ARMISelLowering.h revision 210299
1//===-- ARMISelLowering.h - ARM DAG Lowering Interface ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that ARM uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef ARMISELLOWERING_H
16#define ARMISELLOWERING_H
17
18#include "ARMSubtarget.h"
19#include "llvm/Target/TargetLowering.h"
20#include "llvm/CodeGen/SelectionDAG.h"
21#include "llvm/CodeGen/CallingConvLower.h"
22#include <vector>
23
24namespace llvm {
25  class ARMConstantPoolValue;
26
27  namespace ARMISD {
28    // ARM Specific DAG Nodes
29    enum NodeType {
30      // Start the numbering where the builtin ops and target ops leave off.
31      FIRST_NUMBER = ISD::BUILTIN_OP_END,
32
33      Wrapper,      // Wrapper - A wrapper node for TargetConstantPool,
34                    // TargetExternalSymbol, and TargetGlobalAddress.
35      WrapperJT,    // WrapperJT - A wrapper node for TargetJumpTable
36
37      CALL,         // Function call.
38      CALL_PRED,    // Function call that's predicable.
39      CALL_NOLINK,  // Function call with branch not branch-and-link.
40      tCALL,        // Thumb function call.
41      BRCOND,       // Conditional branch.
42      BR_JT,        // Jumptable branch.
43      BR2_JT,       // Jumptable branch (2 level - jumptable entry is a jump).
44      RET_FLAG,     // Return with a flag operand.
45
46      PIC_ADD,      // Add with a PC operand and a PIC label.
47
48      CMP,          // ARM compare instructions.
49      CMPZ,         // ARM compare that sets only Z flag.
50      CMPFP,        // ARM VFP compare instruction, sets FPSCR.
51      CMPFPw0,      // ARM VFP compare against zero instruction, sets FPSCR.
52      FMSTAT,       // ARM fmstat instruction.
53      CMOV,         // ARM conditional move instructions.
54      CNEG,         // ARM conditional negate instructions.
55
56      BCC_i64,
57
58      RBIT,         // ARM bitreverse instruction
59
60      FTOSI,        // FP to sint within a FP register.
61      FTOUI,        // FP to uint within a FP register.
62      SITOF,        // sint to FP within a FP register.
63      UITOF,        // uint to FP within a FP register.
64
65      SRL_FLAG,     // V,Flag = srl_flag X -> srl X, 1 + save carry out.
66      SRA_FLAG,     // V,Flag = sra_flag X -> sra X, 1 + save carry out.
67      RRX,          // V = RRX X, Flag     -> srl X, 1 + shift in carry flag.
68
69      VMOVRRD,      // double to two gprs.
70      VMOVDRR,      // Two gprs to double.
71
72      EH_SJLJ_SETJMP,    // SjLj exception handling setjmp.
73      EH_SJLJ_LONGJMP,   // SjLj exception handling longjmp.
74
75      TC_RETURN,    // Tail call return pseudo.
76
77      THREAD_POINTER,
78
79      DYN_ALLOC,    // Dynamic allocation on the stack.
80
81      MEMBARRIER,   // Memory barrier
82      SYNCBARRIER,  // Memory sync barrier
83
84      VCEQ,         // Vector compare equal.
85      VCGE,         // Vector compare greater than or equal.
86      VCGEU,        // Vector compare unsigned greater than or equal.
87      VCGT,         // Vector compare greater than.
88      VCGTU,        // Vector compare unsigned greater than.
89      VTST,         // Vector test bits.
90
91      // Vector shift by immediate:
92      VSHL,         // ...left
93      VSHRs,        // ...right (signed)
94      VSHRu,        // ...right (unsigned)
95      VSHLLs,       // ...left long (signed)
96      VSHLLu,       // ...left long (unsigned)
97      VSHLLi,       // ...left long (with maximum shift count)
98      VSHRN,        // ...right narrow
99
100      // Vector rounding shift by immediate:
101      VRSHRs,       // ...right (signed)
102      VRSHRu,       // ...right (unsigned)
103      VRSHRN,       // ...right narrow
104
105      // Vector saturating shift by immediate:
106      VQSHLs,       // ...left (signed)
107      VQSHLu,       // ...left (unsigned)
108      VQSHLsu,      // ...left (signed to unsigned)
109      VQSHRNs,      // ...right narrow (signed)
110      VQSHRNu,      // ...right narrow (unsigned)
111      VQSHRNsu,     // ...right narrow (signed to unsigned)
112
113      // Vector saturating rounding shift by immediate:
114      VQRSHRNs,     // ...right narrow (signed)
115      VQRSHRNu,     // ...right narrow (unsigned)
116      VQRSHRNsu,    // ...right narrow (signed to unsigned)
117
118      // Vector shift and insert:
119      VSLI,         // ...left
120      VSRI,         // ...right
121
122      // Vector get lane (VMOV scalar to ARM core register)
123      // (These are used for 8- and 16-bit element types only.)
124      VGETLANEu,    // zero-extend vector extract element
125      VGETLANEs,    // sign-extend vector extract element
126
127      // Vector move immediate and move negated immediate:
128      VMOVIMM,
129      VMVNIMM,
130
131      // Vector duplicate:
132      VDUP,
133      VDUPLANE,
134
135      // Vector shuffles:
136      VEXT,         // extract
137      VREV64,       // reverse elements within 64-bit doublewords
138      VREV32,       // reverse elements within 32-bit words
139      VREV16,       // reverse elements within 16-bit halfwords
140      VZIP,         // zip (interleave)
141      VUZP,         // unzip (deinterleave)
142      VTRN,         // transpose
143
144      // Operands of the standard BUILD_VECTOR node are not legalized, which
145      // is fine if BUILD_VECTORs are always lowered to shuffles or other
146      // operations, but for ARM some BUILD_VECTORs are legal as-is and their
147      // operands need to be legalized.  Define an ARM-specific version of
148      // BUILD_VECTOR for this purpose.
149      BUILD_VECTOR,
150
151      // Floating-point max and min:
152      FMAX,
153      FMIN
154    };
155  }
156
157  /// Define some predicates that are used for node matching.
158  namespace ARM {
159    /// getVFPf32Imm / getVFPf64Imm - If the given fp immediate can be
160    /// materialized with a VMOV.f32 / VMOV.f64 (i.e. fconsts / fconstd)
161    /// instruction, returns its 8-bit integer representation. Otherwise,
162    /// returns -1.
163    int getVFPf32Imm(const APFloat &FPImm);
164    int getVFPf64Imm(const APFloat &FPImm);
165  }
166
167  //===--------------------------------------------------------------------===//
168  //  ARMTargetLowering - ARM Implementation of the TargetLowering interface
169
170  class ARMTargetLowering : public TargetLowering {
171  public:
172    explicit ARMTargetLowering(TargetMachine &TM);
173
174    virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
175
176    /// ReplaceNodeResults - Replace the results of node with an illegal result
177    /// type with new values built out of custom code.
178    ///
179    virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
180                                    SelectionDAG &DAG) const;
181
182    virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
183
184    virtual const char *getTargetNodeName(unsigned Opcode) const;
185
186    virtual MachineBasicBlock *
187      EmitInstrWithCustomInserter(MachineInstr *MI,
188                                  MachineBasicBlock *MBB) const;
189
190    /// allowsUnalignedMemoryAccesses - Returns true if the target allows
191    /// unaligned memory accesses. of the specified type.
192    /// FIXME: Add getOptimalMemOpType to implement memcpy with NEON?
193    virtual bool allowsUnalignedMemoryAccesses(EVT VT) const;
194
195    /// isLegalAddressingMode - Return true if the addressing mode represented
196    /// by AM is legal for this target, for a load/store of the specified type.
197    virtual bool isLegalAddressingMode(const AddrMode &AM, const Type *Ty)const;
198    bool isLegalT2ScaledAddressingMode(const AddrMode &AM, EVT VT) const;
199
200    /// isLegalICmpImmediate - Return true if the specified immediate is legal
201    /// icmp immediate, that is the target has icmp instructions which can
202    /// compare a register against the immediate without having to materialize
203    /// the immediate into a register.
204    virtual bool isLegalICmpImmediate(int64_t Imm) const;
205
206    /// getPreIndexedAddressParts - returns true by value, base pointer and
207    /// offset pointer and addressing mode by reference if the node's address
208    /// can be legally represented as pre-indexed load / store address.
209    virtual bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
210                                           SDValue &Offset,
211                                           ISD::MemIndexedMode &AM,
212                                           SelectionDAG &DAG) const;
213
214    /// getPostIndexedAddressParts - returns true by value, base pointer and
215    /// offset pointer and addressing mode by reference if this node can be
216    /// combined with a load / store to form a post-indexed load / store.
217    virtual bool getPostIndexedAddressParts(SDNode *N, SDNode *Op,
218                                            SDValue &Base, SDValue &Offset,
219                                            ISD::MemIndexedMode &AM,
220                                            SelectionDAG &DAG) const;
221
222    virtual void computeMaskedBitsForTargetNode(const SDValue Op,
223                                                const APInt &Mask,
224                                                APInt &KnownZero,
225                                                APInt &KnownOne,
226                                                const SelectionDAG &DAG,
227                                                unsigned Depth) const;
228
229
230    ConstraintType getConstraintType(const std::string &Constraint) const;
231    std::pair<unsigned, const TargetRegisterClass*>
232      getRegForInlineAsmConstraint(const std::string &Constraint,
233                                   EVT VT) const;
234    std::vector<unsigned>
235    getRegClassForInlineAsmConstraint(const std::string &Constraint,
236                                      EVT VT) const;
237
238    /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
239    /// vector.  If it is invalid, don't add anything to Ops. If hasMemory is
240    /// true it means one of the asm constraint of the inline asm instruction
241    /// being processed is 'm'.
242    virtual void LowerAsmOperandForConstraint(SDValue Op,
243                                              char ConstraintLetter,
244                                              std::vector<SDValue> &Ops,
245                                              SelectionDAG &DAG) const;
246
247    const ARMSubtarget* getSubtarget() const {
248      return Subtarget;
249    }
250
251    /// getRegClassFor - Return the register class that should be used for the
252    /// specified value type.
253    virtual TargetRegisterClass *getRegClassFor(EVT VT) const;
254
255    /// getFunctionAlignment - Return the Log2 alignment of this function.
256    virtual unsigned getFunctionAlignment(const Function *F) const;
257
258    Sched::Preference getSchedulingPreference(SDNode *N) const;
259
260    bool isShuffleMaskLegal(const SmallVectorImpl<int> &M, EVT VT) const;
261    bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
262
263    /// isFPImmLegal - Returns true if the target can instruction select the
264    /// specified FP immediate natively. If false, the legalizer will
265    /// materialize the FP immediate as a load from a constant pool.
266    virtual bool isFPImmLegal(const APFloat &Imm, EVT VT) const;
267
268  private:
269    /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
270    /// make the right decision when generating code for different targets.
271    const ARMSubtarget *Subtarget;
272
273    /// ARMPCLabelIndex - Keep track of the number of ARM PC labels created.
274    ///
275    unsigned ARMPCLabelIndex;
276
277    void addTypeForNEON(EVT VT, EVT PromotedLdStVT, EVT PromotedBitwiseVT);
278    void addDRTypeForNEON(EVT VT);
279    void addQRTypeForNEON(EVT VT);
280
281    typedef SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPassVector;
282    void PassF64ArgInRegs(DebugLoc dl, SelectionDAG &DAG,
283                          SDValue Chain, SDValue &Arg,
284                          RegsToPassVector &RegsToPass,
285                          CCValAssign &VA, CCValAssign &NextVA,
286                          SDValue &StackPtr,
287                          SmallVector<SDValue, 8> &MemOpChains,
288                          ISD::ArgFlagsTy Flags) const;
289    SDValue GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA,
290                                 SDValue &Root, SelectionDAG &DAG,
291                                 DebugLoc dl) const;
292
293    CCAssignFn *CCAssignFnForNode(CallingConv::ID CC, bool Return,
294                                  bool isVarArg) const;
295    SDValue LowerMemOpCallTo(SDValue Chain, SDValue StackPtr, SDValue Arg,
296                             DebugLoc dl, SelectionDAG &DAG,
297                             const CCValAssign &VA,
298                             ISD::ArgFlagsTy Flags) const;
299    SDValue LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const;
300    SDValue LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const;
301    SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
302                                    const ARMSubtarget *Subtarget) const;
303    SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
304    SDValue LowerGlobalAddressDarwin(SDValue Op, SelectionDAG &DAG) const;
305    SDValue LowerGlobalAddressELF(SDValue Op, SelectionDAG &DAG) const;
306    SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
307    SDValue LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
308                                            SelectionDAG &DAG) const;
309    SDValue LowerToTLSExecModels(GlobalAddressSDNode *GA,
310                                   SelectionDAG &DAG) const;
311    SDValue LowerGLOBAL_OFFSET_TABLE(SDValue Op, SelectionDAG &DAG) const;
312    SDValue LowerBR_JT(SDValue Op, SelectionDAG &DAG) const;
313    SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const;
314    SDValue LowerBR_CC(SDValue Op, SelectionDAG &DAG) const;
315    SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const;
316    SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
317    SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
318    SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
319    SDValue LowerShiftRightParts(SDValue Op, SelectionDAG &DAG) const;
320    SDValue LowerShiftLeftParts(SDValue Op, SelectionDAG &DAG) const;
321
322    SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
323                            CallingConv::ID CallConv, bool isVarArg,
324                            const SmallVectorImpl<ISD::InputArg> &Ins,
325                            DebugLoc dl, SelectionDAG &DAG,
326                            SmallVectorImpl<SDValue> &InVals) const;
327
328    virtual SDValue
329      LowerFormalArguments(SDValue Chain,
330                           CallingConv::ID CallConv, bool isVarArg,
331                           const SmallVectorImpl<ISD::InputArg> &Ins,
332                           DebugLoc dl, SelectionDAG &DAG,
333                           SmallVectorImpl<SDValue> &InVals) const;
334
335    virtual SDValue
336      LowerCall(SDValue Chain, SDValue Callee,
337                CallingConv::ID CallConv, bool isVarArg,
338                bool &isTailCall,
339                const SmallVectorImpl<ISD::OutputArg> &Outs,
340                const SmallVectorImpl<SDValue> &OutVals,
341                const SmallVectorImpl<ISD::InputArg> &Ins,
342                DebugLoc dl, SelectionDAG &DAG,
343                SmallVectorImpl<SDValue> &InVals) const;
344
345    /// IsEligibleForTailCallOptimization - Check whether the call is eligible
346    /// for tail call optimization. Targets which want to do tail call
347    /// optimization should implement this function.
348    bool IsEligibleForTailCallOptimization(SDValue Callee,
349                                           CallingConv::ID CalleeCC,
350                                           bool isVarArg,
351                                           bool isCalleeStructRet,
352                                           bool isCallerStructRet,
353                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
354                                    const SmallVectorImpl<SDValue> &OutVals,
355                                    const SmallVectorImpl<ISD::InputArg> &Ins,
356                                           SelectionDAG& DAG) const;
357    virtual SDValue
358      LowerReturn(SDValue Chain,
359                  CallingConv::ID CallConv, bool isVarArg,
360                  const SmallVectorImpl<ISD::OutputArg> &Outs,
361                  const SmallVectorImpl<SDValue> &OutVals,
362                  DebugLoc dl, SelectionDAG &DAG) const;
363
364    SDValue getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
365                      SDValue &ARMcc, SelectionDAG &DAG, DebugLoc dl) const;
366    SDValue getVFPCmp(SDValue LHS, SDValue RHS,
367                      SelectionDAG &DAG, DebugLoc dl) const;
368
369    SDValue OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const;
370
371    MachineBasicBlock *EmitAtomicCmpSwap(MachineInstr *MI,
372                                         MachineBasicBlock *BB,
373                                         unsigned Size) const;
374    MachineBasicBlock *EmitAtomicBinary(MachineInstr *MI,
375                                        MachineBasicBlock *BB,
376                                        unsigned Size,
377                                        unsigned BinOpcode) const;
378
379  };
380}
381
382#endif  // ARMISELLOWERING_H
383