Instructions.cpp revision 256281
1//===-- Instructions.cpp - Implement the LLVM instructions ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements all of the non-inline methods for the LLVM instruction
11// classes.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/IR/Instructions.h"
16#include "LLVMContextImpl.h"
17#include "llvm/IR/Constants.h"
18#include "llvm/IR/DataLayout.h"
19#include "llvm/IR/DerivedTypes.h"
20#include "llvm/IR/Function.h"
21#include "llvm/IR/Module.h"
22#include "llvm/IR/Operator.h"
23#include "llvm/Support/CallSite.h"
24#include "llvm/Support/ConstantRange.h"
25#include "llvm/Support/ErrorHandling.h"
26#include "llvm/Support/MathExtras.h"
27using namespace llvm;
28
29//===----------------------------------------------------------------------===//
30//                            CallSite Class
31//===----------------------------------------------------------------------===//
32
33User::op_iterator CallSite::getCallee() const {
34  Instruction *II(getInstruction());
35  return isCall()
36    ? cast<CallInst>(II)->op_end() - 1 // Skip Callee
37    : cast<InvokeInst>(II)->op_end() - 3; // Skip BB, BB, Callee
38}
39
40//===----------------------------------------------------------------------===//
41//                            TerminatorInst Class
42//===----------------------------------------------------------------------===//
43
44// Out of line virtual method, so the vtable, etc has a home.
45TerminatorInst::~TerminatorInst() {
46}
47
48//===----------------------------------------------------------------------===//
49//                           UnaryInstruction Class
50//===----------------------------------------------------------------------===//
51
52// Out of line virtual method, so the vtable, etc has a home.
53UnaryInstruction::~UnaryInstruction() {
54}
55
56//===----------------------------------------------------------------------===//
57//                              SelectInst Class
58//===----------------------------------------------------------------------===//
59
60/// areInvalidOperands - Return a string if the specified operands are invalid
61/// for a select operation, otherwise return null.
62const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) {
63  if (Op1->getType() != Op2->getType())
64    return "both values to select must have same type";
65
66  if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) {
67    // Vector select.
68    if (VT->getElementType() != Type::getInt1Ty(Op0->getContext()))
69      return "vector select condition element type must be i1";
70    VectorType *ET = dyn_cast<VectorType>(Op1->getType());
71    if (ET == 0)
72      return "selected values for vector select must be vectors";
73    if (ET->getNumElements() != VT->getNumElements())
74      return "vector select requires selected vectors to have "
75                   "the same vector length as select condition";
76  } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) {
77    return "select condition must be i1 or <n x i1>";
78  }
79  return 0;
80}
81
82
83//===----------------------------------------------------------------------===//
84//                               PHINode Class
85//===----------------------------------------------------------------------===//
86
87PHINode::PHINode(const PHINode &PN)
88  : Instruction(PN.getType(), Instruction::PHI,
89                allocHungoffUses(PN.getNumOperands()), PN.getNumOperands()),
90    ReservedSpace(PN.getNumOperands()) {
91  std::copy(PN.op_begin(), PN.op_end(), op_begin());
92  std::copy(PN.block_begin(), PN.block_end(), block_begin());
93  SubclassOptionalData = PN.SubclassOptionalData;
94}
95
96PHINode::~PHINode() {
97  dropHungoffUses();
98}
99
100Use *PHINode::allocHungoffUses(unsigned N) const {
101  // Allocate the array of Uses of the incoming values, followed by a pointer
102  // (with bottom bit set) to the User, followed by the array of pointers to
103  // the incoming basic blocks.
104  size_t size = N * sizeof(Use) + sizeof(Use::UserRef)
105    + N * sizeof(BasicBlock*);
106  Use *Begin = static_cast<Use*>(::operator new(size));
107  Use *End = Begin + N;
108  (void) new(End) Use::UserRef(const_cast<PHINode*>(this), 1);
109  return Use::initTags(Begin, End);
110}
111
112// removeIncomingValue - Remove an incoming value.  This is useful if a
113// predecessor basic block is deleted.
114Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
115  Value *Removed = getIncomingValue(Idx);
116
117  // Move everything after this operand down.
118  //
119  // FIXME: we could just swap with the end of the list, then erase.  However,
120  // clients might not expect this to happen.  The code as it is thrashes the
121  // use/def lists, which is kinda lame.
122  std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx);
123  std::copy(block_begin() + Idx + 1, block_end(), block_begin() + Idx);
124
125  // Nuke the last value.
126  Op<-1>().set(0);
127  --NumOperands;
128
129  // If the PHI node is dead, because it has zero entries, nuke it now.
130  if (getNumOperands() == 0 && DeletePHIIfEmpty) {
131    // If anyone is using this PHI, make them use a dummy value instead...
132    replaceAllUsesWith(UndefValue::get(getType()));
133    eraseFromParent();
134  }
135  return Removed;
136}
137
138/// growOperands - grow operands - This grows the operand list in response
139/// to a push_back style of operation.  This grows the number of ops by 1.5
140/// times.
141///
142void PHINode::growOperands() {
143  unsigned e = getNumOperands();
144  unsigned NumOps = e + e / 2;
145  if (NumOps < 2) NumOps = 2;      // 2 op PHI nodes are VERY common.
146
147  Use *OldOps = op_begin();
148  BasicBlock **OldBlocks = block_begin();
149
150  ReservedSpace = NumOps;
151  OperandList = allocHungoffUses(ReservedSpace);
152
153  std::copy(OldOps, OldOps + e, op_begin());
154  std::copy(OldBlocks, OldBlocks + e, block_begin());
155
156  Use::zap(OldOps, OldOps + e, true);
157}
158
159/// hasConstantValue - If the specified PHI node always merges together the same
160/// value, return the value, otherwise return null.
161Value *PHINode::hasConstantValue() const {
162  // Exploit the fact that phi nodes always have at least one entry.
163  Value *ConstantValue = getIncomingValue(0);
164  for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i)
165    if (getIncomingValue(i) != ConstantValue && getIncomingValue(i) != this) {
166      if (ConstantValue != this)
167        return 0; // Incoming values not all the same.
168       // The case where the first value is this PHI.
169      ConstantValue = getIncomingValue(i);
170    }
171  if (ConstantValue == this)
172    return UndefValue::get(getType());
173  return ConstantValue;
174}
175
176//===----------------------------------------------------------------------===//
177//                       LandingPadInst Implementation
178//===----------------------------------------------------------------------===//
179
180LandingPadInst::LandingPadInst(Type *RetTy, Value *PersonalityFn,
181                               unsigned NumReservedValues, const Twine &NameStr,
182                               Instruction *InsertBefore)
183  : Instruction(RetTy, Instruction::LandingPad, 0, 0, InsertBefore) {
184  init(PersonalityFn, 1 + NumReservedValues, NameStr);
185}
186
187LandingPadInst::LandingPadInst(Type *RetTy, Value *PersonalityFn,
188                               unsigned NumReservedValues, const Twine &NameStr,
189                               BasicBlock *InsertAtEnd)
190  : Instruction(RetTy, Instruction::LandingPad, 0, 0, InsertAtEnd) {
191  init(PersonalityFn, 1 + NumReservedValues, NameStr);
192}
193
194LandingPadInst::LandingPadInst(const LandingPadInst &LP)
195  : Instruction(LP.getType(), Instruction::LandingPad,
196                allocHungoffUses(LP.getNumOperands()), LP.getNumOperands()),
197    ReservedSpace(LP.getNumOperands()) {
198  Use *OL = OperandList, *InOL = LP.OperandList;
199  for (unsigned I = 0, E = ReservedSpace; I != E; ++I)
200    OL[I] = InOL[I];
201
202  setCleanup(LP.isCleanup());
203}
204
205LandingPadInst::~LandingPadInst() {
206  dropHungoffUses();
207}
208
209LandingPadInst *LandingPadInst::Create(Type *RetTy, Value *PersonalityFn,
210                                       unsigned NumReservedClauses,
211                                       const Twine &NameStr,
212                                       Instruction *InsertBefore) {
213  return new LandingPadInst(RetTy, PersonalityFn, NumReservedClauses, NameStr,
214                            InsertBefore);
215}
216
217LandingPadInst *LandingPadInst::Create(Type *RetTy, Value *PersonalityFn,
218                                       unsigned NumReservedClauses,
219                                       const Twine &NameStr,
220                                       BasicBlock *InsertAtEnd) {
221  return new LandingPadInst(RetTy, PersonalityFn, NumReservedClauses, NameStr,
222                            InsertAtEnd);
223}
224
225void LandingPadInst::init(Value *PersFn, unsigned NumReservedValues,
226                          const Twine &NameStr) {
227  ReservedSpace = NumReservedValues;
228  NumOperands = 1;
229  OperandList = allocHungoffUses(ReservedSpace);
230  OperandList[0] = PersFn;
231  setName(NameStr);
232  setCleanup(false);
233}
234
235/// growOperands - grow operands - This grows the operand list in response to a
236/// push_back style of operation. This grows the number of ops by 2 times.
237void LandingPadInst::growOperands(unsigned Size) {
238  unsigned e = getNumOperands();
239  if (ReservedSpace >= e + Size) return;
240  ReservedSpace = (e + Size / 2) * 2;
241
242  Use *NewOps = allocHungoffUses(ReservedSpace);
243  Use *OldOps = OperandList;
244  for (unsigned i = 0; i != e; ++i)
245      NewOps[i] = OldOps[i];
246
247  OperandList = NewOps;
248  Use::zap(OldOps, OldOps + e, true);
249}
250
251void LandingPadInst::addClause(Value *Val) {
252  unsigned OpNo = getNumOperands();
253  growOperands(1);
254  assert(OpNo < ReservedSpace && "Growing didn't work!");
255  ++NumOperands;
256  OperandList[OpNo] = Val;
257}
258
259//===----------------------------------------------------------------------===//
260//                        CallInst Implementation
261//===----------------------------------------------------------------------===//
262
263CallInst::~CallInst() {
264}
265
266void CallInst::init(Value *Func, ArrayRef<Value *> Args, const Twine &NameStr) {
267  assert(NumOperands == Args.size() + 1 && "NumOperands not set up?");
268  Op<-1>() = Func;
269
270#ifndef NDEBUG
271  FunctionType *FTy =
272    cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
273
274  assert((Args.size() == FTy->getNumParams() ||
275          (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
276         "Calling a function with bad signature!");
277
278  for (unsigned i = 0; i != Args.size(); ++i)
279    assert((i >= FTy->getNumParams() ||
280            FTy->getParamType(i) == Args[i]->getType()) &&
281           "Calling a function with a bad signature!");
282#endif
283
284  std::copy(Args.begin(), Args.end(), op_begin());
285  setName(NameStr);
286}
287
288void CallInst::init(Value *Func, const Twine &NameStr) {
289  assert(NumOperands == 1 && "NumOperands not set up?");
290  Op<-1>() = Func;
291
292#ifndef NDEBUG
293  FunctionType *FTy =
294    cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
295
296  assert(FTy->getNumParams() == 0 && "Calling a function with bad signature");
297#endif
298
299  setName(NameStr);
300}
301
302CallInst::CallInst(Value *Func, const Twine &Name,
303                   Instruction *InsertBefore)
304  : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
305                                   ->getElementType())->getReturnType(),
306                Instruction::Call,
307                OperandTraits<CallInst>::op_end(this) - 1,
308                1, InsertBefore) {
309  init(Func, Name);
310}
311
312CallInst::CallInst(Value *Func, const Twine &Name,
313                   BasicBlock *InsertAtEnd)
314  : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
315                                   ->getElementType())->getReturnType(),
316                Instruction::Call,
317                OperandTraits<CallInst>::op_end(this) - 1,
318                1, InsertAtEnd) {
319  init(Func, Name);
320}
321
322CallInst::CallInst(const CallInst &CI)
323  : Instruction(CI.getType(), Instruction::Call,
324                OperandTraits<CallInst>::op_end(this) - CI.getNumOperands(),
325                CI.getNumOperands()) {
326  setAttributes(CI.getAttributes());
327  setTailCall(CI.isTailCall());
328  setCallingConv(CI.getCallingConv());
329
330  std::copy(CI.op_begin(), CI.op_end(), op_begin());
331  SubclassOptionalData = CI.SubclassOptionalData;
332}
333
334void CallInst::addAttribute(unsigned i, Attribute::AttrKind attr) {
335  AttributeSet PAL = getAttributes();
336  PAL = PAL.addAttribute(getContext(), i, attr);
337  setAttributes(PAL);
338}
339
340void CallInst::removeAttribute(unsigned i, Attribute attr) {
341  AttributeSet PAL = getAttributes();
342  AttrBuilder B(attr);
343  LLVMContext &Context = getContext();
344  PAL = PAL.removeAttributes(Context, i,
345                             AttributeSet::get(Context, i, B));
346  setAttributes(PAL);
347}
348
349bool CallInst::hasFnAttr(Attribute::AttrKind A) const {
350  if (AttributeList.hasAttribute(AttributeSet::FunctionIndex, A))
351    return true;
352  if (const Function *F = getCalledFunction())
353    return F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, A);
354  return false;
355}
356
357bool CallInst::paramHasAttr(unsigned i, Attribute::AttrKind A) const {
358  if (AttributeList.hasAttribute(i, A))
359    return true;
360  if (const Function *F = getCalledFunction())
361    return F->getAttributes().hasAttribute(i, A);
362  return false;
363}
364
365/// IsConstantOne - Return true only if val is constant int 1
366static bool IsConstantOne(Value *val) {
367  assert(val && "IsConstantOne does not work with NULL val");
368  return isa<ConstantInt>(val) && cast<ConstantInt>(val)->isOne();
369}
370
371static Instruction *createMalloc(Instruction *InsertBefore,
372                                 BasicBlock *InsertAtEnd, Type *IntPtrTy,
373                                 Type *AllocTy, Value *AllocSize,
374                                 Value *ArraySize, Function *MallocF,
375                                 const Twine &Name) {
376  assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
377         "createMalloc needs either InsertBefore or InsertAtEnd");
378
379  // malloc(type) becomes:
380  //       bitcast (i8* malloc(typeSize)) to type*
381  // malloc(type, arraySize) becomes:
382  //       bitcast (i8 *malloc(typeSize*arraySize)) to type*
383  if (!ArraySize)
384    ArraySize = ConstantInt::get(IntPtrTy, 1);
385  else if (ArraySize->getType() != IntPtrTy) {
386    if (InsertBefore)
387      ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
388                                              "", InsertBefore);
389    else
390      ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
391                                              "", InsertAtEnd);
392  }
393
394  if (!IsConstantOne(ArraySize)) {
395    if (IsConstantOne(AllocSize)) {
396      AllocSize = ArraySize;         // Operand * 1 = Operand
397    } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) {
398      Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy,
399                                                     false /*ZExt*/);
400      // Malloc arg is constant product of type size and array size
401      AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize));
402    } else {
403      // Multiply type size by the array size...
404      if (InsertBefore)
405        AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
406                                              "mallocsize", InsertBefore);
407      else
408        AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
409                                              "mallocsize", InsertAtEnd);
410    }
411  }
412
413  assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size");
414  // Create the call to Malloc.
415  BasicBlock* BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
416  Module* M = BB->getParent()->getParent();
417  Type *BPTy = Type::getInt8PtrTy(BB->getContext());
418  Value *MallocFunc = MallocF;
419  if (!MallocFunc)
420    // prototype malloc as "void *malloc(size_t)"
421    MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy, NULL);
422  PointerType *AllocPtrType = PointerType::getUnqual(AllocTy);
423  CallInst *MCall = NULL;
424  Instruction *Result = NULL;
425  if (InsertBefore) {
426    MCall = CallInst::Create(MallocFunc, AllocSize, "malloccall", InsertBefore);
427    Result = MCall;
428    if (Result->getType() != AllocPtrType)
429      // Create a cast instruction to convert to the right type...
430      Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore);
431  } else {
432    MCall = CallInst::Create(MallocFunc, AllocSize, "malloccall");
433    Result = MCall;
434    if (Result->getType() != AllocPtrType) {
435      InsertAtEnd->getInstList().push_back(MCall);
436      // Create a cast instruction to convert to the right type...
437      Result = new BitCastInst(MCall, AllocPtrType, Name);
438    }
439  }
440  MCall->setTailCall();
441  if (Function *F = dyn_cast<Function>(MallocFunc)) {
442    MCall->setCallingConv(F->getCallingConv());
443    if (!F->doesNotAlias(0)) F->setDoesNotAlias(0);
444  }
445  assert(!MCall->getType()->isVoidTy() && "Malloc has void return type");
446
447  return Result;
448}
449
450/// CreateMalloc - Generate the IR for a call to malloc:
451/// 1. Compute the malloc call's argument as the specified type's size,
452///    possibly multiplied by the array size if the array size is not
453///    constant 1.
454/// 2. Call malloc with that argument.
455/// 3. Bitcast the result of the malloc call to the specified type.
456Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
457                                    Type *IntPtrTy, Type *AllocTy,
458                                    Value *AllocSize, Value *ArraySize,
459                                    Function * MallocF,
460                                    const Twine &Name) {
461  return createMalloc(InsertBefore, NULL, IntPtrTy, AllocTy, AllocSize,
462                      ArraySize, MallocF, Name);
463}
464
465/// CreateMalloc - Generate the IR for a call to malloc:
466/// 1. Compute the malloc call's argument as the specified type's size,
467///    possibly multiplied by the array size if the array size is not
468///    constant 1.
469/// 2. Call malloc with that argument.
470/// 3. Bitcast the result of the malloc call to the specified type.
471/// Note: This function does not add the bitcast to the basic block, that is the
472/// responsibility of the caller.
473Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
474                                    Type *IntPtrTy, Type *AllocTy,
475                                    Value *AllocSize, Value *ArraySize,
476                                    Function *MallocF, const Twine &Name) {
477  return createMalloc(NULL, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
478                      ArraySize, MallocF, Name);
479}
480
481static Instruction* createFree(Value* Source, Instruction *InsertBefore,
482                               BasicBlock *InsertAtEnd) {
483  assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
484         "createFree needs either InsertBefore or InsertAtEnd");
485  assert(Source->getType()->isPointerTy() &&
486         "Can not free something of nonpointer type!");
487
488  BasicBlock* BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
489  Module* M = BB->getParent()->getParent();
490
491  Type *VoidTy = Type::getVoidTy(M->getContext());
492  Type *IntPtrTy = Type::getInt8PtrTy(M->getContext());
493  // prototype free as "void free(void*)"
494  Value *FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy, NULL);
495  CallInst* Result = NULL;
496  Value *PtrCast = Source;
497  if (InsertBefore) {
498    if (Source->getType() != IntPtrTy)
499      PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore);
500    Result = CallInst::Create(FreeFunc, PtrCast, "", InsertBefore);
501  } else {
502    if (Source->getType() != IntPtrTy)
503      PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd);
504    Result = CallInst::Create(FreeFunc, PtrCast, "");
505  }
506  Result->setTailCall();
507  if (Function *F = dyn_cast<Function>(FreeFunc))
508    Result->setCallingConv(F->getCallingConv());
509
510  return Result;
511}
512
513/// CreateFree - Generate the IR for a call to the builtin free function.
514Instruction * CallInst::CreateFree(Value* Source, Instruction *InsertBefore) {
515  return createFree(Source, InsertBefore, NULL);
516}
517
518/// CreateFree - Generate the IR for a call to the builtin free function.
519/// Note: This function does not add the call to the basic block, that is the
520/// responsibility of the caller.
521Instruction* CallInst::CreateFree(Value* Source, BasicBlock *InsertAtEnd) {
522  Instruction* FreeCall = createFree(Source, NULL, InsertAtEnd);
523  assert(FreeCall && "CreateFree did not create a CallInst");
524  return FreeCall;
525}
526
527//===----------------------------------------------------------------------===//
528//                        InvokeInst Implementation
529//===----------------------------------------------------------------------===//
530
531void InvokeInst::init(Value *Fn, BasicBlock *IfNormal, BasicBlock *IfException,
532                      ArrayRef<Value *> Args, const Twine &NameStr) {
533  assert(NumOperands == 3 + Args.size() && "NumOperands not set up?");
534  Op<-3>() = Fn;
535  Op<-2>() = IfNormal;
536  Op<-1>() = IfException;
537
538#ifndef NDEBUG
539  FunctionType *FTy =
540    cast<FunctionType>(cast<PointerType>(Fn->getType())->getElementType());
541
542  assert(((Args.size() == FTy->getNumParams()) ||
543          (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
544         "Invoking a function with bad signature");
545
546  for (unsigned i = 0, e = Args.size(); i != e; i++)
547    assert((i >= FTy->getNumParams() ||
548            FTy->getParamType(i) == Args[i]->getType()) &&
549           "Invoking a function with a bad signature!");
550#endif
551
552  std::copy(Args.begin(), Args.end(), op_begin());
553  setName(NameStr);
554}
555
556InvokeInst::InvokeInst(const InvokeInst &II)
557  : TerminatorInst(II.getType(), Instruction::Invoke,
558                   OperandTraits<InvokeInst>::op_end(this)
559                   - II.getNumOperands(),
560                   II.getNumOperands()) {
561  setAttributes(II.getAttributes());
562  setCallingConv(II.getCallingConv());
563  std::copy(II.op_begin(), II.op_end(), op_begin());
564  SubclassOptionalData = II.SubclassOptionalData;
565}
566
567BasicBlock *InvokeInst::getSuccessorV(unsigned idx) const {
568  return getSuccessor(idx);
569}
570unsigned InvokeInst::getNumSuccessorsV() const {
571  return getNumSuccessors();
572}
573void InvokeInst::setSuccessorV(unsigned idx, BasicBlock *B) {
574  return setSuccessor(idx, B);
575}
576
577bool InvokeInst::hasFnAttr(Attribute::AttrKind A) const {
578  if (AttributeList.hasAttribute(AttributeSet::FunctionIndex, A))
579    return true;
580  if (const Function *F = getCalledFunction())
581    return F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, A);
582  return false;
583}
584
585bool InvokeInst::paramHasAttr(unsigned i, Attribute::AttrKind A) const {
586  if (AttributeList.hasAttribute(i, A))
587    return true;
588  if (const Function *F = getCalledFunction())
589    return F->getAttributes().hasAttribute(i, A);
590  return false;
591}
592
593void InvokeInst::addAttribute(unsigned i, Attribute::AttrKind attr) {
594  AttributeSet PAL = getAttributes();
595  PAL = PAL.addAttribute(getContext(), i, attr);
596  setAttributes(PAL);
597}
598
599void InvokeInst::removeAttribute(unsigned i, Attribute attr) {
600  AttributeSet PAL = getAttributes();
601  AttrBuilder B(attr);
602  PAL = PAL.removeAttributes(getContext(), i,
603                             AttributeSet::get(getContext(), i, B));
604  setAttributes(PAL);
605}
606
607LandingPadInst *InvokeInst::getLandingPadInst() const {
608  return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI());
609}
610
611//===----------------------------------------------------------------------===//
612//                        ReturnInst Implementation
613//===----------------------------------------------------------------------===//
614
615ReturnInst::ReturnInst(const ReturnInst &RI)
616  : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Ret,
617                   OperandTraits<ReturnInst>::op_end(this) -
618                     RI.getNumOperands(),
619                   RI.getNumOperands()) {
620  if (RI.getNumOperands())
621    Op<0>() = RI.Op<0>();
622  SubclassOptionalData = RI.SubclassOptionalData;
623}
624
625ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore)
626  : TerminatorInst(Type::getVoidTy(C), Instruction::Ret,
627                   OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
628                   InsertBefore) {
629  if (retVal)
630    Op<0>() = retVal;
631}
632ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd)
633  : TerminatorInst(Type::getVoidTy(C), Instruction::Ret,
634                   OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
635                   InsertAtEnd) {
636  if (retVal)
637    Op<0>() = retVal;
638}
639ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
640  : TerminatorInst(Type::getVoidTy(Context), Instruction::Ret,
641                   OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) {
642}
643
644unsigned ReturnInst::getNumSuccessorsV() const {
645  return getNumSuccessors();
646}
647
648/// Out-of-line ReturnInst method, put here so the C++ compiler can choose to
649/// emit the vtable for the class in this translation unit.
650void ReturnInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
651  llvm_unreachable("ReturnInst has no successors!");
652}
653
654BasicBlock *ReturnInst::getSuccessorV(unsigned idx) const {
655  llvm_unreachable("ReturnInst has no successors!");
656}
657
658ReturnInst::~ReturnInst() {
659}
660
661//===----------------------------------------------------------------------===//
662//                        ResumeInst Implementation
663//===----------------------------------------------------------------------===//
664
665ResumeInst::ResumeInst(const ResumeInst &RI)
666  : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Resume,
667                   OperandTraits<ResumeInst>::op_begin(this), 1) {
668  Op<0>() = RI.Op<0>();
669}
670
671ResumeInst::ResumeInst(Value *Exn, Instruction *InsertBefore)
672  : TerminatorInst(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
673                   OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) {
674  Op<0>() = Exn;
675}
676
677ResumeInst::ResumeInst(Value *Exn, BasicBlock *InsertAtEnd)
678  : TerminatorInst(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
679                   OperandTraits<ResumeInst>::op_begin(this), 1, InsertAtEnd) {
680  Op<0>() = Exn;
681}
682
683unsigned ResumeInst::getNumSuccessorsV() const {
684  return getNumSuccessors();
685}
686
687void ResumeInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
688  llvm_unreachable("ResumeInst has no successors!");
689}
690
691BasicBlock *ResumeInst::getSuccessorV(unsigned idx) const {
692  llvm_unreachable("ResumeInst has no successors!");
693}
694
695//===----------------------------------------------------------------------===//
696//                      UnreachableInst Implementation
697//===----------------------------------------------------------------------===//
698
699UnreachableInst::UnreachableInst(LLVMContext &Context,
700                                 Instruction *InsertBefore)
701  : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable,
702                   0, 0, InsertBefore) {
703}
704UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
705  : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable,
706                   0, 0, InsertAtEnd) {
707}
708
709unsigned UnreachableInst::getNumSuccessorsV() const {
710  return getNumSuccessors();
711}
712
713void UnreachableInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
714  llvm_unreachable("UnreachableInst has no successors!");
715}
716
717BasicBlock *UnreachableInst::getSuccessorV(unsigned idx) const {
718  llvm_unreachable("UnreachableInst has no successors!");
719}
720
721//===----------------------------------------------------------------------===//
722//                        BranchInst Implementation
723//===----------------------------------------------------------------------===//
724
725void BranchInst::AssertOK() {
726  if (isConditional())
727    assert(getCondition()->getType()->isIntegerTy(1) &&
728           "May only branch on boolean predicates!");
729}
730
731BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore)
732  : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
733                   OperandTraits<BranchInst>::op_end(this) - 1,
734                   1, InsertBefore) {
735  assert(IfTrue != 0 && "Branch destination may not be null!");
736  Op<-1>() = IfTrue;
737}
738BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
739                       Instruction *InsertBefore)
740  : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
741                   OperandTraits<BranchInst>::op_end(this) - 3,
742                   3, InsertBefore) {
743  Op<-1>() = IfTrue;
744  Op<-2>() = IfFalse;
745  Op<-3>() = Cond;
746#ifndef NDEBUG
747  AssertOK();
748#endif
749}
750
751BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd)
752  : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
753                   OperandTraits<BranchInst>::op_end(this) - 1,
754                   1, InsertAtEnd) {
755  assert(IfTrue != 0 && "Branch destination may not be null!");
756  Op<-1>() = IfTrue;
757}
758
759BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
760           BasicBlock *InsertAtEnd)
761  : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
762                   OperandTraits<BranchInst>::op_end(this) - 3,
763                   3, InsertAtEnd) {
764  Op<-1>() = IfTrue;
765  Op<-2>() = IfFalse;
766  Op<-3>() = Cond;
767#ifndef NDEBUG
768  AssertOK();
769#endif
770}
771
772
773BranchInst::BranchInst(const BranchInst &BI) :
774  TerminatorInst(Type::getVoidTy(BI.getContext()), Instruction::Br,
775                 OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(),
776                 BI.getNumOperands()) {
777  Op<-1>() = BI.Op<-1>();
778  if (BI.getNumOperands() != 1) {
779    assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
780    Op<-3>() = BI.Op<-3>();
781    Op<-2>() = BI.Op<-2>();
782  }
783  SubclassOptionalData = BI.SubclassOptionalData;
784}
785
786void BranchInst::swapSuccessors() {
787  assert(isConditional() &&
788         "Cannot swap successors of an unconditional branch");
789  Op<-1>().swap(Op<-2>());
790
791  // Update profile metadata if present and it matches our structural
792  // expectations.
793  MDNode *ProfileData = getMetadata(LLVMContext::MD_prof);
794  if (!ProfileData || ProfileData->getNumOperands() != 3)
795    return;
796
797  // The first operand is the name. Fetch them backwards and build a new one.
798  Value *Ops[] = {
799    ProfileData->getOperand(0),
800    ProfileData->getOperand(2),
801    ProfileData->getOperand(1)
802  };
803  setMetadata(LLVMContext::MD_prof,
804              MDNode::get(ProfileData->getContext(), Ops));
805}
806
807BasicBlock *BranchInst::getSuccessorV(unsigned idx) const {
808  return getSuccessor(idx);
809}
810unsigned BranchInst::getNumSuccessorsV() const {
811  return getNumSuccessors();
812}
813void BranchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
814  setSuccessor(idx, B);
815}
816
817
818//===----------------------------------------------------------------------===//
819//                        AllocaInst Implementation
820//===----------------------------------------------------------------------===//
821
822static Value *getAISize(LLVMContext &Context, Value *Amt) {
823  if (!Amt)
824    Amt = ConstantInt::get(Type::getInt32Ty(Context), 1);
825  else {
826    assert(!isa<BasicBlock>(Amt) &&
827           "Passed basic block into allocation size parameter! Use other ctor");
828    assert(Amt->getType()->isIntegerTy() &&
829           "Allocation array size is not an integer!");
830  }
831  return Amt;
832}
833
834AllocaInst::AllocaInst(Type *Ty, Value *ArraySize,
835                       const Twine &Name, Instruction *InsertBefore)
836  : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
837                     getAISize(Ty->getContext(), ArraySize), InsertBefore) {
838  setAlignment(0);
839  assert(!Ty->isVoidTy() && "Cannot allocate void!");
840  setName(Name);
841}
842
843AllocaInst::AllocaInst(Type *Ty, Value *ArraySize,
844                       const Twine &Name, BasicBlock *InsertAtEnd)
845  : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
846                     getAISize(Ty->getContext(), ArraySize), InsertAtEnd) {
847  setAlignment(0);
848  assert(!Ty->isVoidTy() && "Cannot allocate void!");
849  setName(Name);
850}
851
852AllocaInst::AllocaInst(Type *Ty, const Twine &Name,
853                       Instruction *InsertBefore)
854  : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
855                     getAISize(Ty->getContext(), 0), InsertBefore) {
856  setAlignment(0);
857  assert(!Ty->isVoidTy() && "Cannot allocate void!");
858  setName(Name);
859}
860
861AllocaInst::AllocaInst(Type *Ty, const Twine &Name,
862                       BasicBlock *InsertAtEnd)
863  : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
864                     getAISize(Ty->getContext(), 0), InsertAtEnd) {
865  setAlignment(0);
866  assert(!Ty->isVoidTy() && "Cannot allocate void!");
867  setName(Name);
868}
869
870AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, unsigned Align,
871                       const Twine &Name, Instruction *InsertBefore)
872  : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
873                     getAISize(Ty->getContext(), ArraySize), InsertBefore) {
874  setAlignment(Align);
875  assert(!Ty->isVoidTy() && "Cannot allocate void!");
876  setName(Name);
877}
878
879AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, unsigned Align,
880                       const Twine &Name, BasicBlock *InsertAtEnd)
881  : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
882                     getAISize(Ty->getContext(), ArraySize), InsertAtEnd) {
883  setAlignment(Align);
884  assert(!Ty->isVoidTy() && "Cannot allocate void!");
885  setName(Name);
886}
887
888// Out of line virtual method, so the vtable, etc has a home.
889AllocaInst::~AllocaInst() {
890}
891
892void AllocaInst::setAlignment(unsigned Align) {
893  assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
894  assert(Align <= MaximumAlignment &&
895         "Alignment is greater than MaximumAlignment!");
896  setInstructionSubclassData(Log2_32(Align) + 1);
897  assert(getAlignment() == Align && "Alignment representation error!");
898}
899
900bool AllocaInst::isArrayAllocation() const {
901  if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0)))
902    return !CI->isOne();
903  return true;
904}
905
906Type *AllocaInst::getAllocatedType() const {
907  return getType()->getElementType();
908}
909
910/// isStaticAlloca - Return true if this alloca is in the entry block of the
911/// function and is a constant size.  If so, the code generator will fold it
912/// into the prolog/epilog code, so it is basically free.
913bool AllocaInst::isStaticAlloca() const {
914  // Must be constant size.
915  if (!isa<ConstantInt>(getArraySize())) return false;
916
917  // Must be in the entry block.
918  const BasicBlock *Parent = getParent();
919  return Parent == &Parent->getParent()->front();
920}
921
922//===----------------------------------------------------------------------===//
923//                           LoadInst Implementation
924//===----------------------------------------------------------------------===//
925
926void LoadInst::AssertOK() {
927  assert(getOperand(0)->getType()->isPointerTy() &&
928         "Ptr must have pointer type.");
929  assert(!(isAtomic() && getAlignment() == 0) &&
930         "Alignment required for atomic load");
931}
932
933LoadInst::LoadInst(Value *Ptr, const Twine &Name, Instruction *InsertBef)
934  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
935                     Load, Ptr, InsertBef) {
936  setVolatile(false);
937  setAlignment(0);
938  setAtomic(NotAtomic);
939  AssertOK();
940  setName(Name);
941}
942
943LoadInst::LoadInst(Value *Ptr, const Twine &Name, BasicBlock *InsertAE)
944  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
945                     Load, Ptr, InsertAE) {
946  setVolatile(false);
947  setAlignment(0);
948  setAtomic(NotAtomic);
949  AssertOK();
950  setName(Name);
951}
952
953LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
954                   Instruction *InsertBef)
955  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
956                     Load, Ptr, InsertBef) {
957  setVolatile(isVolatile);
958  setAlignment(0);
959  setAtomic(NotAtomic);
960  AssertOK();
961  setName(Name);
962}
963
964LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
965                   BasicBlock *InsertAE)
966  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
967                     Load, Ptr, InsertAE) {
968  setVolatile(isVolatile);
969  setAlignment(0);
970  setAtomic(NotAtomic);
971  AssertOK();
972  setName(Name);
973}
974
975LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
976                   unsigned Align, Instruction *InsertBef)
977  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
978                     Load, Ptr, InsertBef) {
979  setVolatile(isVolatile);
980  setAlignment(Align);
981  setAtomic(NotAtomic);
982  AssertOK();
983  setName(Name);
984}
985
986LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
987                   unsigned Align, BasicBlock *InsertAE)
988  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
989                     Load, Ptr, InsertAE) {
990  setVolatile(isVolatile);
991  setAlignment(Align);
992  setAtomic(NotAtomic);
993  AssertOK();
994  setName(Name);
995}
996
997LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
998                   unsigned Align, AtomicOrdering Order,
999                   SynchronizationScope SynchScope,
1000                   Instruction *InsertBef)
1001  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1002                     Load, Ptr, InsertBef) {
1003  setVolatile(isVolatile);
1004  setAlignment(Align);
1005  setAtomic(Order, SynchScope);
1006  AssertOK();
1007  setName(Name);
1008}
1009
1010LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
1011                   unsigned Align, AtomicOrdering Order,
1012                   SynchronizationScope SynchScope,
1013                   BasicBlock *InsertAE)
1014  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1015                     Load, Ptr, InsertAE) {
1016  setVolatile(isVolatile);
1017  setAlignment(Align);
1018  setAtomic(Order, SynchScope);
1019  AssertOK();
1020  setName(Name);
1021}
1022
1023LoadInst::LoadInst(Value *Ptr, const char *Name, Instruction *InsertBef)
1024  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1025                     Load, Ptr, InsertBef) {
1026  setVolatile(false);
1027  setAlignment(0);
1028  setAtomic(NotAtomic);
1029  AssertOK();
1030  if (Name && Name[0]) setName(Name);
1031}
1032
1033LoadInst::LoadInst(Value *Ptr, const char *Name, BasicBlock *InsertAE)
1034  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1035                     Load, Ptr, InsertAE) {
1036  setVolatile(false);
1037  setAlignment(0);
1038  setAtomic(NotAtomic);
1039  AssertOK();
1040  if (Name && Name[0]) setName(Name);
1041}
1042
1043LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile,
1044                   Instruction *InsertBef)
1045: UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1046                   Load, Ptr, InsertBef) {
1047  setVolatile(isVolatile);
1048  setAlignment(0);
1049  setAtomic(NotAtomic);
1050  AssertOK();
1051  if (Name && Name[0]) setName(Name);
1052}
1053
1054LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile,
1055                   BasicBlock *InsertAE)
1056  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1057                     Load, Ptr, InsertAE) {
1058  setVolatile(isVolatile);
1059  setAlignment(0);
1060  setAtomic(NotAtomic);
1061  AssertOK();
1062  if (Name && Name[0]) setName(Name);
1063}
1064
1065void LoadInst::setAlignment(unsigned Align) {
1066  assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1067  assert(Align <= MaximumAlignment &&
1068         "Alignment is greater than MaximumAlignment!");
1069  setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
1070                             ((Log2_32(Align)+1)<<1));
1071  assert(getAlignment() == Align && "Alignment representation error!");
1072}
1073
1074//===----------------------------------------------------------------------===//
1075//                           StoreInst Implementation
1076//===----------------------------------------------------------------------===//
1077
1078void StoreInst::AssertOK() {
1079  assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!");
1080  assert(getOperand(1)->getType()->isPointerTy() &&
1081         "Ptr must have pointer type!");
1082  assert(getOperand(0)->getType() ==
1083                 cast<PointerType>(getOperand(1)->getType())->getElementType()
1084         && "Ptr must be a pointer to Val type!");
1085  assert(!(isAtomic() && getAlignment() == 0) &&
1086         "Alignment required for atomic load");
1087}
1088
1089
1090StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore)
1091  : Instruction(Type::getVoidTy(val->getContext()), Store,
1092                OperandTraits<StoreInst>::op_begin(this),
1093                OperandTraits<StoreInst>::operands(this),
1094                InsertBefore) {
1095  Op<0>() = val;
1096  Op<1>() = addr;
1097  setVolatile(false);
1098  setAlignment(0);
1099  setAtomic(NotAtomic);
1100  AssertOK();
1101}
1102
1103StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd)
1104  : Instruction(Type::getVoidTy(val->getContext()), Store,
1105                OperandTraits<StoreInst>::op_begin(this),
1106                OperandTraits<StoreInst>::operands(this),
1107                InsertAtEnd) {
1108  Op<0>() = val;
1109  Op<1>() = addr;
1110  setVolatile(false);
1111  setAlignment(0);
1112  setAtomic(NotAtomic);
1113  AssertOK();
1114}
1115
1116StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1117                     Instruction *InsertBefore)
1118  : Instruction(Type::getVoidTy(val->getContext()), Store,
1119                OperandTraits<StoreInst>::op_begin(this),
1120                OperandTraits<StoreInst>::operands(this),
1121                InsertBefore) {
1122  Op<0>() = val;
1123  Op<1>() = addr;
1124  setVolatile(isVolatile);
1125  setAlignment(0);
1126  setAtomic(NotAtomic);
1127  AssertOK();
1128}
1129
1130StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1131                     unsigned Align, Instruction *InsertBefore)
1132  : Instruction(Type::getVoidTy(val->getContext()), Store,
1133                OperandTraits<StoreInst>::op_begin(this),
1134                OperandTraits<StoreInst>::operands(this),
1135                InsertBefore) {
1136  Op<0>() = val;
1137  Op<1>() = addr;
1138  setVolatile(isVolatile);
1139  setAlignment(Align);
1140  setAtomic(NotAtomic);
1141  AssertOK();
1142}
1143
1144StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1145                     unsigned Align, AtomicOrdering Order,
1146                     SynchronizationScope SynchScope,
1147                     Instruction *InsertBefore)
1148  : Instruction(Type::getVoidTy(val->getContext()), Store,
1149                OperandTraits<StoreInst>::op_begin(this),
1150                OperandTraits<StoreInst>::operands(this),
1151                InsertBefore) {
1152  Op<0>() = val;
1153  Op<1>() = addr;
1154  setVolatile(isVolatile);
1155  setAlignment(Align);
1156  setAtomic(Order, SynchScope);
1157  AssertOK();
1158}
1159
1160StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1161                     BasicBlock *InsertAtEnd)
1162  : Instruction(Type::getVoidTy(val->getContext()), Store,
1163                OperandTraits<StoreInst>::op_begin(this),
1164                OperandTraits<StoreInst>::operands(this),
1165                InsertAtEnd) {
1166  Op<0>() = val;
1167  Op<1>() = addr;
1168  setVolatile(isVolatile);
1169  setAlignment(0);
1170  setAtomic(NotAtomic);
1171  AssertOK();
1172}
1173
1174StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1175                     unsigned Align, BasicBlock *InsertAtEnd)
1176  : Instruction(Type::getVoidTy(val->getContext()), Store,
1177                OperandTraits<StoreInst>::op_begin(this),
1178                OperandTraits<StoreInst>::operands(this),
1179                InsertAtEnd) {
1180  Op<0>() = val;
1181  Op<1>() = addr;
1182  setVolatile(isVolatile);
1183  setAlignment(Align);
1184  setAtomic(NotAtomic);
1185  AssertOK();
1186}
1187
1188StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1189                     unsigned Align, AtomicOrdering Order,
1190                     SynchronizationScope SynchScope,
1191                     BasicBlock *InsertAtEnd)
1192  : Instruction(Type::getVoidTy(val->getContext()), Store,
1193                OperandTraits<StoreInst>::op_begin(this),
1194                OperandTraits<StoreInst>::operands(this),
1195                InsertAtEnd) {
1196  Op<0>() = val;
1197  Op<1>() = addr;
1198  setVolatile(isVolatile);
1199  setAlignment(Align);
1200  setAtomic(Order, SynchScope);
1201  AssertOK();
1202}
1203
1204void StoreInst::setAlignment(unsigned Align) {
1205  assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1206  assert(Align <= MaximumAlignment &&
1207         "Alignment is greater than MaximumAlignment!");
1208  setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
1209                             ((Log2_32(Align)+1) << 1));
1210  assert(getAlignment() == Align && "Alignment representation error!");
1211}
1212
1213//===----------------------------------------------------------------------===//
1214//                       AtomicCmpXchgInst Implementation
1215//===----------------------------------------------------------------------===//
1216
1217void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal,
1218                             AtomicOrdering Ordering,
1219                             SynchronizationScope SynchScope) {
1220  Op<0>() = Ptr;
1221  Op<1>() = Cmp;
1222  Op<2>() = NewVal;
1223  setOrdering(Ordering);
1224  setSynchScope(SynchScope);
1225
1226  assert(getOperand(0) && getOperand(1) && getOperand(2) &&
1227         "All operands must be non-null!");
1228  assert(getOperand(0)->getType()->isPointerTy() &&
1229         "Ptr must have pointer type!");
1230  assert(getOperand(1)->getType() ==
1231                 cast<PointerType>(getOperand(0)->getType())->getElementType()
1232         && "Ptr must be a pointer to Cmp type!");
1233  assert(getOperand(2)->getType() ==
1234                 cast<PointerType>(getOperand(0)->getType())->getElementType()
1235         && "Ptr must be a pointer to NewVal type!");
1236  assert(Ordering != NotAtomic &&
1237         "AtomicCmpXchg instructions must be atomic!");
1238}
1239
1240AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1241                                     AtomicOrdering Ordering,
1242                                     SynchronizationScope SynchScope,
1243                                     Instruction *InsertBefore)
1244  : Instruction(Cmp->getType(), AtomicCmpXchg,
1245                OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1246                OperandTraits<AtomicCmpXchgInst>::operands(this),
1247                InsertBefore) {
1248  Init(Ptr, Cmp, NewVal, Ordering, SynchScope);
1249}
1250
1251AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1252                                     AtomicOrdering Ordering,
1253                                     SynchronizationScope SynchScope,
1254                                     BasicBlock *InsertAtEnd)
1255  : Instruction(Cmp->getType(), AtomicCmpXchg,
1256                OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1257                OperandTraits<AtomicCmpXchgInst>::operands(this),
1258                InsertAtEnd) {
1259  Init(Ptr, Cmp, NewVal, Ordering, SynchScope);
1260}
1261
1262//===----------------------------------------------------------------------===//
1263//                       AtomicRMWInst Implementation
1264//===----------------------------------------------------------------------===//
1265
1266void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val,
1267                         AtomicOrdering Ordering,
1268                         SynchronizationScope SynchScope) {
1269  Op<0>() = Ptr;
1270  Op<1>() = Val;
1271  setOperation(Operation);
1272  setOrdering(Ordering);
1273  setSynchScope(SynchScope);
1274
1275  assert(getOperand(0) && getOperand(1) &&
1276         "All operands must be non-null!");
1277  assert(getOperand(0)->getType()->isPointerTy() &&
1278         "Ptr must have pointer type!");
1279  assert(getOperand(1)->getType() ==
1280         cast<PointerType>(getOperand(0)->getType())->getElementType()
1281         && "Ptr must be a pointer to Val type!");
1282  assert(Ordering != NotAtomic &&
1283         "AtomicRMW instructions must be atomic!");
1284}
1285
1286AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1287                             AtomicOrdering Ordering,
1288                             SynchronizationScope SynchScope,
1289                             Instruction *InsertBefore)
1290  : Instruction(Val->getType(), AtomicRMW,
1291                OperandTraits<AtomicRMWInst>::op_begin(this),
1292                OperandTraits<AtomicRMWInst>::operands(this),
1293                InsertBefore) {
1294  Init(Operation, Ptr, Val, Ordering, SynchScope);
1295}
1296
1297AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1298                             AtomicOrdering Ordering,
1299                             SynchronizationScope SynchScope,
1300                             BasicBlock *InsertAtEnd)
1301  : Instruction(Val->getType(), AtomicRMW,
1302                OperandTraits<AtomicRMWInst>::op_begin(this),
1303                OperandTraits<AtomicRMWInst>::operands(this),
1304                InsertAtEnd) {
1305  Init(Operation, Ptr, Val, Ordering, SynchScope);
1306}
1307
1308//===----------------------------------------------------------------------===//
1309//                       FenceInst Implementation
1310//===----------------------------------------------------------------------===//
1311
1312FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1313                     SynchronizationScope SynchScope,
1314                     Instruction *InsertBefore)
1315  : Instruction(Type::getVoidTy(C), Fence, 0, 0, InsertBefore) {
1316  setOrdering(Ordering);
1317  setSynchScope(SynchScope);
1318}
1319
1320FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1321                     SynchronizationScope SynchScope,
1322                     BasicBlock *InsertAtEnd)
1323  : Instruction(Type::getVoidTy(C), Fence, 0, 0, InsertAtEnd) {
1324  setOrdering(Ordering);
1325  setSynchScope(SynchScope);
1326}
1327
1328//===----------------------------------------------------------------------===//
1329//                       GetElementPtrInst Implementation
1330//===----------------------------------------------------------------------===//
1331
1332void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList,
1333                             const Twine &Name) {
1334  assert(NumOperands == 1 + IdxList.size() && "NumOperands not initialized?");
1335  OperandList[0] = Ptr;
1336  std::copy(IdxList.begin(), IdxList.end(), op_begin() + 1);
1337  setName(Name);
1338}
1339
1340GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI)
1341  : Instruction(GEPI.getType(), GetElementPtr,
1342                OperandTraits<GetElementPtrInst>::op_end(this)
1343                - GEPI.getNumOperands(),
1344                GEPI.getNumOperands()) {
1345  std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin());
1346  SubclassOptionalData = GEPI.SubclassOptionalData;
1347}
1348
1349/// getIndexedType - Returns the type of the element that would be accessed with
1350/// a gep instruction with the specified parameters.
1351///
1352/// The Idxs pointer should point to a continuous piece of memory containing the
1353/// indices, either as Value* or uint64_t.
1354///
1355/// A null type is returned if the indices are invalid for the specified
1356/// pointer type.
1357///
1358template <typename IndexTy>
1359static Type *getIndexedTypeInternal(Type *Ptr, ArrayRef<IndexTy> IdxList) {
1360  PointerType *PTy = dyn_cast<PointerType>(Ptr->getScalarType());
1361  if (!PTy) return 0;   // Type isn't a pointer type!
1362  Type *Agg = PTy->getElementType();
1363
1364  // Handle the special case of the empty set index set, which is always valid.
1365  if (IdxList.empty())
1366    return Agg;
1367
1368  // If there is at least one index, the top level type must be sized, otherwise
1369  // it cannot be 'stepped over'.
1370  if (!Agg->isSized())
1371    return 0;
1372
1373  unsigned CurIdx = 1;
1374  for (; CurIdx != IdxList.size(); ++CurIdx) {
1375    CompositeType *CT = dyn_cast<CompositeType>(Agg);
1376    if (!CT || CT->isPointerTy()) return 0;
1377    IndexTy Index = IdxList[CurIdx];
1378    if (!CT->indexValid(Index)) return 0;
1379    Agg = CT->getTypeAtIndex(Index);
1380  }
1381  return CurIdx == IdxList.size() ? Agg : 0;
1382}
1383
1384Type *GetElementPtrInst::getIndexedType(Type *Ptr, ArrayRef<Value *> IdxList) {
1385  return getIndexedTypeInternal(Ptr, IdxList);
1386}
1387
1388Type *GetElementPtrInst::getIndexedType(Type *Ptr,
1389                                        ArrayRef<Constant *> IdxList) {
1390  return getIndexedTypeInternal(Ptr, IdxList);
1391}
1392
1393Type *GetElementPtrInst::getIndexedType(Type *Ptr, ArrayRef<uint64_t> IdxList) {
1394  return getIndexedTypeInternal(Ptr, IdxList);
1395}
1396
1397/// hasAllZeroIndices - Return true if all of the indices of this GEP are
1398/// zeros.  If so, the result pointer and the first operand have the same
1399/// value, just potentially different types.
1400bool GetElementPtrInst::hasAllZeroIndices() const {
1401  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1402    if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) {
1403      if (!CI->isZero()) return false;
1404    } else {
1405      return false;
1406    }
1407  }
1408  return true;
1409}
1410
1411/// hasAllConstantIndices - Return true if all of the indices of this GEP are
1412/// constant integers.  If so, the result pointer and the first operand have
1413/// a constant offset between them.
1414bool GetElementPtrInst::hasAllConstantIndices() const {
1415  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1416    if (!isa<ConstantInt>(getOperand(i)))
1417      return false;
1418  }
1419  return true;
1420}
1421
1422void GetElementPtrInst::setIsInBounds(bool B) {
1423  cast<GEPOperator>(this)->setIsInBounds(B);
1424}
1425
1426bool GetElementPtrInst::isInBounds() const {
1427  return cast<GEPOperator>(this)->isInBounds();
1428}
1429
1430bool GetElementPtrInst::accumulateConstantOffset(const DataLayout &DL,
1431                                                 APInt &Offset) const {
1432  // Delegate to the generic GEPOperator implementation.
1433  return cast<GEPOperator>(this)->accumulateConstantOffset(DL, Offset);
1434}
1435
1436//===----------------------------------------------------------------------===//
1437//                           ExtractElementInst Implementation
1438//===----------------------------------------------------------------------===//
1439
1440ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1441                                       const Twine &Name,
1442                                       Instruction *InsertBef)
1443  : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1444                ExtractElement,
1445                OperandTraits<ExtractElementInst>::op_begin(this),
1446                2, InsertBef) {
1447  assert(isValidOperands(Val, Index) &&
1448         "Invalid extractelement instruction operands!");
1449  Op<0>() = Val;
1450  Op<1>() = Index;
1451  setName(Name);
1452}
1453
1454ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1455                                       const Twine &Name,
1456                                       BasicBlock *InsertAE)
1457  : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1458                ExtractElement,
1459                OperandTraits<ExtractElementInst>::op_begin(this),
1460                2, InsertAE) {
1461  assert(isValidOperands(Val, Index) &&
1462         "Invalid extractelement instruction operands!");
1463
1464  Op<0>() = Val;
1465  Op<1>() = Index;
1466  setName(Name);
1467}
1468
1469
1470bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) {
1471  if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy(32))
1472    return false;
1473  return true;
1474}
1475
1476
1477//===----------------------------------------------------------------------===//
1478//                           InsertElementInst Implementation
1479//===----------------------------------------------------------------------===//
1480
1481InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1482                                     const Twine &Name,
1483                                     Instruction *InsertBef)
1484  : Instruction(Vec->getType(), InsertElement,
1485                OperandTraits<InsertElementInst>::op_begin(this),
1486                3, InsertBef) {
1487  assert(isValidOperands(Vec, Elt, Index) &&
1488         "Invalid insertelement instruction operands!");
1489  Op<0>() = Vec;
1490  Op<1>() = Elt;
1491  Op<2>() = Index;
1492  setName(Name);
1493}
1494
1495InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1496                                     const Twine &Name,
1497                                     BasicBlock *InsertAE)
1498  : Instruction(Vec->getType(), InsertElement,
1499                OperandTraits<InsertElementInst>::op_begin(this),
1500                3, InsertAE) {
1501  assert(isValidOperands(Vec, Elt, Index) &&
1502         "Invalid insertelement instruction operands!");
1503
1504  Op<0>() = Vec;
1505  Op<1>() = Elt;
1506  Op<2>() = Index;
1507  setName(Name);
1508}
1509
1510bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt,
1511                                        const Value *Index) {
1512  if (!Vec->getType()->isVectorTy())
1513    return false;   // First operand of insertelement must be vector type.
1514
1515  if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType())
1516    return false;// Second operand of insertelement must be vector element type.
1517
1518  if (!Index->getType()->isIntegerTy(32))
1519    return false;  // Third operand of insertelement must be i32.
1520  return true;
1521}
1522
1523
1524//===----------------------------------------------------------------------===//
1525//                      ShuffleVectorInst Implementation
1526//===----------------------------------------------------------------------===//
1527
1528ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1529                                     const Twine &Name,
1530                                     Instruction *InsertBefore)
1531: Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1532                cast<VectorType>(Mask->getType())->getNumElements()),
1533              ShuffleVector,
1534              OperandTraits<ShuffleVectorInst>::op_begin(this),
1535              OperandTraits<ShuffleVectorInst>::operands(this),
1536              InsertBefore) {
1537  assert(isValidOperands(V1, V2, Mask) &&
1538         "Invalid shuffle vector instruction operands!");
1539  Op<0>() = V1;
1540  Op<1>() = V2;
1541  Op<2>() = Mask;
1542  setName(Name);
1543}
1544
1545ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1546                                     const Twine &Name,
1547                                     BasicBlock *InsertAtEnd)
1548: Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1549                cast<VectorType>(Mask->getType())->getNumElements()),
1550              ShuffleVector,
1551              OperandTraits<ShuffleVectorInst>::op_begin(this),
1552              OperandTraits<ShuffleVectorInst>::operands(this),
1553              InsertAtEnd) {
1554  assert(isValidOperands(V1, V2, Mask) &&
1555         "Invalid shuffle vector instruction operands!");
1556
1557  Op<0>() = V1;
1558  Op<1>() = V2;
1559  Op<2>() = Mask;
1560  setName(Name);
1561}
1562
1563bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
1564                                        const Value *Mask) {
1565  // V1 and V2 must be vectors of the same type.
1566  if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType())
1567    return false;
1568
1569  // Mask must be vector of i32.
1570  VectorType *MaskTy = dyn_cast<VectorType>(Mask->getType());
1571  if (MaskTy == 0 || !MaskTy->getElementType()->isIntegerTy(32))
1572    return false;
1573
1574  // Check to see if Mask is valid.
1575  if (isa<UndefValue>(Mask) || isa<ConstantAggregateZero>(Mask))
1576    return true;
1577
1578  if (const ConstantVector *MV = dyn_cast<ConstantVector>(Mask)) {
1579    unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements();
1580    for (unsigned i = 0, e = MV->getNumOperands(); i != e; ++i) {
1581      if (ConstantInt *CI = dyn_cast<ConstantInt>(MV->getOperand(i))) {
1582        if (CI->uge(V1Size*2))
1583          return false;
1584      } else if (!isa<UndefValue>(MV->getOperand(i))) {
1585        return false;
1586      }
1587    }
1588    return true;
1589  }
1590
1591  if (const ConstantDataSequential *CDS =
1592        dyn_cast<ConstantDataSequential>(Mask)) {
1593    unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements();
1594    for (unsigned i = 0, e = MaskTy->getNumElements(); i != e; ++i)
1595      if (CDS->getElementAsInteger(i) >= V1Size*2)
1596        return false;
1597    return true;
1598  }
1599
1600  // The bitcode reader can create a place holder for a forward reference
1601  // used as the shuffle mask. When this occurs, the shuffle mask will
1602  // fall into this case and fail. To avoid this error, do this bit of
1603  // ugliness to allow such a mask pass.
1604  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(Mask))
1605    if (CE->getOpcode() == Instruction::UserOp1)
1606      return true;
1607
1608  return false;
1609}
1610
1611/// getMaskValue - Return the index from the shuffle mask for the specified
1612/// output result.  This is either -1 if the element is undef or a number less
1613/// than 2*numelements.
1614int ShuffleVectorInst::getMaskValue(Constant *Mask, unsigned i) {
1615  assert(i < Mask->getType()->getVectorNumElements() && "Index out of range");
1616  if (ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(Mask))
1617    return CDS->getElementAsInteger(i);
1618  Constant *C = Mask->getAggregateElement(i);
1619  if (isa<UndefValue>(C))
1620    return -1;
1621  return cast<ConstantInt>(C)->getZExtValue();
1622}
1623
1624/// getShuffleMask - Return the full mask for this instruction, where each
1625/// element is the element number and undef's are returned as -1.
1626void ShuffleVectorInst::getShuffleMask(Constant *Mask,
1627                                       SmallVectorImpl<int> &Result) {
1628  unsigned NumElts = Mask->getType()->getVectorNumElements();
1629
1630  if (ConstantDataSequential *CDS=dyn_cast<ConstantDataSequential>(Mask)) {
1631    for (unsigned i = 0; i != NumElts; ++i)
1632      Result.push_back(CDS->getElementAsInteger(i));
1633    return;
1634  }
1635  for (unsigned i = 0; i != NumElts; ++i) {
1636    Constant *C = Mask->getAggregateElement(i);
1637    Result.push_back(isa<UndefValue>(C) ? -1 :
1638                     cast<ConstantInt>(C)->getZExtValue());
1639  }
1640}
1641
1642
1643//===----------------------------------------------------------------------===//
1644//                             InsertValueInst Class
1645//===----------------------------------------------------------------------===//
1646
1647void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
1648                           const Twine &Name) {
1649  assert(NumOperands == 2 && "NumOperands not initialized?");
1650
1651  // There's no fundamental reason why we require at least one index
1652  // (other than weirdness with &*IdxBegin being invalid; see
1653  // getelementptr's init routine for example). But there's no
1654  // present need to support it.
1655  assert(Idxs.size() > 0 && "InsertValueInst must have at least one index");
1656
1657  assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) ==
1658         Val->getType() && "Inserted value must match indexed type!");
1659  Op<0>() = Agg;
1660  Op<1>() = Val;
1661
1662  Indices.append(Idxs.begin(), Idxs.end());
1663  setName(Name);
1664}
1665
1666InsertValueInst::InsertValueInst(const InsertValueInst &IVI)
1667  : Instruction(IVI.getType(), InsertValue,
1668                OperandTraits<InsertValueInst>::op_begin(this), 2),
1669    Indices(IVI.Indices) {
1670  Op<0>() = IVI.getOperand(0);
1671  Op<1>() = IVI.getOperand(1);
1672  SubclassOptionalData = IVI.SubclassOptionalData;
1673}
1674
1675//===----------------------------------------------------------------------===//
1676//                             ExtractValueInst Class
1677//===----------------------------------------------------------------------===//
1678
1679void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) {
1680  assert(NumOperands == 1 && "NumOperands not initialized?");
1681
1682  // There's no fundamental reason why we require at least one index.
1683  // But there's no present need to support it.
1684  assert(Idxs.size() > 0 && "ExtractValueInst must have at least one index");
1685
1686  Indices.append(Idxs.begin(), Idxs.end());
1687  setName(Name);
1688}
1689
1690ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI)
1691  : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)),
1692    Indices(EVI.Indices) {
1693  SubclassOptionalData = EVI.SubclassOptionalData;
1694}
1695
1696// getIndexedType - Returns the type of the element that would be extracted
1697// with an extractvalue instruction with the specified parameters.
1698//
1699// A null type is returned if the indices are invalid for the specified
1700// pointer type.
1701//
1702Type *ExtractValueInst::getIndexedType(Type *Agg,
1703                                       ArrayRef<unsigned> Idxs) {
1704  for (unsigned CurIdx = 0; CurIdx != Idxs.size(); ++CurIdx) {
1705    unsigned Index = Idxs[CurIdx];
1706    // We can't use CompositeType::indexValid(Index) here.
1707    // indexValid() always returns true for arrays because getelementptr allows
1708    // out-of-bounds indices. Since we don't allow those for extractvalue and
1709    // insertvalue we need to check array indexing manually.
1710    // Since the only other types we can index into are struct types it's just
1711    // as easy to check those manually as well.
1712    if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) {
1713      if (Index >= AT->getNumElements())
1714        return 0;
1715    } else if (StructType *ST = dyn_cast<StructType>(Agg)) {
1716      if (Index >= ST->getNumElements())
1717        return 0;
1718    } else {
1719      // Not a valid type to index into.
1720      return 0;
1721    }
1722
1723    Agg = cast<CompositeType>(Agg)->getTypeAtIndex(Index);
1724  }
1725  return const_cast<Type*>(Agg);
1726}
1727
1728//===----------------------------------------------------------------------===//
1729//                             BinaryOperator Class
1730//===----------------------------------------------------------------------===//
1731
1732BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
1733                               Type *Ty, const Twine &Name,
1734                               Instruction *InsertBefore)
1735  : Instruction(Ty, iType,
1736                OperandTraits<BinaryOperator>::op_begin(this),
1737                OperandTraits<BinaryOperator>::operands(this),
1738                InsertBefore) {
1739  Op<0>() = S1;
1740  Op<1>() = S2;
1741  init(iType);
1742  setName(Name);
1743}
1744
1745BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
1746                               Type *Ty, const Twine &Name,
1747                               BasicBlock *InsertAtEnd)
1748  : Instruction(Ty, iType,
1749                OperandTraits<BinaryOperator>::op_begin(this),
1750                OperandTraits<BinaryOperator>::operands(this),
1751                InsertAtEnd) {
1752  Op<0>() = S1;
1753  Op<1>() = S2;
1754  init(iType);
1755  setName(Name);
1756}
1757
1758
1759void BinaryOperator::init(BinaryOps iType) {
1760  Value *LHS = getOperand(0), *RHS = getOperand(1);
1761  (void)LHS; (void)RHS; // Silence warnings.
1762  assert(LHS->getType() == RHS->getType() &&
1763         "Binary operator operand types must match!");
1764#ifndef NDEBUG
1765  switch (iType) {
1766  case Add: case Sub:
1767  case Mul:
1768    assert(getType() == LHS->getType() &&
1769           "Arithmetic operation should return same type as operands!");
1770    assert(getType()->isIntOrIntVectorTy() &&
1771           "Tried to create an integer operation on a non-integer type!");
1772    break;
1773  case FAdd: case FSub:
1774  case FMul:
1775    assert(getType() == LHS->getType() &&
1776           "Arithmetic operation should return same type as operands!");
1777    assert(getType()->isFPOrFPVectorTy() &&
1778           "Tried to create a floating-point operation on a "
1779           "non-floating-point type!");
1780    break;
1781  case UDiv:
1782  case SDiv:
1783    assert(getType() == LHS->getType() &&
1784           "Arithmetic operation should return same type as operands!");
1785    assert((getType()->isIntegerTy() || (getType()->isVectorTy() &&
1786            cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1787           "Incorrect operand type (not integer) for S/UDIV");
1788    break;
1789  case FDiv:
1790    assert(getType() == LHS->getType() &&
1791           "Arithmetic operation should return same type as operands!");
1792    assert(getType()->isFPOrFPVectorTy() &&
1793           "Incorrect operand type (not floating point) for FDIV");
1794    break;
1795  case URem:
1796  case SRem:
1797    assert(getType() == LHS->getType() &&
1798           "Arithmetic operation should return same type as operands!");
1799    assert((getType()->isIntegerTy() || (getType()->isVectorTy() &&
1800            cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1801           "Incorrect operand type (not integer) for S/UREM");
1802    break;
1803  case FRem:
1804    assert(getType() == LHS->getType() &&
1805           "Arithmetic operation should return same type as operands!");
1806    assert(getType()->isFPOrFPVectorTy() &&
1807           "Incorrect operand type (not floating point) for FREM");
1808    break;
1809  case Shl:
1810  case LShr:
1811  case AShr:
1812    assert(getType() == LHS->getType() &&
1813           "Shift operation should return same type as operands!");
1814    assert((getType()->isIntegerTy() ||
1815            (getType()->isVectorTy() &&
1816             cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1817           "Tried to create a shift operation on a non-integral type!");
1818    break;
1819  case And: case Or:
1820  case Xor:
1821    assert(getType() == LHS->getType() &&
1822           "Logical operation should return same type as operands!");
1823    assert((getType()->isIntegerTy() ||
1824            (getType()->isVectorTy() &&
1825             cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1826           "Tried to create a logical operation on a non-integral type!");
1827    break;
1828  default:
1829    break;
1830  }
1831#endif
1832}
1833
1834BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
1835                                       const Twine &Name,
1836                                       Instruction *InsertBefore) {
1837  assert(S1->getType() == S2->getType() &&
1838         "Cannot create binary operator with two operands of differing type!");
1839  return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
1840}
1841
1842BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
1843                                       const Twine &Name,
1844                                       BasicBlock *InsertAtEnd) {
1845  BinaryOperator *Res = Create(Op, S1, S2, Name);
1846  InsertAtEnd->getInstList().push_back(Res);
1847  return Res;
1848}
1849
1850BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
1851                                          Instruction *InsertBefore) {
1852  Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1853  return new BinaryOperator(Instruction::Sub,
1854                            zero, Op,
1855                            Op->getType(), Name, InsertBefore);
1856}
1857
1858BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
1859                                          BasicBlock *InsertAtEnd) {
1860  Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1861  return new BinaryOperator(Instruction::Sub,
1862                            zero, Op,
1863                            Op->getType(), Name, InsertAtEnd);
1864}
1865
1866BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
1867                                             Instruction *InsertBefore) {
1868  Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1869  return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore);
1870}
1871
1872BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
1873                                             BasicBlock *InsertAtEnd) {
1874  Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1875  return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd);
1876}
1877
1878BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
1879                                             Instruction *InsertBefore) {
1880  Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1881  return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore);
1882}
1883
1884BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
1885                                             BasicBlock *InsertAtEnd) {
1886  Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1887  return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd);
1888}
1889
1890BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
1891                                           Instruction *InsertBefore) {
1892  Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1893  return new BinaryOperator(Instruction::FSub, zero, Op,
1894                            Op->getType(), Name, InsertBefore);
1895}
1896
1897BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
1898                                           BasicBlock *InsertAtEnd) {
1899  Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1900  return new BinaryOperator(Instruction::FSub, zero, Op,
1901                            Op->getType(), Name, InsertAtEnd);
1902}
1903
1904BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
1905                                          Instruction *InsertBefore) {
1906  Constant *C = Constant::getAllOnesValue(Op->getType());
1907  return new BinaryOperator(Instruction::Xor, Op, C,
1908                            Op->getType(), Name, InsertBefore);
1909}
1910
1911BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
1912                                          BasicBlock *InsertAtEnd) {
1913  Constant *AllOnes = Constant::getAllOnesValue(Op->getType());
1914  return new BinaryOperator(Instruction::Xor, Op, AllOnes,
1915                            Op->getType(), Name, InsertAtEnd);
1916}
1917
1918
1919// isConstantAllOnes - Helper function for several functions below
1920static inline bool isConstantAllOnes(const Value *V) {
1921  if (const Constant *C = dyn_cast<Constant>(V))
1922    return C->isAllOnesValue();
1923  return false;
1924}
1925
1926bool BinaryOperator::isNeg(const Value *V) {
1927  if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
1928    if (Bop->getOpcode() == Instruction::Sub)
1929      if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0)))
1930        return C->isNegativeZeroValue();
1931  return false;
1932}
1933
1934bool BinaryOperator::isFNeg(const Value *V, bool IgnoreZeroSign) {
1935  if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
1936    if (Bop->getOpcode() == Instruction::FSub)
1937      if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0))) {
1938        if (!IgnoreZeroSign)
1939          IgnoreZeroSign = cast<Instruction>(V)->hasNoSignedZeros();
1940        return !IgnoreZeroSign ? C->isNegativeZeroValue() : C->isZeroValue();
1941      }
1942  return false;
1943}
1944
1945bool BinaryOperator::isNot(const Value *V) {
1946  if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
1947    return (Bop->getOpcode() == Instruction::Xor &&
1948            (isConstantAllOnes(Bop->getOperand(1)) ||
1949             isConstantAllOnes(Bop->getOperand(0))));
1950  return false;
1951}
1952
1953Value *BinaryOperator::getNegArgument(Value *BinOp) {
1954  return cast<BinaryOperator>(BinOp)->getOperand(1);
1955}
1956
1957const Value *BinaryOperator::getNegArgument(const Value *BinOp) {
1958  return getNegArgument(const_cast<Value*>(BinOp));
1959}
1960
1961Value *BinaryOperator::getFNegArgument(Value *BinOp) {
1962  return cast<BinaryOperator>(BinOp)->getOperand(1);
1963}
1964
1965const Value *BinaryOperator::getFNegArgument(const Value *BinOp) {
1966  return getFNegArgument(const_cast<Value*>(BinOp));
1967}
1968
1969Value *BinaryOperator::getNotArgument(Value *BinOp) {
1970  assert(isNot(BinOp) && "getNotArgument on non-'not' instruction!");
1971  BinaryOperator *BO = cast<BinaryOperator>(BinOp);
1972  Value *Op0 = BO->getOperand(0);
1973  Value *Op1 = BO->getOperand(1);
1974  if (isConstantAllOnes(Op0)) return Op1;
1975
1976  assert(isConstantAllOnes(Op1));
1977  return Op0;
1978}
1979
1980const Value *BinaryOperator::getNotArgument(const Value *BinOp) {
1981  return getNotArgument(const_cast<Value*>(BinOp));
1982}
1983
1984
1985// swapOperands - Exchange the two operands to this instruction.  This
1986// instruction is safe to use on any binary instruction and does not
1987// modify the semantics of the instruction.  If the instruction is
1988// order dependent (SetLT f.e.) the opcode is changed.
1989//
1990bool BinaryOperator::swapOperands() {
1991  if (!isCommutative())
1992    return true; // Can't commute operands
1993  Op<0>().swap(Op<1>());
1994  return false;
1995}
1996
1997void BinaryOperator::setHasNoUnsignedWrap(bool b) {
1998  cast<OverflowingBinaryOperator>(this)->setHasNoUnsignedWrap(b);
1999}
2000
2001void BinaryOperator::setHasNoSignedWrap(bool b) {
2002  cast<OverflowingBinaryOperator>(this)->setHasNoSignedWrap(b);
2003}
2004
2005void BinaryOperator::setIsExact(bool b) {
2006  cast<PossiblyExactOperator>(this)->setIsExact(b);
2007}
2008
2009bool BinaryOperator::hasNoUnsignedWrap() const {
2010  return cast<OverflowingBinaryOperator>(this)->hasNoUnsignedWrap();
2011}
2012
2013bool BinaryOperator::hasNoSignedWrap() const {
2014  return cast<OverflowingBinaryOperator>(this)->hasNoSignedWrap();
2015}
2016
2017bool BinaryOperator::isExact() const {
2018  return cast<PossiblyExactOperator>(this)->isExact();
2019}
2020
2021//===----------------------------------------------------------------------===//
2022//                             FPMathOperator Class
2023//===----------------------------------------------------------------------===//
2024
2025/// getFPAccuracy - Get the maximum error permitted by this operation in ULPs.
2026/// An accuracy of 0.0 means that the operation should be performed with the
2027/// default precision.
2028float FPMathOperator::getFPAccuracy() const {
2029  const MDNode *MD =
2030    cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath);
2031  if (!MD)
2032    return 0.0;
2033  ConstantFP *Accuracy = cast<ConstantFP>(MD->getOperand(0));
2034  return Accuracy->getValueAPF().convertToFloat();
2035}
2036
2037
2038//===----------------------------------------------------------------------===//
2039//                                CastInst Class
2040//===----------------------------------------------------------------------===//
2041
2042void CastInst::anchor() {}
2043
2044// Just determine if this cast only deals with integral->integral conversion.
2045bool CastInst::isIntegerCast() const {
2046  switch (getOpcode()) {
2047    default: return false;
2048    case Instruction::ZExt:
2049    case Instruction::SExt:
2050    case Instruction::Trunc:
2051      return true;
2052    case Instruction::BitCast:
2053      return getOperand(0)->getType()->isIntegerTy() &&
2054        getType()->isIntegerTy();
2055  }
2056}
2057
2058bool CastInst::isLosslessCast() const {
2059  // Only BitCast can be lossless, exit fast if we're not BitCast
2060  if (getOpcode() != Instruction::BitCast)
2061    return false;
2062
2063  // Identity cast is always lossless
2064  Type* SrcTy = getOperand(0)->getType();
2065  Type* DstTy = getType();
2066  if (SrcTy == DstTy)
2067    return true;
2068
2069  // Pointer to pointer is always lossless.
2070  if (SrcTy->isPointerTy())
2071    return DstTy->isPointerTy();
2072  return false;  // Other types have no identity values
2073}
2074
2075/// This function determines if the CastInst does not require any bits to be
2076/// changed in order to effect the cast. Essentially, it identifies cases where
2077/// no code gen is necessary for the cast, hence the name no-op cast.  For
2078/// example, the following are all no-op casts:
2079/// # bitcast i32* %x to i8*
2080/// # bitcast <2 x i32> %x to <4 x i16>
2081/// # ptrtoint i32* %x to i32     ; on 32-bit plaforms only
2082/// @brief Determine if the described cast is a no-op.
2083bool CastInst::isNoopCast(Instruction::CastOps Opcode,
2084                          Type *SrcTy,
2085                          Type *DestTy,
2086                          Type *IntPtrTy) {
2087  switch (Opcode) {
2088    default: llvm_unreachable("Invalid CastOp");
2089    case Instruction::Trunc:
2090    case Instruction::ZExt:
2091    case Instruction::SExt:
2092    case Instruction::FPTrunc:
2093    case Instruction::FPExt:
2094    case Instruction::UIToFP:
2095    case Instruction::SIToFP:
2096    case Instruction::FPToUI:
2097    case Instruction::FPToSI:
2098      return false; // These always modify bits
2099    case Instruction::BitCast:
2100      return true;  // BitCast never modifies bits.
2101    case Instruction::PtrToInt:
2102      return IntPtrTy->getScalarSizeInBits() ==
2103             DestTy->getScalarSizeInBits();
2104    case Instruction::IntToPtr:
2105      return IntPtrTy->getScalarSizeInBits() ==
2106             SrcTy->getScalarSizeInBits();
2107  }
2108}
2109
2110/// @brief Determine if a cast is a no-op.
2111bool CastInst::isNoopCast(Type *IntPtrTy) const {
2112  return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), IntPtrTy);
2113}
2114
2115/// This function determines if a pair of casts can be eliminated and what
2116/// opcode should be used in the elimination. This assumes that there are two
2117/// instructions like this:
2118/// *  %F = firstOpcode SrcTy %x to MidTy
2119/// *  %S = secondOpcode MidTy %F to DstTy
2120/// The function returns a resultOpcode so these two casts can be replaced with:
2121/// *  %Replacement = resultOpcode %SrcTy %x to DstTy
2122/// If no such cast is permited, the function returns 0.
2123unsigned CastInst::isEliminableCastPair(
2124  Instruction::CastOps firstOp, Instruction::CastOps secondOp,
2125  Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy,
2126  Type *DstIntPtrTy) {
2127  // Define the 144 possibilities for these two cast instructions. The values
2128  // in this matrix determine what to do in a given situation and select the
2129  // case in the switch below.  The rows correspond to firstOp, the columns
2130  // correspond to secondOp.  In looking at the table below, keep in  mind
2131  // the following cast properties:
2132  //
2133  //          Size Compare       Source               Destination
2134  // Operator  Src ? Size   Type       Sign         Type       Sign
2135  // -------- ------------ -------------------   ---------------------
2136  // TRUNC         >       Integer      Any        Integral     Any
2137  // ZEXT          <       Integral   Unsigned     Integer      Any
2138  // SEXT          <       Integral    Signed      Integer      Any
2139  // FPTOUI       n/a      FloatPt      n/a        Integral   Unsigned
2140  // FPTOSI       n/a      FloatPt      n/a        Integral    Signed
2141  // UITOFP       n/a      Integral   Unsigned     FloatPt      n/a
2142  // SITOFP       n/a      Integral    Signed      FloatPt      n/a
2143  // FPTRUNC       >       FloatPt      n/a        FloatPt      n/a
2144  // FPEXT         <       FloatPt      n/a        FloatPt      n/a
2145  // PTRTOINT     n/a      Pointer      n/a        Integral   Unsigned
2146  // INTTOPTR     n/a      Integral   Unsigned     Pointer      n/a
2147  // BITCAST       =       FirstClass   n/a       FirstClass    n/a
2148  //
2149  // NOTE: some transforms are safe, but we consider them to be non-profitable.
2150  // For example, we could merge "fptoui double to i32" + "zext i32 to i64",
2151  // into "fptoui double to i64", but this loses information about the range
2152  // of the produced value (we no longer know the top-part is all zeros).
2153  // Further this conversion is often much more expensive for typical hardware,
2154  // and causes issues when building libgcc.  We disallow fptosi+sext for the
2155  // same reason.
2156  const unsigned numCastOps =
2157    Instruction::CastOpsEnd - Instruction::CastOpsBegin;
2158  static const uint8_t CastResults[numCastOps][numCastOps] = {
2159    // T        F  F  U  S  F  F  P  I  B   -+
2160    // R  Z  S  P  P  I  I  T  P  2  N  T    |
2161    // U  E  E  2  2  2  2  R  E  I  T  C    +- secondOp
2162    // N  X  X  U  S  F  F  N  X  N  2  V    |
2163    // C  T  T  I  I  P  P  C  T  T  P  T   -+
2164    {  1, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // Trunc      -+
2165    {  8, 1, 9,99,99, 2, 0,99,99,99, 2, 3 }, // ZExt        |
2166    {  8, 0, 1,99,99, 0, 2,99,99,99, 0, 3 }, // SExt        |
2167    {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // FPToUI      |
2168    {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // FPToSI      |
2169    { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4 }, // UIToFP      +- firstOp
2170    { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4 }, // SIToFP      |
2171    { 99,99,99, 0, 0,99,99, 1, 0,99,99, 4 }, // FPTrunc     |
2172    { 99,99,99, 2, 2,99,99,10, 2,99,99, 4 }, // FPExt       |
2173    {  1, 0, 0,99,99, 0, 0,99,99,99, 7, 3 }, // PtrToInt    |
2174    { 99,99,99,99,99,99,99,99,99,13,99,12 }, // IntToPtr    |
2175    {  5, 5, 5, 6, 6, 5, 5, 6, 6,11, 5, 1 }, // BitCast    -+
2176  };
2177
2178  // If either of the casts are a bitcast from scalar to vector, disallow the
2179  // merging. However, bitcast of A->B->A are allowed.
2180  bool isFirstBitcast  = (firstOp == Instruction::BitCast);
2181  bool isSecondBitcast = (secondOp == Instruction::BitCast);
2182  bool chainedBitcast  = (SrcTy == DstTy && isFirstBitcast && isSecondBitcast);
2183
2184  // Check if any of the bitcasts convert scalars<->vectors.
2185  if ((isFirstBitcast  && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) ||
2186      (isSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy)))
2187    // Unless we are bitcasing to the original type, disallow optimizations.
2188    if (!chainedBitcast) return 0;
2189
2190  int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
2191                            [secondOp-Instruction::CastOpsBegin];
2192  switch (ElimCase) {
2193    case 0:
2194      // categorically disallowed
2195      return 0;
2196    case 1:
2197      // allowed, use first cast's opcode
2198      return firstOp;
2199    case 2:
2200      // allowed, use second cast's opcode
2201      return secondOp;
2202    case 3:
2203      // no-op cast in second op implies firstOp as long as the DestTy
2204      // is integer and we are not converting between a vector and a
2205      // non vector type.
2206      if (!SrcTy->isVectorTy() && DstTy->isIntegerTy())
2207        return firstOp;
2208      return 0;
2209    case 4:
2210      // no-op cast in second op implies firstOp as long as the DestTy
2211      // is floating point.
2212      if (DstTy->isFloatingPointTy())
2213        return firstOp;
2214      return 0;
2215    case 5:
2216      // no-op cast in first op implies secondOp as long as the SrcTy
2217      // is an integer.
2218      if (SrcTy->isIntegerTy())
2219        return secondOp;
2220      return 0;
2221    case 6:
2222      // no-op cast in first op implies secondOp as long as the SrcTy
2223      // is a floating point.
2224      if (SrcTy->isFloatingPointTy())
2225        return secondOp;
2226      return 0;
2227    case 7: {
2228      // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size
2229      if (!SrcIntPtrTy || DstIntPtrTy != SrcIntPtrTy)
2230        return 0;
2231      unsigned PtrSize = SrcIntPtrTy->getScalarSizeInBits();
2232      unsigned MidSize = MidTy->getScalarSizeInBits();
2233      if (MidSize >= PtrSize)
2234        return Instruction::BitCast;
2235      return 0;
2236    }
2237    case 8: {
2238      // ext, trunc -> bitcast,    if the SrcTy and DstTy are same size
2239      // ext, trunc -> ext,        if sizeof(SrcTy) < sizeof(DstTy)
2240      // ext, trunc -> trunc,      if sizeof(SrcTy) > sizeof(DstTy)
2241      unsigned SrcSize = SrcTy->getScalarSizeInBits();
2242      unsigned DstSize = DstTy->getScalarSizeInBits();
2243      if (SrcSize == DstSize)
2244        return Instruction::BitCast;
2245      else if (SrcSize < DstSize)
2246        return firstOp;
2247      return secondOp;
2248    }
2249    case 9: // zext, sext -> zext, because sext can't sign extend after zext
2250      return Instruction::ZExt;
2251    case 10:
2252      // fpext followed by ftrunc is allowed if the bit size returned to is
2253      // the same as the original, in which case its just a bitcast
2254      if (SrcTy == DstTy)
2255        return Instruction::BitCast;
2256      return 0; // If the types are not the same we can't eliminate it.
2257    case 11:
2258      // bitcast followed by ptrtoint is allowed as long as the bitcast
2259      // is a pointer to pointer cast.
2260      if (SrcTy->isPointerTy() && MidTy->isPointerTy())
2261        return secondOp;
2262      return 0;
2263    case 12:
2264      // inttoptr, bitcast -> intptr  if bitcast is a ptr to ptr cast
2265      if (MidTy->isPointerTy() && DstTy->isPointerTy())
2266        return firstOp;
2267      return 0;
2268    case 13: {
2269      // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
2270      if (!MidIntPtrTy)
2271        return 0;
2272      unsigned PtrSize = MidIntPtrTy->getScalarSizeInBits();
2273      unsigned SrcSize = SrcTy->getScalarSizeInBits();
2274      unsigned DstSize = DstTy->getScalarSizeInBits();
2275      if (SrcSize <= PtrSize && SrcSize == DstSize)
2276        return Instruction::BitCast;
2277      return 0;
2278    }
2279    case 99:
2280      // cast combination can't happen (error in input). This is for all cases
2281      // where the MidTy is not the same for the two cast instructions.
2282      llvm_unreachable("Invalid Cast Combination");
2283    default:
2284      llvm_unreachable("Error in CastResults table!!!");
2285  }
2286}
2287
2288CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
2289  const Twine &Name, Instruction *InsertBefore) {
2290  assert(castIsValid(op, S, Ty) && "Invalid cast!");
2291  // Construct and return the appropriate CastInst subclass
2292  switch (op) {
2293    case Trunc:    return new TruncInst    (S, Ty, Name, InsertBefore);
2294    case ZExt:     return new ZExtInst     (S, Ty, Name, InsertBefore);
2295    case SExt:     return new SExtInst     (S, Ty, Name, InsertBefore);
2296    case FPTrunc:  return new FPTruncInst  (S, Ty, Name, InsertBefore);
2297    case FPExt:    return new FPExtInst    (S, Ty, Name, InsertBefore);
2298    case UIToFP:   return new UIToFPInst   (S, Ty, Name, InsertBefore);
2299    case SIToFP:   return new SIToFPInst   (S, Ty, Name, InsertBefore);
2300    case FPToUI:   return new FPToUIInst   (S, Ty, Name, InsertBefore);
2301    case FPToSI:   return new FPToSIInst   (S, Ty, Name, InsertBefore);
2302    case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertBefore);
2303    case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertBefore);
2304    case BitCast:  return new BitCastInst  (S, Ty, Name, InsertBefore);
2305    default: llvm_unreachable("Invalid opcode provided");
2306  }
2307}
2308
2309CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
2310  const Twine &Name, BasicBlock *InsertAtEnd) {
2311  assert(castIsValid(op, S, Ty) && "Invalid cast!");
2312  // Construct and return the appropriate CastInst subclass
2313  switch (op) {
2314    case Trunc:    return new TruncInst    (S, Ty, Name, InsertAtEnd);
2315    case ZExt:     return new ZExtInst     (S, Ty, Name, InsertAtEnd);
2316    case SExt:     return new SExtInst     (S, Ty, Name, InsertAtEnd);
2317    case FPTrunc:  return new FPTruncInst  (S, Ty, Name, InsertAtEnd);
2318    case FPExt:    return new FPExtInst    (S, Ty, Name, InsertAtEnd);
2319    case UIToFP:   return new UIToFPInst   (S, Ty, Name, InsertAtEnd);
2320    case SIToFP:   return new SIToFPInst   (S, Ty, Name, InsertAtEnd);
2321    case FPToUI:   return new FPToUIInst   (S, Ty, Name, InsertAtEnd);
2322    case FPToSI:   return new FPToSIInst   (S, Ty, Name, InsertAtEnd);
2323    case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertAtEnd);
2324    case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertAtEnd);
2325    case BitCast:  return new BitCastInst  (S, Ty, Name, InsertAtEnd);
2326    default: llvm_unreachable("Invalid opcode provided");
2327  }
2328}
2329
2330CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
2331                                        const Twine &Name,
2332                                        Instruction *InsertBefore) {
2333  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2334    return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2335  return Create(Instruction::ZExt, S, Ty, Name, InsertBefore);
2336}
2337
2338CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
2339                                        const Twine &Name,
2340                                        BasicBlock *InsertAtEnd) {
2341  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2342    return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2343  return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd);
2344}
2345
2346CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
2347                                        const Twine &Name,
2348                                        Instruction *InsertBefore) {
2349  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2350    return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2351  return Create(Instruction::SExt, S, Ty, Name, InsertBefore);
2352}
2353
2354CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
2355                                        const Twine &Name,
2356                                        BasicBlock *InsertAtEnd) {
2357  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2358    return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2359  return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd);
2360}
2361
2362CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
2363                                         const Twine &Name,
2364                                         Instruction *InsertBefore) {
2365  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2366    return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2367  return Create(Instruction::Trunc, S, Ty, Name, InsertBefore);
2368}
2369
2370CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
2371                                         const Twine &Name,
2372                                         BasicBlock *InsertAtEnd) {
2373  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2374    return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2375  return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd);
2376}
2377
2378CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
2379                                      const Twine &Name,
2380                                      BasicBlock *InsertAtEnd) {
2381  assert(S->getType()->isPointerTy() && "Invalid cast");
2382  assert((Ty->isIntegerTy() || Ty->isPointerTy()) &&
2383         "Invalid cast");
2384
2385  if (Ty->isIntegerTy())
2386    return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd);
2387  return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2388}
2389
2390/// @brief Create a BitCast or a PtrToInt cast instruction
2391CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
2392                                      const Twine &Name,
2393                                      Instruction *InsertBefore) {
2394  assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2395  assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
2396         "Invalid cast");
2397
2398  if (Ty->isIntOrIntVectorTy())
2399    return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
2400  return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2401}
2402
2403CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
2404                                      bool isSigned, const Twine &Name,
2405                                      Instruction *InsertBefore) {
2406  assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
2407         "Invalid integer cast");
2408  unsigned SrcBits = C->getType()->getScalarSizeInBits();
2409  unsigned DstBits = Ty->getScalarSizeInBits();
2410  Instruction::CastOps opcode =
2411    (SrcBits == DstBits ? Instruction::BitCast :
2412     (SrcBits > DstBits ? Instruction::Trunc :
2413      (isSigned ? Instruction::SExt : Instruction::ZExt)));
2414  return Create(opcode, C, Ty, Name, InsertBefore);
2415}
2416
2417CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
2418                                      bool isSigned, const Twine &Name,
2419                                      BasicBlock *InsertAtEnd) {
2420  assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
2421         "Invalid cast");
2422  unsigned SrcBits = C->getType()->getScalarSizeInBits();
2423  unsigned DstBits = Ty->getScalarSizeInBits();
2424  Instruction::CastOps opcode =
2425    (SrcBits == DstBits ? Instruction::BitCast :
2426     (SrcBits > DstBits ? Instruction::Trunc :
2427      (isSigned ? Instruction::SExt : Instruction::ZExt)));
2428  return Create(opcode, C, Ty, Name, InsertAtEnd);
2429}
2430
2431CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
2432                                 const Twine &Name,
2433                                 Instruction *InsertBefore) {
2434  assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2435         "Invalid cast");
2436  unsigned SrcBits = C->getType()->getScalarSizeInBits();
2437  unsigned DstBits = Ty->getScalarSizeInBits();
2438  Instruction::CastOps opcode =
2439    (SrcBits == DstBits ? Instruction::BitCast :
2440     (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2441  return Create(opcode, C, Ty, Name, InsertBefore);
2442}
2443
2444CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
2445                                 const Twine &Name,
2446                                 BasicBlock *InsertAtEnd) {
2447  assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2448         "Invalid cast");
2449  unsigned SrcBits = C->getType()->getScalarSizeInBits();
2450  unsigned DstBits = Ty->getScalarSizeInBits();
2451  Instruction::CastOps opcode =
2452    (SrcBits == DstBits ? Instruction::BitCast :
2453     (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2454  return Create(opcode, C, Ty, Name, InsertAtEnd);
2455}
2456
2457// Check whether it is valid to call getCastOpcode for these types.
2458// This routine must be kept in sync with getCastOpcode.
2459bool CastInst::isCastable(Type *SrcTy, Type *DestTy) {
2460  if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
2461    return false;
2462
2463  if (SrcTy == DestTy)
2464    return true;
2465
2466  if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
2467    if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
2468      if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
2469        // An element by element cast.  Valid if casting the elements is valid.
2470        SrcTy = SrcVecTy->getElementType();
2471        DestTy = DestVecTy->getElementType();
2472      }
2473
2474  // Get the bit sizes, we'll need these
2475  unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
2476  unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
2477
2478  // Run through the possibilities ...
2479  if (DestTy->isIntegerTy()) {               // Casting to integral
2480    if (SrcTy->isIntegerTy()) {                // Casting from integral
2481        return true;
2482    } else if (SrcTy->isFloatingPointTy()) {   // Casting from floating pt
2483      return true;
2484    } else if (SrcTy->isVectorTy()) {          // Casting from vector
2485      return DestBits == SrcBits;
2486    } else {                                   // Casting from something else
2487      return SrcTy->isPointerTy();
2488    }
2489  } else if (DestTy->isFloatingPointTy()) {  // Casting to floating pt
2490    if (SrcTy->isIntegerTy()) {                // Casting from integral
2491      return true;
2492    } else if (SrcTy->isFloatingPointTy()) {   // Casting from floating pt
2493      return true;
2494    } else if (SrcTy->isVectorTy()) {          // Casting from vector
2495      return DestBits == SrcBits;
2496    } else {                                   // Casting from something else
2497      return false;
2498    }
2499  } else if (DestTy->isVectorTy()) {         // Casting to vector
2500    return DestBits == SrcBits;
2501  } else if (DestTy->isPointerTy()) {        // Casting to pointer
2502    if (SrcTy->isPointerTy()) {                // Casting from pointer
2503      return true;
2504    } else if (SrcTy->isIntegerTy()) {         // Casting from integral
2505      return true;
2506    } else {                                   // Casting from something else
2507      return false;
2508    }
2509  } else if (DestTy->isX86_MMXTy()) {
2510    if (SrcTy->isVectorTy()) {
2511      return DestBits == SrcBits;       // 64-bit vector to MMX
2512    } else {
2513      return false;
2514    }
2515  } else {                                   // Casting to something else
2516    return false;
2517  }
2518}
2519
2520// Provide a way to get a "cast" where the cast opcode is inferred from the
2521// types and size of the operand. This, basically, is a parallel of the
2522// logic in the castIsValid function below.  This axiom should hold:
2523//   castIsValid( getCastOpcode(Val, Ty), Val, Ty)
2524// should not assert in castIsValid. In other words, this produces a "correct"
2525// casting opcode for the arguments passed to it.
2526// This routine must be kept in sync with isCastable.
2527Instruction::CastOps
2528CastInst::getCastOpcode(
2529  const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) {
2530  Type *SrcTy = Src->getType();
2531
2532  assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() &&
2533         "Only first class types are castable!");
2534
2535  if (SrcTy == DestTy)
2536    return BitCast;
2537
2538  if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
2539    if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
2540      if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
2541        // An element by element cast.  Find the appropriate opcode based on the
2542        // element types.
2543        SrcTy = SrcVecTy->getElementType();
2544        DestTy = DestVecTy->getElementType();
2545      }
2546
2547  // Get the bit sizes, we'll need these
2548  unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
2549  unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
2550
2551  // Run through the possibilities ...
2552  if (DestTy->isIntegerTy()) {                      // Casting to integral
2553    if (SrcTy->isIntegerTy()) {                     // Casting from integral
2554      if (DestBits < SrcBits)
2555        return Trunc;                               // int -> smaller int
2556      else if (DestBits > SrcBits) {                // its an extension
2557        if (SrcIsSigned)
2558          return SExt;                              // signed -> SEXT
2559        else
2560          return ZExt;                              // unsigned -> ZEXT
2561      } else {
2562        return BitCast;                             // Same size, No-op cast
2563      }
2564    } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt
2565      if (DestIsSigned)
2566        return FPToSI;                              // FP -> sint
2567      else
2568        return FPToUI;                              // FP -> uint
2569    } else if (SrcTy->isVectorTy()) {
2570      assert(DestBits == SrcBits &&
2571             "Casting vector to integer of different width");
2572      return BitCast;                             // Same size, no-op cast
2573    } else {
2574      assert(SrcTy->isPointerTy() &&
2575             "Casting from a value that is not first-class type");
2576      return PtrToInt;                              // ptr -> int
2577    }
2578  } else if (DestTy->isFloatingPointTy()) {         // Casting to floating pt
2579    if (SrcTy->isIntegerTy()) {                     // Casting from integral
2580      if (SrcIsSigned)
2581        return SIToFP;                              // sint -> FP
2582      else
2583        return UIToFP;                              // uint -> FP
2584    } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt
2585      if (DestBits < SrcBits) {
2586        return FPTrunc;                             // FP -> smaller FP
2587      } else if (DestBits > SrcBits) {
2588        return FPExt;                               // FP -> larger FP
2589      } else  {
2590        return BitCast;                             // same size, no-op cast
2591      }
2592    } else if (SrcTy->isVectorTy()) {
2593      assert(DestBits == SrcBits &&
2594             "Casting vector to floating point of different width");
2595      return BitCast;                             // same size, no-op cast
2596    }
2597    llvm_unreachable("Casting pointer or non-first class to float");
2598  } else if (DestTy->isVectorTy()) {
2599    assert(DestBits == SrcBits &&
2600           "Illegal cast to vector (wrong type or size)");
2601    return BitCast;
2602  } else if (DestTy->isPointerTy()) {
2603    if (SrcTy->isPointerTy()) {
2604      return BitCast;                               // ptr -> ptr
2605    } else if (SrcTy->isIntegerTy()) {
2606      return IntToPtr;                              // int -> ptr
2607    }
2608    llvm_unreachable("Casting pointer to other than pointer or int");
2609  } else if (DestTy->isX86_MMXTy()) {
2610    if (SrcTy->isVectorTy()) {
2611      assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX");
2612      return BitCast;                               // 64-bit vector to MMX
2613    }
2614    llvm_unreachable("Illegal cast to X86_MMX");
2615  }
2616  llvm_unreachable("Casting to type that is not first-class");
2617}
2618
2619//===----------------------------------------------------------------------===//
2620//                    CastInst SubClass Constructors
2621//===----------------------------------------------------------------------===//
2622
2623/// Check that the construction parameters for a CastInst are correct. This
2624/// could be broken out into the separate constructors but it is useful to have
2625/// it in one place and to eliminate the redundant code for getting the sizes
2626/// of the types involved.
2627bool
2628CastInst::castIsValid(Instruction::CastOps op, Value *S, Type *DstTy) {
2629
2630  // Check for type sanity on the arguments
2631  Type *SrcTy = S->getType();
2632
2633  // If this is a cast to the same type then it's trivially true.
2634  if (SrcTy == DstTy)
2635    return true;
2636
2637  if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() ||
2638      SrcTy->isAggregateType() || DstTy->isAggregateType())
2639    return false;
2640
2641  // Get the size of the types in bits, we'll need this later
2642  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2643  unsigned DstBitSize = DstTy->getScalarSizeInBits();
2644
2645  // If these are vector types, get the lengths of the vectors (using zero for
2646  // scalar types means that checking that vector lengths match also checks that
2647  // scalars are not being converted to vectors or vectors to scalars).
2648  unsigned SrcLength = SrcTy->isVectorTy() ?
2649    cast<VectorType>(SrcTy)->getNumElements() : 0;
2650  unsigned DstLength = DstTy->isVectorTy() ?
2651    cast<VectorType>(DstTy)->getNumElements() : 0;
2652
2653  // Switch on the opcode provided
2654  switch (op) {
2655  default: return false; // This is an input error
2656  case Instruction::Trunc:
2657    return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
2658      SrcLength == DstLength && SrcBitSize > DstBitSize;
2659  case Instruction::ZExt:
2660    return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
2661      SrcLength == DstLength && SrcBitSize < DstBitSize;
2662  case Instruction::SExt:
2663    return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
2664      SrcLength == DstLength && SrcBitSize < DstBitSize;
2665  case Instruction::FPTrunc:
2666    return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
2667      SrcLength == DstLength && SrcBitSize > DstBitSize;
2668  case Instruction::FPExt:
2669    return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
2670      SrcLength == DstLength && SrcBitSize < DstBitSize;
2671  case Instruction::UIToFP:
2672  case Instruction::SIToFP:
2673    return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() &&
2674      SrcLength == DstLength;
2675  case Instruction::FPToUI:
2676  case Instruction::FPToSI:
2677    return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() &&
2678      SrcLength == DstLength;
2679  case Instruction::PtrToInt:
2680    if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy))
2681      return false;
2682    if (VectorType *VT = dyn_cast<VectorType>(SrcTy))
2683      if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements())
2684        return false;
2685    return SrcTy->getScalarType()->isPointerTy() &&
2686           DstTy->getScalarType()->isIntegerTy();
2687  case Instruction::IntToPtr:
2688    if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy))
2689      return false;
2690    if (VectorType *VT = dyn_cast<VectorType>(SrcTy))
2691      if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements())
2692        return false;
2693    return SrcTy->getScalarType()->isIntegerTy() &&
2694           DstTy->getScalarType()->isPointerTy();
2695  case Instruction::BitCast:
2696    // BitCast implies a no-op cast of type only. No bits change.
2697    // However, you can't cast pointers to anything but pointers.
2698    if (SrcTy->isPointerTy() != DstTy->isPointerTy())
2699      return false;
2700
2701    // Now we know we're not dealing with a pointer/non-pointer mismatch. In all
2702    // these cases, the cast is okay if the source and destination bit widths
2703    // are identical.
2704    return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits();
2705  }
2706}
2707
2708TruncInst::TruncInst(
2709  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2710) : CastInst(Ty, Trunc, S, Name, InsertBefore) {
2711  assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
2712}
2713
2714TruncInst::TruncInst(
2715  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2716) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) {
2717  assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
2718}
2719
2720ZExtInst::ZExtInst(
2721  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2722)  : CastInst(Ty, ZExt, S, Name, InsertBefore) {
2723  assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
2724}
2725
2726ZExtInst::ZExtInst(
2727  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2728)  : CastInst(Ty, ZExt, S, Name, InsertAtEnd) {
2729  assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
2730}
2731SExtInst::SExtInst(
2732  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2733) : CastInst(Ty, SExt, S, Name, InsertBefore) {
2734  assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
2735}
2736
2737SExtInst::SExtInst(
2738  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2739)  : CastInst(Ty, SExt, S, Name, InsertAtEnd) {
2740  assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
2741}
2742
2743FPTruncInst::FPTruncInst(
2744  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2745) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) {
2746  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
2747}
2748
2749FPTruncInst::FPTruncInst(
2750  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2751) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) {
2752  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
2753}
2754
2755FPExtInst::FPExtInst(
2756  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2757) : CastInst(Ty, FPExt, S, Name, InsertBefore) {
2758  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
2759}
2760
2761FPExtInst::FPExtInst(
2762  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2763) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) {
2764  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
2765}
2766
2767UIToFPInst::UIToFPInst(
2768  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2769) : CastInst(Ty, UIToFP, S, Name, InsertBefore) {
2770  assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
2771}
2772
2773UIToFPInst::UIToFPInst(
2774  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2775) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) {
2776  assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
2777}
2778
2779SIToFPInst::SIToFPInst(
2780  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2781) : CastInst(Ty, SIToFP, S, Name, InsertBefore) {
2782  assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
2783}
2784
2785SIToFPInst::SIToFPInst(
2786  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2787) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) {
2788  assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
2789}
2790
2791FPToUIInst::FPToUIInst(
2792  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2793) : CastInst(Ty, FPToUI, S, Name, InsertBefore) {
2794  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
2795}
2796
2797FPToUIInst::FPToUIInst(
2798  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2799) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) {
2800  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
2801}
2802
2803FPToSIInst::FPToSIInst(
2804  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2805) : CastInst(Ty, FPToSI, S, Name, InsertBefore) {
2806  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
2807}
2808
2809FPToSIInst::FPToSIInst(
2810  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2811) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) {
2812  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
2813}
2814
2815PtrToIntInst::PtrToIntInst(
2816  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2817) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) {
2818  assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
2819}
2820
2821PtrToIntInst::PtrToIntInst(
2822  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2823) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) {
2824  assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
2825}
2826
2827IntToPtrInst::IntToPtrInst(
2828  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2829) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) {
2830  assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
2831}
2832
2833IntToPtrInst::IntToPtrInst(
2834  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2835) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) {
2836  assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
2837}
2838
2839BitCastInst::BitCastInst(
2840  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
2841) : CastInst(Ty, BitCast, S, Name, InsertBefore) {
2842  assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
2843}
2844
2845BitCastInst::BitCastInst(
2846  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2847) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) {
2848  assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
2849}
2850
2851//===----------------------------------------------------------------------===//
2852//                               CmpInst Classes
2853//===----------------------------------------------------------------------===//
2854
2855void CmpInst::anchor() {}
2856
2857CmpInst::CmpInst(Type *ty, OtherOps op, unsigned short predicate,
2858                 Value *LHS, Value *RHS, const Twine &Name,
2859                 Instruction *InsertBefore)
2860  : Instruction(ty, op,
2861                OperandTraits<CmpInst>::op_begin(this),
2862                OperandTraits<CmpInst>::operands(this),
2863                InsertBefore) {
2864    Op<0>() = LHS;
2865    Op<1>() = RHS;
2866  setPredicate((Predicate)predicate);
2867  setName(Name);
2868}
2869
2870CmpInst::CmpInst(Type *ty, OtherOps op, unsigned short predicate,
2871                 Value *LHS, Value *RHS, const Twine &Name,
2872                 BasicBlock *InsertAtEnd)
2873  : Instruction(ty, op,
2874                OperandTraits<CmpInst>::op_begin(this),
2875                OperandTraits<CmpInst>::operands(this),
2876                InsertAtEnd) {
2877  Op<0>() = LHS;
2878  Op<1>() = RHS;
2879  setPredicate((Predicate)predicate);
2880  setName(Name);
2881}
2882
2883CmpInst *
2884CmpInst::Create(OtherOps Op, unsigned short predicate,
2885                Value *S1, Value *S2,
2886                const Twine &Name, Instruction *InsertBefore) {
2887  if (Op == Instruction::ICmp) {
2888    if (InsertBefore)
2889      return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate),
2890                          S1, S2, Name);
2891    else
2892      return new ICmpInst(CmpInst::Predicate(predicate),
2893                          S1, S2, Name);
2894  }
2895
2896  if (InsertBefore)
2897    return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate),
2898                        S1, S2, Name);
2899  else
2900    return new FCmpInst(CmpInst::Predicate(predicate),
2901                        S1, S2, Name);
2902}
2903
2904CmpInst *
2905CmpInst::Create(OtherOps Op, unsigned short predicate, Value *S1, Value *S2,
2906                const Twine &Name, BasicBlock *InsertAtEnd) {
2907  if (Op == Instruction::ICmp) {
2908    return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
2909                        S1, S2, Name);
2910  }
2911  return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
2912                      S1, S2, Name);
2913}
2914
2915void CmpInst::swapOperands() {
2916  if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
2917    IC->swapOperands();
2918  else
2919    cast<FCmpInst>(this)->swapOperands();
2920}
2921
2922bool CmpInst::isCommutative() const {
2923  if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
2924    return IC->isCommutative();
2925  return cast<FCmpInst>(this)->isCommutative();
2926}
2927
2928bool CmpInst::isEquality() const {
2929  if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
2930    return IC->isEquality();
2931  return cast<FCmpInst>(this)->isEquality();
2932}
2933
2934
2935CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) {
2936  switch (pred) {
2937    default: llvm_unreachable("Unknown cmp predicate!");
2938    case ICMP_EQ: return ICMP_NE;
2939    case ICMP_NE: return ICMP_EQ;
2940    case ICMP_UGT: return ICMP_ULE;
2941    case ICMP_ULT: return ICMP_UGE;
2942    case ICMP_UGE: return ICMP_ULT;
2943    case ICMP_ULE: return ICMP_UGT;
2944    case ICMP_SGT: return ICMP_SLE;
2945    case ICMP_SLT: return ICMP_SGE;
2946    case ICMP_SGE: return ICMP_SLT;
2947    case ICMP_SLE: return ICMP_SGT;
2948
2949    case FCMP_OEQ: return FCMP_UNE;
2950    case FCMP_ONE: return FCMP_UEQ;
2951    case FCMP_OGT: return FCMP_ULE;
2952    case FCMP_OLT: return FCMP_UGE;
2953    case FCMP_OGE: return FCMP_ULT;
2954    case FCMP_OLE: return FCMP_UGT;
2955    case FCMP_UEQ: return FCMP_ONE;
2956    case FCMP_UNE: return FCMP_OEQ;
2957    case FCMP_UGT: return FCMP_OLE;
2958    case FCMP_ULT: return FCMP_OGE;
2959    case FCMP_UGE: return FCMP_OLT;
2960    case FCMP_ULE: return FCMP_OGT;
2961    case FCMP_ORD: return FCMP_UNO;
2962    case FCMP_UNO: return FCMP_ORD;
2963    case FCMP_TRUE: return FCMP_FALSE;
2964    case FCMP_FALSE: return FCMP_TRUE;
2965  }
2966}
2967
2968ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) {
2969  switch (pred) {
2970    default: llvm_unreachable("Unknown icmp predicate!");
2971    case ICMP_EQ: case ICMP_NE:
2972    case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE:
2973       return pred;
2974    case ICMP_UGT: return ICMP_SGT;
2975    case ICMP_ULT: return ICMP_SLT;
2976    case ICMP_UGE: return ICMP_SGE;
2977    case ICMP_ULE: return ICMP_SLE;
2978  }
2979}
2980
2981ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) {
2982  switch (pred) {
2983    default: llvm_unreachable("Unknown icmp predicate!");
2984    case ICMP_EQ: case ICMP_NE:
2985    case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE:
2986       return pred;
2987    case ICMP_SGT: return ICMP_UGT;
2988    case ICMP_SLT: return ICMP_ULT;
2989    case ICMP_SGE: return ICMP_UGE;
2990    case ICMP_SLE: return ICMP_ULE;
2991  }
2992}
2993
2994/// Initialize a set of values that all satisfy the condition with C.
2995///
2996ConstantRange
2997ICmpInst::makeConstantRange(Predicate pred, const APInt &C) {
2998  APInt Lower(C);
2999  APInt Upper(C);
3000  uint32_t BitWidth = C.getBitWidth();
3001  switch (pred) {
3002  default: llvm_unreachable("Invalid ICmp opcode to ConstantRange ctor!");
3003  case ICmpInst::ICMP_EQ: ++Upper; break;
3004  case ICmpInst::ICMP_NE: ++Lower; break;
3005  case ICmpInst::ICMP_ULT:
3006    Lower = APInt::getMinValue(BitWidth);
3007    // Check for an empty-set condition.
3008    if (Lower == Upper)
3009      return ConstantRange(BitWidth, /*isFullSet=*/false);
3010    break;
3011  case ICmpInst::ICMP_SLT:
3012    Lower = APInt::getSignedMinValue(BitWidth);
3013    // Check for an empty-set condition.
3014    if (Lower == Upper)
3015      return ConstantRange(BitWidth, /*isFullSet=*/false);
3016    break;
3017  case ICmpInst::ICMP_UGT:
3018    ++Lower; Upper = APInt::getMinValue(BitWidth);        // Min = Next(Max)
3019    // Check for an empty-set condition.
3020    if (Lower == Upper)
3021      return ConstantRange(BitWidth, /*isFullSet=*/false);
3022    break;
3023  case ICmpInst::ICMP_SGT:
3024    ++Lower; Upper = APInt::getSignedMinValue(BitWidth);  // Min = Next(Max)
3025    // Check for an empty-set condition.
3026    if (Lower == Upper)
3027      return ConstantRange(BitWidth, /*isFullSet=*/false);
3028    break;
3029  case ICmpInst::ICMP_ULE:
3030    Lower = APInt::getMinValue(BitWidth); ++Upper;
3031    // Check for a full-set condition.
3032    if (Lower == Upper)
3033      return ConstantRange(BitWidth, /*isFullSet=*/true);
3034    break;
3035  case ICmpInst::ICMP_SLE:
3036    Lower = APInt::getSignedMinValue(BitWidth); ++Upper;
3037    // Check for a full-set condition.
3038    if (Lower == Upper)
3039      return ConstantRange(BitWidth, /*isFullSet=*/true);
3040    break;
3041  case ICmpInst::ICMP_UGE:
3042    Upper = APInt::getMinValue(BitWidth);        // Min = Next(Max)
3043    // Check for a full-set condition.
3044    if (Lower == Upper)
3045      return ConstantRange(BitWidth, /*isFullSet=*/true);
3046    break;
3047  case ICmpInst::ICMP_SGE:
3048    Upper = APInt::getSignedMinValue(BitWidth);  // Min = Next(Max)
3049    // Check for a full-set condition.
3050    if (Lower == Upper)
3051      return ConstantRange(BitWidth, /*isFullSet=*/true);
3052    break;
3053  }
3054  return ConstantRange(Lower, Upper);
3055}
3056
3057CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) {
3058  switch (pred) {
3059    default: llvm_unreachable("Unknown cmp predicate!");
3060    case ICMP_EQ: case ICMP_NE:
3061      return pred;
3062    case ICMP_SGT: return ICMP_SLT;
3063    case ICMP_SLT: return ICMP_SGT;
3064    case ICMP_SGE: return ICMP_SLE;
3065    case ICMP_SLE: return ICMP_SGE;
3066    case ICMP_UGT: return ICMP_ULT;
3067    case ICMP_ULT: return ICMP_UGT;
3068    case ICMP_UGE: return ICMP_ULE;
3069    case ICMP_ULE: return ICMP_UGE;
3070
3071    case FCMP_FALSE: case FCMP_TRUE:
3072    case FCMP_OEQ: case FCMP_ONE:
3073    case FCMP_UEQ: case FCMP_UNE:
3074    case FCMP_ORD: case FCMP_UNO:
3075      return pred;
3076    case FCMP_OGT: return FCMP_OLT;
3077    case FCMP_OLT: return FCMP_OGT;
3078    case FCMP_OGE: return FCMP_OLE;
3079    case FCMP_OLE: return FCMP_OGE;
3080    case FCMP_UGT: return FCMP_ULT;
3081    case FCMP_ULT: return FCMP_UGT;
3082    case FCMP_UGE: return FCMP_ULE;
3083    case FCMP_ULE: return FCMP_UGE;
3084  }
3085}
3086
3087bool CmpInst::isUnsigned(unsigned short predicate) {
3088  switch (predicate) {
3089    default: return false;
3090    case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT:
3091    case ICmpInst::ICMP_UGE: return true;
3092  }
3093}
3094
3095bool CmpInst::isSigned(unsigned short predicate) {
3096  switch (predicate) {
3097    default: return false;
3098    case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT:
3099    case ICmpInst::ICMP_SGE: return true;
3100  }
3101}
3102
3103bool CmpInst::isOrdered(unsigned short predicate) {
3104  switch (predicate) {
3105    default: return false;
3106    case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT:
3107    case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE:
3108    case FCmpInst::FCMP_ORD: return true;
3109  }
3110}
3111
3112bool CmpInst::isUnordered(unsigned short predicate) {
3113  switch (predicate) {
3114    default: return false;
3115    case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT:
3116    case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE:
3117    case FCmpInst::FCMP_UNO: return true;
3118  }
3119}
3120
3121bool CmpInst::isTrueWhenEqual(unsigned short predicate) {
3122  switch(predicate) {
3123    default: return false;
3124    case ICMP_EQ:   case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE:
3125    case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true;
3126  }
3127}
3128
3129bool CmpInst::isFalseWhenEqual(unsigned short predicate) {
3130  switch(predicate) {
3131  case ICMP_NE:    case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT:
3132  case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true;
3133  default: return false;
3134  }
3135}
3136
3137
3138//===----------------------------------------------------------------------===//
3139//                        SwitchInst Implementation
3140//===----------------------------------------------------------------------===//
3141
3142void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) {
3143  assert(Value && Default && NumReserved);
3144  ReservedSpace = NumReserved;
3145  NumOperands = 2;
3146  OperandList = allocHungoffUses(ReservedSpace);
3147
3148  OperandList[0] = Value;
3149  OperandList[1] = Default;
3150}
3151
3152/// SwitchInst ctor - Create a new switch instruction, specifying a value to
3153/// switch on and a default destination.  The number of additional cases can
3154/// be specified here to make memory allocation more efficient.  This
3155/// constructor can also autoinsert before another instruction.
3156SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3157                       Instruction *InsertBefore)
3158  : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch,
3159                   0, 0, InsertBefore) {
3160  init(Value, Default, 2+NumCases*2);
3161}
3162
3163/// SwitchInst ctor - Create a new switch instruction, specifying a value to
3164/// switch on and a default destination.  The number of additional cases can
3165/// be specified here to make memory allocation more efficient.  This
3166/// constructor also autoinserts at the end of the specified BasicBlock.
3167SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3168                       BasicBlock *InsertAtEnd)
3169  : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch,
3170                   0, 0, InsertAtEnd) {
3171  init(Value, Default, 2+NumCases*2);
3172}
3173
3174SwitchInst::SwitchInst(const SwitchInst &SI)
3175  : TerminatorInst(SI.getType(), Instruction::Switch, 0, 0) {
3176  init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands());
3177  NumOperands = SI.getNumOperands();
3178  Use *OL = OperandList, *InOL = SI.OperandList;
3179  for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) {
3180    OL[i] = InOL[i];
3181    OL[i+1] = InOL[i+1];
3182  }
3183  TheSubsets = SI.TheSubsets;
3184  SubclassOptionalData = SI.SubclassOptionalData;
3185}
3186
3187SwitchInst::~SwitchInst() {
3188  dropHungoffUses();
3189}
3190
3191
3192/// addCase - Add an entry to the switch instruction...
3193///
3194void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) {
3195  IntegersSubsetToBB Mapping;
3196
3197  // FIXME: Currently we work with ConstantInt based cases.
3198  // So inititalize IntItem container directly from ConstantInt.
3199  Mapping.add(IntItem::fromConstantInt(OnVal));
3200  IntegersSubset CaseRanges = Mapping.getCase();
3201  addCase(CaseRanges, Dest);
3202}
3203
3204void SwitchInst::addCase(IntegersSubset& OnVal, BasicBlock *Dest) {
3205  unsigned NewCaseIdx = getNumCases();
3206  unsigned OpNo = NumOperands;
3207  if (OpNo+2 > ReservedSpace)
3208    growOperands();  // Get more space!
3209  // Initialize some new operands.
3210  assert(OpNo+1 < ReservedSpace && "Growing didn't work!");
3211  NumOperands = OpNo+2;
3212
3213  SubsetsIt TheSubsetsIt = TheSubsets.insert(TheSubsets.end(), OnVal);
3214
3215  CaseIt Case(this, NewCaseIdx, TheSubsetsIt);
3216  Case.updateCaseValueOperand(OnVal);
3217  Case.setSuccessor(Dest);
3218}
3219
3220/// removeCase - This method removes the specified case and its successor
3221/// from the switch instruction.
3222void SwitchInst::removeCase(CaseIt& i) {
3223  unsigned idx = i.getCaseIndex();
3224
3225  assert(2 + idx*2 < getNumOperands() && "Case index out of range!!!");
3226
3227  unsigned NumOps = getNumOperands();
3228  Use *OL = OperandList;
3229
3230  // Overwrite this case with the end of the list.
3231  if (2 + (idx + 1) * 2 != NumOps) {
3232    OL[2 + idx * 2] = OL[NumOps - 2];
3233    OL[2 + idx * 2 + 1] = OL[NumOps - 1];
3234  }
3235
3236  // Nuke the last value.
3237  OL[NumOps-2].set(0);
3238  OL[NumOps-2+1].set(0);
3239
3240  // Do the same with TheCases collection:
3241  if (i.SubsetIt != --TheSubsets.end()) {
3242    *i.SubsetIt = TheSubsets.back();
3243    TheSubsets.pop_back();
3244  } else {
3245    TheSubsets.pop_back();
3246    i.SubsetIt = TheSubsets.end();
3247  }
3248
3249  NumOperands = NumOps-2;
3250}
3251
3252/// growOperands - grow operands - This grows the operand list in response
3253/// to a push_back style of operation.  This grows the number of ops by 3 times.
3254///
3255void SwitchInst::growOperands() {
3256  unsigned e = getNumOperands();
3257  unsigned NumOps = e*3;
3258
3259  ReservedSpace = NumOps;
3260  Use *NewOps = allocHungoffUses(NumOps);
3261  Use *OldOps = OperandList;
3262  for (unsigned i = 0; i != e; ++i) {
3263      NewOps[i] = OldOps[i];
3264  }
3265  OperandList = NewOps;
3266  Use::zap(OldOps, OldOps + e, true);
3267}
3268
3269
3270BasicBlock *SwitchInst::getSuccessorV(unsigned idx) const {
3271  return getSuccessor(idx);
3272}
3273unsigned SwitchInst::getNumSuccessorsV() const {
3274  return getNumSuccessors();
3275}
3276void SwitchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
3277  setSuccessor(idx, B);
3278}
3279
3280//===----------------------------------------------------------------------===//
3281//                        IndirectBrInst Implementation
3282//===----------------------------------------------------------------------===//
3283
3284void IndirectBrInst::init(Value *Address, unsigned NumDests) {
3285  assert(Address && Address->getType()->isPointerTy() &&
3286         "Address of indirectbr must be a pointer");
3287  ReservedSpace = 1+NumDests;
3288  NumOperands = 1;
3289  OperandList = allocHungoffUses(ReservedSpace);
3290
3291  OperandList[0] = Address;
3292}
3293
3294
3295/// growOperands - grow operands - This grows the operand list in response
3296/// to a push_back style of operation.  This grows the number of ops by 2 times.
3297///
3298void IndirectBrInst::growOperands() {
3299  unsigned e = getNumOperands();
3300  unsigned NumOps = e*2;
3301
3302  ReservedSpace = NumOps;
3303  Use *NewOps = allocHungoffUses(NumOps);
3304  Use *OldOps = OperandList;
3305  for (unsigned i = 0; i != e; ++i)
3306    NewOps[i] = OldOps[i];
3307  OperandList = NewOps;
3308  Use::zap(OldOps, OldOps + e, true);
3309}
3310
3311IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
3312                               Instruction *InsertBefore)
3313: TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr,
3314                 0, 0, InsertBefore) {
3315  init(Address, NumCases);
3316}
3317
3318IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
3319                               BasicBlock *InsertAtEnd)
3320: TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr,
3321                 0, 0, InsertAtEnd) {
3322  init(Address, NumCases);
3323}
3324
3325IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI)
3326  : TerminatorInst(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr,
3327                   allocHungoffUses(IBI.getNumOperands()),
3328                   IBI.getNumOperands()) {
3329  Use *OL = OperandList, *InOL = IBI.OperandList;
3330  for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i)
3331    OL[i] = InOL[i];
3332  SubclassOptionalData = IBI.SubclassOptionalData;
3333}
3334
3335IndirectBrInst::~IndirectBrInst() {
3336  dropHungoffUses();
3337}
3338
3339/// addDestination - Add a destination.
3340///
3341void IndirectBrInst::addDestination(BasicBlock *DestBB) {
3342  unsigned OpNo = NumOperands;
3343  if (OpNo+1 > ReservedSpace)
3344    growOperands();  // Get more space!
3345  // Initialize some new operands.
3346  assert(OpNo < ReservedSpace && "Growing didn't work!");
3347  NumOperands = OpNo+1;
3348  OperandList[OpNo] = DestBB;
3349}
3350
3351/// removeDestination - This method removes the specified successor from the
3352/// indirectbr instruction.
3353void IndirectBrInst::removeDestination(unsigned idx) {
3354  assert(idx < getNumOperands()-1 && "Successor index out of range!");
3355
3356  unsigned NumOps = getNumOperands();
3357  Use *OL = OperandList;
3358
3359  // Replace this value with the last one.
3360  OL[idx+1] = OL[NumOps-1];
3361
3362  // Nuke the last value.
3363  OL[NumOps-1].set(0);
3364  NumOperands = NumOps-1;
3365}
3366
3367BasicBlock *IndirectBrInst::getSuccessorV(unsigned idx) const {
3368  return getSuccessor(idx);
3369}
3370unsigned IndirectBrInst::getNumSuccessorsV() const {
3371  return getNumSuccessors();
3372}
3373void IndirectBrInst::setSuccessorV(unsigned idx, BasicBlock *B) {
3374  setSuccessor(idx, B);
3375}
3376
3377//===----------------------------------------------------------------------===//
3378//                           clone_impl() implementations
3379//===----------------------------------------------------------------------===//
3380
3381// Define these methods here so vtables don't get emitted into every translation
3382// unit that uses these classes.
3383
3384GetElementPtrInst *GetElementPtrInst::clone_impl() const {
3385  return new (getNumOperands()) GetElementPtrInst(*this);
3386}
3387
3388BinaryOperator *BinaryOperator::clone_impl() const {
3389  return Create(getOpcode(), Op<0>(), Op<1>());
3390}
3391
3392FCmpInst* FCmpInst::clone_impl() const {
3393  return new FCmpInst(getPredicate(), Op<0>(), Op<1>());
3394}
3395
3396ICmpInst* ICmpInst::clone_impl() const {
3397  return new ICmpInst(getPredicate(), Op<0>(), Op<1>());
3398}
3399
3400ExtractValueInst *ExtractValueInst::clone_impl() const {
3401  return new ExtractValueInst(*this);
3402}
3403
3404InsertValueInst *InsertValueInst::clone_impl() const {
3405  return new InsertValueInst(*this);
3406}
3407
3408AllocaInst *AllocaInst::clone_impl() const {
3409  return new AllocaInst(getAllocatedType(),
3410                        (Value*)getOperand(0),
3411                        getAlignment());
3412}
3413
3414LoadInst *LoadInst::clone_impl() const {
3415  return new LoadInst(getOperand(0), Twine(), isVolatile(),
3416                      getAlignment(), getOrdering(), getSynchScope());
3417}
3418
3419StoreInst *StoreInst::clone_impl() const {
3420  return new StoreInst(getOperand(0), getOperand(1), isVolatile(),
3421                       getAlignment(), getOrdering(), getSynchScope());
3422
3423}
3424
3425AtomicCmpXchgInst *AtomicCmpXchgInst::clone_impl() const {
3426  AtomicCmpXchgInst *Result =
3427    new AtomicCmpXchgInst(getOperand(0), getOperand(1), getOperand(2),
3428                          getOrdering(), getSynchScope());
3429  Result->setVolatile(isVolatile());
3430  return Result;
3431}
3432
3433AtomicRMWInst *AtomicRMWInst::clone_impl() const {
3434  AtomicRMWInst *Result =
3435    new AtomicRMWInst(getOperation(),getOperand(0), getOperand(1),
3436                      getOrdering(), getSynchScope());
3437  Result->setVolatile(isVolatile());
3438  return Result;
3439}
3440
3441FenceInst *FenceInst::clone_impl() const {
3442  return new FenceInst(getContext(), getOrdering(), getSynchScope());
3443}
3444
3445TruncInst *TruncInst::clone_impl() const {
3446  return new TruncInst(getOperand(0), getType());
3447}
3448
3449ZExtInst *ZExtInst::clone_impl() const {
3450  return new ZExtInst(getOperand(0), getType());
3451}
3452
3453SExtInst *SExtInst::clone_impl() const {
3454  return new SExtInst(getOperand(0), getType());
3455}
3456
3457FPTruncInst *FPTruncInst::clone_impl() const {
3458  return new FPTruncInst(getOperand(0), getType());
3459}
3460
3461FPExtInst *FPExtInst::clone_impl() const {
3462  return new FPExtInst(getOperand(0), getType());
3463}
3464
3465UIToFPInst *UIToFPInst::clone_impl() const {
3466  return new UIToFPInst(getOperand(0), getType());
3467}
3468
3469SIToFPInst *SIToFPInst::clone_impl() const {
3470  return new SIToFPInst(getOperand(0), getType());
3471}
3472
3473FPToUIInst *FPToUIInst::clone_impl() const {
3474  return new FPToUIInst(getOperand(0), getType());
3475}
3476
3477FPToSIInst *FPToSIInst::clone_impl() const {
3478  return new FPToSIInst(getOperand(0), getType());
3479}
3480
3481PtrToIntInst *PtrToIntInst::clone_impl() const {
3482  return new PtrToIntInst(getOperand(0), getType());
3483}
3484
3485IntToPtrInst *IntToPtrInst::clone_impl() const {
3486  return new IntToPtrInst(getOperand(0), getType());
3487}
3488
3489BitCastInst *BitCastInst::clone_impl() const {
3490  return new BitCastInst(getOperand(0), getType());
3491}
3492
3493CallInst *CallInst::clone_impl() const {
3494  return  new(getNumOperands()) CallInst(*this);
3495}
3496
3497SelectInst *SelectInst::clone_impl() const {
3498  return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2));
3499}
3500
3501VAArgInst *VAArgInst::clone_impl() const {
3502  return new VAArgInst(getOperand(0), getType());
3503}
3504
3505ExtractElementInst *ExtractElementInst::clone_impl() const {
3506  return ExtractElementInst::Create(getOperand(0), getOperand(1));
3507}
3508
3509InsertElementInst *InsertElementInst::clone_impl() const {
3510  return InsertElementInst::Create(getOperand(0), getOperand(1), getOperand(2));
3511}
3512
3513ShuffleVectorInst *ShuffleVectorInst::clone_impl() const {
3514  return new ShuffleVectorInst(getOperand(0), getOperand(1), getOperand(2));
3515}
3516
3517PHINode *PHINode::clone_impl() const {
3518  return new PHINode(*this);
3519}
3520
3521LandingPadInst *LandingPadInst::clone_impl() const {
3522  return new LandingPadInst(*this);
3523}
3524
3525ReturnInst *ReturnInst::clone_impl() const {
3526  return new(getNumOperands()) ReturnInst(*this);
3527}
3528
3529BranchInst *BranchInst::clone_impl() const {
3530  return new(getNumOperands()) BranchInst(*this);
3531}
3532
3533SwitchInst *SwitchInst::clone_impl() const {
3534  return new SwitchInst(*this);
3535}
3536
3537IndirectBrInst *IndirectBrInst::clone_impl() const {
3538  return new IndirectBrInst(*this);
3539}
3540
3541
3542InvokeInst *InvokeInst::clone_impl() const {
3543  return new(getNumOperands()) InvokeInst(*this);
3544}
3545
3546ResumeInst *ResumeInst::clone_impl() const {
3547  return new(1) ResumeInst(*this);
3548}
3549
3550UnreachableInst *UnreachableInst::clone_impl() const {
3551  LLVMContext &Context = getContext();
3552  return new UnreachableInst(Context);
3553}
3554