JIT.cpp revision 195098
1//===-- JIT.cpp - LLVM Just in Time Compiler ------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This tool implements a just-in-time compiler for LLVM, allowing direct
11// execution of LLVM bitcode in an efficient manner.
12//
13//===----------------------------------------------------------------------===//
14
15#include "JIT.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/Function.h"
19#include "llvm/GlobalVariable.h"
20#include "llvm/Instructions.h"
21#include "llvm/ModuleProvider.h"
22#include "llvm/CodeGen/JITCodeEmitter.h"
23#include "llvm/CodeGen/MachineCodeInfo.h"
24#include "llvm/ExecutionEngine/GenericValue.h"
25#include "llvm/ExecutionEngine/JITEventListener.h"
26#include "llvm/Target/TargetData.h"
27#include "llvm/Target/TargetMachine.h"
28#include "llvm/Target/TargetJITInfo.h"
29#include "llvm/Support/Dwarf.h"
30#include "llvm/Support/MutexGuard.h"
31#include "llvm/System/DynamicLibrary.h"
32#include "llvm/Config/config.h"
33
34using namespace llvm;
35
36#ifdef __APPLE__
37// Apple gcc defaults to -fuse-cxa-atexit (i.e. calls __cxa_atexit instead
38// of atexit). It passes the address of linker generated symbol __dso_handle
39// to the function.
40// This configuration change happened at version 5330.
41# include <AvailabilityMacros.h>
42# if defined(MAC_OS_X_VERSION_10_4) && \
43     ((MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_4) || \
44      (MAC_OS_X_VERSION_MIN_REQUIRED == MAC_OS_X_VERSION_10_4 && \
45       __APPLE_CC__ >= 5330))
46#  ifndef HAVE___DSO_HANDLE
47#   define HAVE___DSO_HANDLE 1
48#  endif
49# endif
50#endif
51
52#if HAVE___DSO_HANDLE
53extern void *__dso_handle __attribute__ ((__visibility__ ("hidden")));
54#endif
55
56namespace {
57
58static struct RegisterJIT {
59  RegisterJIT() { JIT::Register(); }
60} JITRegistrator;
61
62}
63
64extern "C" void LLVMLinkInJIT() {
65}
66
67
68#if defined(__GNUC__) && !defined(__ARM__EABI__)
69
70// libgcc defines the __register_frame function to dynamically register new
71// dwarf frames for exception handling. This functionality is not portable
72// across compilers and is only provided by GCC. We use the __register_frame
73// function here so that code generated by the JIT cooperates with the unwinding
74// runtime of libgcc. When JITting with exception handling enable, LLVM
75// generates dwarf frames and registers it to libgcc with __register_frame.
76//
77// The __register_frame function works with Linux.
78//
79// Unfortunately, this functionality seems to be in libgcc after the unwinding
80// library of libgcc for darwin was written. The code for darwin overwrites the
81// value updated by __register_frame with a value fetched with "keymgr".
82// "keymgr" is an obsolete functionality, which should be rewritten some day.
83// In the meantime, since "keymgr" is on all libgccs shipped with apple-gcc, we
84// need a workaround in LLVM which uses the "keymgr" to dynamically modify the
85// values of an opaque key, used by libgcc to find dwarf tables.
86
87extern "C" void __register_frame(void*);
88
89#if defined(__APPLE__) && MAC_OS_X_VERSION_MAX_ALLOWED <= 1050
90# define USE_KEYMGR 1
91#else
92# define USE_KEYMGR 0
93#endif
94
95#if USE_KEYMGR
96
97namespace {
98
99// LibgccObject - This is the structure defined in libgcc. There is no #include
100// provided for this structure, so we also define it here. libgcc calls it
101// "struct object". The structure is undocumented in libgcc.
102struct LibgccObject {
103  void *unused1;
104  void *unused2;
105  void *unused3;
106
107  /// frame - Pointer to the exception table.
108  void *frame;
109
110  /// encoding -  The encoding of the object?
111  union {
112    struct {
113      unsigned long sorted : 1;
114      unsigned long from_array : 1;
115      unsigned long mixed_encoding : 1;
116      unsigned long encoding : 8;
117      unsigned long count : 21;
118    } b;
119    size_t i;
120  } encoding;
121
122  /// fde_end - libgcc defines this field only if some macro is defined. We
123  /// include this field even if it may not there, to make libgcc happy.
124  char *fde_end;
125
126  /// next - At least we know it's a chained list!
127  struct LibgccObject *next;
128};
129
130// "kemgr" stuff. Apparently, all frame tables are stored there.
131extern "C" void _keymgr_set_and_unlock_processwide_ptr(int, void *);
132extern "C" void *_keymgr_get_and_lock_processwide_ptr(int);
133#define KEYMGR_GCC3_DW2_OBJ_LIST        302     /* Dwarf2 object list  */
134
135/// LibgccObjectInfo - libgcc defines this struct as km_object_info. It
136/// probably contains all dwarf tables that are loaded.
137struct LibgccObjectInfo {
138
139  /// seenObjects - LibgccObjects already parsed by the unwinding runtime.
140  ///
141  struct LibgccObject* seenObjects;
142
143  /// unseenObjects - LibgccObjects not parsed yet by the unwinding runtime.
144  ///
145  struct LibgccObject* unseenObjects;
146
147  unsigned unused[2];
148};
149
150/// darwin_register_frame - Since __register_frame does not work with darwin's
151/// libgcc,we provide our own function, which "tricks" libgcc by modifying the
152/// "Dwarf2 object list" key.
153void DarwinRegisterFrame(void* FrameBegin) {
154  // Get the key.
155  LibgccObjectInfo* LOI = (struct LibgccObjectInfo*)
156    _keymgr_get_and_lock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST);
157  assert(LOI && "This should be preallocated by the runtime");
158
159  // Allocate a new LibgccObject to represent this frame. Deallocation of this
160  // object may be impossible: since darwin code in libgcc was written after
161  // the ability to dynamically register frames, things may crash if we
162  // deallocate it.
163  struct LibgccObject* ob = (struct LibgccObject*)
164    malloc(sizeof(struct LibgccObject));
165
166  // Do like libgcc for the values of the field.
167  ob->unused1 = (void *)-1;
168  ob->unused2 = 0;
169  ob->unused3 = 0;
170  ob->frame = FrameBegin;
171  ob->encoding.i = 0;
172  ob->encoding.b.encoding = llvm::dwarf::DW_EH_PE_omit;
173
174  // Put the info on both places, as libgcc uses the first or the the second
175  // field. Note that we rely on having two pointers here. If fde_end was a
176  // char, things would get complicated.
177  ob->fde_end = (char*)LOI->unseenObjects;
178  ob->next = LOI->unseenObjects;
179
180  // Update the key's unseenObjects list.
181  LOI->unseenObjects = ob;
182
183  // Finally update the "key". Apparently, libgcc requires it.
184  _keymgr_set_and_unlock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST,
185                                         LOI);
186
187}
188
189}
190#endif // __APPLE__
191#endif // __GNUC__
192
193/// createJIT - This is the factory method for creating a JIT for the current
194/// machine, it does not fall back to the interpreter.  This takes ownership
195/// of the module provider.
196ExecutionEngine *ExecutionEngine::createJIT(ModuleProvider *MP,
197                                            std::string *ErrorStr,
198                                            JITMemoryManager *JMM,
199                                            CodeGenOpt::Level OptLevel) {
200  ExecutionEngine *EE = JIT::createJIT(MP, ErrorStr, JMM, OptLevel);
201  if (!EE) return 0;
202
203  // Make sure we can resolve symbols in the program as well. The zero arg
204  // to the function tells DynamicLibrary to load the program, not a library.
205  sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr);
206  return EE;
207}
208
209JIT::JIT(ModuleProvider *MP, TargetMachine &tm, TargetJITInfo &tji,
210         JITMemoryManager *JMM, CodeGenOpt::Level OptLevel)
211  : ExecutionEngine(MP), TM(tm), TJI(tji) {
212  setTargetData(TM.getTargetData());
213
214  jitstate = new JITState(MP);
215
216  // Initialize JCE
217  JCE = createEmitter(*this, JMM);
218
219  // Add target data
220  MutexGuard locked(lock);
221  FunctionPassManager &PM = jitstate->getPM(locked);
222  PM.add(new TargetData(*TM.getTargetData()));
223
224  // Turn the machine code intermediate representation into bytes in memory that
225  // may be executed.
226  if (TM.addPassesToEmitMachineCode(PM, *JCE, OptLevel)) {
227    cerr << "Target does not support machine code emission!\n";
228    abort();
229  }
230
231  // Register routine for informing unwinding runtime about new EH frames
232#if defined(__GNUC__) && !defined(__ARM_EABI__)
233#if USE_KEYMGR
234  struct LibgccObjectInfo* LOI = (struct LibgccObjectInfo*)
235    _keymgr_get_and_lock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST);
236
237  // The key is created on demand, and libgcc creates it the first time an
238  // exception occurs. Since we need the key to register frames, we create
239  // it now.
240  if (!LOI)
241    LOI = (LibgccObjectInfo*)calloc(sizeof(struct LibgccObjectInfo), 1);
242  _keymgr_set_and_unlock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST, LOI);
243  InstallExceptionTableRegister(DarwinRegisterFrame);
244#else
245  InstallExceptionTableRegister(__register_frame);
246#endif // __APPLE__
247#endif // __GNUC__
248
249  // Initialize passes.
250  PM.doInitialization();
251}
252
253JIT::~JIT() {
254  delete jitstate;
255  delete JCE;
256  delete &TM;
257}
258
259/// addModuleProvider - Add a new ModuleProvider to the JIT.  If we previously
260/// removed the last ModuleProvider, we need re-initialize jitstate with a valid
261/// ModuleProvider.
262void JIT::addModuleProvider(ModuleProvider *MP) {
263  MutexGuard locked(lock);
264
265  if (Modules.empty()) {
266    assert(!jitstate && "jitstate should be NULL if Modules vector is empty!");
267
268    jitstate = new JITState(MP);
269
270    FunctionPassManager &PM = jitstate->getPM(locked);
271    PM.add(new TargetData(*TM.getTargetData()));
272
273    // Turn the machine code intermediate representation into bytes in memory
274    // that may be executed.
275    if (TM.addPassesToEmitMachineCode(PM, *JCE, CodeGenOpt::Default)) {
276      cerr << "Target does not support machine code emission!\n";
277      abort();
278    }
279
280    // Initialize passes.
281    PM.doInitialization();
282  }
283
284  ExecutionEngine::addModuleProvider(MP);
285}
286
287/// removeModuleProvider - If we are removing the last ModuleProvider,
288/// invalidate the jitstate since the PassManager it contains references a
289/// released ModuleProvider.
290Module *JIT::removeModuleProvider(ModuleProvider *MP, std::string *E) {
291  Module *result = ExecutionEngine::removeModuleProvider(MP, E);
292
293  MutexGuard locked(lock);
294
295  if (jitstate->getMP() == MP) {
296    delete jitstate;
297    jitstate = 0;
298  }
299
300  if (!jitstate && !Modules.empty()) {
301    jitstate = new JITState(Modules[0]);
302
303    FunctionPassManager &PM = jitstate->getPM(locked);
304    PM.add(new TargetData(*TM.getTargetData()));
305
306    // Turn the machine code intermediate representation into bytes in memory
307    // that may be executed.
308    if (TM.addPassesToEmitMachineCode(PM, *JCE, CodeGenOpt::Default)) {
309      cerr << "Target does not support machine code emission!\n";
310      abort();
311    }
312
313    // Initialize passes.
314    PM.doInitialization();
315  }
316  return result;
317}
318
319/// deleteModuleProvider - Remove a ModuleProvider from the list of modules,
320/// and deletes the ModuleProvider and owned Module.  Avoids materializing
321/// the underlying module.
322void JIT::deleteModuleProvider(ModuleProvider *MP, std::string *E) {
323  ExecutionEngine::deleteModuleProvider(MP, E);
324
325  MutexGuard locked(lock);
326
327  if (jitstate->getMP() == MP) {
328    delete jitstate;
329    jitstate = 0;
330  }
331
332  if (!jitstate && !Modules.empty()) {
333    jitstate = new JITState(Modules[0]);
334
335    FunctionPassManager &PM = jitstate->getPM(locked);
336    PM.add(new TargetData(*TM.getTargetData()));
337
338    // Turn the machine code intermediate representation into bytes in memory
339    // that may be executed.
340    if (TM.addPassesToEmitMachineCode(PM, *JCE, CodeGenOpt::Default)) {
341      cerr << "Target does not support machine code emission!\n";
342      abort();
343    }
344
345    // Initialize passes.
346    PM.doInitialization();
347  }
348}
349
350/// run - Start execution with the specified function and arguments.
351///
352GenericValue JIT::runFunction(Function *F,
353                              const std::vector<GenericValue> &ArgValues) {
354  assert(F && "Function *F was null at entry to run()");
355
356  void *FPtr = getPointerToFunction(F);
357  assert(FPtr && "Pointer to fn's code was null after getPointerToFunction");
358  const FunctionType *FTy = F->getFunctionType();
359  const Type *RetTy = FTy->getReturnType();
360
361  assert((FTy->getNumParams() == ArgValues.size() ||
362          (FTy->isVarArg() && FTy->getNumParams() <= ArgValues.size())) &&
363         "Wrong number of arguments passed into function!");
364  assert(FTy->getNumParams() == ArgValues.size() &&
365         "This doesn't support passing arguments through varargs (yet)!");
366
367  // Handle some common cases first.  These cases correspond to common `main'
368  // prototypes.
369  if (RetTy == Type::Int32Ty || RetTy == Type::VoidTy) {
370    switch (ArgValues.size()) {
371    case 3:
372      if (FTy->getParamType(0) == Type::Int32Ty &&
373          isa<PointerType>(FTy->getParamType(1)) &&
374          isa<PointerType>(FTy->getParamType(2))) {
375        int (*PF)(int, char **, const char **) =
376          (int(*)(int, char **, const char **))(intptr_t)FPtr;
377
378        // Call the function.
379        GenericValue rv;
380        rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
381                                 (char **)GVTOP(ArgValues[1]),
382                                 (const char **)GVTOP(ArgValues[2])));
383        return rv;
384      }
385      break;
386    case 2:
387      if (FTy->getParamType(0) == Type::Int32Ty &&
388          isa<PointerType>(FTy->getParamType(1))) {
389        int (*PF)(int, char **) = (int(*)(int, char **))(intptr_t)FPtr;
390
391        // Call the function.
392        GenericValue rv;
393        rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
394                                 (char **)GVTOP(ArgValues[1])));
395        return rv;
396      }
397      break;
398    case 1:
399      if (FTy->getNumParams() == 1 &&
400          FTy->getParamType(0) == Type::Int32Ty) {
401        GenericValue rv;
402        int (*PF)(int) = (int(*)(int))(intptr_t)FPtr;
403        rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue()));
404        return rv;
405      }
406      break;
407    }
408  }
409
410  // Handle cases where no arguments are passed first.
411  if (ArgValues.empty()) {
412    GenericValue rv;
413    switch (RetTy->getTypeID()) {
414    default: assert(0 && "Unknown return type for function call!");
415    case Type::IntegerTyID: {
416      unsigned BitWidth = cast<IntegerType>(RetTy)->getBitWidth();
417      if (BitWidth == 1)
418        rv.IntVal = APInt(BitWidth, ((bool(*)())(intptr_t)FPtr)());
419      else if (BitWidth <= 8)
420        rv.IntVal = APInt(BitWidth, ((char(*)())(intptr_t)FPtr)());
421      else if (BitWidth <= 16)
422        rv.IntVal = APInt(BitWidth, ((short(*)())(intptr_t)FPtr)());
423      else if (BitWidth <= 32)
424        rv.IntVal = APInt(BitWidth, ((int(*)())(intptr_t)FPtr)());
425      else if (BitWidth <= 64)
426        rv.IntVal = APInt(BitWidth, ((int64_t(*)())(intptr_t)FPtr)());
427      else
428        assert(0 && "Integer types > 64 bits not supported");
429      return rv;
430    }
431    case Type::VoidTyID:
432      rv.IntVal = APInt(32, ((int(*)())(intptr_t)FPtr)());
433      return rv;
434    case Type::FloatTyID:
435      rv.FloatVal = ((float(*)())(intptr_t)FPtr)();
436      return rv;
437    case Type::DoubleTyID:
438      rv.DoubleVal = ((double(*)())(intptr_t)FPtr)();
439      return rv;
440    case Type::X86_FP80TyID:
441    case Type::FP128TyID:
442    case Type::PPC_FP128TyID:
443      assert(0 && "long double not supported yet");
444      return rv;
445    case Type::PointerTyID:
446      return PTOGV(((void*(*)())(intptr_t)FPtr)());
447    }
448  }
449
450  // Okay, this is not one of our quick and easy cases.  Because we don't have a
451  // full FFI, we have to codegen a nullary stub function that just calls the
452  // function we are interested in, passing in constants for all of the
453  // arguments.  Make this function and return.
454
455  // First, create the function.
456  FunctionType *STy=FunctionType::get(RetTy, std::vector<const Type*>(), false);
457  Function *Stub = Function::Create(STy, Function::InternalLinkage, "",
458                                    F->getParent());
459
460  // Insert a basic block.
461  BasicBlock *StubBB = BasicBlock::Create("", Stub);
462
463  // Convert all of the GenericValue arguments over to constants.  Note that we
464  // currently don't support varargs.
465  SmallVector<Value*, 8> Args;
466  for (unsigned i = 0, e = ArgValues.size(); i != e; ++i) {
467    Constant *C = 0;
468    const Type *ArgTy = FTy->getParamType(i);
469    const GenericValue &AV = ArgValues[i];
470    switch (ArgTy->getTypeID()) {
471    default: assert(0 && "Unknown argument type for function call!");
472    case Type::IntegerTyID:
473        C = ConstantInt::get(AV.IntVal);
474        break;
475    case Type::FloatTyID:
476        C = ConstantFP::get(APFloat(AV.FloatVal));
477        break;
478    case Type::DoubleTyID:
479        C = ConstantFP::get(APFloat(AV.DoubleVal));
480        break;
481    case Type::PPC_FP128TyID:
482    case Type::X86_FP80TyID:
483    case Type::FP128TyID:
484        C = ConstantFP::get(APFloat(AV.IntVal));
485        break;
486    case Type::PointerTyID:
487      void *ArgPtr = GVTOP(AV);
488      if (sizeof(void*) == 4)
489        C = ConstantInt::get(Type::Int32Ty, (int)(intptr_t)ArgPtr);
490      else
491        C = ConstantInt::get(Type::Int64Ty, (intptr_t)ArgPtr);
492      C = ConstantExpr::getIntToPtr(C, ArgTy);  // Cast the integer to pointer
493      break;
494    }
495    Args.push_back(C);
496  }
497
498  CallInst *TheCall = CallInst::Create(F, Args.begin(), Args.end(),
499                                       "", StubBB);
500  TheCall->setCallingConv(F->getCallingConv());
501  TheCall->setTailCall();
502  if (TheCall->getType() != Type::VoidTy)
503    ReturnInst::Create(TheCall, StubBB);    // Return result of the call.
504  else
505    ReturnInst::Create(StubBB);             // Just return void.
506
507  // Finally, return the value returned by our nullary stub function.
508  return runFunction(Stub, std::vector<GenericValue>());
509}
510
511void JIT::RegisterJITEventListener(JITEventListener *L) {
512  if (L == NULL)
513    return;
514  MutexGuard locked(lock);
515  EventListeners.push_back(L);
516}
517void JIT::UnregisterJITEventListener(JITEventListener *L) {
518  if (L == NULL)
519    return;
520  MutexGuard locked(lock);
521  std::vector<JITEventListener*>::reverse_iterator I=
522      std::find(EventListeners.rbegin(), EventListeners.rend(), L);
523  if (I != EventListeners.rend()) {
524    std::swap(*I, EventListeners.back());
525    EventListeners.pop_back();
526  }
527}
528void JIT::NotifyFunctionEmitted(
529    const Function &F,
530    void *Code, size_t Size,
531    const JITEvent_EmittedFunctionDetails &Details) {
532  MutexGuard locked(lock);
533  for (unsigned I = 0, S = EventListeners.size(); I < S; ++I) {
534    EventListeners[I]->NotifyFunctionEmitted(F, Code, Size, Details);
535  }
536}
537
538void JIT::NotifyFreeingMachineCode(const Function &F, void *OldPtr) {
539  MutexGuard locked(lock);
540  for (unsigned I = 0, S = EventListeners.size(); I < S; ++I) {
541    EventListeners[I]->NotifyFreeingMachineCode(F, OldPtr);
542  }
543}
544
545/// runJITOnFunction - Run the FunctionPassManager full of
546/// just-in-time compilation passes on F, hopefully filling in
547/// GlobalAddress[F] with the address of F's machine code.
548///
549void JIT::runJITOnFunction(Function *F, MachineCodeInfo *MCI) {
550  MutexGuard locked(lock);
551
552  class MCIListener : public JITEventListener {
553    MachineCodeInfo *const MCI;
554   public:
555    MCIListener(MachineCodeInfo *mci) : MCI(mci) {}
556    virtual void NotifyFunctionEmitted(const Function &,
557                                       void *Code, size_t Size,
558                                       const EmittedFunctionDetails &) {
559      MCI->setAddress(Code);
560      MCI->setSize(Size);
561    }
562  };
563  MCIListener MCIL(MCI);
564  RegisterJITEventListener(&MCIL);
565
566  runJITOnFunctionUnlocked(F, locked);
567
568  UnregisterJITEventListener(&MCIL);
569}
570
571void JIT::runJITOnFunctionUnlocked(Function *F, const MutexGuard &locked) {
572  static bool isAlreadyCodeGenerating = false;
573  assert(!isAlreadyCodeGenerating && "Error: Recursive compilation detected!");
574
575  // JIT the function
576  isAlreadyCodeGenerating = true;
577  jitstate->getPM(locked).run(*F);
578  isAlreadyCodeGenerating = false;
579
580  // If the function referred to another function that had not yet been
581  // read from bitcode, but we are jitting non-lazily, emit it now.
582  while (!jitstate->getPendingFunctions(locked).empty()) {
583    Function *PF = jitstate->getPendingFunctions(locked).back();
584    jitstate->getPendingFunctions(locked).pop_back();
585
586    // JIT the function
587    isAlreadyCodeGenerating = true;
588    jitstate->getPM(locked).run(*PF);
589    isAlreadyCodeGenerating = false;
590
591    // Now that the function has been jitted, ask the JITEmitter to rewrite
592    // the stub with real address of the function.
593    updateFunctionStub(PF);
594  }
595
596  // If the JIT is configured to emit info so that dlsym can be used to
597  // rewrite stubs to external globals, do so now.
598  if (areDlsymStubsEnabled() && isLazyCompilationDisabled())
599    updateDlsymStubTable();
600}
601
602/// getPointerToFunction - This method is used to get the address of the
603/// specified function, compiling it if neccesary.
604///
605void *JIT::getPointerToFunction(Function *F) {
606
607  if (void *Addr = getPointerToGlobalIfAvailable(F))
608    return Addr;   // Check if function already code gen'd
609
610  MutexGuard locked(lock);
611
612  // Now that this thread owns the lock, check if another thread has already
613  // code gen'd the function.
614  if (void *Addr = getPointerToGlobalIfAvailable(F))
615    return Addr;
616
617  // Make sure we read in the function if it exists in this Module.
618  if (F->hasNotBeenReadFromBitcode()) {
619    // Determine the module provider this function is provided by.
620    Module *M = F->getParent();
621    ModuleProvider *MP = 0;
622    for (unsigned i = 0, e = Modules.size(); i != e; ++i) {
623      if (Modules[i]->getModule() == M) {
624        MP = Modules[i];
625        break;
626      }
627    }
628    assert(MP && "Function isn't in a module we know about!");
629
630    std::string ErrorMsg;
631    if (MP->materializeFunction(F, &ErrorMsg)) {
632      cerr << "Error reading function '" << F->getName()
633           << "' from bitcode file: " << ErrorMsg << "\n";
634      abort();
635    }
636
637    // Now retry to get the address.
638    if (void *Addr = getPointerToGlobalIfAvailable(F))
639      return Addr;
640  }
641
642  if (F->isDeclaration()) {
643    bool AbortOnFailure =
644      !areDlsymStubsEnabled() && !F->hasExternalWeakLinkage();
645    void *Addr = getPointerToNamedFunction(F->getName(), AbortOnFailure);
646    addGlobalMapping(F, Addr);
647    return Addr;
648  }
649
650  runJITOnFunctionUnlocked(F, locked);
651
652  void *Addr = getPointerToGlobalIfAvailable(F);
653  assert(Addr && "Code generation didn't add function to GlobalAddress table!");
654  return Addr;
655}
656
657/// getOrEmitGlobalVariable - Return the address of the specified global
658/// variable, possibly emitting it to memory if needed.  This is used by the
659/// Emitter.
660void *JIT::getOrEmitGlobalVariable(const GlobalVariable *GV) {
661  MutexGuard locked(lock);
662
663  void *Ptr = getPointerToGlobalIfAvailable(GV);
664  if (Ptr) return Ptr;
665
666  // If the global is external, just remember the address.
667  if (GV->isDeclaration()) {
668#if HAVE___DSO_HANDLE
669    if (GV->getName() == "__dso_handle")
670      return (void*)&__dso_handle;
671#endif
672    Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(GV->getName().c_str());
673    if (Ptr == 0 && !areDlsymStubsEnabled()) {
674      cerr << "Could not resolve external global address: "
675           << GV->getName() << "\n";
676      abort();
677    }
678    addGlobalMapping(GV, Ptr);
679  } else {
680    // GlobalVariable's which are not "constant" will cause trouble in a server
681    // situation. It's returned in the same block of memory as code which may
682    // not be writable.
683    if (isGVCompilationDisabled() && !GV->isConstant()) {
684      cerr << "Compilation of non-internal GlobalValue is disabled!\n";
685      abort();
686    }
687    // If the global hasn't been emitted to memory yet, allocate space and
688    // emit it into memory.  It goes in the same array as the generated
689    // code, jump tables, etc.
690    const Type *GlobalType = GV->getType()->getElementType();
691    size_t S = getTargetData()->getTypeAllocSize(GlobalType);
692    size_t A = getTargetData()->getPreferredAlignment(GV);
693    if (GV->isThreadLocal()) {
694      MutexGuard locked(lock);
695      Ptr = TJI.allocateThreadLocalMemory(S);
696    } else if (TJI.allocateSeparateGVMemory()) {
697      if (A <= 8) {
698        Ptr = malloc(S);
699      } else {
700        // Allocate S+A bytes of memory, then use an aligned pointer within that
701        // space.
702        Ptr = malloc(S+A);
703        unsigned MisAligned = ((intptr_t)Ptr & (A-1));
704        Ptr = (char*)Ptr + (MisAligned ? (A-MisAligned) : 0);
705      }
706    } else {
707      Ptr = JCE->allocateSpace(S, A);
708    }
709    addGlobalMapping(GV, Ptr);
710    EmitGlobalVariable(GV);
711  }
712  return Ptr;
713}
714
715/// recompileAndRelinkFunction - This method is used to force a function
716/// which has already been compiled, to be compiled again, possibly
717/// after it has been modified. Then the entry to the old copy is overwritten
718/// with a branch to the new copy. If there was no old copy, this acts
719/// just like JIT::getPointerToFunction().
720///
721void *JIT::recompileAndRelinkFunction(Function *F) {
722  void *OldAddr = getPointerToGlobalIfAvailable(F);
723
724  // If it's not already compiled there is no reason to patch it up.
725  if (OldAddr == 0) { return getPointerToFunction(F); }
726
727  // Delete the old function mapping.
728  addGlobalMapping(F, 0);
729
730  // Recodegen the function
731  runJITOnFunction(F);
732
733  // Update state, forward the old function to the new function.
734  void *Addr = getPointerToGlobalIfAvailable(F);
735  assert(Addr && "Code generation didn't add function to GlobalAddress table!");
736  TJI.replaceMachineCodeForFunction(OldAddr, Addr);
737  return Addr;
738}
739
740/// getMemoryForGV - This method abstracts memory allocation of global
741/// variable so that the JIT can allocate thread local variables depending
742/// on the target.
743///
744char* JIT::getMemoryForGV(const GlobalVariable* GV) {
745  const Type *ElTy = GV->getType()->getElementType();
746  size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy);
747  if (GV->isThreadLocal()) {
748    MutexGuard locked(lock);
749    return TJI.allocateThreadLocalMemory(GVSize);
750  } else {
751    return new char[GVSize];
752  }
753}
754
755void JIT::addPendingFunction(Function *F) {
756  MutexGuard locked(lock);
757  jitstate->getPendingFunctions(locked).push_back(F);
758}
759
760
761JITEventListener::~JITEventListener() {}
762