PPCISelLowering.h revision 195340
1//===-- PPCISelLowering.h - PPC32 DAG Lowering Interface --------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that PPC uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H
16#define LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H
17
18#include "llvm/Target/TargetLowering.h"
19#include "llvm/CodeGen/SelectionDAG.h"
20#include "PPC.h"
21#include "PPCSubtarget.h"
22
23namespace llvm {
24  namespace PPCISD {
25    enum NodeType {
26      // Start the numbering where the builtin ops and target ops leave off.
27      FIRST_NUMBER = ISD::BUILTIN_OP_END,
28
29      /// FSEL - Traditional three-operand fsel node.
30      ///
31      FSEL,
32
33      /// FCFID - The FCFID instruction, taking an f64 operand and producing
34      /// and f64 value containing the FP representation of the integer that
35      /// was temporarily in the f64 operand.
36      FCFID,
37
38      /// FCTI[D,W]Z - The FCTIDZ and FCTIWZ instructions, taking an f32 or f64
39      /// operand, producing an f64 value containing the integer representation
40      /// of that FP value.
41      FCTIDZ, FCTIWZ,
42
43      /// STFIWX - The STFIWX instruction.  The first operand is an input token
44      /// chain, then an f64 value to store, then an address to store it to,
45      /// then a SRCVALUE for the address.
46      STFIWX,
47
48      // VMADDFP, VNMSUBFP - The VMADDFP and VNMSUBFP instructions, taking
49      // three v4f32 operands and producing a v4f32 result.
50      VMADDFP, VNMSUBFP,
51
52      /// VPERM - The PPC VPERM Instruction.
53      ///
54      VPERM,
55
56      /// Hi/Lo - These represent the high and low 16-bit parts of a global
57      /// address respectively.  These nodes have two operands, the first of
58      /// which must be a TargetGlobalAddress, and the second of which must be a
59      /// Constant.  Selected naively, these turn into 'lis G+C' and 'li G+C',
60      /// though these are usually folded into other nodes.
61      Hi, Lo,
62
63      /// OPRC, CHAIN = DYNALLOC(CHAIN, NEGSIZE, FRAME_INDEX)
64      /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
65      /// compute an allocation on the stack.
66      DYNALLOC,
67
68      /// GlobalBaseReg - On Darwin, this node represents the result of the mflr
69      /// at function entry, used for PIC code.
70      GlobalBaseReg,
71
72      /// These nodes represent the 32-bit PPC shifts that operate on 6-bit
73      /// shift amounts.  These nodes are generated by the multi-precision shift
74      /// code.
75      SRL, SRA, SHL,
76
77      /// EXTSW_32 - This is the EXTSW instruction for use with "32-bit"
78      /// registers.
79      EXTSW_32,
80
81      /// STD_32 - This is the STD instruction for use with "32-bit" registers.
82      STD_32,
83
84      /// CALL - A direct function call.
85      CALL_Darwin, CALL_SVR4,
86
87      /// CHAIN,FLAG = MTCTR(VAL, CHAIN[, INFLAG]) - Directly corresponds to a
88      /// MTCTR instruction.
89      MTCTR,
90
91      /// CHAIN,FLAG = BCTRL(CHAIN, INFLAG) - Directly corresponds to a
92      /// BCTRL instruction.
93      BCTRL_Darwin, BCTRL_SVR4,
94
95      /// Return with a flag operand, matched by 'blr'
96      RET_FLAG,
97
98      /// R32 = MFCR(CRREG, INFLAG) - Represents the MFCR/MFOCRF instructions.
99      /// This copies the bits corresponding to the specified CRREG into the
100      /// resultant GPR.  Bits corresponding to other CR regs are undefined.
101      MFCR,
102
103      /// RESVEC = VCMP(LHS, RHS, OPC) - Represents one of the altivec VCMP*
104      /// instructions.  For lack of better number, we use the opcode number
105      /// encoding for the OPC field to identify the compare.  For example, 838
106      /// is VCMPGTSH.
107      VCMP,
108
109      /// RESVEC, OUTFLAG = VCMPo(LHS, RHS, OPC) - Represents one of the
110      /// altivec VCMP*o instructions.  For lack of better number, we use the
111      /// opcode number encoding for the OPC field to identify the compare.  For
112      /// example, 838 is VCMPGTSH.
113      VCMPo,
114
115      /// CHAIN = COND_BRANCH CHAIN, CRRC, OPC, DESTBB [, INFLAG] - This
116      /// corresponds to the COND_BRANCH pseudo instruction.  CRRC is the
117      /// condition register to branch on, OPC is the branch opcode to use (e.g.
118      /// PPC::BLE), DESTBB is the destination block to branch to, and INFLAG is
119      /// an optional input flag argument.
120      COND_BRANCH,
121
122      /// CHAIN = STBRX CHAIN, GPRC, Ptr, SRCVALUE, Type - This is a
123      /// byte-swapping store instruction.  It byte-swaps the low "Type" bits of
124      /// the GPRC input, then stores it through Ptr.  Type can be either i16 or
125      /// i32.
126      STBRX,
127
128      /// GPRC, CHAIN = LBRX CHAIN, Ptr, SRCVALUE, Type - This is a
129      /// byte-swapping load instruction.  It loads "Type" bits, byte swaps it,
130      /// then puts it in the bottom bits of the GPRC.  TYPE can be either i16
131      /// or i32.
132      LBRX,
133
134      // The following 5 instructions are used only as part of the
135      // long double-to-int conversion sequence.
136
137      /// OUTFLAG = MFFS F8RC - This moves the FPSCR (not modelled) into the
138      /// register.
139      MFFS,
140
141      /// OUTFLAG = MTFSB0 INFLAG - This clears a bit in the FPSCR.
142      MTFSB0,
143
144      /// OUTFLAG = MTFSB1 INFLAG - This sets a bit in the FPSCR.
145      MTFSB1,
146
147      /// F8RC, OUTFLAG = FADDRTZ F8RC, F8RC, INFLAG - This is an FADD done with
148      /// rounding towards zero.  It has flags added so it won't move past the
149      /// FPSCR-setting instructions.
150      FADDRTZ,
151
152      /// MTFSF = F8RC, INFLAG - This moves the register into the FPSCR.
153      MTFSF,
154
155      /// LARX = This corresponds to PPC l{w|d}arx instrcution: load and
156      /// reserve indexed. This is used to implement atomic operations.
157      LARX,
158
159      /// STCX = This corresponds to PPC stcx. instrcution: store conditional
160      /// indexed. This is used to implement atomic operations.
161      STCX,
162
163      /// TAILCALL - Indicates a tail call should be taken.
164      TAILCALL,
165      /// TC_RETURN - A tail call return.
166      ///   operand #0 chain
167      ///   operand #1 callee (register or absolute)
168      ///   operand #2 stack adjustment
169      ///   operand #3 optional in flag
170      TC_RETURN
171    };
172  }
173
174  /// Define some predicates that are used for node matching.
175  namespace PPC {
176    /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
177    /// VPKUHUM instruction.
178    bool isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary);
179
180    /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
181    /// VPKUWUM instruction.
182    bool isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary);
183
184    /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
185    /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
186    bool isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
187                            bool isUnary);
188
189    /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
190    /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
191    bool isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
192                            bool isUnary);
193
194    /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
195    /// amount, otherwise return -1.
196    int isVSLDOIShuffleMask(SDNode *N, bool isUnary);
197
198    /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
199    /// specifies a splat of a single element that is suitable for input to
200    /// VSPLTB/VSPLTH/VSPLTW.
201    bool isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize);
202
203    /// isAllNegativeZeroVector - Returns true if all elements of build_vector
204    /// are -0.0.
205    bool isAllNegativeZeroVector(SDNode *N);
206
207    /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
208    /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
209    unsigned getVSPLTImmediate(SDNode *N, unsigned EltSize);
210
211    /// get_VSPLTI_elt - If this is a build_vector of constants which can be
212    /// formed by using a vspltis[bhw] instruction of the specified element
213    /// size, return the constant being splatted.  The ByteSize field indicates
214    /// the number of bytes of each element [124] -> [bhw].
215    SDValue get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG);
216  }
217
218  class PPCTargetLowering : public TargetLowering {
219    int VarArgsFrameIndex;            // FrameIndex for start of varargs area.
220    int VarArgsStackOffset;           // StackOffset for start of stack
221                                      // arguments.
222    unsigned VarArgsNumGPR;           // Index of the first unused integer
223                                      // register for parameter passing.
224    unsigned VarArgsNumFPR;           // Index of the first unused double
225                                      // register for parameter passing.
226    const PPCSubtarget &PPCSubTarget;
227  public:
228    explicit PPCTargetLowering(PPCTargetMachine &TM);
229
230    /// getTargetNodeName() - This method returns the name of a target specific
231    /// DAG node.
232    virtual const char *getTargetNodeName(unsigned Opcode) const;
233
234    /// getSetCCResultType - Return the ISD::SETCC ValueType
235    virtual MVT getSetCCResultType(MVT VT) const;
236
237    /// getPreIndexedAddressParts - returns true by value, base pointer and
238    /// offset pointer and addressing mode by reference if the node's address
239    /// can be legally represented as pre-indexed load / store address.
240    virtual bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
241                                           SDValue &Offset,
242                                           ISD::MemIndexedMode &AM,
243                                           SelectionDAG &DAG) const;
244
245    /// SelectAddressRegReg - Given the specified addressed, check to see if it
246    /// can be represented as an indexed [r+r] operation.  Returns false if it
247    /// can be more efficiently represented with [r+imm].
248    bool SelectAddressRegReg(SDValue N, SDValue &Base, SDValue &Index,
249                             SelectionDAG &DAG) const;
250
251    /// SelectAddressRegImm - Returns true if the address N can be represented
252    /// by a base register plus a signed 16-bit displacement [r+imm], and if it
253    /// is not better represented as reg+reg.
254    bool SelectAddressRegImm(SDValue N, SDValue &Disp, SDValue &Base,
255                             SelectionDAG &DAG) const;
256
257    /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
258    /// represented as an indexed [r+r] operation.
259    bool SelectAddressRegRegOnly(SDValue N, SDValue &Base, SDValue &Index,
260                                 SelectionDAG &DAG) const;
261
262    /// SelectAddressRegImmShift - Returns true if the address N can be
263    /// represented by a base register plus a signed 14-bit displacement
264    /// [r+imm*4].  Suitable for use by STD and friends.
265    bool SelectAddressRegImmShift(SDValue N, SDValue &Disp, SDValue &Base,
266                                  SelectionDAG &DAG) const;
267
268
269    /// LowerOperation - Provide custom lowering hooks for some operations.
270    ///
271    virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG);
272
273    /// ReplaceNodeResults - Replace the results of node with an illegal result
274    /// type with new values built out of custom code.
275    ///
276    virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
277                                    SelectionDAG &DAG);
278
279    virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
280
281    virtual void computeMaskedBitsForTargetNode(const SDValue Op,
282                                                const APInt &Mask,
283                                                APInt &KnownZero,
284                                                APInt &KnownOne,
285                                                const SelectionDAG &DAG,
286                                                unsigned Depth = 0) const;
287
288    virtual MachineBasicBlock *EmitInstrWithCustomInserter(MachineInstr *MI,
289                                                  MachineBasicBlock *MBB) const;
290    MachineBasicBlock *EmitAtomicBinary(MachineInstr *MI,
291                                        MachineBasicBlock *MBB, bool is64Bit,
292                                        unsigned BinOpcode) const;
293    MachineBasicBlock *EmitPartwordAtomicBinary(MachineInstr *MI,
294                                                MachineBasicBlock *MBB,
295                                            bool is8bit, unsigned Opcode) const;
296
297    ConstraintType getConstraintType(const std::string &Constraint) const;
298    std::pair<unsigned, const TargetRegisterClass*>
299      getRegForInlineAsmConstraint(const std::string &Constraint,
300                                   MVT VT) const;
301
302    /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
303    /// function arguments in the caller parameter area.  This is the actual
304    /// alignment, not its logarithm.
305    unsigned getByValTypeAlignment(const Type *Ty) const;
306
307    /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
308    /// vector.  If it is invalid, don't add anything to Ops. If hasMemory is
309    /// true it means one of the asm constraint of the inline asm instruction
310    /// being processed is 'm'.
311    virtual void LowerAsmOperandForConstraint(SDValue Op,
312                                              char ConstraintLetter,
313                                              bool hasMemory,
314                                              std::vector<SDValue> &Ops,
315                                              SelectionDAG &DAG) const;
316
317    /// isLegalAddressingMode - Return true if the addressing mode represented
318    /// by AM is legal for this target, for a load/store of the specified type.
319    virtual bool isLegalAddressingMode(const AddrMode &AM, const Type *Ty)const;
320
321    /// isLegalAddressImmediate - Return true if the integer value can be used
322    /// as the offset of the target addressing mode for load / store of the
323    /// given type.
324    virtual bool isLegalAddressImmediate(int64_t V, const Type *Ty) const;
325
326    /// isLegalAddressImmediate - Return true if the GlobalValue can be used as
327    /// the offset of the target addressing mode.
328    virtual bool isLegalAddressImmediate(GlobalValue *GV) const;
329
330    /// IsEligibleForTailCallOptimization - Check whether the call is eligible
331    /// for tail call optimization. Target which want to do tail call
332    /// optimization should implement this function.
333    virtual bool IsEligibleForTailCallOptimization(CallSDNode *TheCall,
334                                                   SDValue Ret,
335                                                   SelectionDAG &DAG) const;
336
337    virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
338
339    virtual MVT getOptimalMemOpType(uint64_t Size, unsigned Align,
340                                    bool isSrcConst, bool isSrcStr,
341                                    SelectionDAG &DAG) const;
342
343    /// getFunctionAlignment - Return the Log2 alignment of this function.
344    virtual unsigned getFunctionAlignment(const Function *F) const;
345
346  private:
347    SDValue getFramePointerFrameIndex(SelectionDAG & DAG) const;
348    SDValue getReturnAddrFrameIndex(SelectionDAG & DAG) const;
349
350    SDValue EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
351                                         int SPDiff,
352                                         SDValue Chain,
353                                         SDValue &LROpOut,
354                                         SDValue &FPOpOut,
355                                         bool isDarwinABI,
356                                         DebugLoc dl);
357
358    SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG);
359    SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG);
360    SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG);
361    SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG);
362    SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG);
363    SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG);
364    SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG);
365    SDValue LowerTRAMPOLINE(SDValue Op, SelectionDAG &DAG);
366    SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG,
367                           int VarArgsFrameIndex, int VarArgsStackOffset,
368                           unsigned VarArgsNumGPR, unsigned VarArgsNumFPR,
369                           const PPCSubtarget &Subtarget);
370    SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG, int VarArgsFrameIndex,
371                         int VarArgsStackOffset, unsigned VarArgsNumGPR,
372                         unsigned VarArgsNumFPR, const PPCSubtarget &Subtarget);
373    SDValue LowerFORMAL_ARGUMENTS_SVR4(SDValue Op, SelectionDAG &DAG,
374                                       int &VarArgsFrameIndex,
375                                       int &VarArgsStackOffset,
376                                       unsigned &VarArgsNumGPR,
377                                       unsigned &VarArgsNumFPR,
378                                       const PPCSubtarget &Subtarget);
379    SDValue LowerFORMAL_ARGUMENTS_Darwin(SDValue Op, SelectionDAG &DAG,
380                                         int &VarArgsFrameIndex,
381                                         const PPCSubtarget &Subtarget);
382    SDValue LowerCALL_Darwin(SDValue Op, SelectionDAG &DAG,
383                             const PPCSubtarget &Subtarget, TargetMachine &TM);
384    SDValue LowerCALL_SVR4(SDValue Op, SelectionDAG &DAG,
385                           const PPCSubtarget &Subtarget, TargetMachine &TM);
386    SDValue LowerRET(SDValue Op, SelectionDAG &DAG, TargetMachine &TM);
387    SDValue LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
388                                const PPCSubtarget &Subtarget);
389    SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG,
390                                      const PPCSubtarget &Subtarget);
391    SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG);
392    SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, DebugLoc dl);
393    SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG);
394    SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG);
395    SDValue LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG);
396    SDValue LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG);
397    SDValue LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG);
398    SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG);
399    SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG);
400    SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG);
401    SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG);
402    SDValue LowerMUL(SDValue Op, SelectionDAG &DAG);
403  };
404}
405
406#endif   // LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H
407