JITEmitter.cpp revision 221345
1164190Sjkoshy//===-- JITEmitter.cpp - Write machine code to executable memory ----------===//
2164190Sjkoshy//
3164190Sjkoshy//                     The LLVM Compiler Infrastructure
4164190Sjkoshy//
5164190Sjkoshy// This file is distributed under the University of Illinois Open Source
6164190Sjkoshy// License. See LICENSE.TXT for details.
7164190Sjkoshy//
8164190Sjkoshy//===----------------------------------------------------------------------===//
9164190Sjkoshy//
10164190Sjkoshy// This file defines a MachineCodeEmitter object that is used by the JIT to
11164190Sjkoshy// write machine code to memory and remember where relocatable values are.
12164190Sjkoshy//
13164190Sjkoshy//===----------------------------------------------------------------------===//
14164190Sjkoshy
15164190Sjkoshy#define DEBUG_TYPE "jit"
16164190Sjkoshy#include "JIT.h"
17164190Sjkoshy#include "JITDebugRegisterer.h"
18164190Sjkoshy#include "JITDwarfEmitter.h"
19164190Sjkoshy#include "llvm/ADT/OwningPtr.h"
20164190Sjkoshy#include "llvm/Constants.h"
21164190Sjkoshy#include "llvm/Module.h"
22164190Sjkoshy#include "llvm/DerivedTypes.h"
23164190Sjkoshy#include "llvm/Analysis/DebugInfo.h"
24164190Sjkoshy#include "llvm/CodeGen/JITCodeEmitter.h"
25164190Sjkoshy#include "llvm/CodeGen/MachineFunction.h"
26164190Sjkoshy#include "llvm/CodeGen/MachineCodeInfo.h"
27164190Sjkoshy#include "llvm/CodeGen/MachineConstantPool.h"
28164190Sjkoshy#include "llvm/CodeGen/MachineJumpTableInfo.h"
29164190Sjkoshy#include "llvm/CodeGen/MachineModuleInfo.h"
30164190Sjkoshy#include "llvm/CodeGen/MachineRelocation.h"
31164190Sjkoshy#include "llvm/ExecutionEngine/GenericValue.h"
32164190Sjkoshy#include "llvm/ExecutionEngine/JITEventListener.h"
33164190Sjkoshy#include "llvm/ExecutionEngine/JITMemoryManager.h"
34164190Sjkoshy#include "llvm/Target/TargetData.h"
35210345Skaiw#include "llvm/Target/TargetInstrInfo.h"
36210345Skaiw#include "llvm/Target/TargetJITInfo.h"
37164190Sjkoshy#include "llvm/Target/TargetMachine.h"
38164190Sjkoshy#include "llvm/Target/TargetOptions.h"
39164190Sjkoshy#include "llvm/Support/Debug.h"
40164190Sjkoshy#include "llvm/Support/ErrorHandling.h"
41164190Sjkoshy#include "llvm/Support/ManagedStatic.h"
42165535Sjkoshy#include "llvm/Support/MutexGuard.h"
43164190Sjkoshy#include "llvm/Support/ValueHandle.h"
44210345Skaiw#include "llvm/Support/raw_ostream.h"
45164190Sjkoshy#include "llvm/Support/Disassembler.h"
46164190Sjkoshy#include "llvm/Support/Memory.h"
47165535Sjkoshy#include "llvm/ADT/DenseMap.h"
48210345Skaiw#include "llvm/ADT/SmallPtrSet.h"
49165535Sjkoshy#include "llvm/ADT/SmallVector.h"
50165535Sjkoshy#include "llvm/ADT/Statistic.h"
51165535Sjkoshy#include "llvm/ADT/ValueMap.h"
52210345Skaiw#include <algorithm>
53164190Sjkoshy#ifndef NDEBUG
54210345Skaiw#include <iomanip>
55210345Skaiw#endif
56210345Skaiwusing namespace llvm;
57210345Skaiw
58210345SkaiwSTATISTIC(NumBytes, "Number of bytes of machine code compiled");
59210345SkaiwSTATISTIC(NumRelos, "Number of relocations applied");
60210345SkaiwSTATISTIC(NumRetries, "Number of retries with more memory");
61210345Skaiw
62210345Skaiw
63210345Skaiw// A declaration may stop being a declaration once it's fully read from bitcode.
64210345Skaiw// This function returns true if F is fully read and is still a declaration.
65210345Skaiwstatic bool isNonGhostDeclaration(const Function *F) {
66210345Skaiw  return F->isDeclaration() && !F->isMaterializable();
67}
68
69//===----------------------------------------------------------------------===//
70// JIT lazy compilation code.
71//
72namespace {
73  class JITEmitter;
74  class JITResolverState;
75
76  template<typename ValueTy>
77  struct NoRAUWValueMapConfig : public ValueMapConfig<ValueTy> {
78    typedef JITResolverState *ExtraData;
79    static void onRAUW(JITResolverState *, Value *Old, Value *New) {
80      assert(false && "The JIT doesn't know how to handle a"
81             " RAUW on a value it has emitted.");
82    }
83  };
84
85  struct CallSiteValueMapConfig : public NoRAUWValueMapConfig<Function*> {
86    typedef JITResolverState *ExtraData;
87    static void onDelete(JITResolverState *JRS, Function *F);
88  };
89
90  class JITResolverState {
91  public:
92    typedef ValueMap<Function*, void*, NoRAUWValueMapConfig<Function*> >
93      FunctionToLazyStubMapTy;
94    typedef std::map<void*, AssertingVH<Function> > CallSiteToFunctionMapTy;
95    typedef ValueMap<Function *, SmallPtrSet<void*, 1>,
96                     CallSiteValueMapConfig> FunctionToCallSitesMapTy;
97    typedef std::map<AssertingVH<GlobalValue>, void*> GlobalToIndirectSymMapTy;
98  private:
99    /// FunctionToLazyStubMap - Keep track of the lazy stub created for a
100    /// particular function so that we can reuse them if necessary.
101    FunctionToLazyStubMapTy FunctionToLazyStubMap;
102
103    /// CallSiteToFunctionMap - Keep track of the function that each lazy call
104    /// site corresponds to, and vice versa.
105    CallSiteToFunctionMapTy CallSiteToFunctionMap;
106    FunctionToCallSitesMapTy FunctionToCallSitesMap;
107
108    /// GlobalToIndirectSymMap - Keep track of the indirect symbol created for a
109    /// particular GlobalVariable so that we can reuse them if necessary.
110    GlobalToIndirectSymMapTy GlobalToIndirectSymMap;
111
112    /// Instance of the JIT this ResolverState serves.
113    JIT *TheJIT;
114
115  public:
116    JITResolverState(JIT *jit) : FunctionToLazyStubMap(this),
117                                 FunctionToCallSitesMap(this),
118                                 TheJIT(jit) {}
119
120    FunctionToLazyStubMapTy& getFunctionToLazyStubMap(
121      const MutexGuard& locked) {
122      assert(locked.holds(TheJIT->lock));
123      return FunctionToLazyStubMap;
124    }
125
126    GlobalToIndirectSymMapTy& getGlobalToIndirectSymMap(const MutexGuard& lck) {
127      assert(lck.holds(TheJIT->lock));
128      return GlobalToIndirectSymMap;
129    }
130
131    std::pair<void *, Function *> LookupFunctionFromCallSite(
132        const MutexGuard &locked, void *CallSite) const {
133      assert(locked.holds(TheJIT->lock));
134
135      // The address given to us for the stub may not be exactly right, it
136      // might be a little bit after the stub.  As such, use upper_bound to
137      // find it.
138      CallSiteToFunctionMapTy::const_iterator I =
139        CallSiteToFunctionMap.upper_bound(CallSite);
140      assert(I != CallSiteToFunctionMap.begin() &&
141             "This is not a known call site!");
142      --I;
143      return *I;
144    }
145
146    void AddCallSite(const MutexGuard &locked, void *CallSite, Function *F) {
147      assert(locked.holds(TheJIT->lock));
148
149      bool Inserted = CallSiteToFunctionMap.insert(
150          std::make_pair(CallSite, F)).second;
151      (void)Inserted;
152      assert(Inserted && "Pair was already in CallSiteToFunctionMap");
153      FunctionToCallSitesMap[F].insert(CallSite);
154    }
155
156    void EraseAllCallSitesForPrelocked(Function *F);
157
158    // Erases _all_ call sites regardless of their function.  This is used to
159    // unregister the stub addresses from the StubToResolverMap in
160    // ~JITResolver().
161    void EraseAllCallSitesPrelocked();
162  };
163
164  /// JITResolver - Keep track of, and resolve, call sites for functions that
165  /// have not yet been compiled.
166  class JITResolver {
167    typedef JITResolverState::FunctionToLazyStubMapTy FunctionToLazyStubMapTy;
168    typedef JITResolverState::CallSiteToFunctionMapTy CallSiteToFunctionMapTy;
169    typedef JITResolverState::GlobalToIndirectSymMapTy GlobalToIndirectSymMapTy;
170
171    /// LazyResolverFn - The target lazy resolver function that we actually
172    /// rewrite instructions to use.
173    TargetJITInfo::LazyResolverFn LazyResolverFn;
174
175    JITResolverState state;
176
177    /// ExternalFnToStubMap - This is the equivalent of FunctionToLazyStubMap
178    /// for external functions.  TODO: Of course, external functions don't need
179    /// a lazy stub.  It's actually here to make it more likely that far calls
180    /// succeed, but no single stub can guarantee that.  I'll remove this in a
181    /// subsequent checkin when I actually fix far calls.
182    std::map<void*, void*> ExternalFnToStubMap;
183
184    /// revGOTMap - map addresses to indexes in the GOT
185    std::map<void*, unsigned> revGOTMap;
186    unsigned nextGOTIndex;
187
188    JITEmitter &JE;
189
190    /// Instance of JIT corresponding to this Resolver.
191    JIT *TheJIT;
192
193  public:
194    explicit JITResolver(JIT &jit, JITEmitter &je)
195      : state(&jit), nextGOTIndex(0), JE(je), TheJIT(&jit) {
196      LazyResolverFn = jit.getJITInfo().getLazyResolverFunction(JITCompilerFn);
197    }
198
199    ~JITResolver();
200
201    /// getLazyFunctionStubIfAvailable - This returns a pointer to a function's
202    /// lazy-compilation stub if it has already been created.
203    void *getLazyFunctionStubIfAvailable(Function *F);
204
205    /// getLazyFunctionStub - This returns a pointer to a function's
206    /// lazy-compilation stub, creating one on demand as needed.
207    void *getLazyFunctionStub(Function *F);
208
209    /// getExternalFunctionStub - Return a stub for the function at the
210    /// specified address, created lazily on demand.
211    void *getExternalFunctionStub(void *FnAddr);
212
213    /// getGlobalValueIndirectSym - Return an indirect symbol containing the
214    /// specified GV address.
215    void *getGlobalValueIndirectSym(GlobalValue *V, void *GVAddress);
216
217    /// getGOTIndexForAddress - Return a new or existing index in the GOT for
218    /// an address.  This function only manages slots, it does not manage the
219    /// contents of the slots or the memory associated with the GOT.
220    unsigned getGOTIndexForAddr(void *addr);
221
222    /// JITCompilerFn - This function is called to resolve a stub to a compiled
223    /// address.  If the LLVM Function corresponding to the stub has not yet
224    /// been compiled, this function compiles it first.
225    static void *JITCompilerFn(void *Stub);
226  };
227
228  class StubToResolverMapTy {
229    /// Map a stub address to a specific instance of a JITResolver so that
230    /// lazily-compiled functions can find the right resolver to use.
231    ///
232    /// Guarded by Lock.
233    std::map<void*, JITResolver*> Map;
234
235    /// Guards Map from concurrent accesses.
236    mutable sys::Mutex Lock;
237
238  public:
239    /// Registers a Stub to be resolved by Resolver.
240    void RegisterStubResolver(void *Stub, JITResolver *Resolver) {
241      MutexGuard guard(Lock);
242      Map.insert(std::make_pair(Stub, Resolver));
243    }
244    /// Unregisters the Stub when it's invalidated.
245    void UnregisterStubResolver(void *Stub) {
246      MutexGuard guard(Lock);
247      Map.erase(Stub);
248    }
249    /// Returns the JITResolver instance that owns the Stub.
250    JITResolver *getResolverFromStub(void *Stub) const {
251      MutexGuard guard(Lock);
252      // The address given to us for the stub may not be exactly right, it might
253      // be a little bit after the stub.  As such, use upper_bound to find it.
254      // This is the same trick as in LookupFunctionFromCallSite from
255      // JITResolverState.
256      std::map<void*, JITResolver*>::const_iterator I = Map.upper_bound(Stub);
257      assert(I != Map.begin() && "This is not a known stub!");
258      --I;
259      return I->second;
260    }
261    /// True if any stubs refer to the given resolver. Only used in an assert().
262    /// O(N)
263    bool ResolverHasStubs(JITResolver* Resolver) const {
264      MutexGuard guard(Lock);
265      for (std::map<void*, JITResolver*>::const_iterator I = Map.begin(),
266             E = Map.end(); I != E; ++I) {
267        if (I->second == Resolver)
268          return true;
269      }
270      return false;
271    }
272  };
273  /// This needs to be static so that a lazy call stub can access it with no
274  /// context except the address of the stub.
275  ManagedStatic<StubToResolverMapTy> StubToResolverMap;
276
277  /// JITEmitter - The JIT implementation of the MachineCodeEmitter, which is
278  /// used to output functions to memory for execution.
279  class JITEmitter : public JITCodeEmitter {
280    JITMemoryManager *MemMgr;
281
282    // When outputting a function stub in the context of some other function, we
283    // save BufferBegin/BufferEnd/CurBufferPtr here.
284    uint8_t *SavedBufferBegin, *SavedBufferEnd, *SavedCurBufferPtr;
285
286    // When reattempting to JIT a function after running out of space, we store
287    // the estimated size of the function we're trying to JIT here, so we can
288    // ask the memory manager for at least this much space.  When we
289    // successfully emit the function, we reset this back to zero.
290    uintptr_t SizeEstimate;
291
292    /// Relocations - These are the relocations that the function needs, as
293    /// emitted.
294    std::vector<MachineRelocation> Relocations;
295
296    /// MBBLocations - This vector is a mapping from MBB ID's to their address.
297    /// It is filled in by the StartMachineBasicBlock callback and queried by
298    /// the getMachineBasicBlockAddress callback.
299    std::vector<uintptr_t> MBBLocations;
300
301    /// ConstantPool - The constant pool for the current function.
302    ///
303    MachineConstantPool *ConstantPool;
304
305    /// ConstantPoolBase - A pointer to the first entry in the constant pool.
306    ///
307    void *ConstantPoolBase;
308
309    /// ConstPoolAddresses - Addresses of individual constant pool entries.
310    ///
311    SmallVector<uintptr_t, 8> ConstPoolAddresses;
312
313    /// JumpTable - The jump tables for the current function.
314    ///
315    MachineJumpTableInfo *JumpTable;
316
317    /// JumpTableBase - A pointer to the first entry in the jump table.
318    ///
319    void *JumpTableBase;
320
321    /// Resolver - This contains info about the currently resolved functions.
322    JITResolver Resolver;
323
324    /// DE - The dwarf emitter for the jit.
325    OwningPtr<JITDwarfEmitter> DE;
326
327    /// DR - The debug registerer for the jit.
328    OwningPtr<JITDebugRegisterer> DR;
329
330    /// LabelLocations - This vector is a mapping from Label ID's to their
331    /// address.
332    DenseMap<MCSymbol*, uintptr_t> LabelLocations;
333
334    /// MMI - Machine module info for exception informations
335    MachineModuleInfo* MMI;
336
337    // CurFn - The llvm function being emitted.  Only valid during
338    // finishFunction().
339    const Function *CurFn;
340
341    /// Information about emitted code, which is passed to the
342    /// JITEventListeners.  This is reset in startFunction and used in
343    /// finishFunction.
344    JITEvent_EmittedFunctionDetails EmissionDetails;
345
346    struct EmittedCode {
347      void *FunctionBody;  // Beginning of the function's allocation.
348      void *Code;  // The address the function's code actually starts at.
349      void *ExceptionTable;
350      EmittedCode() : FunctionBody(0), Code(0), ExceptionTable(0) {}
351    };
352    struct EmittedFunctionConfig : public ValueMapConfig<const Function*> {
353      typedef JITEmitter *ExtraData;
354      static void onDelete(JITEmitter *, const Function*);
355      static void onRAUW(JITEmitter *, const Function*, const Function*);
356    };
357    ValueMap<const Function *, EmittedCode,
358             EmittedFunctionConfig> EmittedFunctions;
359
360    DebugLoc PrevDL;
361
362    /// Instance of the JIT
363    JIT *TheJIT;
364
365  public:
366    JITEmitter(JIT &jit, JITMemoryManager *JMM, TargetMachine &TM)
367      : SizeEstimate(0), Resolver(jit, *this), MMI(0), CurFn(0),
368        EmittedFunctions(this), TheJIT(&jit) {
369      MemMgr = JMM ? JMM : JITMemoryManager::CreateDefaultMemManager();
370      if (jit.getJITInfo().needsGOT()) {
371        MemMgr->AllocateGOT();
372        DEBUG(dbgs() << "JIT is managing a GOT\n");
373      }
374
375      if (JITExceptionHandling || JITEmitDebugInfo) {
376        DE.reset(new JITDwarfEmitter(jit));
377      }
378      if (JITEmitDebugInfo) {
379        DR.reset(new JITDebugRegisterer(TM));
380      }
381    }
382    ~JITEmitter() {
383      delete MemMgr;
384    }
385
386    /// classof - Methods for support type inquiry through isa, cast, and
387    /// dyn_cast:
388    ///
389    static inline bool classof(const MachineCodeEmitter*) { return true; }
390
391    JITResolver &getJITResolver() { return Resolver; }
392
393    virtual void startFunction(MachineFunction &F);
394    virtual bool finishFunction(MachineFunction &F);
395
396    void emitConstantPool(MachineConstantPool *MCP);
397    void initJumpTableInfo(MachineJumpTableInfo *MJTI);
398    void emitJumpTableInfo(MachineJumpTableInfo *MJTI);
399
400    void startGVStub(const GlobalValue* GV,
401                     unsigned StubSize, unsigned Alignment = 1);
402    void startGVStub(void *Buffer, unsigned StubSize);
403    void finishGVStub();
404    virtual void *allocIndirectGV(const GlobalValue *GV,
405                                  const uint8_t *Buffer, size_t Size,
406                                  unsigned Alignment);
407
408    /// allocateSpace - Reserves space in the current block if any, or
409    /// allocate a new one of the given size.
410    virtual void *allocateSpace(uintptr_t Size, unsigned Alignment);
411
412    /// allocateGlobal - Allocate memory for a global.  Unlike allocateSpace,
413    /// this method does not allocate memory in the current output buffer,
414    /// because a global may live longer than the current function.
415    virtual void *allocateGlobal(uintptr_t Size, unsigned Alignment);
416
417    virtual void addRelocation(const MachineRelocation &MR) {
418      Relocations.push_back(MR);
419    }
420
421    virtual void StartMachineBasicBlock(MachineBasicBlock *MBB) {
422      if (MBBLocations.size() <= (unsigned)MBB->getNumber())
423        MBBLocations.resize((MBB->getNumber()+1)*2);
424      MBBLocations[MBB->getNumber()] = getCurrentPCValue();
425      if (MBB->hasAddressTaken())
426        TheJIT->addPointerToBasicBlock(MBB->getBasicBlock(),
427                                       (void*)getCurrentPCValue());
428      DEBUG(dbgs() << "JIT: Emitting BB" << MBB->getNumber() << " at ["
429                   << (void*) getCurrentPCValue() << "]\n");
430    }
431
432    virtual uintptr_t getConstantPoolEntryAddress(unsigned Entry) const;
433    virtual uintptr_t getJumpTableEntryAddress(unsigned Entry) const;
434
435    virtual uintptr_t getMachineBasicBlockAddress(MachineBasicBlock *MBB) const{
436      assert(MBBLocations.size() > (unsigned)MBB->getNumber() &&
437             MBBLocations[MBB->getNumber()] && "MBB not emitted!");
438      return MBBLocations[MBB->getNumber()];
439    }
440
441    /// retryWithMoreMemory - Log a retry and deallocate all memory for the
442    /// given function.  Increase the minimum allocation size so that we get
443    /// more memory next time.
444    void retryWithMoreMemory(MachineFunction &F);
445
446    /// deallocateMemForFunction - Deallocate all memory for the specified
447    /// function body.
448    void deallocateMemForFunction(const Function *F);
449
450    virtual void processDebugLoc(DebugLoc DL, bool BeforePrintingInsn);
451
452    virtual void emitLabel(MCSymbol *Label) {
453      LabelLocations[Label] = getCurrentPCValue();
454    }
455
456    virtual DenseMap<MCSymbol*, uintptr_t> *getLabelLocations() {
457      return &LabelLocations;
458    }
459
460    virtual uintptr_t getLabelAddress(MCSymbol *Label) const {
461      assert(LabelLocations.count(Label) && "Label not emitted!");
462      return LabelLocations.find(Label)->second;
463    }
464
465    virtual void setModuleInfo(MachineModuleInfo* Info) {
466      MMI = Info;
467      if (DE.get()) DE->setModuleInfo(Info);
468    }
469
470  private:
471    void *getPointerToGlobal(GlobalValue *GV, void *Reference,
472                             bool MayNeedFarStub);
473    void *getPointerToGVIndirectSym(GlobalValue *V, void *Reference);
474  };
475}
476
477void CallSiteValueMapConfig::onDelete(JITResolverState *JRS, Function *F) {
478  JRS->EraseAllCallSitesForPrelocked(F);
479}
480
481void JITResolverState::EraseAllCallSitesForPrelocked(Function *F) {
482  FunctionToCallSitesMapTy::iterator F2C = FunctionToCallSitesMap.find(F);
483  if (F2C == FunctionToCallSitesMap.end())
484    return;
485  StubToResolverMapTy &S2RMap = *StubToResolverMap;
486  for (SmallPtrSet<void*, 1>::const_iterator I = F2C->second.begin(),
487         E = F2C->second.end(); I != E; ++I) {
488    S2RMap.UnregisterStubResolver(*I);
489    bool Erased = CallSiteToFunctionMap.erase(*I);
490    (void)Erased;
491    assert(Erased && "Missing call site->function mapping");
492  }
493  FunctionToCallSitesMap.erase(F2C);
494}
495
496void JITResolverState::EraseAllCallSitesPrelocked() {
497  StubToResolverMapTy &S2RMap = *StubToResolverMap;
498  for (CallSiteToFunctionMapTy::const_iterator
499         I = CallSiteToFunctionMap.begin(),
500         E = CallSiteToFunctionMap.end(); I != E; ++I) {
501    S2RMap.UnregisterStubResolver(I->first);
502  }
503  CallSiteToFunctionMap.clear();
504  FunctionToCallSitesMap.clear();
505}
506
507JITResolver::~JITResolver() {
508  // No need to lock because we're in the destructor, and state isn't shared.
509  state.EraseAllCallSitesPrelocked();
510  assert(!StubToResolverMap->ResolverHasStubs(this) &&
511         "Resolver destroyed with stubs still alive.");
512}
513
514/// getLazyFunctionStubIfAvailable - This returns a pointer to a function stub
515/// if it has already been created.
516void *JITResolver::getLazyFunctionStubIfAvailable(Function *F) {
517  MutexGuard locked(TheJIT->lock);
518
519  // If we already have a stub for this function, recycle it.
520  return state.getFunctionToLazyStubMap(locked).lookup(F);
521}
522
523/// getFunctionStub - This returns a pointer to a function stub, creating
524/// one on demand as needed.
525void *JITResolver::getLazyFunctionStub(Function *F) {
526  MutexGuard locked(TheJIT->lock);
527
528  // If we already have a lazy stub for this function, recycle it.
529  void *&Stub = state.getFunctionToLazyStubMap(locked)[F];
530  if (Stub) return Stub;
531
532  // Call the lazy resolver function if we are JIT'ing lazily.  Otherwise we
533  // must resolve the symbol now.
534  void *Actual = TheJIT->isCompilingLazily()
535    ? (void *)(intptr_t)LazyResolverFn : (void *)0;
536
537  // If this is an external declaration, attempt to resolve the address now
538  // to place in the stub.
539  if (isNonGhostDeclaration(F) || F->hasAvailableExternallyLinkage()) {
540    Actual = TheJIT->getPointerToFunction(F);
541
542    // If we resolved the symbol to a null address (eg. a weak external)
543    // don't emit a stub. Return a null pointer to the application.
544    if (!Actual) return 0;
545  }
546
547  TargetJITInfo::StubLayout SL = TheJIT->getJITInfo().getStubLayout();
548  JE.startGVStub(F, SL.Size, SL.Alignment);
549  // Codegen a new stub, calling the lazy resolver or the actual address of the
550  // external function, if it was resolved.
551  Stub = TheJIT->getJITInfo().emitFunctionStub(F, Actual, JE);
552  JE.finishGVStub();
553
554  if (Actual != (void*)(intptr_t)LazyResolverFn) {
555    // If we are getting the stub for an external function, we really want the
556    // address of the stub in the GlobalAddressMap for the JIT, not the address
557    // of the external function.
558    TheJIT->updateGlobalMapping(F, Stub);
559  }
560
561  DEBUG(dbgs() << "JIT: Lazy stub emitted at [" << Stub << "] for function '"
562        << F->getName() << "'\n");
563
564  if (TheJIT->isCompilingLazily()) {
565    // Register this JITResolver as the one corresponding to this call site so
566    // JITCompilerFn will be able to find it.
567    StubToResolverMap->RegisterStubResolver(Stub, this);
568
569    // Finally, keep track of the stub-to-Function mapping so that the
570    // JITCompilerFn knows which function to compile!
571    state.AddCallSite(locked, Stub, F);
572  } else if (!Actual) {
573    // If we are JIT'ing non-lazily but need to call a function that does not
574    // exist yet, add it to the JIT's work list so that we can fill in the
575    // stub address later.
576    assert(!isNonGhostDeclaration(F) && !F->hasAvailableExternallyLinkage() &&
577           "'Actual' should have been set above.");
578    TheJIT->addPendingFunction(F);
579  }
580
581  return Stub;
582}
583
584/// getGlobalValueIndirectSym - Return a lazy pointer containing the specified
585/// GV address.
586void *JITResolver::getGlobalValueIndirectSym(GlobalValue *GV, void *GVAddress) {
587  MutexGuard locked(TheJIT->lock);
588
589  // If we already have a stub for this global variable, recycle it.
590  void *&IndirectSym = state.getGlobalToIndirectSymMap(locked)[GV];
591  if (IndirectSym) return IndirectSym;
592
593  // Otherwise, codegen a new indirect symbol.
594  IndirectSym = TheJIT->getJITInfo().emitGlobalValueIndirectSym(GV, GVAddress,
595                                                                JE);
596
597  DEBUG(dbgs() << "JIT: Indirect symbol emitted at [" << IndirectSym
598        << "] for GV '" << GV->getName() << "'\n");
599
600  return IndirectSym;
601}
602
603/// getExternalFunctionStub - Return a stub for the function at the
604/// specified address, created lazily on demand.
605void *JITResolver::getExternalFunctionStub(void *FnAddr) {
606  // If we already have a stub for this function, recycle it.
607  void *&Stub = ExternalFnToStubMap[FnAddr];
608  if (Stub) return Stub;
609
610  TargetJITInfo::StubLayout SL = TheJIT->getJITInfo().getStubLayout();
611  JE.startGVStub(0, SL.Size, SL.Alignment);
612  Stub = TheJIT->getJITInfo().emitFunctionStub(0, FnAddr, JE);
613  JE.finishGVStub();
614
615  DEBUG(dbgs() << "JIT: Stub emitted at [" << Stub
616               << "] for external function at '" << FnAddr << "'\n");
617  return Stub;
618}
619
620unsigned JITResolver::getGOTIndexForAddr(void* addr) {
621  unsigned idx = revGOTMap[addr];
622  if (!idx) {
623    idx = ++nextGOTIndex;
624    revGOTMap[addr] = idx;
625    DEBUG(dbgs() << "JIT: Adding GOT entry " << idx << " for addr ["
626                 << addr << "]\n");
627  }
628  return idx;
629}
630
631/// JITCompilerFn - This function is called when a lazy compilation stub has
632/// been entered.  It looks up which function this stub corresponds to, compiles
633/// it if necessary, then returns the resultant function pointer.
634void *JITResolver::JITCompilerFn(void *Stub) {
635  JITResolver *JR = StubToResolverMap->getResolverFromStub(Stub);
636  assert(JR && "Unable to find the corresponding JITResolver to the call site");
637
638  Function* F = 0;
639  void* ActualPtr = 0;
640
641  {
642    // Only lock for getting the Function. The call getPointerToFunction made
643    // in this function might trigger function materializing, which requires
644    // JIT lock to be unlocked.
645    MutexGuard locked(JR->TheJIT->lock);
646
647    // The address given to us for the stub may not be exactly right, it might
648    // be a little bit after the stub.  As such, use upper_bound to find it.
649    std::pair<void*, Function*> I =
650      JR->state.LookupFunctionFromCallSite(locked, Stub);
651    F = I.second;
652    ActualPtr = I.first;
653  }
654
655  // If we have already code generated the function, just return the address.
656  void *Result = JR->TheJIT->getPointerToGlobalIfAvailable(F);
657
658  if (!Result) {
659    // Otherwise we don't have it, do lazy compilation now.
660
661    // If lazy compilation is disabled, emit a useful error message and abort.
662    if (!JR->TheJIT->isCompilingLazily()) {
663      report_fatal_error("LLVM JIT requested to do lazy compilation of"
664                         " function '"
665                        + F->getName() + "' when lazy compiles are disabled!");
666    }
667
668    DEBUG(dbgs() << "JIT: Lazily resolving function '" << F->getName()
669          << "' In stub ptr = " << Stub << " actual ptr = "
670          << ActualPtr << "\n");
671
672    Result = JR->TheJIT->getPointerToFunction(F);
673  }
674
675  // Reacquire the lock to update the GOT map.
676  MutexGuard locked(JR->TheJIT->lock);
677
678  // We might like to remove the call site from the CallSiteToFunction map, but
679  // we can't do that! Multiple threads could be stuck, waiting to acquire the
680  // lock above. As soon as the 1st function finishes compiling the function,
681  // the next one will be released, and needs to be able to find the function it
682  // needs to call.
683
684  // FIXME: We could rewrite all references to this stub if we knew them.
685
686  // What we will do is set the compiled function address to map to the
687  // same GOT entry as the stub so that later clients may update the GOT
688  // if they see it still using the stub address.
689  // Note: this is done so the Resolver doesn't have to manage GOT memory
690  // Do this without allocating map space if the target isn't using a GOT
691  if(JR->revGOTMap.find(Stub) != JR->revGOTMap.end())
692    JR->revGOTMap[Result] = JR->revGOTMap[Stub];
693
694  return Result;
695}
696
697//===----------------------------------------------------------------------===//
698// JITEmitter code.
699//
700void *JITEmitter::getPointerToGlobal(GlobalValue *V, void *Reference,
701                                     bool MayNeedFarStub) {
702  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
703    return TheJIT->getOrEmitGlobalVariable(GV);
704
705  if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
706    return TheJIT->getPointerToGlobal(GA->resolveAliasedGlobal(false));
707
708  // If we have already compiled the function, return a pointer to its body.
709  Function *F = cast<Function>(V);
710
711  void *FnStub = Resolver.getLazyFunctionStubIfAvailable(F);
712  if (FnStub) {
713    // Return the function stub if it's already created.  We do this first so
714    // that we're returning the same address for the function as any previous
715    // call.  TODO: Yes, this is wrong. The lazy stub isn't guaranteed to be
716    // close enough to call.
717    return FnStub;
718  }
719
720  // If we know the target can handle arbitrary-distance calls, try to
721  // return a direct pointer.
722  if (!MayNeedFarStub) {
723    // If we have code, go ahead and return that.
724    void *ResultPtr = TheJIT->getPointerToGlobalIfAvailable(F);
725    if (ResultPtr) return ResultPtr;
726
727    // If this is an external function pointer, we can force the JIT to
728    // 'compile' it, which really just adds it to the map.
729    if (isNonGhostDeclaration(F) || F->hasAvailableExternallyLinkage())
730      return TheJIT->getPointerToFunction(F);
731  }
732
733  // Otherwise, we may need a to emit a stub, and, conservatively, we always do
734  // so.  Note that it's possible to return null from getLazyFunctionStub in the
735  // case of a weak extern that fails to resolve.
736  return Resolver.getLazyFunctionStub(F);
737}
738
739void *JITEmitter::getPointerToGVIndirectSym(GlobalValue *V, void *Reference) {
740  // Make sure GV is emitted first, and create a stub containing the fully
741  // resolved address.
742  void *GVAddress = getPointerToGlobal(V, Reference, false);
743  void *StubAddr = Resolver.getGlobalValueIndirectSym(V, GVAddress);
744  return StubAddr;
745}
746
747void JITEmitter::processDebugLoc(DebugLoc DL, bool BeforePrintingInsn) {
748  if (DL.isUnknown()) return;
749  if (!BeforePrintingInsn) return;
750
751  const LLVMContext &Context = EmissionDetails.MF->getFunction()->getContext();
752
753  if (DL.getScope(Context) != 0 && PrevDL != DL) {
754    JITEvent_EmittedFunctionDetails::LineStart NextLine;
755    NextLine.Address = getCurrentPCValue();
756    NextLine.Loc = DL;
757    EmissionDetails.LineStarts.push_back(NextLine);
758  }
759
760  PrevDL = DL;
761}
762
763static unsigned GetConstantPoolSizeInBytes(MachineConstantPool *MCP,
764                                           const TargetData *TD) {
765  const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants();
766  if (Constants.empty()) return 0;
767
768  unsigned Size = 0;
769  for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
770    MachineConstantPoolEntry CPE = Constants[i];
771    unsigned AlignMask = CPE.getAlignment() - 1;
772    Size = (Size + AlignMask) & ~AlignMask;
773    const Type *Ty = CPE.getType();
774    Size += TD->getTypeAllocSize(Ty);
775  }
776  return Size;
777}
778
779void JITEmitter::startFunction(MachineFunction &F) {
780  DEBUG(dbgs() << "JIT: Starting CodeGen of Function "
781        << F.getFunction()->getName() << "\n");
782
783  uintptr_t ActualSize = 0;
784  // Set the memory writable, if it's not already
785  MemMgr->setMemoryWritable();
786
787  if (SizeEstimate > 0) {
788    // SizeEstimate will be non-zero on reallocation attempts.
789    ActualSize = SizeEstimate;
790  }
791
792  BufferBegin = CurBufferPtr = MemMgr->startFunctionBody(F.getFunction(),
793                                                         ActualSize);
794  BufferEnd = BufferBegin+ActualSize;
795  EmittedFunctions[F.getFunction()].FunctionBody = BufferBegin;
796
797  // Ensure the constant pool/jump table info is at least 4-byte aligned.
798  emitAlignment(16);
799
800  emitConstantPool(F.getConstantPool());
801  if (MachineJumpTableInfo *MJTI = F.getJumpTableInfo())
802    initJumpTableInfo(MJTI);
803
804  // About to start emitting the machine code for the function.
805  emitAlignment(std::max(F.getFunction()->getAlignment(), 8U));
806  TheJIT->updateGlobalMapping(F.getFunction(), CurBufferPtr);
807  EmittedFunctions[F.getFunction()].Code = CurBufferPtr;
808
809  MBBLocations.clear();
810
811  EmissionDetails.MF = &F;
812  EmissionDetails.LineStarts.clear();
813}
814
815bool JITEmitter::finishFunction(MachineFunction &F) {
816  if (CurBufferPtr == BufferEnd) {
817    // We must call endFunctionBody before retrying, because
818    // deallocateMemForFunction requires it.
819    MemMgr->endFunctionBody(F.getFunction(), BufferBegin, CurBufferPtr);
820    retryWithMoreMemory(F);
821    return true;
822  }
823
824  if (MachineJumpTableInfo *MJTI = F.getJumpTableInfo())
825    emitJumpTableInfo(MJTI);
826
827  // FnStart is the start of the text, not the start of the constant pool and
828  // other per-function data.
829  uint8_t *FnStart =
830    (uint8_t *)TheJIT->getPointerToGlobalIfAvailable(F.getFunction());
831
832  // FnEnd is the end of the function's machine code.
833  uint8_t *FnEnd = CurBufferPtr;
834
835  if (!Relocations.empty()) {
836    CurFn = F.getFunction();
837    NumRelos += Relocations.size();
838
839    // Resolve the relocations to concrete pointers.
840    for (unsigned i = 0, e = Relocations.size(); i != e; ++i) {
841      MachineRelocation &MR = Relocations[i];
842      void *ResultPtr = 0;
843      if (!MR.letTargetResolve()) {
844        if (MR.isExternalSymbol()) {
845          ResultPtr = TheJIT->getPointerToNamedFunction(MR.getExternalSymbol(),
846                                                        false);
847          DEBUG(dbgs() << "JIT: Map \'" << MR.getExternalSymbol() << "\' to ["
848                       << ResultPtr << "]\n");
849
850          // If the target REALLY wants a stub for this function, emit it now.
851          if (MR.mayNeedFarStub()) {
852            ResultPtr = Resolver.getExternalFunctionStub(ResultPtr);
853          }
854        } else if (MR.isGlobalValue()) {
855          ResultPtr = getPointerToGlobal(MR.getGlobalValue(),
856                                         BufferBegin+MR.getMachineCodeOffset(),
857                                         MR.mayNeedFarStub());
858        } else if (MR.isIndirectSymbol()) {
859          ResultPtr = getPointerToGVIndirectSym(
860              MR.getGlobalValue(), BufferBegin+MR.getMachineCodeOffset());
861        } else if (MR.isBasicBlock()) {
862          ResultPtr = (void*)getMachineBasicBlockAddress(MR.getBasicBlock());
863        } else if (MR.isConstantPoolIndex()) {
864          ResultPtr =
865            (void*)getConstantPoolEntryAddress(MR.getConstantPoolIndex());
866        } else {
867          assert(MR.isJumpTableIndex());
868          ResultPtr=(void*)getJumpTableEntryAddress(MR.getJumpTableIndex());
869        }
870
871        MR.setResultPointer(ResultPtr);
872      }
873
874      // if we are managing the GOT and the relocation wants an index,
875      // give it one
876      if (MR.isGOTRelative() && MemMgr->isManagingGOT()) {
877        unsigned idx = Resolver.getGOTIndexForAddr(ResultPtr);
878        MR.setGOTIndex(idx);
879        if (((void**)MemMgr->getGOTBase())[idx] != ResultPtr) {
880          DEBUG(dbgs() << "JIT: GOT was out of date for " << ResultPtr
881                       << " pointing at " << ((void**)MemMgr->getGOTBase())[idx]
882                       << "\n");
883          ((void**)MemMgr->getGOTBase())[idx] = ResultPtr;
884        }
885      }
886    }
887
888    CurFn = 0;
889    TheJIT->getJITInfo().relocate(BufferBegin, &Relocations[0],
890                                  Relocations.size(), MemMgr->getGOTBase());
891  }
892
893  // Update the GOT entry for F to point to the new code.
894  if (MemMgr->isManagingGOT()) {
895    unsigned idx = Resolver.getGOTIndexForAddr((void*)BufferBegin);
896    if (((void**)MemMgr->getGOTBase())[idx] != (void*)BufferBegin) {
897      DEBUG(dbgs() << "JIT: GOT was out of date for " << (void*)BufferBegin
898                   << " pointing at " << ((void**)MemMgr->getGOTBase())[idx]
899                   << "\n");
900      ((void**)MemMgr->getGOTBase())[idx] = (void*)BufferBegin;
901    }
902  }
903
904  // CurBufferPtr may have moved beyond FnEnd, due to memory allocation for
905  // global variables that were referenced in the relocations.
906  MemMgr->endFunctionBody(F.getFunction(), BufferBegin, CurBufferPtr);
907
908  if (CurBufferPtr == BufferEnd) {
909    retryWithMoreMemory(F);
910    return true;
911  } else {
912    // Now that we've succeeded in emitting the function, reset the
913    // SizeEstimate back down to zero.
914    SizeEstimate = 0;
915  }
916
917  BufferBegin = CurBufferPtr = 0;
918  NumBytes += FnEnd-FnStart;
919
920  // Invalidate the icache if necessary.
921  sys::Memory::InvalidateInstructionCache(FnStart, FnEnd-FnStart);
922
923  TheJIT->NotifyFunctionEmitted(*F.getFunction(), FnStart, FnEnd-FnStart,
924                                EmissionDetails);
925
926  // Reset the previous debug location.
927  PrevDL = DebugLoc();
928
929  DEBUG(dbgs() << "JIT: Finished CodeGen of [" << (void*)FnStart
930        << "] Function: " << F.getFunction()->getName()
931        << ": " << (FnEnd-FnStart) << " bytes of text, "
932        << Relocations.size() << " relocations\n");
933
934  Relocations.clear();
935  ConstPoolAddresses.clear();
936
937  // Mark code region readable and executable if it's not so already.
938  MemMgr->setMemoryExecutable();
939
940  DEBUG({
941      if (sys::hasDisassembler()) {
942        dbgs() << "JIT: Disassembled code:\n";
943        dbgs() << sys::disassembleBuffer(FnStart, FnEnd-FnStart,
944                                         (uintptr_t)FnStart);
945      } else {
946        dbgs() << "JIT: Binary code:\n";
947        uint8_t* q = FnStart;
948        for (int i = 0; q < FnEnd; q += 4, ++i) {
949          if (i == 4)
950            i = 0;
951          if (i == 0)
952            dbgs() << "JIT: " << (long)(q - FnStart) << ": ";
953          bool Done = false;
954          for (int j = 3; j >= 0; --j) {
955            if (q + j >= FnEnd)
956              Done = true;
957            else
958              dbgs() << (unsigned short)q[j];
959          }
960          if (Done)
961            break;
962          dbgs() << ' ';
963          if (i == 3)
964            dbgs() << '\n';
965        }
966        dbgs()<< '\n';
967      }
968    });
969
970  if (JITExceptionHandling || JITEmitDebugInfo) {
971    uintptr_t ActualSize = 0;
972    SavedBufferBegin = BufferBegin;
973    SavedBufferEnd = BufferEnd;
974    SavedCurBufferPtr = CurBufferPtr;
975
976    BufferBegin = CurBufferPtr = MemMgr->startExceptionTable(F.getFunction(),
977                                                             ActualSize);
978    BufferEnd = BufferBegin+ActualSize;
979    EmittedFunctions[F.getFunction()].ExceptionTable = BufferBegin;
980    uint8_t *EhStart;
981    uint8_t *FrameRegister = DE->EmitDwarfTable(F, *this, FnStart, FnEnd,
982                                                EhStart);
983    MemMgr->endExceptionTable(F.getFunction(), BufferBegin, CurBufferPtr,
984                              FrameRegister);
985    uint8_t *EhEnd = CurBufferPtr;
986    BufferBegin = SavedBufferBegin;
987    BufferEnd = SavedBufferEnd;
988    CurBufferPtr = SavedCurBufferPtr;
989
990    if (JITExceptionHandling) {
991      TheJIT->RegisterTable(F.getFunction(), FrameRegister);
992    }
993
994    if (JITEmitDebugInfo) {
995      DebugInfo I;
996      I.FnStart = FnStart;
997      I.FnEnd = FnEnd;
998      I.EhStart = EhStart;
999      I.EhEnd = EhEnd;
1000      DR->RegisterFunction(F.getFunction(), I);
1001    }
1002  }
1003
1004  if (MMI)
1005    MMI->EndFunction();
1006
1007  return false;
1008}
1009
1010void JITEmitter::retryWithMoreMemory(MachineFunction &F) {
1011  DEBUG(dbgs() << "JIT: Ran out of space for native code.  Reattempting.\n");
1012  Relocations.clear();  // Clear the old relocations or we'll reapply them.
1013  ConstPoolAddresses.clear();
1014  ++NumRetries;
1015  deallocateMemForFunction(F.getFunction());
1016  // Try again with at least twice as much free space.
1017  SizeEstimate = (uintptr_t)(2 * (BufferEnd - BufferBegin));
1018
1019  for (MachineFunction::iterator MBB = F.begin(), E = F.end(); MBB != E; ++MBB){
1020    if (MBB->hasAddressTaken())
1021      TheJIT->clearPointerToBasicBlock(MBB->getBasicBlock());
1022  }
1023}
1024
1025/// deallocateMemForFunction - Deallocate all memory for the specified
1026/// function body.  Also drop any references the function has to stubs.
1027/// May be called while the Function is being destroyed inside ~Value().
1028void JITEmitter::deallocateMemForFunction(const Function *F) {
1029  ValueMap<const Function *, EmittedCode, EmittedFunctionConfig>::iterator
1030    Emitted = EmittedFunctions.find(F);
1031  if (Emitted != EmittedFunctions.end()) {
1032    MemMgr->deallocateFunctionBody(Emitted->second.FunctionBody);
1033    MemMgr->deallocateExceptionTable(Emitted->second.ExceptionTable);
1034    TheJIT->NotifyFreeingMachineCode(Emitted->second.Code);
1035
1036    EmittedFunctions.erase(Emitted);
1037  }
1038
1039  if(JITExceptionHandling) {
1040    TheJIT->DeregisterTable(F);
1041  }
1042
1043  if (JITEmitDebugInfo) {
1044    DR->UnregisterFunction(F);
1045  }
1046}
1047
1048
1049void* JITEmitter::allocateSpace(uintptr_t Size, unsigned Alignment) {
1050  if (BufferBegin)
1051    return JITCodeEmitter::allocateSpace(Size, Alignment);
1052
1053  // create a new memory block if there is no active one.
1054  // care must be taken so that BufferBegin is invalidated when a
1055  // block is trimmed
1056  BufferBegin = CurBufferPtr = MemMgr->allocateSpace(Size, Alignment);
1057  BufferEnd = BufferBegin+Size;
1058  return CurBufferPtr;
1059}
1060
1061void* JITEmitter::allocateGlobal(uintptr_t Size, unsigned Alignment) {
1062  // Delegate this call through the memory manager.
1063  return MemMgr->allocateGlobal(Size, Alignment);
1064}
1065
1066void JITEmitter::emitConstantPool(MachineConstantPool *MCP) {
1067  if (TheJIT->getJITInfo().hasCustomConstantPool())
1068    return;
1069
1070  const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants();
1071  if (Constants.empty()) return;
1072
1073  unsigned Size = GetConstantPoolSizeInBytes(MCP, TheJIT->getTargetData());
1074  unsigned Align = MCP->getConstantPoolAlignment();
1075  ConstantPoolBase = allocateSpace(Size, Align);
1076  ConstantPool = MCP;
1077
1078  if (ConstantPoolBase == 0) return;  // Buffer overflow.
1079
1080  DEBUG(dbgs() << "JIT: Emitted constant pool at [" << ConstantPoolBase
1081               << "] (size: " << Size << ", alignment: " << Align << ")\n");
1082
1083  // Initialize the memory for all of the constant pool entries.
1084  unsigned Offset = 0;
1085  for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
1086    MachineConstantPoolEntry CPE = Constants[i];
1087    unsigned AlignMask = CPE.getAlignment() - 1;
1088    Offset = (Offset + AlignMask) & ~AlignMask;
1089
1090    uintptr_t CAddr = (uintptr_t)ConstantPoolBase + Offset;
1091    ConstPoolAddresses.push_back(CAddr);
1092    if (CPE.isMachineConstantPoolEntry()) {
1093      // FIXME: add support to lower machine constant pool values into bytes!
1094      report_fatal_error("Initialize memory with machine specific constant pool"
1095                        "entry has not been implemented!");
1096    }
1097    TheJIT->InitializeMemory(CPE.Val.ConstVal, (void*)CAddr);
1098    DEBUG(dbgs() << "JIT:   CP" << i << " at [0x";
1099          dbgs().write_hex(CAddr) << "]\n");
1100
1101    const Type *Ty = CPE.Val.ConstVal->getType();
1102    Offset += TheJIT->getTargetData()->getTypeAllocSize(Ty);
1103  }
1104}
1105
1106void JITEmitter::initJumpTableInfo(MachineJumpTableInfo *MJTI) {
1107  if (TheJIT->getJITInfo().hasCustomJumpTables())
1108    return;
1109  if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline)
1110    return;
1111
1112  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1113  if (JT.empty()) return;
1114
1115  unsigned NumEntries = 0;
1116  for (unsigned i = 0, e = JT.size(); i != e; ++i)
1117    NumEntries += JT[i].MBBs.size();
1118
1119  unsigned EntrySize = MJTI->getEntrySize(*TheJIT->getTargetData());
1120
1121  // Just allocate space for all the jump tables now.  We will fix up the actual
1122  // MBB entries in the tables after we emit the code for each block, since then
1123  // we will know the final locations of the MBBs in memory.
1124  JumpTable = MJTI;
1125  JumpTableBase = allocateSpace(NumEntries * EntrySize,
1126                             MJTI->getEntryAlignment(*TheJIT->getTargetData()));
1127}
1128
1129void JITEmitter::emitJumpTableInfo(MachineJumpTableInfo *MJTI) {
1130  if (TheJIT->getJITInfo().hasCustomJumpTables())
1131    return;
1132
1133  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1134  if (JT.empty() || JumpTableBase == 0) return;
1135
1136
1137  switch (MJTI->getEntryKind()) {
1138  case MachineJumpTableInfo::EK_Inline:
1139    return;
1140  case MachineJumpTableInfo::EK_BlockAddress: {
1141    // EK_BlockAddress - Each entry is a plain address of block, e.g.:
1142    //     .word LBB123
1143    assert(MJTI->getEntrySize(*TheJIT->getTargetData()) == sizeof(void*) &&
1144           "Cross JIT'ing?");
1145
1146    // For each jump table, map each target in the jump table to the address of
1147    // an emitted MachineBasicBlock.
1148    intptr_t *SlotPtr = (intptr_t*)JumpTableBase;
1149
1150    for (unsigned i = 0, e = JT.size(); i != e; ++i) {
1151      const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
1152      // Store the address of the basic block for this jump table slot in the
1153      // memory we allocated for the jump table in 'initJumpTableInfo'
1154      for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi)
1155        *SlotPtr++ = getMachineBasicBlockAddress(MBBs[mi]);
1156    }
1157    break;
1158  }
1159
1160  case MachineJumpTableInfo::EK_Custom32:
1161  case MachineJumpTableInfo::EK_GPRel32BlockAddress:
1162  case MachineJumpTableInfo::EK_LabelDifference32: {
1163    assert(MJTI->getEntrySize(*TheJIT->getTargetData()) == 4&&"Cross JIT'ing?");
1164    // For each jump table, place the offset from the beginning of the table
1165    // to the target address.
1166    int *SlotPtr = (int*)JumpTableBase;
1167
1168    for (unsigned i = 0, e = JT.size(); i != e; ++i) {
1169      const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
1170      // Store the offset of the basic block for this jump table slot in the
1171      // memory we allocated for the jump table in 'initJumpTableInfo'
1172      uintptr_t Base = (uintptr_t)SlotPtr;
1173      for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi) {
1174        uintptr_t MBBAddr = getMachineBasicBlockAddress(MBBs[mi]);
1175        /// FIXME: USe EntryKind instead of magic "getPICJumpTableEntry" hook.
1176        *SlotPtr++ = TheJIT->getJITInfo().getPICJumpTableEntry(MBBAddr, Base);
1177      }
1178    }
1179    break;
1180  }
1181  }
1182}
1183
1184void JITEmitter::startGVStub(const GlobalValue* GV,
1185                             unsigned StubSize, unsigned Alignment) {
1186  SavedBufferBegin = BufferBegin;
1187  SavedBufferEnd = BufferEnd;
1188  SavedCurBufferPtr = CurBufferPtr;
1189
1190  BufferBegin = CurBufferPtr = MemMgr->allocateStub(GV, StubSize, Alignment);
1191  BufferEnd = BufferBegin+StubSize+1;
1192}
1193
1194void JITEmitter::startGVStub(void *Buffer, unsigned StubSize) {
1195  SavedBufferBegin = BufferBegin;
1196  SavedBufferEnd = BufferEnd;
1197  SavedCurBufferPtr = CurBufferPtr;
1198
1199  BufferBegin = CurBufferPtr = (uint8_t *)Buffer;
1200  BufferEnd = BufferBegin+StubSize+1;
1201}
1202
1203void JITEmitter::finishGVStub() {
1204  assert(CurBufferPtr != BufferEnd && "Stub overflowed allocated space.");
1205  NumBytes += getCurrentPCOffset();
1206  BufferBegin = SavedBufferBegin;
1207  BufferEnd = SavedBufferEnd;
1208  CurBufferPtr = SavedCurBufferPtr;
1209}
1210
1211void *JITEmitter::allocIndirectGV(const GlobalValue *GV,
1212                                  const uint8_t *Buffer, size_t Size,
1213                                  unsigned Alignment) {
1214  uint8_t *IndGV = MemMgr->allocateStub(GV, Size, Alignment);
1215  memcpy(IndGV, Buffer, Size);
1216  return IndGV;
1217}
1218
1219// getConstantPoolEntryAddress - Return the address of the 'ConstantNum' entry
1220// in the constant pool that was last emitted with the 'emitConstantPool'
1221// method.
1222//
1223uintptr_t JITEmitter::getConstantPoolEntryAddress(unsigned ConstantNum) const {
1224  assert(ConstantNum < ConstantPool->getConstants().size() &&
1225         "Invalid ConstantPoolIndex!");
1226  return ConstPoolAddresses[ConstantNum];
1227}
1228
1229// getJumpTableEntryAddress - Return the address of the JumpTable with index
1230// 'Index' in the jumpp table that was last initialized with 'initJumpTableInfo'
1231//
1232uintptr_t JITEmitter::getJumpTableEntryAddress(unsigned Index) const {
1233  const std::vector<MachineJumpTableEntry> &JT = JumpTable->getJumpTables();
1234  assert(Index < JT.size() && "Invalid jump table index!");
1235
1236  unsigned EntrySize = JumpTable->getEntrySize(*TheJIT->getTargetData());
1237
1238  unsigned Offset = 0;
1239  for (unsigned i = 0; i < Index; ++i)
1240    Offset += JT[i].MBBs.size();
1241
1242   Offset *= EntrySize;
1243
1244  return (uintptr_t)((char *)JumpTableBase + Offset);
1245}
1246
1247void JITEmitter::EmittedFunctionConfig::onDelete(
1248  JITEmitter *Emitter, const Function *F) {
1249  Emitter->deallocateMemForFunction(F);
1250}
1251void JITEmitter::EmittedFunctionConfig::onRAUW(
1252  JITEmitter *, const Function*, const Function*) {
1253  llvm_unreachable("The JIT doesn't know how to handle a"
1254                   " RAUW on a value it has emitted.");
1255}
1256
1257
1258//===----------------------------------------------------------------------===//
1259//  Public interface to this file
1260//===----------------------------------------------------------------------===//
1261
1262JITCodeEmitter *JIT::createEmitter(JIT &jit, JITMemoryManager *JMM,
1263                                   TargetMachine &tm) {
1264  return new JITEmitter(jit, JMM, tm);
1265}
1266
1267// getPointerToFunctionOrStub - If the specified function has been
1268// code-gen'd, return a pointer to the function.  If not, compile it, or use
1269// a stub to implement lazy compilation if available.
1270//
1271void *JIT::getPointerToFunctionOrStub(Function *F) {
1272  // If we have already code generated the function, just return the address.
1273  if (void *Addr = getPointerToGlobalIfAvailable(F))
1274    return Addr;
1275
1276  // Get a stub if the target supports it.
1277  assert(isa<JITEmitter>(JCE) && "Unexpected MCE?");
1278  JITEmitter *JE = cast<JITEmitter>(getCodeEmitter());
1279  return JE->getJITResolver().getLazyFunctionStub(F);
1280}
1281
1282void JIT::updateFunctionStub(Function *F) {
1283  // Get the empty stub we generated earlier.
1284  assert(isa<JITEmitter>(JCE) && "Unexpected MCE?");
1285  JITEmitter *JE = cast<JITEmitter>(getCodeEmitter());
1286  void *Stub = JE->getJITResolver().getLazyFunctionStub(F);
1287  void *Addr = getPointerToGlobalIfAvailable(F);
1288  assert(Addr != Stub && "Function must have non-stub address to be updated.");
1289
1290  // Tell the target jit info to rewrite the stub at the specified address,
1291  // rather than creating a new one.
1292  TargetJITInfo::StubLayout layout = getJITInfo().getStubLayout();
1293  JE->startGVStub(Stub, layout.Size);
1294  getJITInfo().emitFunctionStub(F, Addr, *getCodeEmitter());
1295  JE->finishGVStub();
1296}
1297
1298/// freeMachineCodeForFunction - release machine code memory for given Function.
1299///
1300void JIT::freeMachineCodeForFunction(Function *F) {
1301  // Delete translation for this from the ExecutionEngine, so it will get
1302  // retranslated next time it is used.
1303  updateGlobalMapping(F, 0);
1304
1305  // Free the actual memory for the function body and related stuff.
1306  assert(isa<JITEmitter>(JCE) && "Unexpected MCE?");
1307  cast<JITEmitter>(JCE)->deallocateMemForFunction(F);
1308}
1309