ARMISelLowering.h revision 223017
1//===-- ARMISelLowering.h - ARM DAG Lowering Interface ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that ARM uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef ARMISELLOWERING_H
16#define ARMISELLOWERING_H
17
18#include "ARMSubtarget.h"
19#include "llvm/Target/TargetLowering.h"
20#include "llvm/Target/TargetRegisterInfo.h"
21#include "llvm/CodeGen/FastISel.h"
22#include "llvm/CodeGen/SelectionDAG.h"
23#include "llvm/CodeGen/CallingConvLower.h"
24#include <vector>
25
26namespace llvm {
27  class ARMConstantPoolValue;
28
29  namespace ARMISD {
30    // ARM Specific DAG Nodes
31    enum NodeType {
32      // Start the numbering where the builtin ops and target ops leave off.
33      FIRST_NUMBER = ISD::BUILTIN_OP_END,
34
35      Wrapper,      // Wrapper - A wrapper node for TargetConstantPool,
36                    // TargetExternalSymbol, and TargetGlobalAddress.
37      WrapperDYN,   // WrapperDYN - A wrapper node for TargetGlobalAddress in
38                    // DYN mode.
39      WrapperPIC,   // WrapperPIC - A wrapper node for TargetGlobalAddress in
40                    // PIC mode.
41      WrapperJT,    // WrapperJT - A wrapper node for TargetJumpTable
42
43      CALL,         // Function call.
44      CALL_PRED,    // Function call that's predicable.
45      CALL_NOLINK,  // Function call with branch not branch-and-link.
46      tCALL,        // Thumb function call.
47      BRCOND,       // Conditional branch.
48      BR_JT,        // Jumptable branch.
49      BR2_JT,       // Jumptable branch (2 level - jumptable entry is a jump).
50      RET_FLAG,     // Return with a flag operand.
51
52      PIC_ADD,      // Add with a PC operand and a PIC label.
53
54      CMP,          // ARM compare instructions.
55      CMPZ,         // ARM compare that sets only Z flag.
56      CMPFP,        // ARM VFP compare instruction, sets FPSCR.
57      CMPFPw0,      // ARM VFP compare against zero instruction, sets FPSCR.
58      FMSTAT,       // ARM fmstat instruction.
59      CMOV,         // ARM conditional move instructions.
60
61      BCC_i64,
62
63      RBIT,         // ARM bitreverse instruction
64
65      FTOSI,        // FP to sint within a FP register.
66      FTOUI,        // FP to uint within a FP register.
67      SITOF,        // sint to FP within a FP register.
68      UITOF,        // uint to FP within a FP register.
69
70      SRL_FLAG,     // V,Flag = srl_flag X -> srl X, 1 + save carry out.
71      SRA_FLAG,     // V,Flag = sra_flag X -> sra X, 1 + save carry out.
72      RRX,          // V = RRX X, Flag     -> srl X, 1 + shift in carry flag.
73
74      VMOVRRD,      // double to two gprs.
75      VMOVDRR,      // Two gprs to double.
76
77      EH_SJLJ_SETJMP,         // SjLj exception handling setjmp.
78      EH_SJLJ_LONGJMP,        // SjLj exception handling longjmp.
79      EH_SJLJ_DISPATCHSETUP,  // SjLj exception handling dispatch setup.
80
81      TC_RETURN,    // Tail call return pseudo.
82
83      THREAD_POINTER,
84
85      DYN_ALLOC,    // Dynamic allocation on the stack.
86
87      MEMBARRIER,   // Memory barrier (DMB)
88      MEMBARRIER_MCR, // Memory barrier (MCR)
89
90      PRELOAD,      // Preload
91
92      VCEQ,         // Vector compare equal.
93      VCEQZ,        // Vector compare equal to zero.
94      VCGE,         // Vector compare greater than or equal.
95      VCGEZ,        // Vector compare greater than or equal to zero.
96      VCLEZ,        // Vector compare less than or equal to zero.
97      VCGEU,        // Vector compare unsigned greater than or equal.
98      VCGT,         // Vector compare greater than.
99      VCGTZ,        // Vector compare greater than zero.
100      VCLTZ,        // Vector compare less than zero.
101      VCGTU,        // Vector compare unsigned greater than.
102      VTST,         // Vector test bits.
103
104      // Vector shift by immediate:
105      VSHL,         // ...left
106      VSHRs,        // ...right (signed)
107      VSHRu,        // ...right (unsigned)
108      VSHLLs,       // ...left long (signed)
109      VSHLLu,       // ...left long (unsigned)
110      VSHLLi,       // ...left long (with maximum shift count)
111      VSHRN,        // ...right narrow
112
113      // Vector rounding shift by immediate:
114      VRSHRs,       // ...right (signed)
115      VRSHRu,       // ...right (unsigned)
116      VRSHRN,       // ...right narrow
117
118      // Vector saturating shift by immediate:
119      VQSHLs,       // ...left (signed)
120      VQSHLu,       // ...left (unsigned)
121      VQSHLsu,      // ...left (signed to unsigned)
122      VQSHRNs,      // ...right narrow (signed)
123      VQSHRNu,      // ...right narrow (unsigned)
124      VQSHRNsu,     // ...right narrow (signed to unsigned)
125
126      // Vector saturating rounding shift by immediate:
127      VQRSHRNs,     // ...right narrow (signed)
128      VQRSHRNu,     // ...right narrow (unsigned)
129      VQRSHRNsu,    // ...right narrow (signed to unsigned)
130
131      // Vector shift and insert:
132      VSLI,         // ...left
133      VSRI,         // ...right
134
135      // Vector get lane (VMOV scalar to ARM core register)
136      // (These are used for 8- and 16-bit element types only.)
137      VGETLANEu,    // zero-extend vector extract element
138      VGETLANEs,    // sign-extend vector extract element
139
140      // Vector move immediate and move negated immediate:
141      VMOVIMM,
142      VMVNIMM,
143
144      // Vector duplicate:
145      VDUP,
146      VDUPLANE,
147
148      // Vector shuffles:
149      VEXT,         // extract
150      VREV64,       // reverse elements within 64-bit doublewords
151      VREV32,       // reverse elements within 32-bit words
152      VREV16,       // reverse elements within 16-bit halfwords
153      VZIP,         // zip (interleave)
154      VUZP,         // unzip (deinterleave)
155      VTRN,         // transpose
156      VTBL1,        // 1-register shuffle with mask
157      VTBL2,        // 2-register shuffle with mask
158
159      // Vector multiply long:
160      VMULLs,       // ...signed
161      VMULLu,       // ...unsigned
162
163      // Operands of the standard BUILD_VECTOR node are not legalized, which
164      // is fine if BUILD_VECTORs are always lowered to shuffles or other
165      // operations, but for ARM some BUILD_VECTORs are legal as-is and their
166      // operands need to be legalized.  Define an ARM-specific version of
167      // BUILD_VECTOR for this purpose.
168      BUILD_VECTOR,
169
170      // Floating-point max and min:
171      FMAX,
172      FMIN,
173
174      // Bit-field insert
175      BFI,
176
177      // Vector OR with immediate
178      VORRIMM,
179      // Vector AND with NOT of immediate
180      VBICIMM,
181
182      // Vector bitwise select
183      VBSL,
184
185      // Vector load N-element structure to all lanes:
186      VLD2DUP = ISD::FIRST_TARGET_MEMORY_OPCODE,
187      VLD3DUP,
188      VLD4DUP,
189
190      // NEON loads with post-increment base updates:
191      VLD1_UPD,
192      VLD2_UPD,
193      VLD3_UPD,
194      VLD4_UPD,
195      VLD2LN_UPD,
196      VLD3LN_UPD,
197      VLD4LN_UPD,
198      VLD2DUP_UPD,
199      VLD3DUP_UPD,
200      VLD4DUP_UPD,
201
202      // NEON stores with post-increment base updates:
203      VST1_UPD,
204      VST2_UPD,
205      VST3_UPD,
206      VST4_UPD,
207      VST2LN_UPD,
208      VST3LN_UPD,
209      VST4LN_UPD
210    };
211  }
212
213  /// Define some predicates that are used for node matching.
214  namespace ARM {
215    /// getVFPf32Imm / getVFPf64Imm - If the given fp immediate can be
216    /// materialized with a VMOV.f32 / VMOV.f64 (i.e. fconsts / fconstd)
217    /// instruction, returns its 8-bit integer representation. Otherwise,
218    /// returns -1.
219    int getVFPf32Imm(const APFloat &FPImm);
220    int getVFPf64Imm(const APFloat &FPImm);
221    bool isBitFieldInvertedMask(unsigned v);
222  }
223
224  //===--------------------------------------------------------------------===//
225  //  ARMTargetLowering - ARM Implementation of the TargetLowering interface
226
227  class ARMTargetLowering : public TargetLowering {
228  public:
229    explicit ARMTargetLowering(TargetMachine &TM);
230
231    virtual unsigned getJumpTableEncoding(void) const;
232
233    virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
234
235    /// ReplaceNodeResults - Replace the results of node with an illegal result
236    /// type with new values built out of custom code.
237    ///
238    virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
239                                    SelectionDAG &DAG) const;
240
241    virtual const char *getTargetNodeName(unsigned Opcode) const;
242
243    virtual MachineBasicBlock *
244      EmitInstrWithCustomInserter(MachineInstr *MI,
245                                  MachineBasicBlock *MBB) const;
246
247    virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
248
249    bool isDesirableToTransformToIntegerOp(unsigned Opc, EVT VT) const;
250
251    /// allowsUnalignedMemoryAccesses - Returns true if the target allows
252    /// unaligned memory accesses. of the specified type.
253    /// FIXME: Add getOptimalMemOpType to implement memcpy with NEON?
254    virtual bool allowsUnalignedMemoryAccesses(EVT VT) const;
255
256    /// isLegalAddressingMode - Return true if the addressing mode represented
257    /// by AM is legal for this target, for a load/store of the specified type.
258    virtual bool isLegalAddressingMode(const AddrMode &AM, const Type *Ty)const;
259    bool isLegalT2ScaledAddressingMode(const AddrMode &AM, EVT VT) const;
260
261    /// isLegalICmpImmediate - Return true if the specified immediate is legal
262    /// icmp immediate, that is the target has icmp instructions which can
263    /// compare a register against the immediate without having to materialize
264    /// the immediate into a register.
265    virtual bool isLegalICmpImmediate(int64_t Imm) const;
266
267    /// isLegalAddImmediate - Return true if the specified immediate is legal
268    /// add immediate, that is the target has add instructions which can
269    /// add a register and the immediate without having to materialize
270    /// the immediate into a register.
271    virtual bool isLegalAddImmediate(int64_t Imm) const;
272
273    /// getPreIndexedAddressParts - returns true by value, base pointer and
274    /// offset pointer and addressing mode by reference if the node's address
275    /// can be legally represented as pre-indexed load / store address.
276    virtual bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
277                                           SDValue &Offset,
278                                           ISD::MemIndexedMode &AM,
279                                           SelectionDAG &DAG) const;
280
281    /// getPostIndexedAddressParts - returns true by value, base pointer and
282    /// offset pointer and addressing mode by reference if this node can be
283    /// combined with a load / store to form a post-indexed load / store.
284    virtual bool getPostIndexedAddressParts(SDNode *N, SDNode *Op,
285                                            SDValue &Base, SDValue &Offset,
286                                            ISD::MemIndexedMode &AM,
287                                            SelectionDAG &DAG) const;
288
289    virtual void computeMaskedBitsForTargetNode(const SDValue Op,
290                                                const APInt &Mask,
291                                                APInt &KnownZero,
292                                                APInt &KnownOne,
293                                                const SelectionDAG &DAG,
294                                                unsigned Depth) const;
295
296
297    virtual bool ExpandInlineAsm(CallInst *CI) const;
298
299    ConstraintType getConstraintType(const std::string &Constraint) const;
300
301    /// Examine constraint string and operand type and determine a weight value.
302    /// The operand object must already have been set up with the operand type.
303    ConstraintWeight getSingleConstraintMatchWeight(
304      AsmOperandInfo &info, const char *constraint) const;
305
306    std::pair<unsigned, const TargetRegisterClass*>
307      getRegForInlineAsmConstraint(const std::string &Constraint,
308                                   EVT VT) const;
309    std::vector<unsigned>
310    getRegClassForInlineAsmConstraint(const std::string &Constraint,
311                                      EVT VT) const;
312
313    /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
314    /// vector.  If it is invalid, don't add anything to Ops. If hasMemory is
315    /// true it means one of the asm constraint of the inline asm instruction
316    /// being processed is 'm'.
317    virtual void LowerAsmOperandForConstraint(SDValue Op,
318                                              std::string &Constraint,
319                                              std::vector<SDValue> &Ops,
320                                              SelectionDAG &DAG) const;
321
322    const ARMSubtarget* getSubtarget() const {
323      return Subtarget;
324    }
325
326    /// getRegClassFor - Return the register class that should be used for the
327    /// specified value type.
328    virtual TargetRegisterClass *getRegClassFor(EVT VT) const;
329
330    /// getMaximalGlobalOffset - Returns the maximal possible offset which can
331    /// be used for loads / stores from the global.
332    virtual unsigned getMaximalGlobalOffset() const;
333
334    /// createFastISel - This method returns a target specific FastISel object,
335    /// or null if the target does not support "fast" ISel.
336    virtual FastISel *createFastISel(FunctionLoweringInfo &funcInfo) const;
337
338    Sched::Preference getSchedulingPreference(SDNode *N) const;
339
340    bool isShuffleMaskLegal(const SmallVectorImpl<int> &M, EVT VT) const;
341    bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
342
343    /// isFPImmLegal - Returns true if the target can instruction select the
344    /// specified FP immediate natively. If false, the legalizer will
345    /// materialize the FP immediate as a load from a constant pool.
346    virtual bool isFPImmLegal(const APFloat &Imm, EVT VT) const;
347
348    virtual bool getTgtMemIntrinsic(IntrinsicInfo &Info,
349                                    const CallInst &I,
350                                    unsigned Intrinsic) const;
351  protected:
352    std::pair<const TargetRegisterClass*, uint8_t>
353    findRepresentativeClass(EVT VT) const;
354
355  private:
356    /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
357    /// make the right decision when generating code for different targets.
358    const ARMSubtarget *Subtarget;
359
360    const TargetRegisterInfo *RegInfo;
361
362    const InstrItineraryData *Itins;
363
364    /// ARMPCLabelIndex - Keep track of the number of ARM PC labels created.
365    ///
366    unsigned ARMPCLabelIndex;
367
368    void addTypeForNEON(EVT VT, EVT PromotedLdStVT, EVT PromotedBitwiseVT);
369    void addDRTypeForNEON(EVT VT);
370    void addQRTypeForNEON(EVT VT);
371
372    typedef SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPassVector;
373    void PassF64ArgInRegs(DebugLoc dl, SelectionDAG &DAG,
374                          SDValue Chain, SDValue &Arg,
375                          RegsToPassVector &RegsToPass,
376                          CCValAssign &VA, CCValAssign &NextVA,
377                          SDValue &StackPtr,
378                          SmallVector<SDValue, 8> &MemOpChains,
379                          ISD::ArgFlagsTy Flags) const;
380    SDValue GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA,
381                                 SDValue &Root, SelectionDAG &DAG,
382                                 DebugLoc dl) const;
383
384    CCAssignFn *CCAssignFnForNode(CallingConv::ID CC, bool Return,
385                                  bool isVarArg) const;
386    SDValue LowerMemOpCallTo(SDValue Chain, SDValue StackPtr, SDValue Arg,
387                             DebugLoc dl, SelectionDAG &DAG,
388                             const CCValAssign &VA,
389                             ISD::ArgFlagsTy Flags) const;
390    SDValue LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const;
391    SDValue LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const;
392    SDValue LowerEH_SJLJ_DISPATCHSETUP(SDValue Op, SelectionDAG &DAG) const;
393    SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
394                                    const ARMSubtarget *Subtarget) const;
395    SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
396    SDValue LowerGlobalAddressDarwin(SDValue Op, SelectionDAG &DAG) const;
397    SDValue LowerGlobalAddressELF(SDValue Op, SelectionDAG &DAG) const;
398    SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
399    SDValue LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
400                                            SelectionDAG &DAG) const;
401    SDValue LowerToTLSExecModels(GlobalAddressSDNode *GA,
402                                   SelectionDAG &DAG) const;
403    SDValue LowerGLOBAL_OFFSET_TABLE(SDValue Op, SelectionDAG &DAG) const;
404    SDValue LowerBR_JT(SDValue Op, SelectionDAG &DAG) const;
405    SDValue LowerSELECT(SDValue Op, SelectionDAG &DAG) const;
406    SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const;
407    SDValue LowerBR_CC(SDValue Op, SelectionDAG &DAG) const;
408    SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const;
409    SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
410    SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
411    SDValue LowerShiftRightParts(SDValue Op, SelectionDAG &DAG) const;
412    SDValue LowerShiftLeftParts(SDValue Op, SelectionDAG &DAG) const;
413    SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const;
414    SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
415                              const ARMSubtarget *ST) const;
416
417    SDValue ReconstructShuffle(SDValue Op, SelectionDAG &DAG) const;
418
419    SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
420                            CallingConv::ID CallConv, bool isVarArg,
421                            const SmallVectorImpl<ISD::InputArg> &Ins,
422                            DebugLoc dl, SelectionDAG &DAG,
423                            SmallVectorImpl<SDValue> &InVals) const;
424
425    virtual SDValue
426      LowerFormalArguments(SDValue Chain,
427                           CallingConv::ID CallConv, bool isVarArg,
428                           const SmallVectorImpl<ISD::InputArg> &Ins,
429                           DebugLoc dl, SelectionDAG &DAG,
430                           SmallVectorImpl<SDValue> &InVals) const;
431
432    void VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG,
433                              DebugLoc dl, SDValue &Chain, unsigned ArgOffset)
434      const;
435
436    void computeRegArea(CCState &CCInfo, MachineFunction &MF,
437                        unsigned &VARegSize, unsigned &VARegSaveSize) const;
438
439    virtual SDValue
440      LowerCall(SDValue Chain, SDValue Callee,
441                CallingConv::ID CallConv, bool isVarArg,
442                bool &isTailCall,
443                const SmallVectorImpl<ISD::OutputArg> &Outs,
444                const SmallVectorImpl<SDValue> &OutVals,
445                const SmallVectorImpl<ISD::InputArg> &Ins,
446                DebugLoc dl, SelectionDAG &DAG,
447                SmallVectorImpl<SDValue> &InVals) const;
448
449    /// HandleByVal - Target-specific cleanup for ByVal support.
450    virtual void HandleByVal(CCState *, unsigned &) const;
451
452    /// IsEligibleForTailCallOptimization - Check whether the call is eligible
453    /// for tail call optimization. Targets which want to do tail call
454    /// optimization should implement this function.
455    bool IsEligibleForTailCallOptimization(SDValue Callee,
456                                           CallingConv::ID CalleeCC,
457                                           bool isVarArg,
458                                           bool isCalleeStructRet,
459                                           bool isCallerStructRet,
460                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
461                                    const SmallVectorImpl<SDValue> &OutVals,
462                                    const SmallVectorImpl<ISD::InputArg> &Ins,
463                                           SelectionDAG& DAG) const;
464    virtual SDValue
465      LowerReturn(SDValue Chain,
466                  CallingConv::ID CallConv, bool isVarArg,
467                  const SmallVectorImpl<ISD::OutputArg> &Outs,
468                  const SmallVectorImpl<SDValue> &OutVals,
469                  DebugLoc dl, SelectionDAG &DAG) const;
470
471    virtual bool isUsedByReturnOnly(SDNode *N) const;
472
473    virtual bool mayBeEmittedAsTailCall(CallInst *CI) const;
474
475    SDValue getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
476                      SDValue &ARMcc, SelectionDAG &DAG, DebugLoc dl) const;
477    SDValue getVFPCmp(SDValue LHS, SDValue RHS,
478                      SelectionDAG &DAG, DebugLoc dl) const;
479    SDValue duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const;
480
481    SDValue OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const;
482
483    MachineBasicBlock *EmitAtomicCmpSwap(MachineInstr *MI,
484                                         MachineBasicBlock *BB,
485                                         unsigned Size) const;
486    MachineBasicBlock *EmitAtomicBinary(MachineInstr *MI,
487                                        MachineBasicBlock *BB,
488                                        unsigned Size,
489                                        unsigned BinOpcode) const;
490    MachineBasicBlock * EmitAtomicBinaryMinMax(MachineInstr *MI,
491                                               MachineBasicBlock *BB,
492                                               unsigned Size,
493                                               bool signExtend,
494                                               ARMCC::CondCodes Cond) const;
495
496    bool RemapAddSubWithFlags(MachineInstr *MI, MachineBasicBlock *BB) const;
497  };
498
499  enum NEONModImmType {
500    VMOVModImm,
501    VMVNModImm,
502    OtherModImm
503  };
504
505
506  namespace ARM {
507    FastISel *createFastISel(FunctionLoweringInfo &funcInfo);
508  }
509}
510
511#endif  // ARMISELLOWERING_H
512