ARMISelDAGToDAG.cpp revision 210299
1//===-- ARMISelDAGToDAG.cpp - A dag to dag inst selector for ARM ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines an instruction selector for the ARM target.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "arm-isel"
15#include "ARM.h"
16#include "ARMAddressingModes.h"
17#include "ARMTargetMachine.h"
18#include "llvm/CallingConv.h"
19#include "llvm/Constants.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/Function.h"
22#include "llvm/Intrinsics.h"
23#include "llvm/LLVMContext.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineFunction.h"
26#include "llvm/CodeGen/MachineInstrBuilder.h"
27#include "llvm/CodeGen/SelectionDAG.h"
28#include "llvm/CodeGen/SelectionDAGISel.h"
29#include "llvm/Target/TargetLowering.h"
30#include "llvm/Target/TargetOptions.h"
31#include "llvm/Support/CommandLine.h"
32#include "llvm/Support/Compiler.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/Support/ErrorHandling.h"
35#include "llvm/Support/raw_ostream.h"
36
37using namespace llvm;
38
39//===--------------------------------------------------------------------===//
40/// ARMDAGToDAGISel - ARM specific code to select ARM machine
41/// instructions for SelectionDAG operations.
42///
43namespace {
44class ARMDAGToDAGISel : public SelectionDAGISel {
45  ARMBaseTargetMachine &TM;
46
47  /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
48  /// make the right decision when generating code for different targets.
49  const ARMSubtarget *Subtarget;
50
51public:
52  explicit ARMDAGToDAGISel(ARMBaseTargetMachine &tm,
53                           CodeGenOpt::Level OptLevel)
54    : SelectionDAGISel(tm, OptLevel), TM(tm),
55    Subtarget(&TM.getSubtarget<ARMSubtarget>()) {
56  }
57
58  virtual const char *getPassName() const {
59    return "ARM Instruction Selection";
60  }
61
62  /// getI32Imm - Return a target constant of type i32 with the specified
63  /// value.
64  inline SDValue getI32Imm(unsigned Imm) {
65    return CurDAG->getTargetConstant(Imm, MVT::i32);
66  }
67
68  SDNode *Select(SDNode *N);
69
70  bool SelectShifterOperandReg(SDNode *Op, SDValue N, SDValue &A,
71                               SDValue &B, SDValue &C);
72  bool SelectAddrMode2(SDNode *Op, SDValue N, SDValue &Base,
73                       SDValue &Offset, SDValue &Opc);
74  bool SelectAddrMode2Offset(SDNode *Op, SDValue N,
75                             SDValue &Offset, SDValue &Opc);
76  bool SelectAddrMode3(SDNode *Op, SDValue N, SDValue &Base,
77                       SDValue &Offset, SDValue &Opc);
78  bool SelectAddrMode3Offset(SDNode *Op, SDValue N,
79                             SDValue &Offset, SDValue &Opc);
80  bool SelectAddrMode4(SDNode *Op, SDValue N, SDValue &Addr,
81                       SDValue &Mode);
82  bool SelectAddrMode5(SDNode *Op, SDValue N, SDValue &Base,
83                       SDValue &Offset);
84  bool SelectAddrMode6(SDNode *Op, SDValue N, SDValue &Addr, SDValue &Align);
85
86  bool SelectAddrModePC(SDNode *Op, SDValue N, SDValue &Offset,
87                        SDValue &Label);
88
89  bool SelectThumbAddrModeRR(SDNode *Op, SDValue N, SDValue &Base,
90                             SDValue &Offset);
91  bool SelectThumbAddrModeRI5(SDNode *Op, SDValue N, unsigned Scale,
92                              SDValue &Base, SDValue &OffImm,
93                              SDValue &Offset);
94  bool SelectThumbAddrModeS1(SDNode *Op, SDValue N, SDValue &Base,
95                             SDValue &OffImm, SDValue &Offset);
96  bool SelectThumbAddrModeS2(SDNode *Op, SDValue N, SDValue &Base,
97                             SDValue &OffImm, SDValue &Offset);
98  bool SelectThumbAddrModeS4(SDNode *Op, SDValue N, SDValue &Base,
99                             SDValue &OffImm, SDValue &Offset);
100  bool SelectThumbAddrModeSP(SDNode *Op, SDValue N, SDValue &Base,
101                             SDValue &OffImm);
102
103  bool SelectT2ShifterOperandReg(SDNode *Op, SDValue N,
104                                 SDValue &BaseReg, SDValue &Opc);
105  bool SelectT2AddrModeImm12(SDNode *Op, SDValue N, SDValue &Base,
106                             SDValue &OffImm);
107  bool SelectT2AddrModeImm8(SDNode *Op, SDValue N, SDValue &Base,
108                            SDValue &OffImm);
109  bool SelectT2AddrModeImm8Offset(SDNode *Op, SDValue N,
110                                 SDValue &OffImm);
111  bool SelectT2AddrModeImm8s4(SDNode *Op, SDValue N, SDValue &Base,
112                              SDValue &OffImm);
113  bool SelectT2AddrModeSoReg(SDNode *Op, SDValue N, SDValue &Base,
114                             SDValue &OffReg, SDValue &ShImm);
115
116  // Include the pieces autogenerated from the target description.
117#include "ARMGenDAGISel.inc"
118
119private:
120  /// SelectARMIndexedLoad - Indexed (pre/post inc/dec) load matching code for
121  /// ARM.
122  SDNode *SelectARMIndexedLoad(SDNode *N);
123  SDNode *SelectT2IndexedLoad(SDNode *N);
124
125  /// SelectVLD - Select NEON load intrinsics.  NumVecs should be
126  /// 1, 2, 3 or 4.  The opcode arrays specify the instructions used for
127  /// loads of D registers and even subregs and odd subregs of Q registers.
128  /// For NumVecs <= 2, QOpcodes1 is not used.
129  SDNode *SelectVLD(SDNode *N, unsigned NumVecs, unsigned *DOpcodes,
130                    unsigned *QOpcodes0, unsigned *QOpcodes1);
131
132  /// SelectVST - Select NEON store intrinsics.  NumVecs should
133  /// be 1, 2, 3 or 4.  The opcode arrays specify the instructions used for
134  /// stores of D registers and even subregs and odd subregs of Q registers.
135  /// For NumVecs <= 2, QOpcodes1 is not used.
136  SDNode *SelectVST(SDNode *N, unsigned NumVecs, unsigned *DOpcodes,
137                    unsigned *QOpcodes0, unsigned *QOpcodes1);
138
139  /// SelectVLDSTLane - Select NEON load/store lane intrinsics.  NumVecs should
140  /// be 2, 3 or 4.  The opcode arrays specify the instructions used for
141  /// load/store of D registers and even subregs and odd subregs of Q registers.
142  SDNode *SelectVLDSTLane(SDNode *N, bool IsLoad, unsigned NumVecs,
143                          unsigned *DOpcodes, unsigned *QOpcodes0,
144                          unsigned *QOpcodes1);
145
146  /// SelectVTBL - Select NEON VTBL and VTBX intrinsics.  NumVecs should be 2,
147  /// 3 or 4.  These are custom-selected so that a REG_SEQUENCE can be
148  /// generated to force the table registers to be consecutive.
149  SDNode *SelectVTBL(SDNode *N, bool IsExt, unsigned NumVecs, unsigned Opc);
150
151  /// SelectV6T2BitfieldExtractOp - Select SBFX/UBFX instructions for ARM.
152  SDNode *SelectV6T2BitfieldExtractOp(SDNode *N, bool isSigned);
153
154  /// SelectCMOVOp - Select CMOV instructions for ARM.
155  SDNode *SelectCMOVOp(SDNode *N);
156  SDNode *SelectT2CMOVShiftOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
157                              ARMCC::CondCodes CCVal, SDValue CCR,
158                              SDValue InFlag);
159  SDNode *SelectARMCMOVShiftOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
160                               ARMCC::CondCodes CCVal, SDValue CCR,
161                               SDValue InFlag);
162  SDNode *SelectT2CMOVSoImmOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
163                              ARMCC::CondCodes CCVal, SDValue CCR,
164                              SDValue InFlag);
165  SDNode *SelectARMCMOVSoImmOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
166                               ARMCC::CondCodes CCVal, SDValue CCR,
167                               SDValue InFlag);
168
169  SDNode *SelectConcatVector(SDNode *N);
170
171  /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
172  /// inline asm expressions.
173  virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
174                                            char ConstraintCode,
175                                            std::vector<SDValue> &OutOps);
176
177  // Form pairs of consecutive S, D, or Q registers.
178  SDNode *PairSRegs(EVT VT, SDValue V0, SDValue V1);
179  SDNode *PairDRegs(EVT VT, SDValue V0, SDValue V1);
180  SDNode *PairQRegs(EVT VT, SDValue V0, SDValue V1);
181
182  // Form sequences of 4 consecutive S, D, or Q registers.
183  SDNode *QuadSRegs(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3);
184  SDNode *QuadDRegs(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3);
185  SDNode *QuadQRegs(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3);
186
187  // Form sequences of 8 consecutive D registers.
188  SDNode *OctoDRegs(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3,
189                    SDValue V4, SDValue V5, SDValue V6, SDValue V7);
190};
191}
192
193/// isInt32Immediate - This method tests to see if the node is a 32-bit constant
194/// operand. If so Imm will receive the 32-bit value.
195static bool isInt32Immediate(SDNode *N, unsigned &Imm) {
196  if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) {
197    Imm = cast<ConstantSDNode>(N)->getZExtValue();
198    return true;
199  }
200  return false;
201}
202
203// isInt32Immediate - This method tests to see if a constant operand.
204// If so Imm will receive the 32 bit value.
205static bool isInt32Immediate(SDValue N, unsigned &Imm) {
206  return isInt32Immediate(N.getNode(), Imm);
207}
208
209// isOpcWithIntImmediate - This method tests to see if the node is a specific
210// opcode and that it has a immediate integer right operand.
211// If so Imm will receive the 32 bit value.
212static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
213  return N->getOpcode() == Opc &&
214         isInt32Immediate(N->getOperand(1).getNode(), Imm);
215}
216
217
218bool ARMDAGToDAGISel::SelectShifterOperandReg(SDNode *Op,
219                                              SDValue N,
220                                              SDValue &BaseReg,
221                                              SDValue &ShReg,
222                                              SDValue &Opc) {
223  ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N);
224
225  // Don't match base register only case. That is matched to a separate
226  // lower complexity pattern with explicit register operand.
227  if (ShOpcVal == ARM_AM::no_shift) return false;
228
229  BaseReg = N.getOperand(0);
230  unsigned ShImmVal = 0;
231  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
232    ShReg = CurDAG->getRegister(0, MVT::i32);
233    ShImmVal = RHS->getZExtValue() & 31;
234  } else {
235    ShReg = N.getOperand(1);
236  }
237  Opc = CurDAG->getTargetConstant(ARM_AM::getSORegOpc(ShOpcVal, ShImmVal),
238                                  MVT::i32);
239  return true;
240}
241
242bool ARMDAGToDAGISel::SelectAddrMode2(SDNode *Op, SDValue N,
243                                      SDValue &Base, SDValue &Offset,
244                                      SDValue &Opc) {
245  if (N.getOpcode() == ISD::MUL) {
246    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
247      // X * [3,5,9] -> X + X * [2,4,8] etc.
248      int RHSC = (int)RHS->getZExtValue();
249      if (RHSC & 1) {
250        RHSC = RHSC & ~1;
251        ARM_AM::AddrOpc AddSub = ARM_AM::add;
252        if (RHSC < 0) {
253          AddSub = ARM_AM::sub;
254          RHSC = - RHSC;
255        }
256        if (isPowerOf2_32(RHSC)) {
257          unsigned ShAmt = Log2_32(RHSC);
258          Base = Offset = N.getOperand(0);
259          Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt,
260                                                            ARM_AM::lsl),
261                                          MVT::i32);
262          return true;
263        }
264      }
265    }
266  }
267
268  if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB) {
269    Base = N;
270    if (N.getOpcode() == ISD::FrameIndex) {
271      int FI = cast<FrameIndexSDNode>(N)->getIndex();
272      Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
273    } else if (N.getOpcode() == ARMISD::Wrapper &&
274               !(Subtarget->useMovt() &&
275                 N.getOperand(0).getOpcode() == ISD::TargetGlobalAddress)) {
276      Base = N.getOperand(0);
277    }
278    Offset = CurDAG->getRegister(0, MVT::i32);
279    Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(ARM_AM::add, 0,
280                                                      ARM_AM::no_shift),
281                                    MVT::i32);
282    return true;
283  }
284
285  // Match simple R +/- imm12 operands.
286  if (N.getOpcode() == ISD::ADD)
287    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
288      int RHSC = (int)RHS->getZExtValue();
289      if ((RHSC >= 0 && RHSC < 0x1000) ||
290          (RHSC < 0 && RHSC > -0x1000)) { // 12 bits.
291        Base = N.getOperand(0);
292        if (Base.getOpcode() == ISD::FrameIndex) {
293          int FI = cast<FrameIndexSDNode>(Base)->getIndex();
294          Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
295        }
296        Offset = CurDAG->getRegister(0, MVT::i32);
297
298        ARM_AM::AddrOpc AddSub = ARM_AM::add;
299        if (RHSC < 0) {
300          AddSub = ARM_AM::sub;
301          RHSC = - RHSC;
302        }
303        Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, RHSC,
304                                                          ARM_AM::no_shift),
305                                        MVT::i32);
306        return true;
307      }
308    }
309
310  // Otherwise this is R +/- [possibly shifted] R.
311  ARM_AM::AddrOpc AddSub = N.getOpcode() == ISD::ADD ? ARM_AM::add:ARM_AM::sub;
312  ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOperand(1));
313  unsigned ShAmt = 0;
314
315  Base   = N.getOperand(0);
316  Offset = N.getOperand(1);
317
318  if (ShOpcVal != ARM_AM::no_shift) {
319    // Check to see if the RHS of the shift is a constant, if not, we can't fold
320    // it.
321    if (ConstantSDNode *Sh =
322           dyn_cast<ConstantSDNode>(N.getOperand(1).getOperand(1))) {
323      ShAmt = Sh->getZExtValue();
324      Offset = N.getOperand(1).getOperand(0);
325    } else {
326      ShOpcVal = ARM_AM::no_shift;
327    }
328  }
329
330  // Try matching (R shl C) + (R).
331  if (N.getOpcode() == ISD::ADD && ShOpcVal == ARM_AM::no_shift) {
332    ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOperand(0));
333    if (ShOpcVal != ARM_AM::no_shift) {
334      // Check to see if the RHS of the shift is a constant, if not, we can't
335      // fold it.
336      if (ConstantSDNode *Sh =
337          dyn_cast<ConstantSDNode>(N.getOperand(0).getOperand(1))) {
338        ShAmt = Sh->getZExtValue();
339        Offset = N.getOperand(0).getOperand(0);
340        Base = N.getOperand(1);
341      } else {
342        ShOpcVal = ARM_AM::no_shift;
343      }
344    }
345  }
346
347  Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt, ShOpcVal),
348                                  MVT::i32);
349  return true;
350}
351
352bool ARMDAGToDAGISel::SelectAddrMode2Offset(SDNode *Op, SDValue N,
353                                            SDValue &Offset, SDValue &Opc) {
354  unsigned Opcode = Op->getOpcode();
355  ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
356    ? cast<LoadSDNode>(Op)->getAddressingMode()
357    : cast<StoreSDNode>(Op)->getAddressingMode();
358  ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC)
359    ? ARM_AM::add : ARM_AM::sub;
360  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N)) {
361    int Val = (int)C->getZExtValue();
362    if (Val >= 0 && Val < 0x1000) { // 12 bits.
363      Offset = CurDAG->getRegister(0, MVT::i32);
364      Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, Val,
365                                                        ARM_AM::no_shift),
366                                      MVT::i32);
367      return true;
368    }
369  }
370
371  Offset = N;
372  ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N);
373  unsigned ShAmt = 0;
374  if (ShOpcVal != ARM_AM::no_shift) {
375    // Check to see if the RHS of the shift is a constant, if not, we can't fold
376    // it.
377    if (ConstantSDNode *Sh = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
378      ShAmt = Sh->getZExtValue();
379      Offset = N.getOperand(0);
380    } else {
381      ShOpcVal = ARM_AM::no_shift;
382    }
383  }
384
385  Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt, ShOpcVal),
386                                  MVT::i32);
387  return true;
388}
389
390
391bool ARMDAGToDAGISel::SelectAddrMode3(SDNode *Op, SDValue N,
392                                      SDValue &Base, SDValue &Offset,
393                                      SDValue &Opc) {
394  if (N.getOpcode() == ISD::SUB) {
395    // X - C  is canonicalize to X + -C, no need to handle it here.
396    Base = N.getOperand(0);
397    Offset = N.getOperand(1);
398    Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::sub, 0),MVT::i32);
399    return true;
400  }
401
402  if (N.getOpcode() != ISD::ADD) {
403    Base = N;
404    if (N.getOpcode() == ISD::FrameIndex) {
405      int FI = cast<FrameIndexSDNode>(N)->getIndex();
406      Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
407    }
408    Offset = CurDAG->getRegister(0, MVT::i32);
409    Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::add, 0),MVT::i32);
410    return true;
411  }
412
413  // If the RHS is +/- imm8, fold into addr mode.
414  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
415    int RHSC = (int)RHS->getZExtValue();
416    if ((RHSC >= 0 && RHSC < 256) ||
417        (RHSC < 0 && RHSC > -256)) { // note -256 itself isn't allowed.
418      Base = N.getOperand(0);
419      if (Base.getOpcode() == ISD::FrameIndex) {
420        int FI = cast<FrameIndexSDNode>(Base)->getIndex();
421        Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
422      }
423      Offset = CurDAG->getRegister(0, MVT::i32);
424
425      ARM_AM::AddrOpc AddSub = ARM_AM::add;
426      if (RHSC < 0) {
427        AddSub = ARM_AM::sub;
428        RHSC = - RHSC;
429      }
430      Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, RHSC),MVT::i32);
431      return true;
432    }
433  }
434
435  Base = N.getOperand(0);
436  Offset = N.getOperand(1);
437  Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::add, 0), MVT::i32);
438  return true;
439}
440
441bool ARMDAGToDAGISel::SelectAddrMode3Offset(SDNode *Op, SDValue N,
442                                            SDValue &Offset, SDValue &Opc) {
443  unsigned Opcode = Op->getOpcode();
444  ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
445    ? cast<LoadSDNode>(Op)->getAddressingMode()
446    : cast<StoreSDNode>(Op)->getAddressingMode();
447  ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC)
448    ? ARM_AM::add : ARM_AM::sub;
449  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N)) {
450    int Val = (int)C->getZExtValue();
451    if (Val >= 0 && Val < 256) {
452      Offset = CurDAG->getRegister(0, MVT::i32);
453      Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, Val), MVT::i32);
454      return true;
455    }
456  }
457
458  Offset = N;
459  Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, 0), MVT::i32);
460  return true;
461}
462
463bool ARMDAGToDAGISel::SelectAddrMode4(SDNode *Op, SDValue N,
464                                      SDValue &Addr, SDValue &Mode) {
465  Addr = N;
466  Mode = CurDAG->getTargetConstant(0, MVT::i32);
467  return true;
468}
469
470bool ARMDAGToDAGISel::SelectAddrMode5(SDNode *Op, SDValue N,
471                                      SDValue &Base, SDValue &Offset) {
472  if (N.getOpcode() != ISD::ADD) {
473    Base = N;
474    if (N.getOpcode() == ISD::FrameIndex) {
475      int FI = cast<FrameIndexSDNode>(N)->getIndex();
476      Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
477    } else if (N.getOpcode() == ARMISD::Wrapper &&
478               !(Subtarget->useMovt() &&
479                 N.getOperand(0).getOpcode() == ISD::TargetGlobalAddress)) {
480      Base = N.getOperand(0);
481    }
482    Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(ARM_AM::add, 0),
483                                       MVT::i32);
484    return true;
485  }
486
487  // If the RHS is +/- imm8, fold into addr mode.
488  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
489    int RHSC = (int)RHS->getZExtValue();
490    if ((RHSC & 3) == 0) {  // The constant is implicitly multiplied by 4.
491      RHSC >>= 2;
492      if ((RHSC >= 0 && RHSC < 256) ||
493          (RHSC < 0 && RHSC > -256)) { // note -256 itself isn't allowed.
494        Base = N.getOperand(0);
495        if (Base.getOpcode() == ISD::FrameIndex) {
496          int FI = cast<FrameIndexSDNode>(Base)->getIndex();
497          Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
498        }
499
500        ARM_AM::AddrOpc AddSub = ARM_AM::add;
501        if (RHSC < 0) {
502          AddSub = ARM_AM::sub;
503          RHSC = - RHSC;
504        }
505        Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(AddSub, RHSC),
506                                           MVT::i32);
507        return true;
508      }
509    }
510  }
511
512  Base = N;
513  Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(ARM_AM::add, 0),
514                                     MVT::i32);
515  return true;
516}
517
518bool ARMDAGToDAGISel::SelectAddrMode6(SDNode *Op, SDValue N,
519                                      SDValue &Addr, SDValue &Align) {
520  Addr = N;
521  // Default to no alignment.
522  Align = CurDAG->getTargetConstant(0, MVT::i32);
523  return true;
524}
525
526bool ARMDAGToDAGISel::SelectAddrModePC(SDNode *Op, SDValue N,
527                                       SDValue &Offset, SDValue &Label) {
528  if (N.getOpcode() == ARMISD::PIC_ADD && N.hasOneUse()) {
529    Offset = N.getOperand(0);
530    SDValue N1 = N.getOperand(1);
531    Label  = CurDAG->getTargetConstant(cast<ConstantSDNode>(N1)->getZExtValue(),
532                                       MVT::i32);
533    return true;
534  }
535  return false;
536}
537
538bool ARMDAGToDAGISel::SelectThumbAddrModeRR(SDNode *Op, SDValue N,
539                                            SDValue &Base, SDValue &Offset){
540  // FIXME dl should come from the parent load or store, not the address
541  if (N.getOpcode() != ISD::ADD) {
542    ConstantSDNode *NC = dyn_cast<ConstantSDNode>(N);
543    if (!NC || !NC->isNullValue())
544      return false;
545
546    Base = Offset = N;
547    return true;
548  }
549
550  Base = N.getOperand(0);
551  Offset = N.getOperand(1);
552  return true;
553}
554
555bool
556ARMDAGToDAGISel::SelectThumbAddrModeRI5(SDNode *Op, SDValue N,
557                                        unsigned Scale, SDValue &Base,
558                                        SDValue &OffImm, SDValue &Offset) {
559  if (Scale == 4) {
560    SDValue TmpBase, TmpOffImm;
561    if (SelectThumbAddrModeSP(Op, N, TmpBase, TmpOffImm))
562      return false;  // We want to select tLDRspi / tSTRspi instead.
563    if (N.getOpcode() == ARMISD::Wrapper &&
564        N.getOperand(0).getOpcode() == ISD::TargetConstantPool)
565      return false;  // We want to select tLDRpci instead.
566  }
567
568  if (N.getOpcode() != ISD::ADD) {
569    if (N.getOpcode() == ARMISD::Wrapper &&
570        !(Subtarget->useMovt() &&
571          N.getOperand(0).getOpcode() == ISD::TargetGlobalAddress)) {
572      Base = N.getOperand(0);
573    } else
574      Base = N;
575
576    Offset = CurDAG->getRegister(0, MVT::i32);
577    OffImm = CurDAG->getTargetConstant(0, MVT::i32);
578    return true;
579  }
580
581  // Thumb does not have [sp, r] address mode.
582  RegisterSDNode *LHSR = dyn_cast<RegisterSDNode>(N.getOperand(0));
583  RegisterSDNode *RHSR = dyn_cast<RegisterSDNode>(N.getOperand(1));
584  if ((LHSR && LHSR->getReg() == ARM::SP) ||
585      (RHSR && RHSR->getReg() == ARM::SP)) {
586    Base = N;
587    Offset = CurDAG->getRegister(0, MVT::i32);
588    OffImm = CurDAG->getTargetConstant(0, MVT::i32);
589    return true;
590  }
591
592  // If the RHS is + imm5 * scale, fold into addr mode.
593  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
594    int RHSC = (int)RHS->getZExtValue();
595    if ((RHSC & (Scale-1)) == 0) {  // The constant is implicitly multiplied.
596      RHSC /= Scale;
597      if (RHSC >= 0 && RHSC < 32) {
598        Base = N.getOperand(0);
599        Offset = CurDAG->getRegister(0, MVT::i32);
600        OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
601        return true;
602      }
603    }
604  }
605
606  Base = N.getOperand(0);
607  Offset = N.getOperand(1);
608  OffImm = CurDAG->getTargetConstant(0, MVT::i32);
609  return true;
610}
611
612bool ARMDAGToDAGISel::SelectThumbAddrModeS1(SDNode *Op, SDValue N,
613                                            SDValue &Base, SDValue &OffImm,
614                                            SDValue &Offset) {
615  return SelectThumbAddrModeRI5(Op, N, 1, Base, OffImm, Offset);
616}
617
618bool ARMDAGToDAGISel::SelectThumbAddrModeS2(SDNode *Op, SDValue N,
619                                            SDValue &Base, SDValue &OffImm,
620                                            SDValue &Offset) {
621  return SelectThumbAddrModeRI5(Op, N, 2, Base, OffImm, Offset);
622}
623
624bool ARMDAGToDAGISel::SelectThumbAddrModeS4(SDNode *Op, SDValue N,
625                                            SDValue &Base, SDValue &OffImm,
626                                            SDValue &Offset) {
627  return SelectThumbAddrModeRI5(Op, N, 4, Base, OffImm, Offset);
628}
629
630bool ARMDAGToDAGISel::SelectThumbAddrModeSP(SDNode *Op, SDValue N,
631                                           SDValue &Base, SDValue &OffImm) {
632  if (N.getOpcode() == ISD::FrameIndex) {
633    int FI = cast<FrameIndexSDNode>(N)->getIndex();
634    Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
635    OffImm = CurDAG->getTargetConstant(0, MVT::i32);
636    return true;
637  }
638
639  if (N.getOpcode() != ISD::ADD)
640    return false;
641
642  RegisterSDNode *LHSR = dyn_cast<RegisterSDNode>(N.getOperand(0));
643  if (N.getOperand(0).getOpcode() == ISD::FrameIndex ||
644      (LHSR && LHSR->getReg() == ARM::SP)) {
645    // If the RHS is + imm8 * scale, fold into addr mode.
646    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
647      int RHSC = (int)RHS->getZExtValue();
648      if ((RHSC & 3) == 0) {  // The constant is implicitly multiplied.
649        RHSC >>= 2;
650        if (RHSC >= 0 && RHSC < 256) {
651          Base = N.getOperand(0);
652          if (Base.getOpcode() == ISD::FrameIndex) {
653            int FI = cast<FrameIndexSDNode>(Base)->getIndex();
654            Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
655          }
656          OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
657          return true;
658        }
659      }
660    }
661  }
662
663  return false;
664}
665
666bool ARMDAGToDAGISel::SelectT2ShifterOperandReg(SDNode *Op, SDValue N,
667                                                SDValue &BaseReg,
668                                                SDValue &Opc) {
669  ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N);
670
671  // Don't match base register only case. That is matched to a separate
672  // lower complexity pattern with explicit register operand.
673  if (ShOpcVal == ARM_AM::no_shift) return false;
674
675  BaseReg = N.getOperand(0);
676  unsigned ShImmVal = 0;
677  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
678    ShImmVal = RHS->getZExtValue() & 31;
679    Opc = getI32Imm(ARM_AM::getSORegOpc(ShOpcVal, ShImmVal));
680    return true;
681  }
682
683  return false;
684}
685
686bool ARMDAGToDAGISel::SelectT2AddrModeImm12(SDNode *Op, SDValue N,
687                                            SDValue &Base, SDValue &OffImm) {
688  // Match simple R + imm12 operands.
689
690  // Base only.
691  if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB) {
692    if (N.getOpcode() == ISD::FrameIndex) {
693      // Match frame index...
694      int FI = cast<FrameIndexSDNode>(N)->getIndex();
695      Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
696      OffImm  = CurDAG->getTargetConstant(0, MVT::i32);
697      return true;
698    } else if (N.getOpcode() == ARMISD::Wrapper &&
699               !(Subtarget->useMovt() &&
700                 N.getOperand(0).getOpcode() == ISD::TargetGlobalAddress)) {
701      Base = N.getOperand(0);
702      if (Base.getOpcode() == ISD::TargetConstantPool)
703        return false;  // We want to select t2LDRpci instead.
704    } else
705      Base = N;
706    OffImm  = CurDAG->getTargetConstant(0, MVT::i32);
707    return true;
708  }
709
710  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
711    if (SelectT2AddrModeImm8(Op, N, Base, OffImm))
712      // Let t2LDRi8 handle (R - imm8).
713      return false;
714
715    int RHSC = (int)RHS->getZExtValue();
716    if (N.getOpcode() == ISD::SUB)
717      RHSC = -RHSC;
718
719    if (RHSC >= 0 && RHSC < 0x1000) { // 12 bits (unsigned)
720      Base   = N.getOperand(0);
721      if (Base.getOpcode() == ISD::FrameIndex) {
722        int FI = cast<FrameIndexSDNode>(Base)->getIndex();
723        Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
724      }
725      OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
726      return true;
727    }
728  }
729
730  // Base only.
731  Base = N;
732  OffImm  = CurDAG->getTargetConstant(0, MVT::i32);
733  return true;
734}
735
736bool ARMDAGToDAGISel::SelectT2AddrModeImm8(SDNode *Op, SDValue N,
737                                           SDValue &Base, SDValue &OffImm) {
738  // Match simple R - imm8 operands.
739  if (N.getOpcode() == ISD::ADD || N.getOpcode() == ISD::SUB) {
740    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
741      int RHSC = (int)RHS->getSExtValue();
742      if (N.getOpcode() == ISD::SUB)
743        RHSC = -RHSC;
744
745      if ((RHSC >= -255) && (RHSC < 0)) { // 8 bits (always negative)
746        Base = N.getOperand(0);
747        if (Base.getOpcode() == ISD::FrameIndex) {
748          int FI = cast<FrameIndexSDNode>(Base)->getIndex();
749          Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
750        }
751        OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
752        return true;
753      }
754    }
755  }
756
757  return false;
758}
759
760bool ARMDAGToDAGISel::SelectT2AddrModeImm8Offset(SDNode *Op, SDValue N,
761                                                 SDValue &OffImm){
762  unsigned Opcode = Op->getOpcode();
763  ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
764    ? cast<LoadSDNode>(Op)->getAddressingMode()
765    : cast<StoreSDNode>(Op)->getAddressingMode();
766  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N)) {
767    int RHSC = (int)RHS->getZExtValue();
768    if (RHSC >= 0 && RHSC < 0x100) { // 8 bits.
769      OffImm = ((AM == ISD::PRE_INC) || (AM == ISD::POST_INC))
770        ? CurDAG->getTargetConstant(RHSC, MVT::i32)
771        : CurDAG->getTargetConstant(-RHSC, MVT::i32);
772      return true;
773    }
774  }
775
776  return false;
777}
778
779bool ARMDAGToDAGISel::SelectT2AddrModeImm8s4(SDNode *Op, SDValue N,
780                                             SDValue &Base, SDValue &OffImm) {
781  if (N.getOpcode() == ISD::ADD) {
782    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
783      int RHSC = (int)RHS->getZExtValue();
784      // 8 bits.
785      if (((RHSC & 0x3) == 0) &&
786          ((RHSC >= 0 && RHSC < 0x400) || (RHSC < 0 && RHSC > -0x400))) {
787        Base   = N.getOperand(0);
788        OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
789        return true;
790      }
791    }
792  } else if (N.getOpcode() == ISD::SUB) {
793    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
794      int RHSC = (int)RHS->getZExtValue();
795      // 8 bits.
796      if (((RHSC & 0x3) == 0) && (RHSC >= 0 && RHSC < 0x400)) {
797        Base   = N.getOperand(0);
798        OffImm = CurDAG->getTargetConstant(-RHSC, MVT::i32);
799        return true;
800      }
801    }
802  }
803
804  return false;
805}
806
807bool ARMDAGToDAGISel::SelectT2AddrModeSoReg(SDNode *Op, SDValue N,
808                                            SDValue &Base,
809                                            SDValue &OffReg, SDValue &ShImm) {
810  // (R - imm8) should be handled by t2LDRi8. The rest are handled by t2LDRi12.
811  if (N.getOpcode() != ISD::ADD)
812    return false;
813
814  // Leave (R + imm12) for t2LDRi12, (R - imm8) for t2LDRi8.
815  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
816    int RHSC = (int)RHS->getZExtValue();
817    if (RHSC >= 0 && RHSC < 0x1000) // 12 bits (unsigned)
818      return false;
819    else if (RHSC < 0 && RHSC >= -255) // 8 bits
820      return false;
821  }
822
823  // Look for (R + R) or (R + (R << [1,2,3])).
824  unsigned ShAmt = 0;
825  Base   = N.getOperand(0);
826  OffReg = N.getOperand(1);
827
828  // Swap if it is ((R << c) + R).
829  ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(OffReg);
830  if (ShOpcVal != ARM_AM::lsl) {
831    ShOpcVal = ARM_AM::getShiftOpcForNode(Base);
832    if (ShOpcVal == ARM_AM::lsl)
833      std::swap(Base, OffReg);
834  }
835
836  if (ShOpcVal == ARM_AM::lsl) {
837    // Check to see if the RHS of the shift is a constant, if not, we can't fold
838    // it.
839    if (ConstantSDNode *Sh = dyn_cast<ConstantSDNode>(OffReg.getOperand(1))) {
840      ShAmt = Sh->getZExtValue();
841      if (ShAmt >= 4) {
842        ShAmt = 0;
843        ShOpcVal = ARM_AM::no_shift;
844      } else
845        OffReg = OffReg.getOperand(0);
846    } else {
847      ShOpcVal = ARM_AM::no_shift;
848    }
849  }
850
851  ShImm = CurDAG->getTargetConstant(ShAmt, MVT::i32);
852
853  return true;
854}
855
856//===--------------------------------------------------------------------===//
857
858/// getAL - Returns a ARMCC::AL immediate node.
859static inline SDValue getAL(SelectionDAG *CurDAG) {
860  return CurDAG->getTargetConstant((uint64_t)ARMCC::AL, MVT::i32);
861}
862
863SDNode *ARMDAGToDAGISel::SelectARMIndexedLoad(SDNode *N) {
864  LoadSDNode *LD = cast<LoadSDNode>(N);
865  ISD::MemIndexedMode AM = LD->getAddressingMode();
866  if (AM == ISD::UNINDEXED)
867    return NULL;
868
869  EVT LoadedVT = LD->getMemoryVT();
870  SDValue Offset, AMOpc;
871  bool isPre = (AM == ISD::PRE_INC) || (AM == ISD::PRE_DEC);
872  unsigned Opcode = 0;
873  bool Match = false;
874  if (LoadedVT == MVT::i32 &&
875      SelectAddrMode2Offset(N, LD->getOffset(), Offset, AMOpc)) {
876    Opcode = isPre ? ARM::LDR_PRE : ARM::LDR_POST;
877    Match = true;
878  } else if (LoadedVT == MVT::i16 &&
879             SelectAddrMode3Offset(N, LD->getOffset(), Offset, AMOpc)) {
880    Match = true;
881    Opcode = (LD->getExtensionType() == ISD::SEXTLOAD)
882      ? (isPre ? ARM::LDRSH_PRE : ARM::LDRSH_POST)
883      : (isPre ? ARM::LDRH_PRE : ARM::LDRH_POST);
884  } else if (LoadedVT == MVT::i8 || LoadedVT == MVT::i1) {
885    if (LD->getExtensionType() == ISD::SEXTLOAD) {
886      if (SelectAddrMode3Offset(N, LD->getOffset(), Offset, AMOpc)) {
887        Match = true;
888        Opcode = isPre ? ARM::LDRSB_PRE : ARM::LDRSB_POST;
889      }
890    } else {
891      if (SelectAddrMode2Offset(N, LD->getOffset(), Offset, AMOpc)) {
892        Match = true;
893        Opcode = isPre ? ARM::LDRB_PRE : ARM::LDRB_POST;
894      }
895    }
896  }
897
898  if (Match) {
899    SDValue Chain = LD->getChain();
900    SDValue Base = LD->getBasePtr();
901    SDValue Ops[]= { Base, Offset, AMOpc, getAL(CurDAG),
902                     CurDAG->getRegister(0, MVT::i32), Chain };
903    return CurDAG->getMachineNode(Opcode, N->getDebugLoc(), MVT::i32, MVT::i32,
904                                  MVT::Other, Ops, 6);
905  }
906
907  return NULL;
908}
909
910SDNode *ARMDAGToDAGISel::SelectT2IndexedLoad(SDNode *N) {
911  LoadSDNode *LD = cast<LoadSDNode>(N);
912  ISD::MemIndexedMode AM = LD->getAddressingMode();
913  if (AM == ISD::UNINDEXED)
914    return NULL;
915
916  EVT LoadedVT = LD->getMemoryVT();
917  bool isSExtLd = LD->getExtensionType() == ISD::SEXTLOAD;
918  SDValue Offset;
919  bool isPre = (AM == ISD::PRE_INC) || (AM == ISD::PRE_DEC);
920  unsigned Opcode = 0;
921  bool Match = false;
922  if (SelectT2AddrModeImm8Offset(N, LD->getOffset(), Offset)) {
923    switch (LoadedVT.getSimpleVT().SimpleTy) {
924    case MVT::i32:
925      Opcode = isPre ? ARM::t2LDR_PRE : ARM::t2LDR_POST;
926      break;
927    case MVT::i16:
928      if (isSExtLd)
929        Opcode = isPre ? ARM::t2LDRSH_PRE : ARM::t2LDRSH_POST;
930      else
931        Opcode = isPre ? ARM::t2LDRH_PRE : ARM::t2LDRH_POST;
932      break;
933    case MVT::i8:
934    case MVT::i1:
935      if (isSExtLd)
936        Opcode = isPre ? ARM::t2LDRSB_PRE : ARM::t2LDRSB_POST;
937      else
938        Opcode = isPre ? ARM::t2LDRB_PRE : ARM::t2LDRB_POST;
939      break;
940    default:
941      return NULL;
942    }
943    Match = true;
944  }
945
946  if (Match) {
947    SDValue Chain = LD->getChain();
948    SDValue Base = LD->getBasePtr();
949    SDValue Ops[]= { Base, Offset, getAL(CurDAG),
950                     CurDAG->getRegister(0, MVT::i32), Chain };
951    return CurDAG->getMachineNode(Opcode, N->getDebugLoc(), MVT::i32, MVT::i32,
952                                  MVT::Other, Ops, 5);
953  }
954
955  return NULL;
956}
957
958/// PairSRegs - Form a D register from a pair of S registers.
959///
960SDNode *ARMDAGToDAGISel::PairSRegs(EVT VT, SDValue V0, SDValue V1) {
961  DebugLoc dl = V0.getNode()->getDebugLoc();
962  SDValue SubReg0 = CurDAG->getTargetConstant(ARM::ssub_0, MVT::i32);
963  SDValue SubReg1 = CurDAG->getTargetConstant(ARM::ssub_1, MVT::i32);
964  const SDValue Ops[] = { V0, SubReg0, V1, SubReg1 };
965  return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops, 4);
966}
967
968/// PairDRegs - Form a quad register from a pair of D registers.
969///
970SDNode *ARMDAGToDAGISel::PairDRegs(EVT VT, SDValue V0, SDValue V1) {
971  DebugLoc dl = V0.getNode()->getDebugLoc();
972  SDValue SubReg0 = CurDAG->getTargetConstant(ARM::dsub_0, MVT::i32);
973  SDValue SubReg1 = CurDAG->getTargetConstant(ARM::dsub_1, MVT::i32);
974  const SDValue Ops[] = { V0, SubReg0, V1, SubReg1 };
975  return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops, 4);
976}
977
978/// PairQRegs - Form 4 consecutive D registers from a pair of Q registers.
979///
980SDNode *ARMDAGToDAGISel::PairQRegs(EVT VT, SDValue V0, SDValue V1) {
981  DebugLoc dl = V0.getNode()->getDebugLoc();
982  SDValue SubReg0 = CurDAG->getTargetConstant(ARM::qsub_0, MVT::i32);
983  SDValue SubReg1 = CurDAG->getTargetConstant(ARM::qsub_1, MVT::i32);
984  const SDValue Ops[] = { V0, SubReg0, V1, SubReg1 };
985  return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops, 4);
986}
987
988/// QuadSRegs - Form 4 consecutive S registers.
989///
990SDNode *ARMDAGToDAGISel::QuadSRegs(EVT VT, SDValue V0, SDValue V1,
991                                   SDValue V2, SDValue V3) {
992  DebugLoc dl = V0.getNode()->getDebugLoc();
993  SDValue SubReg0 = CurDAG->getTargetConstant(ARM::ssub_0, MVT::i32);
994  SDValue SubReg1 = CurDAG->getTargetConstant(ARM::ssub_1, MVT::i32);
995  SDValue SubReg2 = CurDAG->getTargetConstant(ARM::ssub_2, MVT::i32);
996  SDValue SubReg3 = CurDAG->getTargetConstant(ARM::ssub_3, MVT::i32);
997  const SDValue Ops[] = { V0, SubReg0, V1, SubReg1, V2, SubReg2, V3, SubReg3 };
998  return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops, 8);
999}
1000
1001/// QuadDRegs - Form 4 consecutive D registers.
1002///
1003SDNode *ARMDAGToDAGISel::QuadDRegs(EVT VT, SDValue V0, SDValue V1,
1004                                   SDValue V2, SDValue V3) {
1005  DebugLoc dl = V0.getNode()->getDebugLoc();
1006  SDValue SubReg0 = CurDAG->getTargetConstant(ARM::dsub_0, MVT::i32);
1007  SDValue SubReg1 = CurDAG->getTargetConstant(ARM::dsub_1, MVT::i32);
1008  SDValue SubReg2 = CurDAG->getTargetConstant(ARM::dsub_2, MVT::i32);
1009  SDValue SubReg3 = CurDAG->getTargetConstant(ARM::dsub_3, MVT::i32);
1010  const SDValue Ops[] = { V0, SubReg0, V1, SubReg1, V2, SubReg2, V3, SubReg3 };
1011  return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops, 8);
1012}
1013
1014/// QuadQRegs - Form 4 consecutive Q registers.
1015///
1016SDNode *ARMDAGToDAGISel::QuadQRegs(EVT VT, SDValue V0, SDValue V1,
1017                                   SDValue V2, SDValue V3) {
1018  DebugLoc dl = V0.getNode()->getDebugLoc();
1019  SDValue SubReg0 = CurDAG->getTargetConstant(ARM::qsub_0, MVT::i32);
1020  SDValue SubReg1 = CurDAG->getTargetConstant(ARM::qsub_1, MVT::i32);
1021  SDValue SubReg2 = CurDAG->getTargetConstant(ARM::qsub_2, MVT::i32);
1022  SDValue SubReg3 = CurDAG->getTargetConstant(ARM::qsub_3, MVT::i32);
1023  const SDValue Ops[] = { V0, SubReg0, V1, SubReg1, V2, SubReg2, V3, SubReg3 };
1024  return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops, 8);
1025}
1026
1027/// OctoDRegs - Form 8 consecutive D registers.
1028///
1029SDNode *ARMDAGToDAGISel::OctoDRegs(EVT VT, SDValue V0, SDValue V1,
1030                                   SDValue V2, SDValue V3,
1031                                   SDValue V4, SDValue V5,
1032                                   SDValue V6, SDValue V7) {
1033  DebugLoc dl = V0.getNode()->getDebugLoc();
1034  SDValue SubReg0 = CurDAG->getTargetConstant(ARM::dsub_0, MVT::i32);
1035  SDValue SubReg1 = CurDAG->getTargetConstant(ARM::dsub_1, MVT::i32);
1036  SDValue SubReg2 = CurDAG->getTargetConstant(ARM::dsub_2, MVT::i32);
1037  SDValue SubReg3 = CurDAG->getTargetConstant(ARM::dsub_3, MVT::i32);
1038  SDValue SubReg4 = CurDAG->getTargetConstant(ARM::dsub_4, MVT::i32);
1039  SDValue SubReg5 = CurDAG->getTargetConstant(ARM::dsub_5, MVT::i32);
1040  SDValue SubReg6 = CurDAG->getTargetConstant(ARM::dsub_6, MVT::i32);
1041  SDValue SubReg7 = CurDAG->getTargetConstant(ARM::dsub_7, MVT::i32);
1042  const SDValue Ops[] ={ V0, SubReg0, V1, SubReg1, V2, SubReg2, V3, SubReg3,
1043                         V4, SubReg4, V5, SubReg5, V6, SubReg6, V7, SubReg7 };
1044  return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops, 16);
1045}
1046
1047/// GetNEONSubregVT - Given a type for a 128-bit NEON vector, return the type
1048/// for a 64-bit subregister of the vector.
1049static EVT GetNEONSubregVT(EVT VT) {
1050  switch (VT.getSimpleVT().SimpleTy) {
1051  default: llvm_unreachable("unhandled NEON type");
1052  case MVT::v16i8: return MVT::v8i8;
1053  case MVT::v8i16: return MVT::v4i16;
1054  case MVT::v4f32: return MVT::v2f32;
1055  case MVT::v4i32: return MVT::v2i32;
1056  case MVT::v2i64: return MVT::v1i64;
1057  }
1058}
1059
1060SDNode *ARMDAGToDAGISel::SelectVLD(SDNode *N, unsigned NumVecs,
1061                                   unsigned *DOpcodes, unsigned *QOpcodes0,
1062                                   unsigned *QOpcodes1) {
1063  assert(NumVecs >= 1 && NumVecs <= 4 && "VLD NumVecs out-of-range");
1064  DebugLoc dl = N->getDebugLoc();
1065
1066  SDValue MemAddr, Align;
1067  if (!SelectAddrMode6(N, N->getOperand(2), MemAddr, Align))
1068    return NULL;
1069
1070  SDValue Chain = N->getOperand(0);
1071  EVT VT = N->getValueType(0);
1072  bool is64BitVector = VT.is64BitVector();
1073
1074  unsigned OpcodeIndex;
1075  switch (VT.getSimpleVT().SimpleTy) {
1076  default: llvm_unreachable("unhandled vld type");
1077    // Double-register operations:
1078  case MVT::v8i8:  OpcodeIndex = 0; break;
1079  case MVT::v4i16: OpcodeIndex = 1; break;
1080  case MVT::v2f32:
1081  case MVT::v2i32: OpcodeIndex = 2; break;
1082  case MVT::v1i64: OpcodeIndex = 3; break;
1083    // Quad-register operations:
1084  case MVT::v16i8: OpcodeIndex = 0; break;
1085  case MVT::v8i16: OpcodeIndex = 1; break;
1086  case MVT::v4f32:
1087  case MVT::v4i32: OpcodeIndex = 2; break;
1088  case MVT::v2i64: OpcodeIndex = 3;
1089    assert(NumVecs == 1 && "v2i64 type only supported for VLD1");
1090    break;
1091  }
1092
1093  SDValue Pred = getAL(CurDAG);
1094  SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
1095  if (is64BitVector) {
1096    unsigned Opc = DOpcodes[OpcodeIndex];
1097    const SDValue Ops[] = { MemAddr, Align, Pred, Reg0, Chain };
1098    std::vector<EVT> ResTys(NumVecs, VT);
1099    ResTys.push_back(MVT::Other);
1100    SDNode *VLd = CurDAG->getMachineNode(Opc, dl, ResTys, Ops, 5);
1101    if (NumVecs < 2)
1102      return VLd;
1103
1104    SDValue RegSeq;
1105    SDValue V0 = SDValue(VLd, 0);
1106    SDValue V1 = SDValue(VLd, 1);
1107
1108    // Form a REG_SEQUENCE to force register allocation.
1109    if (NumVecs == 2)
1110      RegSeq = SDValue(PairDRegs(MVT::v2i64, V0, V1), 0);
1111    else {
1112      SDValue V2 = SDValue(VLd, 2);
1113      // If it's a vld3, form a quad D-register but discard the last part.
1114      SDValue V3 = (NumVecs == 3)
1115          ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,dl,VT), 0)
1116          : SDValue(VLd, 3);
1117      RegSeq = SDValue(QuadDRegs(MVT::v4i64, V0, V1, V2, V3), 0);
1118    }
1119
1120    assert(ARM::dsub_7 == ARM::dsub_0+7 && "Unexpected subreg numbering");
1121    for (unsigned Vec = 0; Vec < NumVecs; ++Vec) {
1122      SDValue D = CurDAG->getTargetExtractSubreg(ARM::dsub_0+Vec,
1123                                                 dl, VT, RegSeq);
1124      ReplaceUses(SDValue(N, Vec), D);
1125    }
1126    ReplaceUses(SDValue(N, NumVecs), SDValue(VLd, NumVecs));
1127    return NULL;
1128  }
1129
1130  EVT RegVT = GetNEONSubregVT(VT);
1131  if (NumVecs <= 2) {
1132    // Quad registers are directly supported for VLD1 and VLD2,
1133    // loading pairs of D regs.
1134    unsigned Opc = QOpcodes0[OpcodeIndex];
1135    const SDValue Ops[] = { MemAddr, Align, Pred, Reg0, Chain };
1136    std::vector<EVT> ResTys(2 * NumVecs, RegVT);
1137    ResTys.push_back(MVT::Other);
1138    SDNode *VLd = CurDAG->getMachineNode(Opc, dl, ResTys, Ops, 5);
1139    Chain = SDValue(VLd, 2 * NumVecs);
1140
1141    // Combine the even and odd subregs to produce the result.
1142    if (NumVecs == 1) {
1143      SDNode *Q = PairDRegs(VT, SDValue(VLd, 0), SDValue(VLd, 1));
1144      ReplaceUses(SDValue(N, 0), SDValue(Q, 0));
1145    } else {
1146      SDValue QQ = SDValue(QuadDRegs(MVT::v4i64,
1147                                     SDValue(VLd, 0), SDValue(VLd, 1),
1148                                     SDValue(VLd, 2), SDValue(VLd, 3)), 0);
1149      SDValue Q0 = CurDAG->getTargetExtractSubreg(ARM::qsub_0, dl, VT, QQ);
1150      SDValue Q1 = CurDAG->getTargetExtractSubreg(ARM::qsub_1, dl, VT, QQ);
1151      ReplaceUses(SDValue(N, 0), Q0);
1152      ReplaceUses(SDValue(N, 1), Q1);
1153    }
1154  } else {
1155    // Otherwise, quad registers are loaded with two separate instructions,
1156    // where one loads the even registers and the other loads the odd registers.
1157
1158    std::vector<EVT> ResTys(NumVecs, RegVT);
1159    ResTys.push_back(MemAddr.getValueType());
1160    ResTys.push_back(MVT::Other);
1161
1162    // Load the even subregs.
1163    unsigned Opc = QOpcodes0[OpcodeIndex];
1164    const SDValue OpsA[] = { MemAddr, Align, Reg0, Pred, Reg0, Chain };
1165    SDNode *VLdA = CurDAG->getMachineNode(Opc, dl, ResTys, OpsA, 6);
1166    Chain = SDValue(VLdA, NumVecs+1);
1167
1168    // Load the odd subregs.
1169    Opc = QOpcodes1[OpcodeIndex];
1170    const SDValue OpsB[] = { SDValue(VLdA, NumVecs),
1171                             Align, Reg0, Pred, Reg0, Chain };
1172    SDNode *VLdB = CurDAG->getMachineNode(Opc, dl, ResTys, OpsB, 6);
1173    Chain = SDValue(VLdB, NumVecs+1);
1174
1175    SDValue V0 = SDValue(VLdA, 0);
1176    SDValue V1 = SDValue(VLdB, 0);
1177    SDValue V2 = SDValue(VLdA, 1);
1178    SDValue V3 = SDValue(VLdB, 1);
1179    SDValue V4 = SDValue(VLdA, 2);
1180    SDValue V5 = SDValue(VLdB, 2);
1181    SDValue V6 = (NumVecs == 3)
1182      ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,dl,RegVT), 0)
1183      : SDValue(VLdA, 3);
1184    SDValue V7 = (NumVecs == 3)
1185      ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,dl,RegVT), 0)
1186      : SDValue(VLdB, 3);
1187    SDValue RegSeq = SDValue(OctoDRegs(MVT::v8i64, V0, V1, V2, V3,
1188                                       V4, V5, V6, V7), 0);
1189
1190    // Extract out the 3 / 4 Q registers.
1191    assert(ARM::qsub_3 == ARM::qsub_0+3 && "Unexpected subreg numbering");
1192    for (unsigned Vec = 0; Vec < NumVecs; ++Vec) {
1193      SDValue Q = CurDAG->getTargetExtractSubreg(ARM::qsub_0+Vec,
1194                                                 dl, VT, RegSeq);
1195      ReplaceUses(SDValue(N, Vec), Q);
1196    }
1197  }
1198  ReplaceUses(SDValue(N, NumVecs), Chain);
1199  return NULL;
1200}
1201
1202SDNode *ARMDAGToDAGISel::SelectVST(SDNode *N, unsigned NumVecs,
1203                                   unsigned *DOpcodes, unsigned *QOpcodes0,
1204                                   unsigned *QOpcodes1) {
1205  assert(NumVecs >= 1 && NumVecs <= 4 && "VST NumVecs out-of-range");
1206  DebugLoc dl = N->getDebugLoc();
1207
1208  SDValue MemAddr, Align;
1209  if (!SelectAddrMode6(N, N->getOperand(2), MemAddr, Align))
1210    return NULL;
1211
1212  SDValue Chain = N->getOperand(0);
1213  EVT VT = N->getOperand(3).getValueType();
1214  bool is64BitVector = VT.is64BitVector();
1215
1216  unsigned OpcodeIndex;
1217  switch (VT.getSimpleVT().SimpleTy) {
1218  default: llvm_unreachable("unhandled vst type");
1219    // Double-register operations:
1220  case MVT::v8i8:  OpcodeIndex = 0; break;
1221  case MVT::v4i16: OpcodeIndex = 1; break;
1222  case MVT::v2f32:
1223  case MVT::v2i32: OpcodeIndex = 2; break;
1224  case MVT::v1i64: OpcodeIndex = 3; break;
1225    // Quad-register operations:
1226  case MVT::v16i8: OpcodeIndex = 0; break;
1227  case MVT::v8i16: OpcodeIndex = 1; break;
1228  case MVT::v4f32:
1229  case MVT::v4i32: OpcodeIndex = 2; break;
1230  case MVT::v2i64: OpcodeIndex = 3;
1231    assert(NumVecs == 1 && "v2i64 type only supported for VST1");
1232    break;
1233  }
1234
1235  SDValue Pred = getAL(CurDAG);
1236  SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
1237
1238  SmallVector<SDValue, 10> Ops;
1239  Ops.push_back(MemAddr);
1240  Ops.push_back(Align);
1241
1242  if (is64BitVector) {
1243    if (NumVecs >= 2) {
1244      SDValue RegSeq;
1245      SDValue V0 = N->getOperand(0+3);
1246      SDValue V1 = N->getOperand(1+3);
1247
1248      // Form a REG_SEQUENCE to force register allocation.
1249      if (NumVecs == 2)
1250        RegSeq = SDValue(PairDRegs(MVT::v2i64, V0, V1), 0);
1251      else {
1252        SDValue V2 = N->getOperand(2+3);
1253        // If it's a vld3, form a quad D-register and leave the last part as
1254        // an undef.
1255        SDValue V3 = (NumVecs == 3)
1256          ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,dl,VT), 0)
1257          : N->getOperand(3+3);
1258        RegSeq = SDValue(QuadDRegs(MVT::v4i64, V0, V1, V2, V3), 0);
1259      }
1260
1261      // Now extract the D registers back out.
1262      Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_0, dl, VT,
1263                                                   RegSeq));
1264      Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_1, dl, VT,
1265                                                   RegSeq));
1266      if (NumVecs > 2)
1267        Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_2, dl, VT,
1268                                                     RegSeq));
1269      if (NumVecs > 3)
1270        Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_3, dl, VT,
1271                                                     RegSeq));
1272    } else {
1273      for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
1274        Ops.push_back(N->getOperand(Vec+3));
1275    }
1276    Ops.push_back(Pred);
1277    Ops.push_back(Reg0); // predicate register
1278    Ops.push_back(Chain);
1279    unsigned Opc = DOpcodes[OpcodeIndex];
1280    return CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops.data(), NumVecs+5);
1281  }
1282
1283  EVT RegVT = GetNEONSubregVT(VT);
1284  if (NumVecs <= 2) {
1285    // Quad registers are directly supported for VST1 and VST2,
1286    // storing pairs of D regs.
1287    unsigned Opc = QOpcodes0[OpcodeIndex];
1288    if (NumVecs == 2) {
1289      // First extract the pair of Q registers.
1290      SDValue Q0 = N->getOperand(3);
1291      SDValue Q1 = N->getOperand(4);
1292
1293      // Form a QQ register.
1294      SDValue QQ = SDValue(PairQRegs(MVT::v4i64, Q0, Q1), 0);
1295
1296      // Now extract the D registers back out.
1297      Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_0, dl, RegVT,
1298                                                   QQ));
1299      Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_1, dl, RegVT,
1300                                                   QQ));
1301      Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_2, dl, RegVT,
1302                                                   QQ));
1303      Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_3, dl, RegVT,
1304                                                   QQ));
1305      Ops.push_back(Pred);
1306      Ops.push_back(Reg0); // predicate register
1307      Ops.push_back(Chain);
1308      return CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops.data(), 5 + 4);
1309    } else {
1310      for (unsigned Vec = 0; Vec < NumVecs; ++Vec) {
1311        Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_0, dl, RegVT,
1312                                                     N->getOperand(Vec+3)));
1313        Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_1, dl, RegVT,
1314                                                     N->getOperand(Vec+3)));
1315      }
1316      Ops.push_back(Pred);
1317      Ops.push_back(Reg0); // predicate register
1318      Ops.push_back(Chain);
1319      return CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops.data(),
1320                                    5 + 2 * NumVecs);
1321    }
1322  }
1323
1324  // Otherwise, quad registers are stored with two separate instructions,
1325  // where one stores the even registers and the other stores the odd registers.
1326
1327  // Form the QQQQ REG_SEQUENCE.
1328  SDValue V[8];
1329  for (unsigned Vec = 0, i = 0; Vec < NumVecs; ++Vec, i+=2) {
1330    V[i]   = CurDAG->getTargetExtractSubreg(ARM::dsub_0, dl, RegVT,
1331                                            N->getOperand(Vec+3));
1332    V[i+1] = CurDAG->getTargetExtractSubreg(ARM::dsub_1, dl, RegVT,
1333                                            N->getOperand(Vec+3));
1334  }
1335  if (NumVecs == 3)
1336    V[6] = V[7] = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
1337                                                 dl, RegVT), 0);
1338
1339  SDValue RegSeq = SDValue(OctoDRegs(MVT::v8i64, V[0], V[1], V[2], V[3],
1340                                     V[4], V[5], V[6], V[7]), 0);
1341
1342  // Store the even D registers.
1343  assert(ARM::dsub_7 == ARM::dsub_0+7 && "Unexpected subreg numbering");
1344  Ops.push_back(Reg0); // post-access address offset
1345  for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
1346    Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_0+Vec*2, dl,
1347                                                 RegVT, RegSeq));
1348  Ops.push_back(Pred);
1349  Ops.push_back(Reg0); // predicate register
1350  Ops.push_back(Chain);
1351  unsigned Opc = QOpcodes0[OpcodeIndex];
1352  SDNode *VStA = CurDAG->getMachineNode(Opc, dl, MemAddr.getValueType(),
1353                                        MVT::Other, Ops.data(), NumVecs+6);
1354  Chain = SDValue(VStA, 1);
1355
1356  // Store the odd D registers.
1357  Ops[0] = SDValue(VStA, 0); // MemAddr
1358  for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
1359    Ops[Vec+3] = CurDAG->getTargetExtractSubreg(ARM::dsub_1+Vec*2, dl,
1360                                                RegVT, RegSeq);
1361  Ops[NumVecs+5] = Chain;
1362  Opc = QOpcodes1[OpcodeIndex];
1363  SDNode *VStB = CurDAG->getMachineNode(Opc, dl, MemAddr.getValueType(),
1364                                        MVT::Other, Ops.data(), NumVecs+6);
1365  Chain = SDValue(VStB, 1);
1366  ReplaceUses(SDValue(N, 0), Chain);
1367  return NULL;
1368}
1369
1370SDNode *ARMDAGToDAGISel::SelectVLDSTLane(SDNode *N, bool IsLoad,
1371                                         unsigned NumVecs, unsigned *DOpcodes,
1372                                         unsigned *QOpcodes0,
1373                                         unsigned *QOpcodes1) {
1374  assert(NumVecs >=2 && NumVecs <= 4 && "VLDSTLane NumVecs out-of-range");
1375  DebugLoc dl = N->getDebugLoc();
1376
1377  SDValue MemAddr, Align;
1378  if (!SelectAddrMode6(N, N->getOperand(2), MemAddr, Align))
1379    return NULL;
1380
1381  SDValue Chain = N->getOperand(0);
1382  unsigned Lane =
1383    cast<ConstantSDNode>(N->getOperand(NumVecs+3))->getZExtValue();
1384  EVT VT = IsLoad ? N->getValueType(0) : N->getOperand(3).getValueType();
1385  bool is64BitVector = VT.is64BitVector();
1386
1387  // Quad registers are handled by load/store of subregs. Find the subreg info.
1388  unsigned NumElts = 0;
1389  bool Even = false;
1390  EVT RegVT = VT;
1391  if (!is64BitVector) {
1392    RegVT = GetNEONSubregVT(VT);
1393    NumElts = RegVT.getVectorNumElements();
1394    Even = Lane < NumElts;
1395  }
1396
1397  unsigned OpcodeIndex;
1398  switch (VT.getSimpleVT().SimpleTy) {
1399  default: llvm_unreachable("unhandled vld/vst lane type");
1400    // Double-register operations:
1401  case MVT::v8i8:  OpcodeIndex = 0; break;
1402  case MVT::v4i16: OpcodeIndex = 1; break;
1403  case MVT::v2f32:
1404  case MVT::v2i32: OpcodeIndex = 2; break;
1405    // Quad-register operations:
1406  case MVT::v8i16: OpcodeIndex = 0; break;
1407  case MVT::v4f32:
1408  case MVT::v4i32: OpcodeIndex = 1; break;
1409  }
1410
1411  SDValue Pred = getAL(CurDAG);
1412  SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
1413
1414  SmallVector<SDValue, 10> Ops;
1415  Ops.push_back(MemAddr);
1416  Ops.push_back(Align);
1417
1418  unsigned Opc = 0;
1419  if (is64BitVector) {
1420    Opc = DOpcodes[OpcodeIndex];
1421    SDValue RegSeq;
1422    SDValue V0 = N->getOperand(0+3);
1423    SDValue V1 = N->getOperand(1+3);
1424    if (NumVecs == 2) {
1425      RegSeq = SDValue(PairDRegs(MVT::v2i64, V0, V1), 0);
1426    } else {
1427      SDValue V2 = N->getOperand(2+3);
1428      SDValue V3 = (NumVecs == 3)
1429        ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,dl,VT), 0)
1430        : N->getOperand(3+3);
1431      RegSeq = SDValue(QuadDRegs(MVT::v4i64, V0, V1, V2, V3), 0);
1432    }
1433
1434    // Now extract the D registers back out.
1435    Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_0, dl, VT, RegSeq));
1436    Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_1, dl, VT, RegSeq));
1437    if (NumVecs > 2)
1438      Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_2, dl, VT,RegSeq));
1439    if (NumVecs > 3)
1440      Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_3, dl, VT,RegSeq));
1441  } else {
1442    // Check if this is loading the even or odd subreg of a Q register.
1443    if (Lane < NumElts) {
1444      Opc = QOpcodes0[OpcodeIndex];
1445    } else {
1446      Lane -= NumElts;
1447      Opc = QOpcodes1[OpcodeIndex];
1448    }
1449
1450    SDValue RegSeq;
1451    SDValue V0 = N->getOperand(0+3);
1452    SDValue V1 = N->getOperand(1+3);
1453    if (NumVecs == 2) {
1454      RegSeq = SDValue(PairQRegs(MVT::v4i64, V0, V1), 0);
1455    } else {
1456      SDValue V2 = N->getOperand(2+3);
1457      SDValue V3 = (NumVecs == 3)
1458        ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,dl,VT), 0)
1459        : N->getOperand(3+3);
1460      RegSeq = SDValue(QuadQRegs(MVT::v8i64, V0, V1, V2, V3), 0);
1461    }
1462
1463    // Extract the subregs of the input vector.
1464    unsigned SubIdx = Even ? ARM::dsub_0 : ARM::dsub_1;
1465    for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
1466      Ops.push_back(CurDAG->getTargetExtractSubreg(SubIdx+Vec*2, dl, RegVT,
1467                                                   RegSeq));
1468  }
1469  Ops.push_back(getI32Imm(Lane));
1470  Ops.push_back(Pred);
1471  Ops.push_back(Reg0);
1472  Ops.push_back(Chain);
1473
1474  if (!IsLoad)
1475    return CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops.data(), NumVecs+6);
1476
1477  std::vector<EVT> ResTys(NumVecs, RegVT);
1478  ResTys.push_back(MVT::Other);
1479  SDNode *VLdLn = CurDAG->getMachineNode(Opc, dl, ResTys, Ops.data(),NumVecs+6);
1480
1481  // Form a REG_SEQUENCE to force register allocation.
1482  SDValue RegSeq;
1483  if (is64BitVector) {
1484    SDValue V0 = SDValue(VLdLn, 0);
1485    SDValue V1 = SDValue(VLdLn, 1);
1486    if (NumVecs == 2) {
1487      RegSeq = SDValue(PairDRegs(MVT::v2i64, V0, V1), 0);
1488    } else {
1489      SDValue V2 = SDValue(VLdLn, 2);
1490      // If it's a vld3, form a quad D-register but discard the last part.
1491      SDValue V3 = (NumVecs == 3)
1492        ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,dl,VT), 0)
1493        : SDValue(VLdLn, 3);
1494      RegSeq = SDValue(QuadDRegs(MVT::v4i64, V0, V1, V2, V3), 0);
1495    }
1496  } else {
1497    // For 128-bit vectors, take the 64-bit results of the load and insert
1498    // them as subregs into the result.
1499    SDValue V[8];
1500    for (unsigned Vec = 0, i = 0; Vec < NumVecs; ++Vec, i+=2) {
1501      if (Even) {
1502        V[i]   = SDValue(VLdLn, Vec);
1503        V[i+1] = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
1504                                                dl, RegVT), 0);
1505      } else {
1506        V[i]   = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
1507                                                dl, RegVT), 0);
1508        V[i+1] = SDValue(VLdLn, Vec);
1509      }
1510    }
1511    if (NumVecs == 3)
1512      V[6] = V[7] = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
1513                                                   dl, RegVT), 0);
1514
1515    if (NumVecs == 2)
1516      RegSeq = SDValue(QuadDRegs(MVT::v4i64, V[0], V[1], V[2], V[3]), 0);
1517    else
1518      RegSeq = SDValue(OctoDRegs(MVT::v8i64, V[0], V[1], V[2], V[3],
1519                                 V[4], V[5], V[6], V[7]), 0);
1520  }
1521
1522  assert(ARM::dsub_7 == ARM::dsub_0+7 && "Unexpected subreg numbering");
1523  assert(ARM::qsub_3 == ARM::qsub_0+3 && "Unexpected subreg numbering");
1524  unsigned SubIdx = is64BitVector ? ARM::dsub_0 : ARM::qsub_0;
1525  for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
1526    ReplaceUses(SDValue(N, Vec),
1527                CurDAG->getTargetExtractSubreg(SubIdx+Vec, dl, VT, RegSeq));
1528  ReplaceUses(SDValue(N, NumVecs), SDValue(VLdLn, NumVecs));
1529  return NULL;
1530}
1531
1532SDNode *ARMDAGToDAGISel::SelectVTBL(SDNode *N, bool IsExt, unsigned NumVecs,
1533                                    unsigned Opc) {
1534  assert(NumVecs >= 2 && NumVecs <= 4 && "VTBL NumVecs out-of-range");
1535  DebugLoc dl = N->getDebugLoc();
1536  EVT VT = N->getValueType(0);
1537  unsigned FirstTblReg = IsExt ? 2 : 1;
1538
1539  // Form a REG_SEQUENCE to force register allocation.
1540  SDValue RegSeq;
1541  SDValue V0 = N->getOperand(FirstTblReg + 0);
1542  SDValue V1 = N->getOperand(FirstTblReg + 1);
1543  if (NumVecs == 2)
1544    RegSeq = SDValue(PairDRegs(MVT::v16i8, V0, V1), 0);
1545  else {
1546    SDValue V2 = N->getOperand(FirstTblReg + 2);
1547    // If it's a vtbl3, form a quad D-register and leave the last part as
1548    // an undef.
1549    SDValue V3 = (NumVecs == 3)
1550      ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, VT), 0)
1551      : N->getOperand(FirstTblReg + 3);
1552    RegSeq = SDValue(QuadDRegs(MVT::v4i64, V0, V1, V2, V3), 0);
1553  }
1554
1555  // Now extract the D registers back out.
1556  SmallVector<SDValue, 6> Ops;
1557  if (IsExt)
1558    Ops.push_back(N->getOperand(1));
1559  Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_0, dl, VT, RegSeq));
1560  Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_1, dl, VT, RegSeq));
1561  if (NumVecs > 2)
1562    Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_2, dl, VT, RegSeq));
1563  if (NumVecs > 3)
1564    Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::dsub_3, dl, VT, RegSeq));
1565
1566  Ops.push_back(N->getOperand(FirstTblReg + NumVecs));
1567  Ops.push_back(getAL(CurDAG)); // predicate
1568  Ops.push_back(CurDAG->getRegister(0, MVT::i32)); // predicate register
1569  return CurDAG->getMachineNode(Opc, dl, VT, Ops.data(), Ops.size());
1570}
1571
1572SDNode *ARMDAGToDAGISel::SelectV6T2BitfieldExtractOp(SDNode *N,
1573                                                     bool isSigned) {
1574  if (!Subtarget->hasV6T2Ops())
1575    return NULL;
1576
1577  unsigned Opc = isSigned ? (Subtarget->isThumb() ? ARM::t2SBFX : ARM::SBFX)
1578    : (Subtarget->isThumb() ? ARM::t2UBFX : ARM::UBFX);
1579
1580
1581  // For unsigned extracts, check for a shift right and mask
1582  unsigned And_imm = 0;
1583  if (N->getOpcode() == ISD::AND) {
1584    if (isOpcWithIntImmediate(N, ISD::AND, And_imm)) {
1585
1586      // The immediate is a mask of the low bits iff imm & (imm+1) == 0
1587      if (And_imm & (And_imm + 1))
1588        return NULL;
1589
1590      unsigned Srl_imm = 0;
1591      if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SRL,
1592                                Srl_imm)) {
1593        assert(Srl_imm > 0 && Srl_imm < 32 && "bad amount in shift node!");
1594
1595        unsigned Width = CountTrailingOnes_32(And_imm);
1596        unsigned LSB = Srl_imm;
1597        SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
1598        SDValue Ops[] = { N->getOperand(0).getOperand(0),
1599                          CurDAG->getTargetConstant(LSB, MVT::i32),
1600                          CurDAG->getTargetConstant(Width, MVT::i32),
1601          getAL(CurDAG), Reg0 };
1602        return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 5);
1603      }
1604    }
1605    return NULL;
1606  }
1607
1608  // Otherwise, we're looking for a shift of a shift
1609  unsigned Shl_imm = 0;
1610  if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SHL, Shl_imm)) {
1611    assert(Shl_imm > 0 && Shl_imm < 32 && "bad amount in shift node!");
1612    unsigned Srl_imm = 0;
1613    if (isInt32Immediate(N->getOperand(1), Srl_imm)) {
1614      assert(Srl_imm > 0 && Srl_imm < 32 && "bad amount in shift node!");
1615      unsigned Width = 32 - Srl_imm;
1616      int LSB = Srl_imm - Shl_imm;
1617      if (LSB < 0)
1618        return NULL;
1619      SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
1620      SDValue Ops[] = { N->getOperand(0).getOperand(0),
1621                        CurDAG->getTargetConstant(LSB, MVT::i32),
1622                        CurDAG->getTargetConstant(Width, MVT::i32),
1623                        getAL(CurDAG), Reg0 };
1624      return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 5);
1625    }
1626  }
1627  return NULL;
1628}
1629
1630SDNode *ARMDAGToDAGISel::
1631SelectT2CMOVShiftOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
1632                    ARMCC::CondCodes CCVal, SDValue CCR, SDValue InFlag) {
1633  SDValue CPTmp0;
1634  SDValue CPTmp1;
1635  if (SelectT2ShifterOperandReg(N, TrueVal, CPTmp0, CPTmp1)) {
1636    unsigned SOVal = cast<ConstantSDNode>(CPTmp1)->getZExtValue();
1637    unsigned SOShOp = ARM_AM::getSORegShOp(SOVal);
1638    unsigned Opc = 0;
1639    switch (SOShOp) {
1640    case ARM_AM::lsl: Opc = ARM::t2MOVCClsl; break;
1641    case ARM_AM::lsr: Opc = ARM::t2MOVCClsr; break;
1642    case ARM_AM::asr: Opc = ARM::t2MOVCCasr; break;
1643    case ARM_AM::ror: Opc = ARM::t2MOVCCror; break;
1644    default:
1645      llvm_unreachable("Unknown so_reg opcode!");
1646      break;
1647    }
1648    SDValue SOShImm =
1649      CurDAG->getTargetConstant(ARM_AM::getSORegOffset(SOVal), MVT::i32);
1650    SDValue CC = CurDAG->getTargetConstant(CCVal, MVT::i32);
1651    SDValue Ops[] = { FalseVal, CPTmp0, SOShImm, CC, CCR, InFlag };
1652    return CurDAG->SelectNodeTo(N, Opc, MVT::i32,Ops, 6);
1653  }
1654  return 0;
1655}
1656
1657SDNode *ARMDAGToDAGISel::
1658SelectARMCMOVShiftOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
1659                     ARMCC::CondCodes CCVal, SDValue CCR, SDValue InFlag) {
1660  SDValue CPTmp0;
1661  SDValue CPTmp1;
1662  SDValue CPTmp2;
1663  if (SelectShifterOperandReg(N, TrueVal, CPTmp0, CPTmp1, CPTmp2)) {
1664    SDValue CC = CurDAG->getTargetConstant(CCVal, MVT::i32);
1665    SDValue Ops[] = { FalseVal, CPTmp0, CPTmp1, CPTmp2, CC, CCR, InFlag };
1666    return CurDAG->SelectNodeTo(N, ARM::MOVCCs, MVT::i32, Ops, 7);
1667  }
1668  return 0;
1669}
1670
1671SDNode *ARMDAGToDAGISel::
1672SelectT2CMOVSoImmOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
1673                    ARMCC::CondCodes CCVal, SDValue CCR, SDValue InFlag) {
1674  ConstantSDNode *T = dyn_cast<ConstantSDNode>(TrueVal);
1675  if (!T)
1676    return 0;
1677
1678  if (Predicate_t2_so_imm(TrueVal.getNode())) {
1679    SDValue True = CurDAG->getTargetConstant(T->getZExtValue(), MVT::i32);
1680    SDValue CC = CurDAG->getTargetConstant(CCVal, MVT::i32);
1681    SDValue Ops[] = { FalseVal, True, CC, CCR, InFlag };
1682    return CurDAG->SelectNodeTo(N,
1683                                ARM::t2MOVCCi, MVT::i32, Ops, 5);
1684  }
1685  return 0;
1686}
1687
1688SDNode *ARMDAGToDAGISel::
1689SelectARMCMOVSoImmOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
1690                     ARMCC::CondCodes CCVal, SDValue CCR, SDValue InFlag) {
1691  ConstantSDNode *T = dyn_cast<ConstantSDNode>(TrueVal);
1692  if (!T)
1693    return 0;
1694
1695  if (Predicate_so_imm(TrueVal.getNode())) {
1696    SDValue True = CurDAG->getTargetConstant(T->getZExtValue(), MVT::i32);
1697    SDValue CC = CurDAG->getTargetConstant(CCVal, MVT::i32);
1698    SDValue Ops[] = { FalseVal, True, CC, CCR, InFlag };
1699    return CurDAG->SelectNodeTo(N,
1700                                ARM::MOVCCi, MVT::i32, Ops, 5);
1701  }
1702  return 0;
1703}
1704
1705SDNode *ARMDAGToDAGISel::SelectCMOVOp(SDNode *N) {
1706  EVT VT = N->getValueType(0);
1707  SDValue FalseVal = N->getOperand(0);
1708  SDValue TrueVal  = N->getOperand(1);
1709  SDValue CC = N->getOperand(2);
1710  SDValue CCR = N->getOperand(3);
1711  SDValue InFlag = N->getOperand(4);
1712  assert(CC.getOpcode() == ISD::Constant);
1713  assert(CCR.getOpcode() == ISD::Register);
1714  ARMCC::CondCodes CCVal =
1715    (ARMCC::CondCodes)cast<ConstantSDNode>(CC)->getZExtValue();
1716
1717  if (!Subtarget->isThumb1Only() && VT == MVT::i32) {
1718    // Pattern: (ARMcmov:i32 GPR:i32:$false, so_reg:i32:$true, (imm:i32):$cc)
1719    // Emits: (MOVCCs:i32 GPR:i32:$false, so_reg:i32:$true, (imm:i32):$cc)
1720    // Pattern complexity = 18  cost = 1  size = 0
1721    SDValue CPTmp0;
1722    SDValue CPTmp1;
1723    SDValue CPTmp2;
1724    if (Subtarget->isThumb()) {
1725      SDNode *Res = SelectT2CMOVShiftOp(N, FalseVal, TrueVal,
1726                                        CCVal, CCR, InFlag);
1727      if (!Res)
1728        Res = SelectT2CMOVShiftOp(N, TrueVal, FalseVal,
1729                               ARMCC::getOppositeCondition(CCVal), CCR, InFlag);
1730      if (Res)
1731        return Res;
1732    } else {
1733      SDNode *Res = SelectARMCMOVShiftOp(N, FalseVal, TrueVal,
1734                                         CCVal, CCR, InFlag);
1735      if (!Res)
1736        Res = SelectARMCMOVShiftOp(N, TrueVal, FalseVal,
1737                               ARMCC::getOppositeCondition(CCVal), CCR, InFlag);
1738      if (Res)
1739        return Res;
1740    }
1741
1742    // Pattern: (ARMcmov:i32 GPR:i32:$false,
1743    //             (imm:i32)<<P:Predicate_so_imm>>:$true,
1744    //             (imm:i32):$cc)
1745    // Emits: (MOVCCi:i32 GPR:i32:$false,
1746    //           (so_imm:i32 (imm:i32):$true), (imm:i32):$cc)
1747    // Pattern complexity = 10  cost = 1  size = 0
1748    if (Subtarget->isThumb()) {
1749      SDNode *Res = SelectT2CMOVSoImmOp(N, FalseVal, TrueVal,
1750                                        CCVal, CCR, InFlag);
1751      if (!Res)
1752        Res = SelectT2CMOVSoImmOp(N, TrueVal, FalseVal,
1753                               ARMCC::getOppositeCondition(CCVal), CCR, InFlag);
1754      if (Res)
1755        return Res;
1756    } else {
1757      SDNode *Res = SelectARMCMOVSoImmOp(N, FalseVal, TrueVal,
1758                                         CCVal, CCR, InFlag);
1759      if (!Res)
1760        Res = SelectARMCMOVSoImmOp(N, TrueVal, FalseVal,
1761                               ARMCC::getOppositeCondition(CCVal), CCR, InFlag);
1762      if (Res)
1763        return Res;
1764    }
1765  }
1766
1767  // Pattern: (ARMcmov:i32 GPR:i32:$false, GPR:i32:$true, (imm:i32):$cc)
1768  // Emits: (MOVCCr:i32 GPR:i32:$false, GPR:i32:$true, (imm:i32):$cc)
1769  // Pattern complexity = 6  cost = 1  size = 0
1770  //
1771  // Pattern: (ARMcmov:i32 GPR:i32:$false, GPR:i32:$true, (imm:i32):$cc)
1772  // Emits: (tMOVCCr:i32 GPR:i32:$false, GPR:i32:$true, (imm:i32):$cc)
1773  // Pattern complexity = 6  cost = 11  size = 0
1774  //
1775  // Also FCPYScc and FCPYDcc.
1776  SDValue Tmp2 = CurDAG->getTargetConstant(CCVal, MVT::i32);
1777  SDValue Ops[] = { FalseVal, TrueVal, Tmp2, CCR, InFlag };
1778  unsigned Opc = 0;
1779  switch (VT.getSimpleVT().SimpleTy) {
1780  default: assert(false && "Illegal conditional move type!");
1781    break;
1782  case MVT::i32:
1783    Opc = Subtarget->isThumb()
1784      ? (Subtarget->hasThumb2() ? ARM::t2MOVCCr : ARM::tMOVCCr_pseudo)
1785      : ARM::MOVCCr;
1786    break;
1787  case MVT::f32:
1788    Opc = ARM::VMOVScc;
1789    break;
1790  case MVT::f64:
1791    Opc = ARM::VMOVDcc;
1792    break;
1793  }
1794  return CurDAG->SelectNodeTo(N, Opc, VT, Ops, 5);
1795}
1796
1797SDNode *ARMDAGToDAGISel::SelectConcatVector(SDNode *N) {
1798  // The only time a CONCAT_VECTORS operation can have legal types is when
1799  // two 64-bit vectors are concatenated to a 128-bit vector.
1800  EVT VT = N->getValueType(0);
1801  if (!VT.is128BitVector() || N->getNumOperands() != 2)
1802    llvm_unreachable("unexpected CONCAT_VECTORS");
1803  DebugLoc dl = N->getDebugLoc();
1804  SDValue V0 = N->getOperand(0);
1805  SDValue V1 = N->getOperand(1);
1806  SDValue SubReg0 = CurDAG->getTargetConstant(ARM::dsub_0, MVT::i32);
1807  SDValue SubReg1 = CurDAG->getTargetConstant(ARM::dsub_1, MVT::i32);
1808  const SDValue Ops[] = { V0, SubReg0, V1, SubReg1 };
1809  return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops, 4);
1810}
1811
1812SDNode *ARMDAGToDAGISel::Select(SDNode *N) {
1813  DebugLoc dl = N->getDebugLoc();
1814
1815  if (N->isMachineOpcode())
1816    return NULL;   // Already selected.
1817
1818  switch (N->getOpcode()) {
1819  default: break;
1820  case ISD::Constant: {
1821    unsigned Val = cast<ConstantSDNode>(N)->getZExtValue();
1822    bool UseCP = true;
1823    if (Subtarget->hasThumb2())
1824      // Thumb2-aware targets have the MOVT instruction, so all immediates can
1825      // be done with MOV + MOVT, at worst.
1826      UseCP = 0;
1827    else {
1828      if (Subtarget->isThumb()) {
1829        UseCP = (Val > 255 &&                          // MOV
1830                 ~Val > 255 &&                         // MOV + MVN
1831                 !ARM_AM::isThumbImmShiftedVal(Val));  // MOV + LSL
1832      } else
1833        UseCP = (ARM_AM::getSOImmVal(Val) == -1 &&     // MOV
1834                 ARM_AM::getSOImmVal(~Val) == -1 &&    // MVN
1835                 !ARM_AM::isSOImmTwoPartVal(Val));     // two instrs.
1836    }
1837
1838    if (UseCP) {
1839      SDValue CPIdx =
1840        CurDAG->getTargetConstantPool(ConstantInt::get(
1841                                  Type::getInt32Ty(*CurDAG->getContext()), Val),
1842                                      TLI.getPointerTy());
1843
1844      SDNode *ResNode;
1845      if (Subtarget->isThumb1Only()) {
1846        SDValue Pred = getAL(CurDAG);
1847        SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
1848        SDValue Ops[] = { CPIdx, Pred, PredReg, CurDAG->getEntryNode() };
1849        ResNode = CurDAG->getMachineNode(ARM::tLDRcp, dl, MVT::i32, MVT::Other,
1850                                         Ops, 4);
1851      } else {
1852        SDValue Ops[] = {
1853          CPIdx,
1854          CurDAG->getRegister(0, MVT::i32),
1855          CurDAG->getTargetConstant(0, MVT::i32),
1856          getAL(CurDAG),
1857          CurDAG->getRegister(0, MVT::i32),
1858          CurDAG->getEntryNode()
1859        };
1860        ResNode=CurDAG->getMachineNode(ARM::LDRcp, dl, MVT::i32, MVT::Other,
1861                                       Ops, 6);
1862      }
1863      ReplaceUses(SDValue(N, 0), SDValue(ResNode, 0));
1864      return NULL;
1865    }
1866
1867    // Other cases are autogenerated.
1868    break;
1869  }
1870  case ISD::FrameIndex: {
1871    // Selects to ADDri FI, 0 which in turn will become ADDri SP, imm.
1872    int FI = cast<FrameIndexSDNode>(N)->getIndex();
1873    SDValue TFI = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
1874    if (Subtarget->isThumb1Only()) {
1875      return CurDAG->SelectNodeTo(N, ARM::tADDrSPi, MVT::i32, TFI,
1876                                  CurDAG->getTargetConstant(0, MVT::i32));
1877    } else {
1878      unsigned Opc = ((Subtarget->isThumb() && Subtarget->hasThumb2()) ?
1879                      ARM::t2ADDri : ARM::ADDri);
1880      SDValue Ops[] = { TFI, CurDAG->getTargetConstant(0, MVT::i32),
1881                        getAL(CurDAG), CurDAG->getRegister(0, MVT::i32),
1882                        CurDAG->getRegister(0, MVT::i32) };
1883      return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 5);
1884    }
1885  }
1886  case ISD::SRL:
1887    if (SDNode *I = SelectV6T2BitfieldExtractOp(N, false))
1888      return I;
1889    break;
1890  case ISD::SRA:
1891    if (SDNode *I = SelectV6T2BitfieldExtractOp(N, true))
1892      return I;
1893    break;
1894  case ISD::MUL:
1895    if (Subtarget->isThumb1Only())
1896      break;
1897    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
1898      unsigned RHSV = C->getZExtValue();
1899      if (!RHSV) break;
1900      if (isPowerOf2_32(RHSV-1)) {  // 2^n+1?
1901        unsigned ShImm = Log2_32(RHSV-1);
1902        if (ShImm >= 32)
1903          break;
1904        SDValue V = N->getOperand(0);
1905        ShImm = ARM_AM::getSORegOpc(ARM_AM::lsl, ShImm);
1906        SDValue ShImmOp = CurDAG->getTargetConstant(ShImm, MVT::i32);
1907        SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
1908        if (Subtarget->isThumb()) {
1909          SDValue Ops[] = { V, V, ShImmOp, getAL(CurDAG), Reg0, Reg0 };
1910          return CurDAG->SelectNodeTo(N, ARM::t2ADDrs, MVT::i32, Ops, 6);
1911        } else {
1912          SDValue Ops[] = { V, V, Reg0, ShImmOp, getAL(CurDAG), Reg0, Reg0 };
1913          return CurDAG->SelectNodeTo(N, ARM::ADDrs, MVT::i32, Ops, 7);
1914        }
1915      }
1916      if (isPowerOf2_32(RHSV+1)) {  // 2^n-1?
1917        unsigned ShImm = Log2_32(RHSV+1);
1918        if (ShImm >= 32)
1919          break;
1920        SDValue V = N->getOperand(0);
1921        ShImm = ARM_AM::getSORegOpc(ARM_AM::lsl, ShImm);
1922        SDValue ShImmOp = CurDAG->getTargetConstant(ShImm, MVT::i32);
1923        SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
1924        if (Subtarget->isThumb()) {
1925          SDValue Ops[] = { V, V, ShImmOp, getAL(CurDAG), Reg0, Reg0 };
1926          return CurDAG->SelectNodeTo(N, ARM::t2RSBrs, MVT::i32, Ops, 6);
1927        } else {
1928          SDValue Ops[] = { V, V, Reg0, ShImmOp, getAL(CurDAG), Reg0, Reg0 };
1929          return CurDAG->SelectNodeTo(N, ARM::RSBrs, MVT::i32, Ops, 7);
1930        }
1931      }
1932    }
1933    break;
1934  case ISD::AND: {
1935    // Check for unsigned bitfield extract
1936    if (SDNode *I = SelectV6T2BitfieldExtractOp(N, false))
1937      return I;
1938
1939    // (and (or x, c2), c1) and top 16-bits of c1 and c2 match, lower 16-bits
1940    // of c1 are 0xffff, and lower 16-bit of c2 are 0. That is, the top 16-bits
1941    // are entirely contributed by c2 and lower 16-bits are entirely contributed
1942    // by x. That's equal to (or (and x, 0xffff), (and c1, 0xffff0000)).
1943    // Select it to: "movt x, ((c1 & 0xffff) >> 16)
1944    EVT VT = N->getValueType(0);
1945    if (VT != MVT::i32)
1946      break;
1947    unsigned Opc = (Subtarget->isThumb() && Subtarget->hasThumb2())
1948      ? ARM::t2MOVTi16
1949      : (Subtarget->hasV6T2Ops() ? ARM::MOVTi16 : 0);
1950    if (!Opc)
1951      break;
1952    SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
1953    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1954    if (!N1C)
1955      break;
1956    if (N0.getOpcode() == ISD::OR && N0.getNode()->hasOneUse()) {
1957      SDValue N2 = N0.getOperand(1);
1958      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
1959      if (!N2C)
1960        break;
1961      unsigned N1CVal = N1C->getZExtValue();
1962      unsigned N2CVal = N2C->getZExtValue();
1963      if ((N1CVal & 0xffff0000U) == (N2CVal & 0xffff0000U) &&
1964          (N1CVal & 0xffffU) == 0xffffU &&
1965          (N2CVal & 0xffffU) == 0x0U) {
1966        SDValue Imm16 = CurDAG->getTargetConstant((N2CVal & 0xFFFF0000U) >> 16,
1967                                                  MVT::i32);
1968        SDValue Ops[] = { N0.getOperand(0), Imm16,
1969                          getAL(CurDAG), CurDAG->getRegister(0, MVT::i32) };
1970        return CurDAG->getMachineNode(Opc, dl, VT, Ops, 4);
1971      }
1972    }
1973    break;
1974  }
1975  case ARMISD::VMOVRRD:
1976    return CurDAG->getMachineNode(ARM::VMOVRRD, dl, MVT::i32, MVT::i32,
1977                                  N->getOperand(0), getAL(CurDAG),
1978                                  CurDAG->getRegister(0, MVT::i32));
1979  case ISD::UMUL_LOHI: {
1980    if (Subtarget->isThumb1Only())
1981      break;
1982    if (Subtarget->isThumb()) {
1983      SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
1984                        getAL(CurDAG), CurDAG->getRegister(0, MVT::i32),
1985                        CurDAG->getRegister(0, MVT::i32) };
1986      return CurDAG->getMachineNode(ARM::t2UMULL, dl, MVT::i32, MVT::i32,Ops,4);
1987    } else {
1988      SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
1989                        getAL(CurDAG), CurDAG->getRegister(0, MVT::i32),
1990                        CurDAG->getRegister(0, MVT::i32) };
1991      return CurDAG->getMachineNode(ARM::UMULL, dl, MVT::i32, MVT::i32, Ops, 5);
1992    }
1993  }
1994  case ISD::SMUL_LOHI: {
1995    if (Subtarget->isThumb1Only())
1996      break;
1997    if (Subtarget->isThumb()) {
1998      SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
1999                        getAL(CurDAG), CurDAG->getRegister(0, MVT::i32) };
2000      return CurDAG->getMachineNode(ARM::t2SMULL, dl, MVT::i32, MVT::i32,Ops,4);
2001    } else {
2002      SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
2003                        getAL(CurDAG), CurDAG->getRegister(0, MVT::i32),
2004                        CurDAG->getRegister(0, MVT::i32) };
2005      return CurDAG->getMachineNode(ARM::SMULL, dl, MVT::i32, MVT::i32, Ops, 5);
2006    }
2007  }
2008  case ISD::LOAD: {
2009    SDNode *ResNode = 0;
2010    if (Subtarget->isThumb() && Subtarget->hasThumb2())
2011      ResNode = SelectT2IndexedLoad(N);
2012    else
2013      ResNode = SelectARMIndexedLoad(N);
2014    if (ResNode)
2015      return ResNode;
2016
2017    // VLDMQ must be custom-selected for "v2f64 load" to set the AM5Opc value.
2018    if (Subtarget->hasVFP2() &&
2019        N->getValueType(0).getSimpleVT().SimpleTy == MVT::v2f64) {
2020      SDValue Chain = N->getOperand(0);
2021      SDValue AM5Opc =
2022        CurDAG->getTargetConstant(ARM_AM::getAM5Opc(ARM_AM::ia, 4), MVT::i32);
2023      SDValue Pred = getAL(CurDAG);
2024      SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
2025      SDValue Ops[] = { N->getOperand(1), AM5Opc, Pred, PredReg, Chain };
2026      MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
2027      MemOp[0] = cast<MemSDNode>(N)->getMemOperand();
2028      SDNode *Ret = CurDAG->getMachineNode(ARM::VLDMQ, dl,
2029                                           MVT::v2f64, MVT::Other, Ops, 5);
2030      cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
2031      return Ret;
2032    }
2033    // Other cases are autogenerated.
2034    break;
2035  }
2036  case ISD::STORE: {
2037    // VSTMQ must be custom-selected for "v2f64 store" to set the AM5Opc value.
2038    if (Subtarget->hasVFP2() &&
2039        N->getOperand(1).getValueType().getSimpleVT().SimpleTy == MVT::v2f64) {
2040      SDValue Chain = N->getOperand(0);
2041      SDValue AM5Opc =
2042        CurDAG->getTargetConstant(ARM_AM::getAM5Opc(ARM_AM::ia, 4), MVT::i32);
2043      SDValue Pred = getAL(CurDAG);
2044      SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
2045      SDValue Ops[] = { N->getOperand(1), N->getOperand(2),
2046                        AM5Opc, Pred, PredReg, Chain };
2047      MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
2048      MemOp[0] = cast<MemSDNode>(N)->getMemOperand();
2049      SDNode *Ret = CurDAG->getMachineNode(ARM::VSTMQ, dl, MVT::Other, Ops, 6);
2050      cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
2051      return Ret;
2052    }
2053    // Other cases are autogenerated.
2054    break;
2055  }
2056  case ARMISD::BRCOND: {
2057    // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc)
2058    // Emits: (Bcc:void (bb:Other):$dst, (imm:i32):$cc)
2059    // Pattern complexity = 6  cost = 1  size = 0
2060
2061    // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc)
2062    // Emits: (tBcc:void (bb:Other):$dst, (imm:i32):$cc)
2063    // Pattern complexity = 6  cost = 1  size = 0
2064
2065    // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc)
2066    // Emits: (t2Bcc:void (bb:Other):$dst, (imm:i32):$cc)
2067    // Pattern complexity = 6  cost = 1  size = 0
2068
2069    unsigned Opc = Subtarget->isThumb() ?
2070      ((Subtarget->hasThumb2()) ? ARM::t2Bcc : ARM::tBcc) : ARM::Bcc;
2071    SDValue Chain = N->getOperand(0);
2072    SDValue N1 = N->getOperand(1);
2073    SDValue N2 = N->getOperand(2);
2074    SDValue N3 = N->getOperand(3);
2075    SDValue InFlag = N->getOperand(4);
2076    assert(N1.getOpcode() == ISD::BasicBlock);
2077    assert(N2.getOpcode() == ISD::Constant);
2078    assert(N3.getOpcode() == ISD::Register);
2079
2080    SDValue Tmp2 = CurDAG->getTargetConstant(((unsigned)
2081                               cast<ConstantSDNode>(N2)->getZExtValue()),
2082                               MVT::i32);
2083    SDValue Ops[] = { N1, Tmp2, N3, Chain, InFlag };
2084    SDNode *ResNode = CurDAG->getMachineNode(Opc, dl, MVT::Other,
2085                                             MVT::Flag, Ops, 5);
2086    Chain = SDValue(ResNode, 0);
2087    if (N->getNumValues() == 2) {
2088      InFlag = SDValue(ResNode, 1);
2089      ReplaceUses(SDValue(N, 1), InFlag);
2090    }
2091    ReplaceUses(SDValue(N, 0),
2092                SDValue(Chain.getNode(), Chain.getResNo()));
2093    return NULL;
2094  }
2095  case ARMISD::CMOV:
2096    return SelectCMOVOp(N);
2097  case ARMISD::CNEG: {
2098    EVT VT = N->getValueType(0);
2099    SDValue N0 = N->getOperand(0);
2100    SDValue N1 = N->getOperand(1);
2101    SDValue N2 = N->getOperand(2);
2102    SDValue N3 = N->getOperand(3);
2103    SDValue InFlag = N->getOperand(4);
2104    assert(N2.getOpcode() == ISD::Constant);
2105    assert(N3.getOpcode() == ISD::Register);
2106
2107    SDValue Tmp2 = CurDAG->getTargetConstant(((unsigned)
2108                               cast<ConstantSDNode>(N2)->getZExtValue()),
2109                               MVT::i32);
2110    SDValue Ops[] = { N0, N1, Tmp2, N3, InFlag };
2111    unsigned Opc = 0;
2112    switch (VT.getSimpleVT().SimpleTy) {
2113    default: assert(false && "Illegal conditional move type!");
2114      break;
2115    case MVT::f32:
2116      Opc = ARM::VNEGScc;
2117      break;
2118    case MVT::f64:
2119      Opc = ARM::VNEGDcc;
2120      break;
2121    }
2122    return CurDAG->SelectNodeTo(N, Opc, VT, Ops, 5);
2123  }
2124
2125  case ARMISD::VZIP: {
2126    unsigned Opc = 0;
2127    EVT VT = N->getValueType(0);
2128    switch (VT.getSimpleVT().SimpleTy) {
2129    default: return NULL;
2130    case MVT::v8i8:  Opc = ARM::VZIPd8; break;
2131    case MVT::v4i16: Opc = ARM::VZIPd16; break;
2132    case MVT::v2f32:
2133    case MVT::v2i32: Opc = ARM::VZIPd32; break;
2134    case MVT::v16i8: Opc = ARM::VZIPq8; break;
2135    case MVT::v8i16: Opc = ARM::VZIPq16; break;
2136    case MVT::v4f32:
2137    case MVT::v4i32: Opc = ARM::VZIPq32; break;
2138    }
2139    SDValue Pred = getAL(CurDAG);
2140    SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
2141    SDValue Ops[] = { N->getOperand(0), N->getOperand(1), Pred, PredReg };
2142    return CurDAG->getMachineNode(Opc, dl, VT, VT, Ops, 4);
2143  }
2144  case ARMISD::VUZP: {
2145    unsigned Opc = 0;
2146    EVT VT = N->getValueType(0);
2147    switch (VT.getSimpleVT().SimpleTy) {
2148    default: return NULL;
2149    case MVT::v8i8:  Opc = ARM::VUZPd8; break;
2150    case MVT::v4i16: Opc = ARM::VUZPd16; break;
2151    case MVT::v2f32:
2152    case MVT::v2i32: Opc = ARM::VUZPd32; break;
2153    case MVT::v16i8: Opc = ARM::VUZPq8; break;
2154    case MVT::v8i16: Opc = ARM::VUZPq16; break;
2155    case MVT::v4f32:
2156    case MVT::v4i32: Opc = ARM::VUZPq32; break;
2157    }
2158    SDValue Pred = getAL(CurDAG);
2159    SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
2160    SDValue Ops[] = { N->getOperand(0), N->getOperand(1), Pred, PredReg };
2161    return CurDAG->getMachineNode(Opc, dl, VT, VT, Ops, 4);
2162  }
2163  case ARMISD::VTRN: {
2164    unsigned Opc = 0;
2165    EVT VT = N->getValueType(0);
2166    switch (VT.getSimpleVT().SimpleTy) {
2167    default: return NULL;
2168    case MVT::v8i8:  Opc = ARM::VTRNd8; break;
2169    case MVT::v4i16: Opc = ARM::VTRNd16; break;
2170    case MVT::v2f32:
2171    case MVT::v2i32: Opc = ARM::VTRNd32; break;
2172    case MVT::v16i8: Opc = ARM::VTRNq8; break;
2173    case MVT::v8i16: Opc = ARM::VTRNq16; break;
2174    case MVT::v4f32:
2175    case MVT::v4i32: Opc = ARM::VTRNq32; break;
2176    }
2177    SDValue Pred = getAL(CurDAG);
2178    SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
2179    SDValue Ops[] = { N->getOperand(0), N->getOperand(1), Pred, PredReg };
2180    return CurDAG->getMachineNode(Opc, dl, VT, VT, Ops, 4);
2181  }
2182  case ARMISD::BUILD_VECTOR: {
2183    EVT VecVT = N->getValueType(0);
2184    EVT EltVT = VecVT.getVectorElementType();
2185    unsigned NumElts = VecVT.getVectorNumElements();
2186    if (EltVT.getSimpleVT() == MVT::f64) {
2187      assert(NumElts == 2 && "unexpected type for BUILD_VECTOR");
2188      return PairDRegs(VecVT, N->getOperand(0), N->getOperand(1));
2189    }
2190    assert(EltVT.getSimpleVT() == MVT::f32 &&
2191           "unexpected type for BUILD_VECTOR");
2192    if (NumElts == 2)
2193      return PairSRegs(VecVT, N->getOperand(0), N->getOperand(1));
2194    assert(NumElts == 4 && "unexpected type for BUILD_VECTOR");
2195    return QuadSRegs(VecVT, N->getOperand(0), N->getOperand(1),
2196                     N->getOperand(2), N->getOperand(3));
2197  }
2198
2199  case ISD::INTRINSIC_VOID:
2200  case ISD::INTRINSIC_W_CHAIN: {
2201    unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
2202    switch (IntNo) {
2203    default:
2204      break;
2205
2206    case Intrinsic::arm_neon_vld1: {
2207      unsigned DOpcodes[] = { ARM::VLD1d8, ARM::VLD1d16,
2208                              ARM::VLD1d32, ARM::VLD1d64 };
2209      unsigned QOpcodes[] = { ARM::VLD1q8, ARM::VLD1q16,
2210                              ARM::VLD1q32, ARM::VLD1q64 };
2211      return SelectVLD(N, 1, DOpcodes, QOpcodes, 0);
2212    }
2213
2214    case Intrinsic::arm_neon_vld2: {
2215      unsigned DOpcodes[] = { ARM::VLD2d8, ARM::VLD2d16,
2216                              ARM::VLD2d32, ARM::VLD1q64 };
2217      unsigned QOpcodes[] = { ARM::VLD2q8, ARM::VLD2q16, ARM::VLD2q32 };
2218      return SelectVLD(N, 2, DOpcodes, QOpcodes, 0);
2219    }
2220
2221    case Intrinsic::arm_neon_vld3: {
2222      unsigned DOpcodes[] = { ARM::VLD3d8, ARM::VLD3d16,
2223                              ARM::VLD3d32, ARM::VLD1d64T };
2224      unsigned QOpcodes0[] = { ARM::VLD3q8_UPD,
2225                               ARM::VLD3q16_UPD,
2226                               ARM::VLD3q32_UPD };
2227      unsigned QOpcodes1[] = { ARM::VLD3q8odd_UPD,
2228                               ARM::VLD3q16odd_UPD,
2229                               ARM::VLD3q32odd_UPD };
2230      return SelectVLD(N, 3, DOpcodes, QOpcodes0, QOpcodes1);
2231    }
2232
2233    case Intrinsic::arm_neon_vld4: {
2234      unsigned DOpcodes[] = { ARM::VLD4d8, ARM::VLD4d16,
2235                              ARM::VLD4d32, ARM::VLD1d64Q };
2236      unsigned QOpcodes0[] = { ARM::VLD4q8_UPD,
2237                               ARM::VLD4q16_UPD,
2238                               ARM::VLD4q32_UPD };
2239      unsigned QOpcodes1[] = { ARM::VLD4q8odd_UPD,
2240                               ARM::VLD4q16odd_UPD,
2241                               ARM::VLD4q32odd_UPD };
2242      return SelectVLD(N, 4, DOpcodes, QOpcodes0, QOpcodes1);
2243    }
2244
2245    case Intrinsic::arm_neon_vld2lane: {
2246      unsigned DOpcodes[] = { ARM::VLD2LNd8, ARM::VLD2LNd16, ARM::VLD2LNd32 };
2247      unsigned QOpcodes0[] = { ARM::VLD2LNq16, ARM::VLD2LNq32 };
2248      unsigned QOpcodes1[] = { ARM::VLD2LNq16odd, ARM::VLD2LNq32odd };
2249      return SelectVLDSTLane(N, true, 2, DOpcodes, QOpcodes0, QOpcodes1);
2250    }
2251
2252    case Intrinsic::arm_neon_vld3lane: {
2253      unsigned DOpcodes[] = { ARM::VLD3LNd8, ARM::VLD3LNd16, ARM::VLD3LNd32 };
2254      unsigned QOpcodes0[] = { ARM::VLD3LNq16, ARM::VLD3LNq32 };
2255      unsigned QOpcodes1[] = { ARM::VLD3LNq16odd, ARM::VLD3LNq32odd };
2256      return SelectVLDSTLane(N, true, 3, DOpcodes, QOpcodes0, QOpcodes1);
2257    }
2258
2259    case Intrinsic::arm_neon_vld4lane: {
2260      unsigned DOpcodes[] = { ARM::VLD4LNd8, ARM::VLD4LNd16, ARM::VLD4LNd32 };
2261      unsigned QOpcodes0[] = { ARM::VLD4LNq16, ARM::VLD4LNq32 };
2262      unsigned QOpcodes1[] = { ARM::VLD4LNq16odd, ARM::VLD4LNq32odd };
2263      return SelectVLDSTLane(N, true, 4, DOpcodes, QOpcodes0, QOpcodes1);
2264    }
2265
2266    case Intrinsic::arm_neon_vst1: {
2267      unsigned DOpcodes[] = { ARM::VST1d8, ARM::VST1d16,
2268                              ARM::VST1d32, ARM::VST1d64 };
2269      unsigned QOpcodes[] = { ARM::VST1q8, ARM::VST1q16,
2270                              ARM::VST1q32, ARM::VST1q64 };
2271      return SelectVST(N, 1, DOpcodes, QOpcodes, 0);
2272    }
2273
2274    case Intrinsic::arm_neon_vst2: {
2275      unsigned DOpcodes[] = { ARM::VST2d8, ARM::VST2d16,
2276                              ARM::VST2d32, ARM::VST1q64 };
2277      unsigned QOpcodes[] = { ARM::VST2q8, ARM::VST2q16, ARM::VST2q32 };
2278      return SelectVST(N, 2, DOpcodes, QOpcodes, 0);
2279    }
2280
2281    case Intrinsic::arm_neon_vst3: {
2282      unsigned DOpcodes[] = { ARM::VST3d8, ARM::VST3d16,
2283                              ARM::VST3d32, ARM::VST1d64T };
2284      unsigned QOpcodes0[] = { ARM::VST3q8_UPD,
2285                               ARM::VST3q16_UPD,
2286                               ARM::VST3q32_UPD };
2287      unsigned QOpcodes1[] = { ARM::VST3q8odd_UPD,
2288                               ARM::VST3q16odd_UPD,
2289                               ARM::VST3q32odd_UPD };
2290      return SelectVST(N, 3, DOpcodes, QOpcodes0, QOpcodes1);
2291    }
2292
2293    case Intrinsic::arm_neon_vst4: {
2294      unsigned DOpcodes[] = { ARM::VST4d8, ARM::VST4d16,
2295                              ARM::VST4d32, ARM::VST1d64Q };
2296      unsigned QOpcodes0[] = { ARM::VST4q8_UPD,
2297                               ARM::VST4q16_UPD,
2298                               ARM::VST4q32_UPD };
2299      unsigned QOpcodes1[] = { ARM::VST4q8odd_UPD,
2300                               ARM::VST4q16odd_UPD,
2301                               ARM::VST4q32odd_UPD };
2302      return SelectVST(N, 4, DOpcodes, QOpcodes0, QOpcodes1);
2303    }
2304
2305    case Intrinsic::arm_neon_vst2lane: {
2306      unsigned DOpcodes[] = { ARM::VST2LNd8, ARM::VST2LNd16, ARM::VST2LNd32 };
2307      unsigned QOpcodes0[] = { ARM::VST2LNq16, ARM::VST2LNq32 };
2308      unsigned QOpcodes1[] = { ARM::VST2LNq16odd, ARM::VST2LNq32odd };
2309      return SelectVLDSTLane(N, false, 2, DOpcodes, QOpcodes0, QOpcodes1);
2310    }
2311
2312    case Intrinsic::arm_neon_vst3lane: {
2313      unsigned DOpcodes[] = { ARM::VST3LNd8, ARM::VST3LNd16, ARM::VST3LNd32 };
2314      unsigned QOpcodes0[] = { ARM::VST3LNq16, ARM::VST3LNq32 };
2315      unsigned QOpcodes1[] = { ARM::VST3LNq16odd, ARM::VST3LNq32odd };
2316      return SelectVLDSTLane(N, false, 3, DOpcodes, QOpcodes0, QOpcodes1);
2317    }
2318
2319    case Intrinsic::arm_neon_vst4lane: {
2320      unsigned DOpcodes[] = { ARM::VST4LNd8, ARM::VST4LNd16, ARM::VST4LNd32 };
2321      unsigned QOpcodes0[] = { ARM::VST4LNq16, ARM::VST4LNq32 };
2322      unsigned QOpcodes1[] = { ARM::VST4LNq16odd, ARM::VST4LNq32odd };
2323      return SelectVLDSTLane(N, false, 4, DOpcodes, QOpcodes0, QOpcodes1);
2324    }
2325    }
2326    break;
2327  }
2328
2329  case ISD::INTRINSIC_WO_CHAIN: {
2330    unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
2331    switch (IntNo) {
2332    default:
2333      break;
2334
2335    case Intrinsic::arm_neon_vtbl2:
2336      return SelectVTBL(N, false, 2, ARM::VTBL2);
2337    case Intrinsic::arm_neon_vtbl3:
2338      return SelectVTBL(N, false, 3, ARM::VTBL3);
2339    case Intrinsic::arm_neon_vtbl4:
2340      return SelectVTBL(N, false, 4, ARM::VTBL4);
2341
2342    case Intrinsic::arm_neon_vtbx2:
2343      return SelectVTBL(N, true, 2, ARM::VTBX2);
2344    case Intrinsic::arm_neon_vtbx3:
2345      return SelectVTBL(N, true, 3, ARM::VTBX3);
2346    case Intrinsic::arm_neon_vtbx4:
2347      return SelectVTBL(N, true, 4, ARM::VTBX4);
2348    }
2349    break;
2350  }
2351
2352  case ISD::CONCAT_VECTORS:
2353    return SelectConcatVector(N);
2354  }
2355
2356  return SelectCode(N);
2357}
2358
2359bool ARMDAGToDAGISel::
2360SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
2361                             std::vector<SDValue> &OutOps) {
2362  assert(ConstraintCode == 'm' && "unexpected asm memory constraint");
2363  // Require the address to be in a register.  That is safe for all ARM
2364  // variants and it is hard to do anything much smarter without knowing
2365  // how the operand is used.
2366  OutOps.push_back(Op);
2367  return false;
2368}
2369
2370/// createARMISelDag - This pass converts a legalized DAG into a
2371/// ARM-specific DAG, ready for instruction scheduling.
2372///
2373FunctionPass *llvm::createARMISelDag(ARMBaseTargetMachine &TM,
2374                                     CodeGenOpt::Level OptLevel) {
2375  return new ARMDAGToDAGISel(TM, OptLevel);
2376}
2377