <0x42, "PRED_SETE_INT", []>;
1091def PRED_SETGT_INT : R600_2OP <0x43, "PRED_SETGE_INT", []>;
1092def PRED_SETGE_INT : R600_2OP <0x44, "PRED_SETGE_INT", []>;
1093def PRED_SETNE_INT : R600_2OP <0x45, "PRED_SETNE_INT", []>;
1094
1095def CNDE_INT : R600_3OP <
1096  0x1C, "CNDE_INT",
1097  [(set (i32 R600_Reg32:$dst),
1098   (selectcc (i32 R600_Reg32:$src0), 0,
1099       (i32 R600_Reg32:$src1), (i32 R600_Reg32:$src2),
1100       COND_EQ))]
1101>;
1102
1103def CNDGE_INT : R600_3OP <
1104  0x1E, "CNDGE_INT",
1105  [(set (i32 R600_Reg32:$dst),
1106   (selectcc (i32 R600_Reg32:$src0), 0,
1107       (i32 R600_Reg32:$src1), (i32 R600_Reg32:$src2),
1108       COND_GE))]
1109>;
1110
1111def CNDGT_INT : R600_3OP <
1112  0x1D, "CNDGT_INT",
1113  [(set (i32 R600_Reg32:$dst),
1114   (selectcc (i32 R600_Reg32:$src0), 0,
1115       (i32 R600_Reg32:$src1), (i32 R600_Reg32:$src2),
1116       COND_GT))]
1117>;
1118
1119//===----------------------------------------------------------------------===//
1120// Texture instructions
1121//===----------------------------------------------------------------------===//
1122
1123def TEX_LD : R600_TEX <
1124  0x03, "TEX_LD",
1125  [(set R600_Reg128:$DST_GPR, (int_AMDGPU_txf R600_Reg128:$SRC_GPR,
1126      imm:$OFFSET_X, imm:$OFFSET_Y, imm:$OFFSET_Z, imm:$RESOURCE_ID,
1127      imm:$SAMPLER_ID, imm:$textureTarget))]
1128> {
1129let AsmString = "TEX_LD $DST_GPR, $SRC_GPR, $OFFSET_X, $OFFSET_Y, $OFFSET_Z,"
1130    "$RESOURCE_ID, $SAMPLER_ID, $textureTarget";
1131let InOperandList = (ins R600_Reg128:$SRC_GPR, i32imm:$OFFSET_X,
1132    i32imm:$OFFSET_Y, i32imm:$OFFSET_Z, i32imm:$RESOURCE_ID, i32imm:$SAMPLER_ID,
1133    i32imm:$textureTarget);
1134}
1135
1136def TEX_GET_TEXTURE_RESINFO : R600_TEX <
1137  0x04, "TEX_GET_TEXTURE_RESINFO",
1138  [(set R600_Reg128:$DST_GPR, (int_AMDGPU_txq R600_Reg128:$SRC_GPR,
1139      imm:$RESOURCE_ID, imm:$SAMPLER_ID, imm:$textureTarget))]
1140>;
1141
1142def TEX_GET_GRADIENTS_H : R600_TEX <
1143  0x07, "TEX_GET_GRADIENTS_H",
1144  [(set R600_Reg128:$DST_GPR, (int_AMDGPU_ddx R600_Reg128:$SRC_GPR,
1145      imm:$RESOURCE_ID, imm:$SAMPLER_ID, imm:$textureTarget))]
1146>;
1147
1148def TEX_GET_GRADIENTS_V : R600_TEX <
1149  0x08, "TEX_GET_GRADIENTS_V",
1150  [(set R600_Reg128:$DST_GPR, (int_AMDGPU_ddy R600_Reg128:$SRC_GPR,
1151      imm:$RESOURCE_ID, imm:$SAMPLER_ID, imm:$textureTarget))]
1152>;
1153
1154def TEX_SET_GRADIENTS_H : R600_TEX <
1155  0x0B, "TEX_SET_GRADIENTS_H",
1156  []
1157>;
1158
1159def TEX_SET_GRADIENTS_V : R600_TEX <
1160  0x0C, "TEX_SET_GRADIENTS_V",
1161  []
1162>;
1163
1164def TEX_SAMPLE : R600_TEX <
1165  0x10, "TEX_SAMPLE",
1166  [(set R600_Reg128:$DST_GPR, (int_AMDGPU_tex R600_Reg128:$SRC_GPR,
1167      imm:$RESOURCE_ID, imm:$SAMPLER_ID, imm:$textureTarget))]
1168>;
1169
1170def TEX_SAMPLE_C : R600_TEX <
1171  0x18, "TEX_SAMPLE_C",
1172  [(set R600_Reg128:$DST_GPR, (int_AMDGPU_tex R600_Reg128:$SRC_GPR,
1173      imm:$RESOURCE_ID, imm:$SAMPLER_ID, TEX_SHADOW:$textureTarget))]
1174>;
1175
1176def TEX_SAMPLE_L : R600_TEX <
1177  0x11, "TEX_SAMPLE_L",
1178  [(set R600_Reg128:$DST_GPR, (int_AMDGPU_txl R600_Reg128:$SRC_GPR,
1179      imm:$RESOURCE_ID, imm:$SAMPLER_ID, imm:$textureTarget))]
1180>;
1181
1182def TEX_SAMPLE_C_L : R600_TEX <
1183  0x19, "TEX_SAMPLE_C_L",
1184  [(set R600_Reg128:$DST_GPR, (int_AMDGPU_txl R600_Reg128:$SRC_GPR,
1185      imm:$RESOURCE_ID, imm:$SAMPLER_ID, TEX_SHADOW:$textureTarget))]
1186>;
1187
1188def TEX_SAMPLE_LB : R600_TEX <
1189  0x12, "TEX_SAMPLE_LB",
1190  [(set R600_Reg128:$DST_GPR, (int_AMDGPU_txb R600_Reg128:$SRC_GPR,
1191      imm:$RESOURCE_ID, imm:$SAMPLER_ID, imm:$textureTarget))]
1192>;
1193
1194def TEX_SAMPLE_C_LB : R600_TEX <
1195  0x1A, "TEX_SAMPLE_C_LB",
1196  [(set R600_Reg128:$DST_GPR, (int_AMDGPU_txb R600_Reg128:$SRC_GPR,
1197      imm:$RESOURCE_ID, imm:$SAMPLER_ID, TEX_SHADOW:$textureTarget))]
1198>;
1199
1200def TEX_SAMPLE_G : R600_TEX <
1201  0x14, "TEX_SAMPLE_G",
1202  []
1203>;
1204
1205def TEX_SAMPLE_C_G : R600_TEX <
1206  0x1C, "TEX_SAMPLE_C_G",
1207  []
1208>;
1209
1210//===----------------------------------------------------------------------===//
1211// Helper classes for common instructions
1212//===----------------------------------------------------------------------===//
1213
1214class MUL_LIT_Common <bits<5> inst> : R600_3OP <
1215  inst, "MUL_LIT",
1216  []
1217>;
1218
1219class MULADD_Common <bits<5> inst> : R600_3OP <
1220  inst, "MULADD",
1221  []
1222>;
1223
1224class MULADD_IEEE_Common <bits<5> inst> : R600_3OP <
1225  inst, "MULADD_IEEE",
1226  [(set (f32 R600_Reg32:$dst),
1227   (fadd (fmul R600_Reg32:$src0, R600_Reg32:$src1), R600_Reg32:$src2))]
1228>;
1229
1230class CNDE_Common <bits<5> inst> : R600_3OP <
1231  inst, "CNDE",
1232  [(set R600_Reg32:$dst,
1233   (selectcc (f32 R600_Reg32:$src0), FP_ZERO,
1234       (f32 R600_Reg32:$src1), (f32 R600_Reg32:$src2),
1235       COND_EQ))]
1236>;
1237
1238class CNDGT_Common <bits<5> inst> : R600_3OP <
1239  inst, "CNDGT",
1240  [(set R600_Reg32:$dst,
1241   (selectcc (f32 R600_Reg32:$src0), FP_ZERO,
1242       (f32 R600_Reg32:$src1), (f32 R600_Reg32:$src2),
1243       COND_GT))]
1244>;
1245
1246class CNDGE_Common <bits<5> inst> : R600_3OP <
1247  inst, "CNDGE",
1248  [(set R600_Reg32:$dst,
1249   (selectcc (f32 R600_Reg32:$src0), FP_ZERO,
1250       (f32 R600_Reg32:$src1), (f32 R600_Reg32:$src2),
1251       COND_GE))]
1252>;
1253
1254multiclass DOT4_Common <bits<11> inst> {
1255
1256  def _pseudo : R600_REDUCTION <inst,
1257    (ins R600_Reg128:$src0, R600_Reg128:$src1),
1258    "DOT4 $dst $src0, $src1",
1259    [(set R600_Reg32:$dst, (int_AMDGPU_dp4 R600_Reg128:$src0, R600_Reg128:$src1))]
1260  >;
1261
1262  def _real : R600_2OP <inst, "DOT4", []>;
1263}
1264
1265let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in {
1266multiclass CUBE_Common <bits<11> inst> {
1267
1268  def _pseudo : InstR600 <
1269    inst,
1270    (outs R600_Reg128:$dst),
1271    (ins R600_Reg128:$src),
1272    "CUBE $dst $src",
1273    [(set R600_Reg128:$dst, (int_AMDGPU_cube R600_Reg128:$src))],
1274    VecALU
1275  > {
1276    let isPseudo = 1;
1277  }
1278
1279  def _real : R600_2OP <inst, "CUBE", []>;
1280}
1281} // End mayLoad = 0, mayStore = 0, hasSideEffects = 0
1282
1283class EXP_IEEE_Common <bits<11> inst> : R600_1OP_Helper <
1284  inst, "EXP_IEEE", fexp2
1285>;
1286
1287class FLT_TO_INT_Common <bits<11> inst> : R600_1OP_Helper <
1288  inst, "FLT_TO_INT", fp_to_sint
1289>;
1290
1291class INT_TO_FLT_Common <bits<11> inst> : R600_1OP_Helper <
1292  inst, "INT_TO_FLT", sint_to_fp
1293>;
1294
1295class FLT_TO_UINT_Common <bits<11> inst> : R600_1OP_Helper <
1296  inst, "FLT_TO_UINT", fp_to_uint
1297>;
1298
1299class UINT_TO_FLT_Common <bits<11> inst> : R600_1OP_Helper <
1300  inst, "UINT_TO_FLT", uint_to_fp
1301>;
1302
1303class LOG_CLAMPED_Common <bits<11> inst> : R600_1OP <
1304  inst, "LOG_CLAMPED", []
1305>;
1306
1307class LOG_IEEE_Common <bits<11> inst> : R600_1OP_Helper <
1308  inst, "LOG_IEEE", flog2
1309>;
1310
1311class LSHL_Common <bits<11> inst> : R600_2OP_Helper <inst, "LSHL", shl>;
1312class LSHR_Common <bits<11> inst> : R600_2OP_Helper <inst, "LSHR", srl>;
1313class ASHR_Common <bits<11> inst> : R600_2OP_Helper <inst, "ASHR", sra>;
1314class MULHI_INT_Common <bits<11> inst> : R600_2OP_Helper <
1315  inst, "MULHI_INT", mulhs
1316>;
1317class MULHI_UINT_Common <bits<11> inst> : R600_2OP_Helper <
1318  inst, "MULHI", mulhu
1319>;
1320class MULLO_INT_Common <bits<11> inst> : R600_2OP_Helper <
1321  inst, "MULLO_INT", mul
1322>;
1323class MULLO_UINT_Common <bits<11> inst> : R600_2OP <inst, "MULLO_UINT", []>;
1324
1325class RECIP_CLAMPED_Common <bits<11> inst> : R600_1OP <
1326  inst, "RECIP_CLAMPED", []
1327>;
1328
1329class RECIP_IEEE_Common <bits<11> inst> : R600_1OP <
1330  inst, "RECIP_IEEE", [(set R600_Reg32:$dst, (fdiv FP_ONE, R600_Reg32:$src0))]
1331>;
1332
1333class RECIP_UINT_Common <bits<11> inst> : R600_1OP_Helper <
1334  inst, "RECIP_UINT", AMDGPUurecip
1335>;
1336
1337class RECIPSQRT_CLAMPED_Common <bits<11> inst> : R600_1OP_Helper <
1338  inst, "RECIPSQRT_CLAMPED", int_AMDGPU_rsq
1339>;
1340
1341class RECIPSQRT_IEEE_Common <bits<11> inst> : R600_1OP <
1342  inst, "RECIPSQRT_IEEE", []
1343>;
1344
1345class SIN_Common <bits<11> inst> : R600_1OP <
1346  inst, "SIN", []>{
1347  let Trig = 1;
1348}
1349
1350class COS_Common <bits<11> inst> : R600_1OP <
1351  inst, "COS", []> {
1352  let Trig = 1;
1353}
1354
1355//===----------------------------------------------------------------------===//
1356// Helper patterns for complex intrinsics
1357//===----------------------------------------------------------------------===//
1358
1359multiclass DIV_Common <InstR600 recip_ieee> {
1360def : Pat<
1361  (int_AMDGPU_div R600_Reg32:$src0, R600_Reg32:$src1),
1362  (MUL_IEEE R600_Reg32:$src0, (recip_ieee R600_Reg32:$src1))
1363>;
1364
1365def : Pat<
1366  (fdiv R600_Reg32:$src0, R600_Reg32:$src1),
1367  (MUL_IEEE R600_Reg32:$src0, (recip_ieee R600_Reg32:$src1))
1368>;
1369}
1370
1371class TGSI_LIT_Z_Common <InstR600 mul_lit, InstR600 log_clamped, InstR600 exp_ieee> : Pat <
1372  (int_TGSI_lit_z R600_Reg32:$src_x, R600_Reg32:$src_y, R600_Reg32:$src_w),
1373  (exp_ieee (mul_lit (log_clamped (MAX R600_Reg32:$src_y, (f32 ZERO))), R600_Reg32:$src_w, R600_Reg32:$src_x))
1374>;
1375
1376//===----------------------------------------------------------------------===//
1377// R600 / R700 Instructions
1378//===----------------------------------------------------------------------===//
1379
1380let Predicates = [isR600] in {
1381
1382  def MUL_LIT_r600 : MUL_LIT_Common<0x0C>;
1383  def MULADD_r600 : MULADD_Common<0x10>;
1384  def MULADD_IEEE_r600 : MULADD_IEEE_Common<0x14>;
1385  def CNDE_r600 : CNDE_Common<0x18>;
1386  def CNDGT_r600 : CNDGT_Common<0x19>;
1387  def CNDGE_r600 : CNDGE_Common<0x1A>;
1388  defm DOT4_r600 : DOT4_Common<0x50>;
1389  defm CUBE_r600 : CUBE_Common<0x52>;
1390  def EXP_IEEE_r600 : EXP_IEEE_Common<0x61>;
1391  def LOG_CLAMPED_r600 : LOG_CLAMPED_Common<0x62>;
1392  def LOG_IEEE_r600 : LOG_IEEE_Common<0x63>;
1393  def RECIP_CLAMPED_r600 : RECIP_CLAMPED_Common<0x64>;
1394  def RECIP_IEEE_r600 : RECIP_IEEE_Common<0x66>;
1395  def RECIPSQRT_CLAMPED_r600 : RECIPSQRT_CLAMPED_Common<0x67>;
1396  def RECIPSQRT_IEEE_r600 : RECIPSQRT_IEEE_Common<0x69>;
1397  def FLT_TO_INT_r600 : FLT_TO_INT_Common<0x6b>;
1398  def INT_TO_FLT_r600 : INT_TO_FLT_Common<0x6c>;
1399  def FLT_TO_UINT_r600 : FLT_TO_UINT_Common<0x79>;
1400  def UINT_TO_FLT_r600 : UINT_TO_FLT_Common<0x6d>;
1401  def SIN_r600 : SIN_Common<0x6E>;
1402  def COS_r600 : COS_Common<0x6F>;
1403  def ASHR_r600 : ASHR_Common<0x70>;
1404  def LSHR_r600 : LSHR_Common<0x71>;
1405  def LSHL_r600 : LSHL_Common<0x72>;
1406  def MULLO_INT_r600 : MULLO_INT_Common<0x73>;
1407  def MULHI_INT_r600 : MULHI_INT_Common<0x74>;
1408  def MULLO_UINT_r600 : MULLO_UINT_Common<0x75>;
1409  def MULHI_UINT_r600 : MULHI_UINT_Common<0x76>;
1410  def RECIP_UINT_r600 : RECIP_UINT_Common <0x78>;
1411
1412  defm DIV_r600 : DIV_Common<RECIP_IEEE_r600>;
1413  def : POW_Common <LOG_IEEE_r600, EXP_IEEE_r600, MUL, R600_Reg32>;
1414  def TGSI_LIT_Z_r600 : TGSI_LIT_Z_Common<MUL_LIT_r600, LOG_CLAMPED_r600, EXP_IEEE_r600>;
1415
1416  def : Pat<(fsqrt R600_Reg32:$src),
1417    (MUL R600_Reg32:$src, (RECIPSQRT_CLAMPED_r600 R600_Reg32:$src))>;
1418
1419  def R600_ExportSwz : ExportSwzInst {
1420    let Word1{20-17} = 1; // BURST_COUNT
1421    let Word1{21} = eop;
1422    let Word1{22} = 1; // VALID_PIXEL_MODE
1423    let Word1{30-23} = inst;
1424    let Word1{31} = 1; // BARRIER
1425  }
1426  defm : ExportPattern<R600_ExportSwz, 39>;
1427
1428  def R600_ExportBuf : ExportBufInst {
1429    let Word1{20-17} = 1; // BURST_COUNT
1430    let Word1{21} = eop;
1431    let Word1{22} = 1; // VALID_PIXEL_MODE
1432    let Word1{30-23} = inst;
1433    let Word1{31} = 1; // BARRIER
1434  }
1435  defm : SteamOutputExportPattern<R600_ExportBuf, 0x20, 0x21, 0x22, 0x23>;
1436}
1437
1438// Helper pattern for normalizing inputs to triginomic instructions for R700+
1439// cards.
1440class COS_PAT <InstR600 trig> : Pat<
1441  (fcos R600_Reg32:$src),
1442  (trig (MUL_IEEE (MOV_IMM_I32 CONST.TWO_PI_INV), R600_Reg32:$src))
1443>;
1444
1445class SIN_PAT <InstR600 trig> : Pat<
1446  (fsin R600_Reg32:$src),
1447  (trig (MUL_IEEE (MOV_IMM_I32 CONST.TWO_PI_INV), R600_Reg32:$src))
1448>;
1449
1450//===----------------------------------------------------------------------===//
1451// R700 Only instructions
1452//===----------------------------------------------------------------------===//
1453
1454let Predicates = [isR700] in {
1455  def SIN_r700 : SIN_Common<0x6E>;
1456  def COS_r700 : COS_Common<0x6F>;
1457
1458  // R700 normalizes inputs to SIN/COS the same as EG
1459  def : SIN_PAT <SIN_r700>;
1460  def : COS_PAT <COS_r700>;
1461}
1462
1463//===----------------------------------------------------------------------===//
1464// Evergreen Only instructions
1465//===----------------------------------------------------------------------===//
1466
1467let Predicates = [isEG] in {
1468
1469def RECIP_IEEE_eg : RECIP_IEEE_Common<0x86>;
1470defm DIV_eg : DIV_Common<RECIP_IEEE_eg>;
1471
1472def MULLO_INT_eg : MULLO_INT_Common<0x8F>;
1473def MULHI_INT_eg : MULHI_INT_Common<0x90>;
1474def MULLO_UINT_eg : MULLO_UINT_Common<0x91>;
1475def MULHI_UINT_eg : MULHI_UINT_Common<0x92>;
1476def RECIP_UINT_eg : RECIP_UINT_Common<0x94>;
1477def RECIPSQRT_CLAMPED_eg : RECIPSQRT_CLAMPED_Common<0x87>;
1478def EXP_IEEE_eg : EXP_IEEE_Common<0x81>;
1479def LOG_IEEE_eg : LOG_IEEE_Common<0x83>;
1480def RECIP_CLAMPED_eg : RECIP_CLAMPED_Common<0x84>;
1481def RECIPSQRT_IEEE_eg : RECIPSQRT_IEEE_Common<0x89>;
1482def SIN_eg : SIN_Common<0x8D>;
1483def COS_eg : COS_Common<0x8E>;
1484
1485def : POW_Common <LOG_IEEE_eg, EXP_IEEE_eg, MUL, R600_Reg32>;
1486def : SIN_PAT <SIN_eg>;
1487def : COS_PAT <COS_eg>;
1488def : Pat<(fsqrt R600_Reg32:$src),
1489  (MUL R600_Reg32:$src, (RECIPSQRT_CLAMPED_eg R600_Reg32:$src))>;
1490} // End Predicates = [isEG]
1491
1492//===----------------------------------------------------------------------===//
1493// Evergreen / Cayman Instructions
1494//===----------------------------------------------------------------------===//
1495
1496let Predicates = [isEGorCayman] in {
1497
1498  // BFE_UINT - bit_extract, an optimization for mask and shift
1499  // Src0 = Input
1500  // Src1 = Offset
1501  // Src2 = Width
1502  //
1503  // bit_extract = (Input << (32 - Offset - Width)) >> (32 - Width)
1504  //
1505  // Example Usage:
1506  // (Offset, Width)
1507  //
1508  // (0, 8)           = (Input << 24) >> 24  = (Input &  0xff)       >> 0
1509  // (8, 8)           = (Input << 16) >> 24  = (Input &  0xffff)     >> 8
1510  // (16,8)           = (Input <<  8) >> 24  = (Input &  0xffffff)   >> 16
1511  // (24,8)           = (Input <<  0) >> 24  = (Input &  0xffffffff) >> 24
1512  def BFE_UINT_eg : R600_3OP <0x4, "BFE_UINT",
1513    [(set R600_Reg32:$dst, (int_AMDIL_bit_extract_u32 R600_Reg32:$src0,
1514                                                      R600_Reg32:$src1,
1515                                                      R600_Reg32:$src2))],
1516    VecALU
1517  >;
1518
1519  def BIT_ALIGN_INT_eg : R600_3OP <0xC, "BIT_ALIGN_INT",
1520    [(set R600_Reg32:$dst, (AMDGPUbitalign R600_Reg32:$src0, R600_Reg32:$src1,
1521                                          R600_Reg32:$src2))],
1522    VecALU
1523  >;
1524
1525  def MULADD_eg : MULADD_Common<0x14>;
1526  def MULADD_IEEE_eg : MULADD_IEEE_Common<0x18>;
1527  def ASHR_eg : ASHR_Common<0x15>;
1528  def LSHR_eg : LSHR_Common<0x16>;
1529  def LSHL_eg : LSHL_Common<0x17>;
1530  def CNDE_eg : CNDE_Common<0x19>;
1531  def CNDGT_eg : CNDGT_Common<0x1A>;
1532  def CNDGE_eg : CNDGE_Common<0x1B>;
1533  def MUL_LIT_eg : MUL_LIT_Common<0x1F>;
1534  def LOG_CLAMPED_eg : LOG_CLAMPED_Common<0x82>;
1535  defm DOT4_eg : DOT4_Common<0xBE>;
1536  defm CUBE_eg : CUBE_Common<0xC0>;
1537
1538let hasSideEffects = 1 in {
1539  def MOVA_INT_eg : R600_1OP <0xCC, "MOVA_INT", []>;
1540}
1541
1542  def TGSI_LIT_Z_eg : TGSI_LIT_Z_Common<MUL_LIT_eg, LOG_CLAMPED_eg, EXP_IEEE_eg>;
1543
1544  def FLT_TO_INT_eg : FLT_TO_INT_Common<0x50> {
1545    let Pattern = [];
1546  }
1547
1548  def INT_TO_FLT_eg : INT_TO_FLT_Common<0x9B>;
1549
1550  def FLT_TO_UINT_eg : FLT_TO_UINT_Common<0x9A> {
1551    let Pattern = [];
1552  }
1553
1554  def UINT_TO_FLT_eg : UINT_TO_FLT_Common<0x9C>;
1555
1556  // TRUNC is used for the FLT_TO_INT instructions to work around a
1557  // perceived problem where the rounding modes are applied differently
1558  // depending on the instruction and the slot they are in.
1559  // See:
1560  // https://bugs.freedesktop.org/show_bug.cgi?id=50232
1561  // Mesa commit: a1a0974401c467cb86ef818f22df67c21774a38c
1562  //
1563  // XXX: Lowering SELECT_CC will sometimes generate fp_to_[su]int nodes,
1564  // which do not need to be truncated since the fp values are 0.0f or 1.0f.
1565  // We should look into handling these cases separately.
1566  def : Pat<(fp_to_sint R600_Reg32:$src0),
1567    (FLT_TO_INT_eg (TRUNC R600_Reg32:$src0))>;
1568
1569  def : Pat<(fp_to_uint R600_Reg32:$src0),
1570    (FLT_TO_UINT_eg (TRUNC R600_Reg32:$src0))>;
1571
1572  def EG_ExportSwz : ExportSwzInst {
1573    let Word1{19-16} = 1; // BURST_COUNT
1574    let Word1{20} = 1; // VALID_PIXEL_MODE
1575    let Word1{21} = eop;
1576    let Word1{29-22} = inst;
1577    let Word1{30} = 0; // MARK
1578    let Word1{31} = 1; // BARRIER
1579  }
1580  defm : ExportPattern<EG_ExportSwz, 83>;
1581
1582  def EG_ExportBuf : ExportBufInst {
1583    let Word1{19-16} = 1; // BURST_COUNT
1584    let Word1{20} = 1; // VALID_PIXEL_MODE
1585    let Word1{21} = eop;
1586    let Word1{29-22} = inst;
1587    let Word1{30} = 0; // MARK
1588    let Word1{31} = 1; // BARRIER
1589  }
1590  defm : SteamOutputExportPattern<EG_ExportBuf, 0x40, 0x41, 0x42, 0x43>;
1591
1592//===----------------------------------------------------------------------===//
1593// Memory read/write instructions
1594//===----------------------------------------------------------------------===//
1595let usesCustomInserter = 1 in {
1596
1597class RAT_WRITE_CACHELESS_eg <dag ins, bits<4> comp_mask, string name,
1598                              list<dag> pattern>
1599    : EG_CF_RAT <0x57, 0x2, 0, (outs), ins,
1600                 !strconcat(name, " $rw_gpr, $index_gpr, $eop"), pattern> {
1601  let RIM         = 0;
1602  // XXX: Have a separate instruction for non-indexed writes.
1603  let TYPE        = 1;
1604  let RW_REL      = 0;
1605  let ELEM_SIZE   = 0;
1606
1607  let ARRAY_SIZE  = 0;
1608  let COMP_MASK   = comp_mask;
1609  let BURST_COUNT = 0;
1610  let VPM         = 0;
1611  let MARK        = 0;
1612  let BARRIER     = 1;
1613}
1614
1615} // End usesCustomInserter = 1
1616
1617// 32-bit store
1618def RAT_WRITE_CACHELESS_32_eg : RAT_WRITE_CACHELESS_eg <
1619  (ins R600_TReg32_X:$rw_gpr, R600_TReg32_X:$index_gpr, InstFlag:$eop),
1620  0x1, "RAT_WRITE_CACHELESS_32_eg",
1621  [(global_store (i32 R600_TReg32_X:$rw_gpr), R600_TReg32_X:$index_gpr)]
1622>;
1623
1624//128-bit store
1625def RAT_WRITE_CACHELESS_128_eg : RAT_WRITE_CACHELESS_eg <
1626  (ins R600_Reg128:$rw_gpr, R600_TReg32_X:$index_gpr, InstFlag:$eop),
1627  0xf, "RAT_WRITE_CACHELESS_128",
1628  [(global_store (v4i32 R600_Reg128:$rw_gpr), R600_TReg32_X:$index_gpr)]
1629>;
1630
1631class VTX_READ_eg <string name, bits<8> buffer_id, dag outs, list<dag> pattern>
1632    : InstR600ISA <outs, (ins MEMxi:$ptr), name#" $dst, $ptr", pattern>,
1633      VTX_WORD1_GPR, VTX_WORD0 {
1634
1635  // Static fields
1636  let VC_INST = 0;
1637  let FETCH_TYPE = 2;
1638  let FETCH_WHOLE_QUAD = 0;
1639  let BUFFER_ID = buffer_id;
1640  let SRC_REL = 0;
1641  // XXX: We can infer this field based on the SRC_GPR.  This would allow us
1642  // to store vertex addresses in any channel, not just X.
1643  let SRC_SEL_X = 0;
1644  let DST_REL = 0;
1645  // The docs say that if this bit is set, then DATA_FORMAT, NUM_FORMAT_ALL,
1646  // FORMAT_COMP_ALL, SRF_MODE_ALL, and ENDIAN_SWAP fields will be ignored,
1647  // however, based on my testing if USE_CONST_FIELDS is set, then all
1648  // these fields need to be set to 0.
1649  let USE_CONST_FIELDS = 0;
1650  let NUM_FORMAT_ALL = 1;
1651  let FORMAT_COMP_ALL = 0;
1652  let SRF_MODE_ALL = 0;
1653
1654  let Inst{31-0} = Word0;
1655  let Inst{63-32} = Word1;
1656  // LLVM can only encode 64-bit instructions, so these fields are manually
1657  // encoded in R600CodeEmitter
1658  //
1659  // bits<16> OFFSET;
1660  // bits<2>  ENDIAN_SWAP = 0;
1661  // bits<1>  CONST_BUF_NO_STRIDE = 0;
1662  // bits<1>  MEGA_FETCH = 0;
1663  // bits<1>  ALT_CONST = 0;
1664  // bits<2>  BUFFER_INDEX_MODE = 0;
1665
1666
1667
1668  // VTX_WORD2 (LLVM can only encode 64-bit instructions, so WORD2 encoding
1669  // is done in R600CodeEmitter
1670  //
1671  // Inst{79-64} = OFFSET;
1672  // Inst{81-80} = ENDIAN_SWAP;
1673  // Inst{82}    = CONST_BUF_NO_STRIDE;
1674  // Inst{83}    = MEGA_FETCH;
1675  // Inst{84}    = ALT_CONST;
1676  // Inst{86-85} = BUFFER_INDEX_MODE;
1677  // Inst{95-86} = 0; Reserved
1678
1679  // VTX_WORD3 (Padding)
1680  //
1681  // Inst{127-96} = 0;
1682}
1683
1684class VTX_READ_8_eg <bits<8> buffer_id, list<dag> pattern>
1685    : VTX_READ_eg <"VTX_READ_8", buffer_id, (outs R600_TReg32_X:$dst),
1686                   pattern> {
1687
1688  let MEGA_FETCH_COUNT = 1;
1689  let DST_SEL_X = 0;
1690  let DST_SEL_Y = 7;   // Masked
1691  let DST_SEL_Z = 7;   // Masked
1692  let DST_SEL_W = 7;   // Masked
1693  let DATA_FORMAT = 1; // FMT_8
1694}
1695
1696class VTX_READ_16_eg <bits<8> buffer_id, list<dag> pattern>
1697    : VTX_READ_eg <"VTX_READ_16", buffer_id, (outs R600_TReg32_X:$dst),
1698                    pattern> {
1699  let MEGA_FETCH_COUNT = 2;
1700  let DST_SEL_X = 0;
1701  let DST_SEL_Y = 7;   // Masked
1702  let DST_SEL_Z = 7;   // Masked
1703  let DST_SEL_W = 7;   // Masked
1704  let DATA_FORMAT = 5; // FMT_16
1705
1706}
1707
1708class VTX_READ_32_eg <bits<8> buffer_id, list<dag> pattern>
1709    : VTX_READ_eg <"VTX_READ_32", buffer_id, (outs R600_TReg32_X:$dst),
1710                   pattern> {
1711
1712  let MEGA_FETCH_COUNT = 4;
1713  let DST_SEL_X        = 0;
1714  let DST_SEL_Y        = 7;   // Masked
1715  let DST_SEL_Z        = 7;   // Masked
1716  let DST_SEL_W        = 7;   // Masked
1717  let DATA_FORMAT      = 0xD; // COLOR_32
1718
1719  // This is not really necessary, but there were some GPU hangs that appeared
1720  // to be caused by ALU instructions in the next instruction group that wrote
1721  // to the $ptr registers of the VTX_READ.
1722  // e.g.
1723  // %T3_X<def> = VTX_READ_PARAM_32_eg %T2_X<kill>, 24
1724  // %T2_X<def> = MOV %ZERO
1725  //Adding this constraint prevents this from happening.
1726  let Constraints = "$ptr.ptr = $dst";
1727}
1728
1729class VTX_READ_128_eg <bits<8> buffer_id, list<dag> pattern>
1730    : VTX_READ_eg <"VTX_READ_128", buffer_id, (outs R600_Reg128:$dst),
1731                   pattern> {
1732
1733  let MEGA_FETCH_COUNT = 16;
1734  let DST_SEL_X        =  0;
1735  let DST_SEL_Y        =  1;
1736  let DST_SEL_Z        =  2;
1737  let DST_SEL_W        =  3;
1738  let DATA_FORMAT      =  0x22; // COLOR_32_32_32_32
1739
1740  // XXX: Need to force VTX_READ_128 instructions to write to the same register
1741  // that holds its buffer address to avoid potential hangs.  We can't use
1742  // the same constraint as VTX_READ_32_eg, because the $ptr.ptr and $dst
1743  // registers are different sizes.
1744}
1745
1746//===----------------------------------------------------------------------===//
1747// VTX Read from parameter memory space
1748//===----------------------------------------------------------------------===//
1749
1750def VTX_READ_PARAM_8_eg : VTX_READ_8_eg <0,
1751  [(set (i32 R600_TReg32_X:$dst), (load_param_zexti8 ADDRVTX_READ:$ptr))]
1752>;
1753
1754def VTX_READ_PARAM_16_eg : VTX_READ_16_eg <0,
1755  [(set (i32 R600_TReg32_X:$dst), (load_param_zexti16 ADDRVTX_READ:$ptr))]
1756>;
1757
1758def VTX_READ_PARAM_32_eg : VTX_READ_32_eg <0,
1759  [(set (i32 R600_TReg32_X:$dst), (load_param ADDRVTX_READ:$ptr))]
1760>;
1761
1762def VTX_READ_PARAM_128_eg : VTX_READ_128_eg <0,
1763  [(set (v4i32 R600_Reg128:$dst), (load_param ADDRVTX_READ:$ptr))]
1764>;
1765
1766//===----------------------------------------------------------------------===//
1767// VTX Read from global memory space
1768//===----------------------------------------------------------------------===//
1769
1770// 8-bit reads
1771def VTX_READ_GLOBAL_8_eg : VTX_READ_8_eg <1,
1772  [(set (i32 R600_TReg32_X:$dst), (zextloadi8_global ADDRVTX_READ:$ptr))]
1773>;
1774
1775// 32-bit reads
1776def VTX_READ_GLOBAL_32_eg : VTX_READ_32_eg <1,
1777  [(set (i32 R600_TReg32_X:$dst), (global_load ADDRVTX_READ:$ptr))]
1778>;
1779
1780// 128-bit reads
1781def VTX_READ_GLOBAL_128_eg : VTX_READ_128_eg <1,
1782  [(set (v4i32 R600_Reg128:$dst), (global_load ADDRVTX_READ:$ptr))]
1783>;
1784
1785//===----------------------------------------------------------------------===//
1786// Constant Loads
1787// XXX: We are currently storing all constants in the global address space.
1788//===----------------------------------------------------------------------===//
1789
1790def CONSTANT_LOAD_eg : VTX_READ_32_eg <1,
1791  [(set (i32 R600_TReg32_X:$dst), (constant_load ADDRVTX_READ:$ptr))]
1792>;
1793
1794}
1795
1796//===----------------------------------------------------------------------===//
1797// Regist loads and stores - for indirect addressing
1798//===----------------------------------------------------------------------===//
1799
1800defm R600_ : RegisterLoadStore <R600_Reg32, FRAMEri, ADDRIndirect>;
1801
1802let Predicates = [isCayman] in {
1803
1804let isVector = 1 in {
1805
1806def RECIP_IEEE_cm : RECIP_IEEE_Common<0x86>;
1807
1808def MULLO_INT_cm : MULLO_INT_Common<0x8F>;
1809def MULHI_INT_cm : MULHI_INT_Common<0x90>;
1810def MULLO_UINT_cm : MULLO_UINT_Common<0x91>;
1811def MULHI_UINT_cm : MULHI_UINT_Common<0x92>;
1812def RECIPSQRT_CLAMPED_cm : RECIPSQRT_CLAMPED_Common<0x87>;
1813def EXP_IEEE_cm : EXP_IEEE_Common<0x81>;
1814def LOG_IEEE_cm : LOG_IEEE_Common<0x83>;
1815def RECIP_CLAMPED_cm : RECIP_CLAMPED_Common<0x84>;
1816def RECIPSQRT_IEEE_cm : RECIPSQRT_IEEE_Common<0x89>;
1817def SIN_cm : SIN_Common<0x8D>;
1818def COS_cm : COS_Common<0x8E>;
1819} // End isVector = 1
1820
1821def : POW_Common <LOG_IEEE_cm, EXP_IEEE_cm, MUL, R600_Reg32>;
1822def : SIN_PAT <SIN_cm>;
1823def : COS_PAT <COS_cm>;
1824
1825defm DIV_cm : DIV_Common<RECIP_IEEE_cm>;
1826
1827// RECIP_UINT emulation for Cayman
1828def : Pat <
1829  (AMDGPUurecip R600_Reg32:$src0),
1830  (FLT_TO_UINT_eg (MUL_IEEE (RECIP_IEEE_cm (UINT_TO_FLT_eg R600_Reg32:$src0)),
1831                            (MOV_IMM_I32 0x4f800000)))
1832>;
1833
1834
1835def : Pat<(fsqrt R600_Reg32:$src),
1836  (MUL R600_Reg32:$src, (RECIPSQRT_CLAMPED_cm R600_Reg32:$src))>;
1837
1838} // End isCayman
1839
1840//===----------------------------------------------------------------------===//
1841// Branch Instructions
1842//===----------------------------------------------------------------------===//
1843
1844
1845def IF_PREDICATE_SET  : ILFormat<(outs), (ins GPRI32:$src),
1846  "IF_PREDICATE_SET $src", []>;
1847
1848def PREDICATED_BREAK : ILFormat<(outs), (ins GPRI32:$src),
1849  "PREDICATED_BREAK $src", []>;
1850
1851//===----------------------------------------------------------------------===//
1852// Pseudo instructions
1853//===----------------------------------------------------------------------===//
1854
1855let isPseudo = 1 in {
1856
1857def PRED_X : InstR600 <
1858  0, (outs R600_Predicate_Bit:$dst),
1859  (ins R600_Reg32:$src0, i32imm:$src1, i32imm:$flags),
1860  "", [], NullALU> {
1861  let FlagOperandIdx = 3;
1862}
1863
1864let isTerminator = 1, isBranch = 1 in {
1865def JUMP_COND : InstR600 <0x10,
1866          (outs),
1867          (ins brtarget:$target, R600_Predicate_Bit:$p),
1868          "JUMP $target ($p)",
1869          [], AnyALU
1870  >;
1871
1872def JUMP : InstR600 <0x10,
1873          (outs),
1874          (ins brtarget:$target),
1875          "JUMP $target",
1876          [], AnyALU
1877  >
1878{
1879  let isPredicable = 1;
1880  let isBarrier = 1;
1881}
1882
1883}  // End isTerminator = 1, isBranch = 1
1884
1885let usesCustomInserter = 1 in {
1886
1887let mayLoad = 0, mayStore = 0, hasSideEffects = 1 in {
1888
1889def MASK_WRITE : AMDGPUShaderInst <
1890    (outs),
1891    (ins R600_Reg32:$src),
1892    "MASK_WRITE $src",
1893    []
1894>;
1895
1896} // End mayLoad = 0, mayStore = 0, hasSideEffects = 1
1897
1898
1899def TXD: AMDGPUShaderInst <
1900  (outs R600_Reg128:$dst),
1901  (ins R600_Reg128:$src0, R600_Reg128:$src1, R600_Reg128:$src2, i32imm:$resourceId, i32imm:$samplerId, i32imm:$textureTarget),
1902  "TXD $dst, $src0, $src1, $src2, $resourceId, $samplerId, $textureTarget",
1903  [(set R600_Reg128:$dst, (int_AMDGPU_txd R600_Reg128:$src0, R600_Reg128:$src1, R600_Reg128:$src2, imm:$resourceId, imm:$samplerId, imm:$textureTarget))]
1904>;
1905
1906def TXD_SHADOW: AMDGPUShaderInst <
1907  (outs R600_Reg128:$dst),
1908  (ins R600_Reg128:$src0, R600_Reg128:$src1, R600_Reg128:$src2, i32imm:$resourceId, i32imm:$samplerId, i32imm:$textureTarget),
1909  "TXD_SHADOW $dst, $src0, $src1, $src2, $resourceId, $samplerId, $textureTarget",
1910  [(set R600_Reg128:$dst, (int_AMDGPU_txd R600_Reg128:$src0, R600_Reg128:$src1, R600_Reg128:$src2, imm:$resourceId, imm:$samplerId, TEX_SHADOW:$textureTarget))]
1911>;
1912
1913} // End isPseudo = 1
1914} // End usesCustomInserter = 1
1915
1916def CLAMP_R600 :  CLAMP <R600_Reg32>;
1917def FABS_R600 : FABS<R600_Reg32>;
1918def FNEG_R600 : FNEG<R600_Reg32>;
1919
1920//===---------------------------------------------------------------------===//
1921// Return instruction
1922//===---------------------------------------------------------------------===//
1923let isTerminator = 1, isReturn = 1, hasCtrlDep = 1,
1924    usesCustomInserter = 1 in {
1925  def RETURN          : ILFormat<(outs), (ins variable_ops),
1926      "RETURN", [(IL_retflag)]>;
1927}
1928
1929
1930//===----------------------------------------------------------------------===//
1931// Constant Buffer Addressing Support
1932//===----------------------------------------------------------------------===//
1933
1934let usesCustomInserter = 1, isCodeGenOnly = 1, isPseudo = 1, Namespace = "AMDGPU"  in {
1935def CONST_COPY : Instruction {
1936  let OutOperandList = (outs R600_Reg32:$dst);
1937  let InOperandList = (ins i32imm:$src);
1938  let Pattern =
1939      [(set R600_Reg32:$dst, (CONST_ADDRESS ADDRGA_CONST_OFFSET:$src))];
1940  let AsmString = "CONST_COPY";
1941  let neverHasSideEffects = 1;
1942  let isAsCheapAsAMove = 1;
1943  let Itinerary = NullALU;
1944}
1945} // end usesCustomInserter = 1, isCodeGenOnly = 1, isPseudo = 1, Namespace = "AMDGPU"
1946
1947def TEX_VTX_CONSTBUF :
1948  InstR600ISA <(outs R600_Reg128:$dst), (ins MEMxi:$ptr, i32imm:$BUFFER_ID), "VTX_READ_eg $dst, $ptr",
1949      [(set R600_Reg128:$dst, (CONST_ADDRESS ADDRGA_VAR_OFFSET:$ptr, (i32 imm:$BUFFER_ID)))]>,
1950  VTX_WORD1_GPR, VTX_WORD0 {
1951
1952  let VC_INST = 0;
1953  let FETCH_TYPE = 2;
1954  let FETCH_WHOLE_QUAD = 0;
1955  let SRC_REL = 0;
1956  let SRC_SEL_X = 0;
1957  let DST_REL = 0;
1958  let USE_CONST_FIELDS = 0;
1959  let NUM_FORMAT_ALL = 2;
1960  let FORMAT_COMP_ALL = 1;
1961  let SRF_MODE_ALL = 1;
1962  let MEGA_FETCH_COUNT = 16;
1963  let DST_SEL_X        = 0;
1964  let DST_SEL_Y        = 1;
1965  let DST_SEL_Z        = 2;
1966  let DST_SEL_W        = 3;
1967  let DATA_FORMAT      = 35;
1968
1969  let Inst{31-0} = Word0;
1970  let Inst{63-32} = Word1;
1971
1972// LLVM can only encode 64-bit instructions, so these fields are manually
1973// encoded in R600CodeEmitter
1974//
1975// bits<16> OFFSET;
1976// bits<2>  ENDIAN_SWAP = 0;
1977// bits<1>  CONST_BUF_NO_STRIDE = 0;
1978// bits<1>  MEGA_FETCH = 0;
1979// bits<1>  ALT_CONST = 0;
1980// bits<2>  BUFFER_INDEX_MODE = 0;
1981
1982
1983
1984// VTX_WORD2 (LLVM can only encode 64-bit instructions, so WORD2 encoding
1985// is done in R600CodeEmitter
1986//
1987// Inst{79-64} = OFFSET;
1988// Inst{81-80} = ENDIAN_SWAP;
1989// Inst{82}    = CONST_BUF_NO_STRIDE;
1990// Inst{83}    = MEGA_FETCH;
1991// Inst{84}    = ALT_CONST;
1992// Inst{86-85} = BUFFER_INDEX_MODE;
1993// Inst{95-86} = 0; Reserved
1994
1995// VTX_WORD3 (Padding)
1996//
1997// Inst{127-96} = 0;
1998}
1999
2000def TEX_VTX_TEXBUF:
2001  InstR600ISA <(outs R600_Reg128:$dst), (ins MEMxi:$ptr, i32imm:$BUFFER_ID), "TEX_VTX_EXPLICIT_READ $dst, $ptr",
2002      [(set R600_Reg128:$dst, (int_R600_load_texbuf ADDRGA_VAR_OFFSET:$ptr, imm:$BUFFER_ID))]>,
2003VTX_WORD1_GPR, VTX_WORD0 {
2004
2005let VC_INST = 0;
2006let FETCH_TYPE = 2;
2007let FETCH_WHOLE_QUAD = 0;
2008let SRC_REL = 0;
2009let SRC_SEL_X = 0;
2010let DST_REL = 0;
2011let USE_CONST_FIELDS = 1;
2012let NUM_FORMAT_ALL = 0;
2013let FORMAT_COMP_ALL = 0;
2014let SRF_MODE_ALL = 1;
2015let MEGA_FETCH_COUNT = 16;
2016let DST_SEL_X        = 0;
2017let DST_SEL_Y        = 1;
2018let DST_SEL_Z        = 2;
2019let DST_SEL_W        = 3;
2020let DATA_FORMAT      = 0;
2021
2022let Inst{31-0} = Word0;
2023let Inst{63-32} = Word1;
2024
2025// LLVM can only encode 64-bit instructions, so these fields are manually
2026// encoded in R600CodeEmitter
2027//
2028// bits<16> OFFSET;
2029// bits<2>  ENDIAN_SWAP = 0;
2030// bits<1>  CONST_BUF_NO_STRIDE = 0;
2031// bits<1>  MEGA_FETCH = 0;
2032// bits<1>  ALT_CONST = 0;
2033// bits<2>  BUFFER_INDEX_MODE = 0;
2034
2035
2036
2037// VTX_WORD2 (LLVM can only encode 64-bit instructions, so WORD2 encoding
2038// is done in R600CodeEmitter
2039//
2040// Inst{79-64} = OFFSET;
2041// Inst{81-80} = ENDIAN_SWAP;
2042// Inst{82}    = CONST_BUF_NO_STRIDE;
2043// Inst{83}    = MEGA_FETCH;
2044// Inst{84}    = ALT_CONST;
2045// Inst{86-85} = BUFFER_INDEX_MODE;
2046// Inst{95-86} = 0; Reserved
2047
2048// VTX_WORD3 (Padding)
2049//
2050// Inst{127-96} = 0;
2051}
2052
2053
2054
2055//===--------------------------------------------------------------------===//
2056// Instructions support
2057//===--------------------------------------------------------------------===//
2058//===---------------------------------------------------------------------===//
2059// Custom Inserter for Branches and returns, this eventually will be a
2060// seperate pass
2061//===---------------------------------------------------------------------===//
2062let isTerminator = 1, usesCustomInserter = 1, isBranch = 1, isBarrier = 1 in {
2063  def BRANCH : ILFormat<(outs), (ins brtarget:$target),
2064      "; Pseudo unconditional branch instruction",
2065      [(br bb:$target)]>;
2066  defm BRANCH_COND : BranchConditional<IL_brcond>;
2067}
2068
2069//===---------------------------------------------------------------------===//
2070// Flow and Program control Instructions
2071//===---------------------------------------------------------------------===//
2072let isTerminator=1 in {
2073  def SWITCH      : ILFormat< (outs), (ins GPRI32:$src),
2074  !strconcat("SWITCH", " $src"), []>;
2075  def CASE        : ILFormat< (outs), (ins GPRI32:$src),
2076      !strconcat("CASE", " $src"), []>;
2077  def BREAK       : ILFormat< (outs), (ins),
2078      "BREAK", []>;
2079  def CONTINUE    : ILFormat< (outs), (ins),
2080      "CONTINUE", []>;
2081  def DEFAULT     : ILFormat< (outs), (ins),
2082      "DEFAULT", []>;
2083  def ELSE        : ILFormat< (outs), (ins),
2084      "ELSE", []>;
2085  def ENDSWITCH   : ILFormat< (outs), (ins),
2086      "ENDSWITCH", []>;
2087  def ENDMAIN     : ILFormat< (outs), (ins),
2088      "ENDMAIN", []>;
2089  def END         : ILFormat< (outs), (ins),
2090      "END", []>;
2091  def ENDFUNC     : ILFormat< (outs), (ins),
2092      "ENDFUNC", []>;
2093  def ENDIF       : ILFormat< (outs), (ins),
2094      "ENDIF", []>;
2095  def WHILELOOP   : ILFormat< (outs), (ins),
2096      "WHILE", []>;
2097  def ENDLOOP     : ILFormat< (outs), (ins),
2098      "ENDLOOP", []>;
2099  def FUNC        : ILFormat< (outs), (ins),
2100      "FUNC", []>;
2101  def RETDYN      : ILFormat< (outs), (ins),
2102      "RET_DYN", []>;
2103  // This opcode has custom swizzle pattern encoded in Swizzle Encoder
2104  defm IF_LOGICALNZ  : BranchInstr<"IF_LOGICALNZ">;
2105  // This opcode has custom swizzle pattern encoded in Swizzle Encoder
2106  defm IF_LOGICALZ   : BranchInstr<"IF_LOGICALZ">;
2107  // This opcode has custom swizzle pattern encoded in Swizzle Encoder
2108  defm BREAK_LOGICALNZ : BranchInstr<"BREAK_LOGICALNZ">;
2109  // This opcode has custom swizzle pattern encoded in Swizzle Encoder
2110  defm BREAK_LOGICALZ : BranchInstr<"BREAK_LOGICALZ">;
2111  // This opcode has custom swizzle pattern encoded in Swizzle Encoder
2112  defm CONTINUE_LOGICALNZ : BranchInstr<"CONTINUE_LOGICALNZ">;
2113  // This opcode has custom swizzle pattern encoded in Swizzle Encoder
2114  defm CONTINUE_LOGICALZ : BranchInstr<"CONTINUE_LOGICALZ">;
2115  defm IFC         : BranchInstr2<"IFC">;
2116  defm BREAKC      : BranchInstr2<"BREAKC">;
2117  defm CONTINUEC   : BranchInstr2<"CONTINUEC">;
2118}
2119
2120//===----------------------------------------------------------------------===//
2121// ISel Patterns
2122//===----------------------------------------------------------------------===//
2123
2124// CND*_INT Pattterns for f32 True / False values
2125
2126class CND_INT_f32 <InstR600 cnd, CondCode cc> : Pat <
2127  (selectcc (i32 R600_Reg32:$src0), 0, (f32 R600_Reg32:$src1),
2128                                            R600_Reg32:$src2, cc),
2129  (cnd R600_Reg32:$src0, R600_Reg32:$src1, R600_Reg32:$src2)
2130>;
2131
2132def : CND_INT_f32 <CNDE_INT,  SETEQ>;
2133def : CND_INT_f32 <CNDGT_INT, SETGT>;
2134def : CND_INT_f32 <CNDGE_INT, SETGE>;
2135
2136//CNDGE_INT extra pattern
2137def : Pat <
2138  (selectcc (i32 R600_Reg32:$src0), -1, (i32 R600_Reg32:$src1),
2139                                        (i32 R600_Reg32:$src2), COND_GT),
2140  (CNDGE_INT R600_Reg32:$src0, R600_Reg32:$src1, R600_Reg32:$src2)
2141>;
2142
2143// KIL Patterns
2144def KILP : Pat <
2145  (int_AMDGPU_kilp),
2146  (MASK_WRITE (KILLGT (f32 ONE), (f32 ZERO)))
2147>;
2148
2149def KIL : Pat <
2150  (int_AMDGPU_kill R600_Reg32:$src0),
2151  (MASK_WRITE (KILLGT (f32 ZERO), (f32 R600_Reg32:$src0)))
2152>;
2153
2154// SGT Reverse args
2155def : Pat <
2156  (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO, COND_LT),
2157  (SGT R600_Reg32:$src1, R600_Reg32:$src0)
2158>;
2159
2160// SGE Reverse args
2161def : Pat <
2162  (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO, COND_LE),
2163  (SGE R600_Reg32:$src1, R600_Reg32:$src0)
2164>;
2165
2166// SETGT_DX10 reverse args
2167def : Pat <
2168  (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, COND_LT),
2169  (SETGT_DX10 R600_Reg32:$src1, R600_Reg32:$src0)
2170>;
2171
2172// SETGE_DX10 reverse args
2173def : Pat <
2174  (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, COND_LE),
2175  (SETGE_DX10 R600_Reg32:$src1, R600_Reg32:$src0)
2176>;
2177
2178// SETGT_INT reverse args
2179def : Pat <
2180  (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETLT),
2181  (SETGT_INT R600_Reg32:$src1, R600_Reg32:$src0)
2182>;
2183
2184// SETGE_INT reverse args
2185def : Pat <
2186  (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETLE),
2187  (SETGE_INT R600_Reg32:$src1, R600_Reg32:$src0)
2188>;
2189
2190// SETGT_UINT reverse args
2191def : Pat <
2192  (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETULT),
2193  (SETGT_UINT R600_Reg32:$src1, R600_Reg32:$src0)
2194>;
2195
2196// SETGE_UINT reverse args
2197def : Pat <
2198  (selectcc (i32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETULE),
2199  (SETGE_UINT R600_Reg32:$src1, R600_Reg32:$src0)
2200>;
2201
2202// The next two patterns are special cases for handling 'true if ordered' and
2203// 'true if unordered' conditionals.  The assumption here is that the behavior of
2204// SETE and SNE conforms to the Direct3D 10 rules for floating point values
2205// described here:
2206// http://msdn.microsoft.com/en-us/library/windows/desktop/cc308050.aspx#alpha_32_bit
2207// We assume that  SETE returns false when one of the operands is NAN and
2208// SNE returns true when on of the operands is NAN
2209
2210//SETE - 'true if ordered'
2211def : Pat <
2212  (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO, SETO),
2213  (SETE R600_Reg32:$src0, R600_Reg32:$src1)
2214>;
2215
2216//SETE_DX10 - 'true if ordered'
2217def : Pat <
2218  (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETO),
2219  (SETE_DX10 R600_Reg32:$src0, R600_Reg32:$src1)
2220>;
2221
2222//SNE - 'true if unordered'
2223def : Pat <
2224  (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, FP_ONE, FP_ZERO, SETUO),
2225  (SNE R600_Reg32:$src0, R600_Reg32:$src1)
2226>;
2227
2228//SETNE_DX10 - 'true if ordered'
2229def : Pat <
2230  (selectcc (f32 R600_Reg32:$src0), R600_Reg32:$src1, -1, 0, SETUO),
2231  (SETNE_DX10 R600_Reg32:$src0, R600_Reg32:$src1)
2232>;
2233
2234def : Extract_Element <f32, v4f32, R600_Reg128, 0, sub0>;
2235def : Extract_Element <f32, v4f32, R600_Reg128, 1, sub1>;
2236def : Extract_Element <f32, v4f32, R600_Reg128, 2, sub2>;
2237def : Extract_Element <f32, v4f32, R600_Reg128, 3, sub3>;
2238
2239def : Insert_Element <f32, v4f32, R600_Reg32, R600_Reg128, 0, sub0>;
2240def : Insert_Element <f32, v4f32, R600_Reg32, R600_Reg128, 1, sub1>;
2241def : Insert_Element <f32, v4f32, R600_Reg32, R600_Reg128, 2, sub2>;
2242def : Insert_Element <f32, v4f32, R600_Reg32, R600_Reg128, 3, sub3>;
2243
2244def : Extract_Element <i32, v4i32, R600_Reg128, 0, sub0>;
2245def : Extract_Element <i32, v4i32, R600_Reg128, 1, sub1>;
2246def : Extract_Element <i32, v4i32, R600_Reg128, 2, sub2>;
2247def : Extract_Element <i32, v4i32, R600_Reg128, 3, sub3>;
2248
2249def : Insert_Element <i32, v4i32, R600_Reg32, R600_Reg128, 0, sub0>;
2250def : Insert_Element <i32, v4i32, R600_Reg32, R600_Reg128, 1, sub1>;
2251def : Insert_Element <i32, v4i32, R600_Reg32, R600_Reg128, 2, sub2>;
2252def : Insert_Element <i32, v4i32, R600_Reg32, R600_Reg128, 3, sub3>;
2253
2254def : Vector4_Build <v4f32, R600_Reg128, f32, R600_Reg32>;
2255def : Vector4_Build <v4i32, R600_Reg128, i32, R600_Reg32>;
2256
2257// bitconvert patterns
2258
2259def : BitConvert <i32, f32, R600_Reg32>;
2260def : BitConvert <f32, i32, R600_Reg32>;
2261def : BitConvert <v4f32, v4i32, R600_Reg128>;
2262def : BitConvert <v4i32, v4f32, R600_Reg128>;
2263
2264// DWORDADDR pattern
2265def : DwordAddrPat  <i32, R600_Reg32>;
2266
2267} // End isR600toCayman Predicate
2268