JITEmitter.cpp revision 243830
12Sjlaskey//===-- JITEmitter.cpp - Write machine code to executable memory ----------===//
26Sjlaskey//
32Sjlaskey//                     The LLVM Compiler Infrastructure
4877Sattila//
52Sjlaskey// This file is distributed under the University of Illinois Open Source
62Sjlaskey// License. See LICENSE.TXT for details.
72Sjlaskey//
8877Sattila//===----------------------------------------------------------------------===//
92Sjlaskey//
102Sjlaskey// This file defines a MachineCodeEmitter object that is used by the JIT to
112Sjlaskey// write machine code to memory and remember where relocatable values are.
122Sjlaskey//
132Sjlaskey//===----------------------------------------------------------------------===//
14877Sattila
152Sjlaskey#define DEBUG_TYPE "jit"
162Sjlaskey#include "JIT.h"
172Sjlaskey#include "JITDwarfEmitter.h"
18877Sattila#include "llvm/ADT/OwningPtr.h"
192Sjlaskey#include "llvm/Constants.h"
202Sjlaskey#include "llvm/DebugInfo.h"
212Sjlaskey#include "llvm/DerivedTypes.h"
222Sjlaskey#include "llvm/Module.h"
232Sjlaskey#include "llvm/CodeGen/JITCodeEmitter.h"
242Sjlaskey#include "llvm/CodeGen/MachineFunction.h"
252Sjlaskey#include "llvm/CodeGen/MachineCodeInfo.h"
262Sjlaskey#include "llvm/CodeGen/MachineConstantPool.h"
272Sjlaskey#include "llvm/CodeGen/MachineJumpTableInfo.h"
282Sjlaskey#include "llvm/CodeGen/MachineModuleInfo.h"
292Sjlaskey#include "llvm/CodeGen/MachineRelocation.h"
302Sjlaskey#include "llvm/ExecutionEngine/GenericValue.h"
312Sjlaskey#include "llvm/ExecutionEngine/JITEventListener.h"
322Sjlaskey#include "llvm/ExecutionEngine/JITMemoryManager.h"
332Sjlaskey#include "llvm/DataLayout.h"
342Sjlaskey#include "llvm/Target/TargetInstrInfo.h"
352Sjlaskey#include "llvm/Target/TargetJITInfo.h"
362Sjlaskey#include "llvm/Target/TargetMachine.h"
372Sjlaskey#include "llvm/Target/TargetOptions.h"
382Sjlaskey#include "llvm/Support/Debug.h"
392Sjlaskey#include "llvm/Support/ErrorHandling.h"
402Sjlaskey#include "llvm/Support/ManagedStatic.h"
412Sjlaskey#include "llvm/Support/MutexGuard.h"
422Sjlaskey#include "llvm/Support/ValueHandle.h"
432Sjlaskey#include "llvm/Support/raw_ostream.h"
442Sjlaskey#include "llvm/Support/Disassembler.h"
452Sjlaskey#include "llvm/Support/Memory.h"
462Sjlaskey#include "llvm/ADT/DenseMap.h"
472Sjlaskey#include "llvm/ADT/SmallPtrSet.h"
482Sjlaskey#include "llvm/ADT/SmallVector.h"
492Sjlaskey#include "llvm/ADT/Statistic.h"
502Sjlaskey#include "llvm/ADT/ValueMap.h"
51#include <algorithm>
52#ifndef NDEBUG
53#include <iomanip>
54#endif
55using namespace llvm;
56
57STATISTIC(NumBytes, "Number of bytes of machine code compiled");
58STATISTIC(NumRelos, "Number of relocations applied");
59STATISTIC(NumRetries, "Number of retries with more memory");
60
61
62// A declaration may stop being a declaration once it's fully read from bitcode.
63// This function returns true if F is fully read and is still a declaration.
64static bool isNonGhostDeclaration(const Function *F) {
65  return F->isDeclaration() && !F->isMaterializable();
66}
67
68//===----------------------------------------------------------------------===//
69// JIT lazy compilation code.
70//
71namespace {
72  class JITEmitter;
73  class JITResolverState;
74
75  template<typename ValueTy>
76  struct NoRAUWValueMapConfig : public ValueMapConfig<ValueTy> {
77    typedef JITResolverState *ExtraData;
78    static void onRAUW(JITResolverState *, Value *Old, Value *New) {
79      llvm_unreachable("The JIT doesn't know how to handle a"
80                       " RAUW on a value it has emitted.");
81    }
82  };
83
84  struct CallSiteValueMapConfig : public NoRAUWValueMapConfig<Function*> {
85    typedef JITResolverState *ExtraData;
86    static void onDelete(JITResolverState *JRS, Function *F);
87  };
88
89  class JITResolverState {
90  public:
91    typedef ValueMap<Function*, void*, NoRAUWValueMapConfig<Function*> >
92      FunctionToLazyStubMapTy;
93    typedef std::map<void*, AssertingVH<Function> > CallSiteToFunctionMapTy;
94    typedef ValueMap<Function *, SmallPtrSet<void*, 1>,
95                     CallSiteValueMapConfig> FunctionToCallSitesMapTy;
96    typedef std::map<AssertingVH<GlobalValue>, void*> GlobalToIndirectSymMapTy;
97  private:
98    /// FunctionToLazyStubMap - Keep track of the lazy stub created for a
99    /// particular function so that we can reuse them if necessary.
100    FunctionToLazyStubMapTy FunctionToLazyStubMap;
101
102    /// CallSiteToFunctionMap - Keep track of the function that each lazy call
103    /// site corresponds to, and vice versa.
104    CallSiteToFunctionMapTy CallSiteToFunctionMap;
105    FunctionToCallSitesMapTy FunctionToCallSitesMap;
106
107    /// GlobalToIndirectSymMap - Keep track of the indirect symbol created for a
108    /// particular GlobalVariable so that we can reuse them if necessary.
109    GlobalToIndirectSymMapTy GlobalToIndirectSymMap;
110
111#ifndef NDEBUG
112    /// Instance of the JIT this ResolverState serves.
113    JIT *TheJIT;
114#endif
115
116  public:
117    JITResolverState(JIT *jit) : FunctionToLazyStubMap(this),
118                                 FunctionToCallSitesMap(this) {
119#ifndef NDEBUG
120      TheJIT = jit;
121#endif
122    }
123
124    FunctionToLazyStubMapTy& getFunctionToLazyStubMap(
125      const MutexGuard& locked) {
126      assert(locked.holds(TheJIT->lock));
127      return FunctionToLazyStubMap;
128    }
129
130    GlobalToIndirectSymMapTy& getGlobalToIndirectSymMap(const MutexGuard& lck) {
131      assert(lck.holds(TheJIT->lock));
132      return GlobalToIndirectSymMap;
133    }
134
135    std::pair<void *, Function *> LookupFunctionFromCallSite(
136        const MutexGuard &locked, void *CallSite) const {
137      assert(locked.holds(TheJIT->lock));
138
139      // The address given to us for the stub may not be exactly right, it
140      // might be a little bit after the stub.  As such, use upper_bound to
141      // find it.
142      CallSiteToFunctionMapTy::const_iterator I =
143        CallSiteToFunctionMap.upper_bound(CallSite);
144      assert(I != CallSiteToFunctionMap.begin() &&
145             "This is not a known call site!");
146      --I;
147      return *I;
148    }
149
150    void AddCallSite(const MutexGuard &locked, void *CallSite, Function *F) {
151      assert(locked.holds(TheJIT->lock));
152
153      bool Inserted = CallSiteToFunctionMap.insert(
154          std::make_pair(CallSite, F)).second;
155      (void)Inserted;
156      assert(Inserted && "Pair was already in CallSiteToFunctionMap");
157      FunctionToCallSitesMap[F].insert(CallSite);
158    }
159
160    void EraseAllCallSitesForPrelocked(Function *F);
161
162    // Erases _all_ call sites regardless of their function.  This is used to
163    // unregister the stub addresses from the StubToResolverMap in
164    // ~JITResolver().
165    void EraseAllCallSitesPrelocked();
166  };
167
168  /// JITResolver - Keep track of, and resolve, call sites for functions that
169  /// have not yet been compiled.
170  class JITResolver {
171    typedef JITResolverState::FunctionToLazyStubMapTy FunctionToLazyStubMapTy;
172    typedef JITResolverState::CallSiteToFunctionMapTy CallSiteToFunctionMapTy;
173    typedef JITResolverState::GlobalToIndirectSymMapTy GlobalToIndirectSymMapTy;
174
175    /// LazyResolverFn - The target lazy resolver function that we actually
176    /// rewrite instructions to use.
177    TargetJITInfo::LazyResolverFn LazyResolverFn;
178
179    JITResolverState state;
180
181    /// ExternalFnToStubMap - This is the equivalent of FunctionToLazyStubMap
182    /// for external functions.  TODO: Of course, external functions don't need
183    /// a lazy stub.  It's actually here to make it more likely that far calls
184    /// succeed, but no single stub can guarantee that.  I'll remove this in a
185    /// subsequent checkin when I actually fix far calls.
186    std::map<void*, void*> ExternalFnToStubMap;
187
188    /// revGOTMap - map addresses to indexes in the GOT
189    std::map<void*, unsigned> revGOTMap;
190    unsigned nextGOTIndex;
191
192    JITEmitter &JE;
193
194    /// Instance of JIT corresponding to this Resolver.
195    JIT *TheJIT;
196
197  public:
198    explicit JITResolver(JIT &jit, JITEmitter &je)
199      : state(&jit), nextGOTIndex(0), JE(je), TheJIT(&jit) {
200      LazyResolverFn = jit.getJITInfo().getLazyResolverFunction(JITCompilerFn);
201    }
202
203    ~JITResolver();
204
205    /// getLazyFunctionStubIfAvailable - This returns a pointer to a function's
206    /// lazy-compilation stub if it has already been created.
207    void *getLazyFunctionStubIfAvailable(Function *F);
208
209    /// getLazyFunctionStub - This returns a pointer to a function's
210    /// lazy-compilation stub, creating one on demand as needed.
211    void *getLazyFunctionStub(Function *F);
212
213    /// getExternalFunctionStub - Return a stub for the function at the
214    /// specified address, created lazily on demand.
215    void *getExternalFunctionStub(void *FnAddr);
216
217    /// getGlobalValueIndirectSym - Return an indirect symbol containing the
218    /// specified GV address.
219    void *getGlobalValueIndirectSym(GlobalValue *V, void *GVAddress);
220
221    /// getGOTIndexForAddress - Return a new or existing index in the GOT for
222    /// an address.  This function only manages slots, it does not manage the
223    /// contents of the slots or the memory associated with the GOT.
224    unsigned getGOTIndexForAddr(void *addr);
225
226    /// JITCompilerFn - This function is called to resolve a stub to a compiled
227    /// address.  If the LLVM Function corresponding to the stub has not yet
228    /// been compiled, this function compiles it first.
229    static void *JITCompilerFn(void *Stub);
230  };
231
232  class StubToResolverMapTy {
233    /// Map a stub address to a specific instance of a JITResolver so that
234    /// lazily-compiled functions can find the right resolver to use.
235    ///
236    /// Guarded by Lock.
237    std::map<void*, JITResolver*> Map;
238
239    /// Guards Map from concurrent accesses.
240    mutable sys::Mutex Lock;
241
242  public:
243    /// Registers a Stub to be resolved by Resolver.
244    void RegisterStubResolver(void *Stub, JITResolver *Resolver) {
245      MutexGuard guard(Lock);
246      Map.insert(std::make_pair(Stub, Resolver));
247    }
248    /// Unregisters the Stub when it's invalidated.
249    void UnregisterStubResolver(void *Stub) {
250      MutexGuard guard(Lock);
251      Map.erase(Stub);
252    }
253    /// Returns the JITResolver instance that owns the Stub.
254    JITResolver *getResolverFromStub(void *Stub) const {
255      MutexGuard guard(Lock);
256      // The address given to us for the stub may not be exactly right, it might
257      // be a little bit after the stub.  As such, use upper_bound to find it.
258      // This is the same trick as in LookupFunctionFromCallSite from
259      // JITResolverState.
260      std::map<void*, JITResolver*>::const_iterator I = Map.upper_bound(Stub);
261      assert(I != Map.begin() && "This is not a known stub!");
262      --I;
263      return I->second;
264    }
265    /// True if any stubs refer to the given resolver. Only used in an assert().
266    /// O(N)
267    bool ResolverHasStubs(JITResolver* Resolver) const {
268      MutexGuard guard(Lock);
269      for (std::map<void*, JITResolver*>::const_iterator I = Map.begin(),
270             E = Map.end(); I != E; ++I) {
271        if (I->second == Resolver)
272          return true;
273      }
274      return false;
275    }
276  };
277  /// This needs to be static so that a lazy call stub can access it with no
278  /// context except the address of the stub.
279  ManagedStatic<StubToResolverMapTy> StubToResolverMap;
280
281  /// JITEmitter - The JIT implementation of the MachineCodeEmitter, which is
282  /// used to output functions to memory for execution.
283  class JITEmitter : public JITCodeEmitter {
284    JITMemoryManager *MemMgr;
285
286    // When outputting a function stub in the context of some other function, we
287    // save BufferBegin/BufferEnd/CurBufferPtr here.
288    uint8_t *SavedBufferBegin, *SavedBufferEnd, *SavedCurBufferPtr;
289
290    // When reattempting to JIT a function after running out of space, we store
291    // the estimated size of the function we're trying to JIT here, so we can
292    // ask the memory manager for at least this much space.  When we
293    // successfully emit the function, we reset this back to zero.
294    uintptr_t SizeEstimate;
295
296    /// Relocations - These are the relocations that the function needs, as
297    /// emitted.
298    std::vector<MachineRelocation> Relocations;
299
300    /// MBBLocations - This vector is a mapping from MBB ID's to their address.
301    /// It is filled in by the StartMachineBasicBlock callback and queried by
302    /// the getMachineBasicBlockAddress callback.
303    std::vector<uintptr_t> MBBLocations;
304
305    /// ConstantPool - The constant pool for the current function.
306    ///
307    MachineConstantPool *ConstantPool;
308
309    /// ConstantPoolBase - A pointer to the first entry in the constant pool.
310    ///
311    void *ConstantPoolBase;
312
313    /// ConstPoolAddresses - Addresses of individual constant pool entries.
314    ///
315    SmallVector<uintptr_t, 8> ConstPoolAddresses;
316
317    /// JumpTable - The jump tables for the current function.
318    ///
319    MachineJumpTableInfo *JumpTable;
320
321    /// JumpTableBase - A pointer to the first entry in the jump table.
322    ///
323    void *JumpTableBase;
324
325    /// Resolver - This contains info about the currently resolved functions.
326    JITResolver Resolver;
327
328    /// DE - The dwarf emitter for the jit.
329    OwningPtr<JITDwarfEmitter> DE;
330
331    /// LabelLocations - This vector is a mapping from Label ID's to their
332    /// address.
333    DenseMap<MCSymbol*, uintptr_t> LabelLocations;
334
335    /// MMI - Machine module info for exception informations
336    MachineModuleInfo* MMI;
337
338    // CurFn - The llvm function being emitted.  Only valid during
339    // finishFunction().
340    const Function *CurFn;
341
342    /// Information about emitted code, which is passed to the
343    /// JITEventListeners.  This is reset in startFunction and used in
344    /// finishFunction.
345    JITEvent_EmittedFunctionDetails EmissionDetails;
346
347    struct EmittedCode {
348      void *FunctionBody;  // Beginning of the function's allocation.
349      void *Code;  // The address the function's code actually starts at.
350      void *ExceptionTable;
351      EmittedCode() : FunctionBody(0), Code(0), ExceptionTable(0) {}
352    };
353    struct EmittedFunctionConfig : public ValueMapConfig<const Function*> {
354      typedef JITEmitter *ExtraData;
355      static void onDelete(JITEmitter *, const Function*);
356      static void onRAUW(JITEmitter *, const Function*, const Function*);
357    };
358    ValueMap<const Function *, EmittedCode,
359             EmittedFunctionConfig> EmittedFunctions;
360
361    DebugLoc PrevDL;
362
363    /// Instance of the JIT
364    JIT *TheJIT;
365
366    bool JITExceptionHandling;
367
368  public:
369    JITEmitter(JIT &jit, JITMemoryManager *JMM, TargetMachine &TM)
370      : SizeEstimate(0), Resolver(jit, *this), MMI(0), CurFn(0),
371        EmittedFunctions(this), TheJIT(&jit),
372        JITExceptionHandling(TM.Options.JITExceptionHandling) {
373      MemMgr = JMM ? JMM : JITMemoryManager::CreateDefaultMemManager();
374      if (jit.getJITInfo().needsGOT()) {
375        MemMgr->AllocateGOT();
376        DEBUG(dbgs() << "JIT is managing a GOT\n");
377      }
378
379      if (JITExceptionHandling) {
380        DE.reset(new JITDwarfEmitter(jit));
381      }
382    }
383    ~JITEmitter() {
384      delete MemMgr;
385    }
386
387    JITResolver &getJITResolver() { return Resolver; }
388
389    virtual void startFunction(MachineFunction &F);
390    virtual bool finishFunction(MachineFunction &F);
391
392    void emitConstantPool(MachineConstantPool *MCP);
393    void initJumpTableInfo(MachineJumpTableInfo *MJTI);
394    void emitJumpTableInfo(MachineJumpTableInfo *MJTI);
395
396    void startGVStub(const GlobalValue* GV,
397                     unsigned StubSize, unsigned Alignment = 1);
398    void startGVStub(void *Buffer, unsigned StubSize);
399    void finishGVStub();
400    virtual void *allocIndirectGV(const GlobalValue *GV,
401                                  const uint8_t *Buffer, size_t Size,
402                                  unsigned Alignment);
403
404    /// allocateSpace - Reserves space in the current block if any, or
405    /// allocate a new one of the given size.
406    virtual void *allocateSpace(uintptr_t Size, unsigned Alignment);
407
408    /// allocateGlobal - Allocate memory for a global.  Unlike allocateSpace,
409    /// this method does not allocate memory in the current output buffer,
410    /// because a global may live longer than the current function.
411    virtual void *allocateGlobal(uintptr_t Size, unsigned Alignment);
412
413    virtual void addRelocation(const MachineRelocation &MR) {
414      Relocations.push_back(MR);
415    }
416
417    virtual void StartMachineBasicBlock(MachineBasicBlock *MBB) {
418      if (MBBLocations.size() <= (unsigned)MBB->getNumber())
419        MBBLocations.resize((MBB->getNumber()+1)*2);
420      MBBLocations[MBB->getNumber()] = getCurrentPCValue();
421      if (MBB->hasAddressTaken())
422        TheJIT->addPointerToBasicBlock(MBB->getBasicBlock(),
423                                       (void*)getCurrentPCValue());
424      DEBUG(dbgs() << "JIT: Emitting BB" << MBB->getNumber() << " at ["
425                   << (void*) getCurrentPCValue() << "]\n");
426    }
427
428    virtual uintptr_t getConstantPoolEntryAddress(unsigned Entry) const;
429    virtual uintptr_t getJumpTableEntryAddress(unsigned Entry) const;
430
431    virtual uintptr_t getMachineBasicBlockAddress(MachineBasicBlock *MBB) const{
432      assert(MBBLocations.size() > (unsigned)MBB->getNumber() &&
433             MBBLocations[MBB->getNumber()] && "MBB not emitted!");
434      return MBBLocations[MBB->getNumber()];
435    }
436
437    /// retryWithMoreMemory - Log a retry and deallocate all memory for the
438    /// given function.  Increase the minimum allocation size so that we get
439    /// more memory next time.
440    void retryWithMoreMemory(MachineFunction &F);
441
442    /// deallocateMemForFunction - Deallocate all memory for the specified
443    /// function body.
444    void deallocateMemForFunction(const Function *F);
445
446    virtual void processDebugLoc(DebugLoc DL, bool BeforePrintingInsn);
447
448    virtual void emitLabel(MCSymbol *Label) {
449      LabelLocations[Label] = getCurrentPCValue();
450    }
451
452    virtual DenseMap<MCSymbol*, uintptr_t> *getLabelLocations() {
453      return &LabelLocations;
454    }
455
456    virtual uintptr_t getLabelAddress(MCSymbol *Label) const {
457      assert(LabelLocations.count(Label) && "Label not emitted!");
458      return LabelLocations.find(Label)->second;
459    }
460
461    virtual void setModuleInfo(MachineModuleInfo* Info) {
462      MMI = Info;
463      if (DE.get()) DE->setModuleInfo(Info);
464    }
465
466  private:
467    void *getPointerToGlobal(GlobalValue *GV, void *Reference,
468                             bool MayNeedFarStub);
469    void *getPointerToGVIndirectSym(GlobalValue *V, void *Reference);
470  };
471}
472
473void CallSiteValueMapConfig::onDelete(JITResolverState *JRS, Function *F) {
474  JRS->EraseAllCallSitesForPrelocked(F);
475}
476
477void JITResolverState::EraseAllCallSitesForPrelocked(Function *F) {
478  FunctionToCallSitesMapTy::iterator F2C = FunctionToCallSitesMap.find(F);
479  if (F2C == FunctionToCallSitesMap.end())
480    return;
481  StubToResolverMapTy &S2RMap = *StubToResolverMap;
482  for (SmallPtrSet<void*, 1>::const_iterator I = F2C->second.begin(),
483         E = F2C->second.end(); I != E; ++I) {
484    S2RMap.UnregisterStubResolver(*I);
485    bool Erased = CallSiteToFunctionMap.erase(*I);
486    (void)Erased;
487    assert(Erased && "Missing call site->function mapping");
488  }
489  FunctionToCallSitesMap.erase(F2C);
490}
491
492void JITResolverState::EraseAllCallSitesPrelocked() {
493  StubToResolverMapTy &S2RMap = *StubToResolverMap;
494  for (CallSiteToFunctionMapTy::const_iterator
495         I = CallSiteToFunctionMap.begin(),
496         E = CallSiteToFunctionMap.end(); I != E; ++I) {
497    S2RMap.UnregisterStubResolver(I->first);
498  }
499  CallSiteToFunctionMap.clear();
500  FunctionToCallSitesMap.clear();
501}
502
503JITResolver::~JITResolver() {
504  // No need to lock because we're in the destructor, and state isn't shared.
505  state.EraseAllCallSitesPrelocked();
506  assert(!StubToResolverMap->ResolverHasStubs(this) &&
507         "Resolver destroyed with stubs still alive.");
508}
509
510/// getLazyFunctionStubIfAvailable - This returns a pointer to a function stub
511/// if it has already been created.
512void *JITResolver::getLazyFunctionStubIfAvailable(Function *F) {
513  MutexGuard locked(TheJIT->lock);
514
515  // If we already have a stub for this function, recycle it.
516  return state.getFunctionToLazyStubMap(locked).lookup(F);
517}
518
519/// getFunctionStub - This returns a pointer to a function stub, creating
520/// one on demand as needed.
521void *JITResolver::getLazyFunctionStub(Function *F) {
522  MutexGuard locked(TheJIT->lock);
523
524  // If we already have a lazy stub for this function, recycle it.
525  void *&Stub = state.getFunctionToLazyStubMap(locked)[F];
526  if (Stub) return Stub;
527
528  // Call the lazy resolver function if we are JIT'ing lazily.  Otherwise we
529  // must resolve the symbol now.
530  void *Actual = TheJIT->isCompilingLazily()
531    ? (void *)(intptr_t)LazyResolverFn : (void *)0;
532
533  // If this is an external declaration, attempt to resolve the address now
534  // to place in the stub.
535  if (isNonGhostDeclaration(F) || F->hasAvailableExternallyLinkage()) {
536    Actual = TheJIT->getPointerToFunction(F);
537
538    // If we resolved the symbol to a null address (eg. a weak external)
539    // don't emit a stub. Return a null pointer to the application.
540    if (!Actual) return 0;
541  }
542
543  TargetJITInfo::StubLayout SL = TheJIT->getJITInfo().getStubLayout();
544  JE.startGVStub(F, SL.Size, SL.Alignment);
545  // Codegen a new stub, calling the lazy resolver or the actual address of the
546  // external function, if it was resolved.
547  Stub = TheJIT->getJITInfo().emitFunctionStub(F, Actual, JE);
548  JE.finishGVStub();
549
550  if (Actual != (void*)(intptr_t)LazyResolverFn) {
551    // If we are getting the stub for an external function, we really want the
552    // address of the stub in the GlobalAddressMap for the JIT, not the address
553    // of the external function.
554    TheJIT->updateGlobalMapping(F, Stub);
555  }
556
557  DEBUG(dbgs() << "JIT: Lazy stub emitted at [" << Stub << "] for function '"
558        << F->getName() << "'\n");
559
560  if (TheJIT->isCompilingLazily()) {
561    // Register this JITResolver as the one corresponding to this call site so
562    // JITCompilerFn will be able to find it.
563    StubToResolverMap->RegisterStubResolver(Stub, this);
564
565    // Finally, keep track of the stub-to-Function mapping so that the
566    // JITCompilerFn knows which function to compile!
567    state.AddCallSite(locked, Stub, F);
568  } else if (!Actual) {
569    // If we are JIT'ing non-lazily but need to call a function that does not
570    // exist yet, add it to the JIT's work list so that we can fill in the
571    // stub address later.
572    assert(!isNonGhostDeclaration(F) && !F->hasAvailableExternallyLinkage() &&
573           "'Actual' should have been set above.");
574    TheJIT->addPendingFunction(F);
575  }
576
577  return Stub;
578}
579
580/// getGlobalValueIndirectSym - Return a lazy pointer containing the specified
581/// GV address.
582void *JITResolver::getGlobalValueIndirectSym(GlobalValue *GV, void *GVAddress) {
583  MutexGuard locked(TheJIT->lock);
584
585  // If we already have a stub for this global variable, recycle it.
586  void *&IndirectSym = state.getGlobalToIndirectSymMap(locked)[GV];
587  if (IndirectSym) return IndirectSym;
588
589  // Otherwise, codegen a new indirect symbol.
590  IndirectSym = TheJIT->getJITInfo().emitGlobalValueIndirectSym(GV, GVAddress,
591                                                                JE);
592
593  DEBUG(dbgs() << "JIT: Indirect symbol emitted at [" << IndirectSym
594        << "] for GV '" << GV->getName() << "'\n");
595
596  return IndirectSym;
597}
598
599/// getExternalFunctionStub - Return a stub for the function at the
600/// specified address, created lazily on demand.
601void *JITResolver::getExternalFunctionStub(void *FnAddr) {
602  // If we already have a stub for this function, recycle it.
603  void *&Stub = ExternalFnToStubMap[FnAddr];
604  if (Stub) return Stub;
605
606  TargetJITInfo::StubLayout SL = TheJIT->getJITInfo().getStubLayout();
607  JE.startGVStub(0, SL.Size, SL.Alignment);
608  Stub = TheJIT->getJITInfo().emitFunctionStub(0, FnAddr, JE);
609  JE.finishGVStub();
610
611  DEBUG(dbgs() << "JIT: Stub emitted at [" << Stub
612               << "] for external function at '" << FnAddr << "'\n");
613  return Stub;
614}
615
616unsigned JITResolver::getGOTIndexForAddr(void* addr) {
617  unsigned idx = revGOTMap[addr];
618  if (!idx) {
619    idx = ++nextGOTIndex;
620    revGOTMap[addr] = idx;
621    DEBUG(dbgs() << "JIT: Adding GOT entry " << idx << " for addr ["
622                 << addr << "]\n");
623  }
624  return idx;
625}
626
627/// JITCompilerFn - This function is called when a lazy compilation stub has
628/// been entered.  It looks up which function this stub corresponds to, compiles
629/// it if necessary, then returns the resultant function pointer.
630void *JITResolver::JITCompilerFn(void *Stub) {
631  JITResolver *JR = StubToResolverMap->getResolverFromStub(Stub);
632  assert(JR && "Unable to find the corresponding JITResolver to the call site");
633
634  Function* F = 0;
635  void* ActualPtr = 0;
636
637  {
638    // Only lock for getting the Function. The call getPointerToFunction made
639    // in this function might trigger function materializing, which requires
640    // JIT lock to be unlocked.
641    MutexGuard locked(JR->TheJIT->lock);
642
643    // The address given to us for the stub may not be exactly right, it might
644    // be a little bit after the stub.  As such, use upper_bound to find it.
645    std::pair<void*, Function*> I =
646      JR->state.LookupFunctionFromCallSite(locked, Stub);
647    F = I.second;
648    ActualPtr = I.first;
649  }
650
651  // If we have already code generated the function, just return the address.
652  void *Result = JR->TheJIT->getPointerToGlobalIfAvailable(F);
653
654  if (!Result) {
655    // Otherwise we don't have it, do lazy compilation now.
656
657    // If lazy compilation is disabled, emit a useful error message and abort.
658    if (!JR->TheJIT->isCompilingLazily()) {
659      report_fatal_error("LLVM JIT requested to do lazy compilation of"
660                         " function '"
661                        + F->getName() + "' when lazy compiles are disabled!");
662    }
663
664    DEBUG(dbgs() << "JIT: Lazily resolving function '" << F->getName()
665          << "' In stub ptr = " << Stub << " actual ptr = "
666          << ActualPtr << "\n");
667    (void)ActualPtr;
668
669    Result = JR->TheJIT->getPointerToFunction(F);
670  }
671
672  // Reacquire the lock to update the GOT map.
673  MutexGuard locked(JR->TheJIT->lock);
674
675  // We might like to remove the call site from the CallSiteToFunction map, but
676  // we can't do that! Multiple threads could be stuck, waiting to acquire the
677  // lock above. As soon as the 1st function finishes compiling the function,
678  // the next one will be released, and needs to be able to find the function it
679  // needs to call.
680
681  // FIXME: We could rewrite all references to this stub if we knew them.
682
683  // What we will do is set the compiled function address to map to the
684  // same GOT entry as the stub so that later clients may update the GOT
685  // if they see it still using the stub address.
686  // Note: this is done so the Resolver doesn't have to manage GOT memory
687  // Do this without allocating map space if the target isn't using a GOT
688  if(JR->revGOTMap.find(Stub) != JR->revGOTMap.end())
689    JR->revGOTMap[Result] = JR->revGOTMap[Stub];
690
691  return Result;
692}
693
694//===----------------------------------------------------------------------===//
695// JITEmitter code.
696//
697void *JITEmitter::getPointerToGlobal(GlobalValue *V, void *Reference,
698                                     bool MayNeedFarStub) {
699  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
700    return TheJIT->getOrEmitGlobalVariable(GV);
701
702  if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
703    return TheJIT->getPointerToGlobal(GA->resolveAliasedGlobal(false));
704
705  // If we have already compiled the function, return a pointer to its body.
706  Function *F = cast<Function>(V);
707
708  void *FnStub = Resolver.getLazyFunctionStubIfAvailable(F);
709  if (FnStub) {
710    // Return the function stub if it's already created.  We do this first so
711    // that we're returning the same address for the function as any previous
712    // call.  TODO: Yes, this is wrong. The lazy stub isn't guaranteed to be
713    // close enough to call.
714    return FnStub;
715  }
716
717  // If we know the target can handle arbitrary-distance calls, try to
718  // return a direct pointer.
719  if (!MayNeedFarStub) {
720    // If we have code, go ahead and return that.
721    void *ResultPtr = TheJIT->getPointerToGlobalIfAvailable(F);
722    if (ResultPtr) return ResultPtr;
723
724    // If this is an external function pointer, we can force the JIT to
725    // 'compile' it, which really just adds it to the map.
726    if (isNonGhostDeclaration(F) || F->hasAvailableExternallyLinkage())
727      return TheJIT->getPointerToFunction(F);
728  }
729
730  // Otherwise, we may need a to emit a stub, and, conservatively, we always do
731  // so.  Note that it's possible to return null from getLazyFunctionStub in the
732  // case of a weak extern that fails to resolve.
733  return Resolver.getLazyFunctionStub(F);
734}
735
736void *JITEmitter::getPointerToGVIndirectSym(GlobalValue *V, void *Reference) {
737  // Make sure GV is emitted first, and create a stub containing the fully
738  // resolved address.
739  void *GVAddress = getPointerToGlobal(V, Reference, false);
740  void *StubAddr = Resolver.getGlobalValueIndirectSym(V, GVAddress);
741  return StubAddr;
742}
743
744void JITEmitter::processDebugLoc(DebugLoc DL, bool BeforePrintingInsn) {
745  if (DL.isUnknown()) return;
746  if (!BeforePrintingInsn) return;
747
748  const LLVMContext &Context = EmissionDetails.MF->getFunction()->getContext();
749
750  if (DL.getScope(Context) != 0 && PrevDL != DL) {
751    JITEvent_EmittedFunctionDetails::LineStart NextLine;
752    NextLine.Address = getCurrentPCValue();
753    NextLine.Loc = DL;
754    EmissionDetails.LineStarts.push_back(NextLine);
755  }
756
757  PrevDL = DL;
758}
759
760static unsigned GetConstantPoolSizeInBytes(MachineConstantPool *MCP,
761                                           const DataLayout *TD) {
762  const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants();
763  if (Constants.empty()) return 0;
764
765  unsigned Size = 0;
766  for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
767    MachineConstantPoolEntry CPE = Constants[i];
768    unsigned AlignMask = CPE.getAlignment() - 1;
769    Size = (Size + AlignMask) & ~AlignMask;
770    Type *Ty = CPE.getType();
771    Size += TD->getTypeAllocSize(Ty);
772  }
773  return Size;
774}
775
776void JITEmitter::startFunction(MachineFunction &F) {
777  DEBUG(dbgs() << "JIT: Starting CodeGen of Function "
778        << F.getName() << "\n");
779
780  uintptr_t ActualSize = 0;
781  // Set the memory writable, if it's not already
782  MemMgr->setMemoryWritable();
783
784  if (SizeEstimate > 0) {
785    // SizeEstimate will be non-zero on reallocation attempts.
786    ActualSize = SizeEstimate;
787  }
788
789  BufferBegin = CurBufferPtr = MemMgr->startFunctionBody(F.getFunction(),
790                                                         ActualSize);
791  BufferEnd = BufferBegin+ActualSize;
792  EmittedFunctions[F.getFunction()].FunctionBody = BufferBegin;
793
794  // Ensure the constant pool/jump table info is at least 4-byte aligned.
795  emitAlignment(16);
796
797  emitConstantPool(F.getConstantPool());
798  if (MachineJumpTableInfo *MJTI = F.getJumpTableInfo())
799    initJumpTableInfo(MJTI);
800
801  // About to start emitting the machine code for the function.
802  emitAlignment(std::max(F.getFunction()->getAlignment(), 8U));
803  TheJIT->updateGlobalMapping(F.getFunction(), CurBufferPtr);
804  EmittedFunctions[F.getFunction()].Code = CurBufferPtr;
805
806  MBBLocations.clear();
807
808  EmissionDetails.MF = &F;
809  EmissionDetails.LineStarts.clear();
810}
811
812bool JITEmitter::finishFunction(MachineFunction &F) {
813  if (CurBufferPtr == BufferEnd) {
814    // We must call endFunctionBody before retrying, because
815    // deallocateMemForFunction requires it.
816    MemMgr->endFunctionBody(F.getFunction(), BufferBegin, CurBufferPtr);
817    retryWithMoreMemory(F);
818    return true;
819  }
820
821  if (MachineJumpTableInfo *MJTI = F.getJumpTableInfo())
822    emitJumpTableInfo(MJTI);
823
824  // FnStart is the start of the text, not the start of the constant pool and
825  // other per-function data.
826  uint8_t *FnStart =
827    (uint8_t *)TheJIT->getPointerToGlobalIfAvailable(F.getFunction());
828
829  // FnEnd is the end of the function's machine code.
830  uint8_t *FnEnd = CurBufferPtr;
831
832  if (!Relocations.empty()) {
833    CurFn = F.getFunction();
834    NumRelos += Relocations.size();
835
836    // Resolve the relocations to concrete pointers.
837    for (unsigned i = 0, e = Relocations.size(); i != e; ++i) {
838      MachineRelocation &MR = Relocations[i];
839      void *ResultPtr = 0;
840      if (!MR.letTargetResolve()) {
841        if (MR.isExternalSymbol()) {
842          ResultPtr = TheJIT->getPointerToNamedFunction(MR.getExternalSymbol(),
843                                                        false);
844          DEBUG(dbgs() << "JIT: Map \'" << MR.getExternalSymbol() << "\' to ["
845                       << ResultPtr << "]\n");
846
847          // If the target REALLY wants a stub for this function, emit it now.
848          if (MR.mayNeedFarStub()) {
849            ResultPtr = Resolver.getExternalFunctionStub(ResultPtr);
850          }
851        } else if (MR.isGlobalValue()) {
852          ResultPtr = getPointerToGlobal(MR.getGlobalValue(),
853                                         BufferBegin+MR.getMachineCodeOffset(),
854                                         MR.mayNeedFarStub());
855        } else if (MR.isIndirectSymbol()) {
856          ResultPtr = getPointerToGVIndirectSym(
857              MR.getGlobalValue(), BufferBegin+MR.getMachineCodeOffset());
858        } else if (MR.isBasicBlock()) {
859          ResultPtr = (void*)getMachineBasicBlockAddress(MR.getBasicBlock());
860        } else if (MR.isConstantPoolIndex()) {
861          ResultPtr =
862            (void*)getConstantPoolEntryAddress(MR.getConstantPoolIndex());
863        } else {
864          assert(MR.isJumpTableIndex());
865          ResultPtr=(void*)getJumpTableEntryAddress(MR.getJumpTableIndex());
866        }
867
868        MR.setResultPointer(ResultPtr);
869      }
870
871      // if we are managing the GOT and the relocation wants an index,
872      // give it one
873      if (MR.isGOTRelative() && MemMgr->isManagingGOT()) {
874        unsigned idx = Resolver.getGOTIndexForAddr(ResultPtr);
875        MR.setGOTIndex(idx);
876        if (((void**)MemMgr->getGOTBase())[idx] != ResultPtr) {
877          DEBUG(dbgs() << "JIT: GOT was out of date for " << ResultPtr
878                       << " pointing at " << ((void**)MemMgr->getGOTBase())[idx]
879                       << "\n");
880          ((void**)MemMgr->getGOTBase())[idx] = ResultPtr;
881        }
882      }
883    }
884
885    CurFn = 0;
886    TheJIT->getJITInfo().relocate(BufferBegin, &Relocations[0],
887                                  Relocations.size(), MemMgr->getGOTBase());
888  }
889
890  // Update the GOT entry for F to point to the new code.
891  if (MemMgr->isManagingGOT()) {
892    unsigned idx = Resolver.getGOTIndexForAddr((void*)BufferBegin);
893    if (((void**)MemMgr->getGOTBase())[idx] != (void*)BufferBegin) {
894      DEBUG(dbgs() << "JIT: GOT was out of date for " << (void*)BufferBegin
895                   << " pointing at " << ((void**)MemMgr->getGOTBase())[idx]
896                   << "\n");
897      ((void**)MemMgr->getGOTBase())[idx] = (void*)BufferBegin;
898    }
899  }
900
901  // CurBufferPtr may have moved beyond FnEnd, due to memory allocation for
902  // global variables that were referenced in the relocations.
903  MemMgr->endFunctionBody(F.getFunction(), BufferBegin, CurBufferPtr);
904
905  if (CurBufferPtr == BufferEnd) {
906    retryWithMoreMemory(F);
907    return true;
908  } else {
909    // Now that we've succeeded in emitting the function, reset the
910    // SizeEstimate back down to zero.
911    SizeEstimate = 0;
912  }
913
914  BufferBegin = CurBufferPtr = 0;
915  NumBytes += FnEnd-FnStart;
916
917  // Invalidate the icache if necessary.
918  sys::Memory::InvalidateInstructionCache(FnStart, FnEnd-FnStart);
919
920  TheJIT->NotifyFunctionEmitted(*F.getFunction(), FnStart, FnEnd-FnStart,
921                                EmissionDetails);
922
923  // Reset the previous debug location.
924  PrevDL = DebugLoc();
925
926  DEBUG(dbgs() << "JIT: Finished CodeGen of [" << (void*)FnStart
927        << "] Function: " << F.getName()
928        << ": " << (FnEnd-FnStart) << " bytes of text, "
929        << Relocations.size() << " relocations\n");
930
931  Relocations.clear();
932  ConstPoolAddresses.clear();
933
934  // Mark code region readable and executable if it's not so already.
935  MemMgr->setMemoryExecutable();
936
937  DEBUG({
938      if (sys::hasDisassembler()) {
939        dbgs() << "JIT: Disassembled code:\n";
940        dbgs() << sys::disassembleBuffer(FnStart, FnEnd-FnStart,
941                                         (uintptr_t)FnStart);
942      } else {
943        dbgs() << "JIT: Binary code:\n";
944        uint8_t* q = FnStart;
945        for (int i = 0; q < FnEnd; q += 4, ++i) {
946          if (i == 4)
947            i = 0;
948          if (i == 0)
949            dbgs() << "JIT: " << (long)(q - FnStart) << ": ";
950          bool Done = false;
951          for (int j = 3; j >= 0; --j) {
952            if (q + j >= FnEnd)
953              Done = true;
954            else
955              dbgs() << (unsigned short)q[j];
956          }
957          if (Done)
958            break;
959          dbgs() << ' ';
960          if (i == 3)
961            dbgs() << '\n';
962        }
963        dbgs()<< '\n';
964      }
965    });
966
967  if (JITExceptionHandling) {
968    uintptr_t ActualSize = 0;
969    SavedBufferBegin = BufferBegin;
970    SavedBufferEnd = BufferEnd;
971    SavedCurBufferPtr = CurBufferPtr;
972
973    BufferBegin = CurBufferPtr = MemMgr->startExceptionTable(F.getFunction(),
974                                                             ActualSize);
975    BufferEnd = BufferBegin+ActualSize;
976    EmittedFunctions[F.getFunction()].ExceptionTable = BufferBegin;
977    uint8_t *EhStart;
978    uint8_t *FrameRegister = DE->EmitDwarfTable(F, *this, FnStart, FnEnd,
979                                                EhStart);
980    MemMgr->endExceptionTable(F.getFunction(), BufferBegin, CurBufferPtr,
981                              FrameRegister);
982    BufferBegin = SavedBufferBegin;
983    BufferEnd = SavedBufferEnd;
984    CurBufferPtr = SavedCurBufferPtr;
985
986    if (JITExceptionHandling) {
987      TheJIT->RegisterTable(F.getFunction(), FrameRegister);
988    }
989  }
990
991  if (MMI)
992    MMI->EndFunction();
993
994  return false;
995}
996
997void JITEmitter::retryWithMoreMemory(MachineFunction &F) {
998  DEBUG(dbgs() << "JIT: Ran out of space for native code.  Reattempting.\n");
999  Relocations.clear();  // Clear the old relocations or we'll reapply them.
1000  ConstPoolAddresses.clear();
1001  ++NumRetries;
1002  deallocateMemForFunction(F.getFunction());
1003  // Try again with at least twice as much free space.
1004  SizeEstimate = (uintptr_t)(2 * (BufferEnd - BufferBegin));
1005
1006  for (MachineFunction::iterator MBB = F.begin(), E = F.end(); MBB != E; ++MBB){
1007    if (MBB->hasAddressTaken())
1008      TheJIT->clearPointerToBasicBlock(MBB->getBasicBlock());
1009  }
1010}
1011
1012/// deallocateMemForFunction - Deallocate all memory for the specified
1013/// function body.  Also drop any references the function has to stubs.
1014/// May be called while the Function is being destroyed inside ~Value().
1015void JITEmitter::deallocateMemForFunction(const Function *F) {
1016  ValueMap<const Function *, EmittedCode, EmittedFunctionConfig>::iterator
1017    Emitted = EmittedFunctions.find(F);
1018  if (Emitted != EmittedFunctions.end()) {
1019    MemMgr->deallocateFunctionBody(Emitted->second.FunctionBody);
1020    MemMgr->deallocateExceptionTable(Emitted->second.ExceptionTable);
1021    TheJIT->NotifyFreeingMachineCode(Emitted->second.Code);
1022
1023    EmittedFunctions.erase(Emitted);
1024  }
1025
1026  if (JITExceptionHandling) {
1027    TheJIT->DeregisterTable(F);
1028  }
1029}
1030
1031
1032void *JITEmitter::allocateSpace(uintptr_t Size, unsigned Alignment) {
1033  if (BufferBegin)
1034    return JITCodeEmitter::allocateSpace(Size, Alignment);
1035
1036  // create a new memory block if there is no active one.
1037  // care must be taken so that BufferBegin is invalidated when a
1038  // block is trimmed
1039  BufferBegin = CurBufferPtr = MemMgr->allocateSpace(Size, Alignment);
1040  BufferEnd = BufferBegin+Size;
1041  return CurBufferPtr;
1042}
1043
1044void *JITEmitter::allocateGlobal(uintptr_t Size, unsigned Alignment) {
1045  // Delegate this call through the memory manager.
1046  return MemMgr->allocateGlobal(Size, Alignment);
1047}
1048
1049void JITEmitter::emitConstantPool(MachineConstantPool *MCP) {
1050  if (TheJIT->getJITInfo().hasCustomConstantPool())
1051    return;
1052
1053  const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants();
1054  if (Constants.empty()) return;
1055
1056  unsigned Size = GetConstantPoolSizeInBytes(MCP, TheJIT->getDataLayout());
1057  unsigned Align = MCP->getConstantPoolAlignment();
1058  ConstantPoolBase = allocateSpace(Size, Align);
1059  ConstantPool = MCP;
1060
1061  if (ConstantPoolBase == 0) return;  // Buffer overflow.
1062
1063  DEBUG(dbgs() << "JIT: Emitted constant pool at [" << ConstantPoolBase
1064               << "] (size: " << Size << ", alignment: " << Align << ")\n");
1065
1066  // Initialize the memory for all of the constant pool entries.
1067  unsigned Offset = 0;
1068  for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
1069    MachineConstantPoolEntry CPE = Constants[i];
1070    unsigned AlignMask = CPE.getAlignment() - 1;
1071    Offset = (Offset + AlignMask) & ~AlignMask;
1072
1073    uintptr_t CAddr = (uintptr_t)ConstantPoolBase + Offset;
1074    ConstPoolAddresses.push_back(CAddr);
1075    if (CPE.isMachineConstantPoolEntry()) {
1076      // FIXME: add support to lower machine constant pool values into bytes!
1077      report_fatal_error("Initialize memory with machine specific constant pool"
1078                        "entry has not been implemented!");
1079    }
1080    TheJIT->InitializeMemory(CPE.Val.ConstVal, (void*)CAddr);
1081    DEBUG(dbgs() << "JIT:   CP" << i << " at [0x";
1082          dbgs().write_hex(CAddr) << "]\n");
1083
1084    Type *Ty = CPE.Val.ConstVal->getType();
1085    Offset += TheJIT->getDataLayout()->getTypeAllocSize(Ty);
1086  }
1087}
1088
1089void JITEmitter::initJumpTableInfo(MachineJumpTableInfo *MJTI) {
1090  if (TheJIT->getJITInfo().hasCustomJumpTables())
1091    return;
1092  if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline)
1093    return;
1094
1095  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1096  if (JT.empty()) return;
1097
1098  unsigned NumEntries = 0;
1099  for (unsigned i = 0, e = JT.size(); i != e; ++i)
1100    NumEntries += JT[i].MBBs.size();
1101
1102  unsigned EntrySize = MJTI->getEntrySize(*TheJIT->getDataLayout());
1103
1104  // Just allocate space for all the jump tables now.  We will fix up the actual
1105  // MBB entries in the tables after we emit the code for each block, since then
1106  // we will know the final locations of the MBBs in memory.
1107  JumpTable = MJTI;
1108  JumpTableBase = allocateSpace(NumEntries * EntrySize,
1109                             MJTI->getEntryAlignment(*TheJIT->getDataLayout()));
1110}
1111
1112void JITEmitter::emitJumpTableInfo(MachineJumpTableInfo *MJTI) {
1113  if (TheJIT->getJITInfo().hasCustomJumpTables())
1114    return;
1115
1116  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1117  if (JT.empty() || JumpTableBase == 0) return;
1118
1119
1120  switch (MJTI->getEntryKind()) {
1121  case MachineJumpTableInfo::EK_Inline:
1122    return;
1123  case MachineJumpTableInfo::EK_BlockAddress: {
1124    // EK_BlockAddress - Each entry is a plain address of block, e.g.:
1125    //     .word LBB123
1126    assert(MJTI->getEntrySize(*TheJIT->getDataLayout()) == sizeof(void*) &&
1127           "Cross JIT'ing?");
1128
1129    // For each jump table, map each target in the jump table to the address of
1130    // an emitted MachineBasicBlock.
1131    intptr_t *SlotPtr = (intptr_t*)JumpTableBase;
1132
1133    for (unsigned i = 0, e = JT.size(); i != e; ++i) {
1134      const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
1135      // Store the address of the basic block for this jump table slot in the
1136      // memory we allocated for the jump table in 'initJumpTableInfo'
1137      for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi)
1138        *SlotPtr++ = getMachineBasicBlockAddress(MBBs[mi]);
1139    }
1140    break;
1141  }
1142
1143  case MachineJumpTableInfo::EK_Custom32:
1144  case MachineJumpTableInfo::EK_GPRel32BlockAddress:
1145  case MachineJumpTableInfo::EK_LabelDifference32: {
1146    assert(MJTI->getEntrySize(*TheJIT->getDataLayout()) == 4&&"Cross JIT'ing?");
1147    // For each jump table, place the offset from the beginning of the table
1148    // to the target address.
1149    int *SlotPtr = (int*)JumpTableBase;
1150
1151    for (unsigned i = 0, e = JT.size(); i != e; ++i) {
1152      const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
1153      // Store the offset of the basic block for this jump table slot in the
1154      // memory we allocated for the jump table in 'initJumpTableInfo'
1155      uintptr_t Base = (uintptr_t)SlotPtr;
1156      for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi) {
1157        uintptr_t MBBAddr = getMachineBasicBlockAddress(MBBs[mi]);
1158        /// FIXME: USe EntryKind instead of magic "getPICJumpTableEntry" hook.
1159        *SlotPtr++ = TheJIT->getJITInfo().getPICJumpTableEntry(MBBAddr, Base);
1160      }
1161    }
1162    break;
1163  }
1164  case MachineJumpTableInfo::EK_GPRel64BlockAddress:
1165    llvm_unreachable(
1166           "JT Info emission not implemented for GPRel64BlockAddress yet.");
1167  }
1168}
1169
1170void JITEmitter::startGVStub(const GlobalValue* GV,
1171                             unsigned StubSize, unsigned Alignment) {
1172  SavedBufferBegin = BufferBegin;
1173  SavedBufferEnd = BufferEnd;
1174  SavedCurBufferPtr = CurBufferPtr;
1175
1176  BufferBegin = CurBufferPtr = MemMgr->allocateStub(GV, StubSize, Alignment);
1177  BufferEnd = BufferBegin+StubSize+1;
1178}
1179
1180void JITEmitter::startGVStub(void *Buffer, unsigned StubSize) {
1181  SavedBufferBegin = BufferBegin;
1182  SavedBufferEnd = BufferEnd;
1183  SavedCurBufferPtr = CurBufferPtr;
1184
1185  BufferBegin = CurBufferPtr = (uint8_t *)Buffer;
1186  BufferEnd = BufferBegin+StubSize+1;
1187}
1188
1189void JITEmitter::finishGVStub() {
1190  assert(CurBufferPtr != BufferEnd && "Stub overflowed allocated space.");
1191  NumBytes += getCurrentPCOffset();
1192  BufferBegin = SavedBufferBegin;
1193  BufferEnd = SavedBufferEnd;
1194  CurBufferPtr = SavedCurBufferPtr;
1195}
1196
1197void *JITEmitter::allocIndirectGV(const GlobalValue *GV,
1198                                  const uint8_t *Buffer, size_t Size,
1199                                  unsigned Alignment) {
1200  uint8_t *IndGV = MemMgr->allocateStub(GV, Size, Alignment);
1201  memcpy(IndGV, Buffer, Size);
1202  return IndGV;
1203}
1204
1205// getConstantPoolEntryAddress - Return the address of the 'ConstantNum' entry
1206// in the constant pool that was last emitted with the 'emitConstantPool'
1207// method.
1208//
1209uintptr_t JITEmitter::getConstantPoolEntryAddress(unsigned ConstantNum) const {
1210  assert(ConstantNum < ConstantPool->getConstants().size() &&
1211         "Invalid ConstantPoolIndex!");
1212  return ConstPoolAddresses[ConstantNum];
1213}
1214
1215// getJumpTableEntryAddress - Return the address of the JumpTable with index
1216// 'Index' in the jumpp table that was last initialized with 'initJumpTableInfo'
1217//
1218uintptr_t JITEmitter::getJumpTableEntryAddress(unsigned Index) const {
1219  const std::vector<MachineJumpTableEntry> &JT = JumpTable->getJumpTables();
1220  assert(Index < JT.size() && "Invalid jump table index!");
1221
1222  unsigned EntrySize = JumpTable->getEntrySize(*TheJIT->getDataLayout());
1223
1224  unsigned Offset = 0;
1225  for (unsigned i = 0; i < Index; ++i)
1226    Offset += JT[i].MBBs.size();
1227
1228   Offset *= EntrySize;
1229
1230  return (uintptr_t)((char *)JumpTableBase + Offset);
1231}
1232
1233void JITEmitter::EmittedFunctionConfig::onDelete(
1234  JITEmitter *Emitter, const Function *F) {
1235  Emitter->deallocateMemForFunction(F);
1236}
1237void JITEmitter::EmittedFunctionConfig::onRAUW(
1238  JITEmitter *, const Function*, const Function*) {
1239  llvm_unreachable("The JIT doesn't know how to handle a"
1240                   " RAUW on a value it has emitted.");
1241}
1242
1243
1244//===----------------------------------------------------------------------===//
1245//  Public interface to this file
1246//===----------------------------------------------------------------------===//
1247
1248JITCodeEmitter *JIT::createEmitter(JIT &jit, JITMemoryManager *JMM,
1249                                   TargetMachine &tm) {
1250  return new JITEmitter(jit, JMM, tm);
1251}
1252
1253// getPointerToFunctionOrStub - If the specified function has been
1254// code-gen'd, return a pointer to the function.  If not, compile it, or use
1255// a stub to implement lazy compilation if available.
1256//
1257void *JIT::getPointerToFunctionOrStub(Function *F) {
1258  // If we have already code generated the function, just return the address.
1259  if (void *Addr = getPointerToGlobalIfAvailable(F))
1260    return Addr;
1261
1262  // Get a stub if the target supports it.
1263  JITEmitter *JE = static_cast<JITEmitter*>(getCodeEmitter());
1264  return JE->getJITResolver().getLazyFunctionStub(F);
1265}
1266
1267void JIT::updateFunctionStub(Function *F) {
1268  // Get the empty stub we generated earlier.
1269  JITEmitter *JE = static_cast<JITEmitter*>(getCodeEmitter());
1270  void *Stub = JE->getJITResolver().getLazyFunctionStub(F);
1271  void *Addr = getPointerToGlobalIfAvailable(F);
1272  assert(Addr != Stub && "Function must have non-stub address to be updated.");
1273
1274  // Tell the target jit info to rewrite the stub at the specified address,
1275  // rather than creating a new one.
1276  TargetJITInfo::StubLayout layout = getJITInfo().getStubLayout();
1277  JE->startGVStub(Stub, layout.Size);
1278  getJITInfo().emitFunctionStub(F, Addr, *getCodeEmitter());
1279  JE->finishGVStub();
1280}
1281
1282/// freeMachineCodeForFunction - release machine code memory for given Function.
1283///
1284void JIT::freeMachineCodeForFunction(Function *F) {
1285  // Delete translation for this from the ExecutionEngine, so it will get
1286  // retranslated next time it is used.
1287  updateGlobalMapping(F, 0);
1288
1289  // Free the actual memory for the function body and related stuff.
1290  static_cast<JITEmitter*>(JCE)->deallocateMemForFunction(F);
1291}
1292