RegAllocGreedy.cpp revision 223017
1218885Sdim//===-- RegAllocGreedy.cpp - greedy register allocator --------------------===//
2218885Sdim//
3218885Sdim//                     The LLVM Compiler Infrastructure
4218885Sdim//
5218885Sdim// This file is distributed under the University of Illinois Open Source
6218885Sdim// License. See LICENSE.TXT for details.
7218885Sdim//
8218885Sdim//===----------------------------------------------------------------------===//
9218885Sdim//
10218885Sdim// This file defines the RAGreedy function pass for register allocation in
11218885Sdim// optimized builds.
12218885Sdim//
13218885Sdim//===----------------------------------------------------------------------===//
14218885Sdim
15218885Sdim#define DEBUG_TYPE "regalloc"
16218885Sdim#include "AllocationOrder.h"
17221345Sdim#include "InterferenceCache.h"
18221345Sdim#include "LiveDebugVariables.h"
19218885Sdim#include "LiveRangeEdit.h"
20218885Sdim#include "RegAllocBase.h"
21218885Sdim#include "Spiller.h"
22218885Sdim#include "SpillPlacement.h"
23218885Sdim#include "SplitKit.h"
24218885Sdim#include "VirtRegMap.h"
25218885Sdim#include "llvm/ADT/Statistic.h"
26218885Sdim#include "llvm/Analysis/AliasAnalysis.h"
27218885Sdim#include "llvm/Function.h"
28218885Sdim#include "llvm/PassAnalysisSupport.h"
29218885Sdim#include "llvm/CodeGen/CalcSpillWeights.h"
30218885Sdim#include "llvm/CodeGen/EdgeBundles.h"
31218885Sdim#include "llvm/CodeGen/LiveIntervalAnalysis.h"
32218885Sdim#include "llvm/CodeGen/LiveStackAnalysis.h"
33218885Sdim#include "llvm/CodeGen/MachineDominators.h"
34218885Sdim#include "llvm/CodeGen/MachineFunctionPass.h"
35218885Sdim#include "llvm/CodeGen/MachineLoopInfo.h"
36218885Sdim#include "llvm/CodeGen/MachineLoopRanges.h"
37218885Sdim#include "llvm/CodeGen/MachineRegisterInfo.h"
38218885Sdim#include "llvm/CodeGen/Passes.h"
39218885Sdim#include "llvm/CodeGen/RegAllocRegistry.h"
40218885Sdim#include "llvm/CodeGen/RegisterCoalescer.h"
41218885Sdim#include "llvm/Target/TargetOptions.h"
42218885Sdim#include "llvm/Support/Debug.h"
43218885Sdim#include "llvm/Support/ErrorHandling.h"
44218885Sdim#include "llvm/Support/raw_ostream.h"
45218885Sdim#include "llvm/Support/Timer.h"
46218885Sdim
47219077Sdim#include <queue>
48219077Sdim
49218885Sdimusing namespace llvm;
50218885Sdim
51218885SdimSTATISTIC(NumGlobalSplits, "Number of split global live ranges");
52218885SdimSTATISTIC(NumLocalSplits,  "Number of split local live ranges");
53218885SdimSTATISTIC(NumEvicted,      "Number of interferences evicted");
54218885Sdim
55218885Sdimstatic RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
56218885Sdim                                       createGreedyRegisterAllocator);
57218885Sdim
58218885Sdimnamespace {
59221345Sdimclass RAGreedy : public MachineFunctionPass,
60221345Sdim                 public RegAllocBase,
61221345Sdim                 private LiveRangeEdit::Delegate {
62221345Sdim
63218885Sdim  // context
64218885Sdim  MachineFunction *MF;
65218885Sdim
66218885Sdim  // analyses
67218885Sdim  SlotIndexes *Indexes;
68218885Sdim  LiveStacks *LS;
69218885Sdim  MachineDominatorTree *DomTree;
70218885Sdim  MachineLoopInfo *Loops;
71218885Sdim  MachineLoopRanges *LoopRanges;
72218885Sdim  EdgeBundles *Bundles;
73218885Sdim  SpillPlacement *SpillPlacer;
74223017Sdim  LiveDebugVariables *DebugVars;
75218885Sdim
76218885Sdim  // state
77218885Sdim  std::auto_ptr<Spiller> SpillerInstance;
78219077Sdim  std::priority_queue<std::pair<unsigned, unsigned> > Queue;
79218885Sdim
80221345Sdim  // Live ranges pass through a number of stages as we try to allocate them.
81221345Sdim  // Some of the stages may also create new live ranges:
82221345Sdim  //
83221345Sdim  // - Region splitting.
84221345Sdim  // - Per-block splitting.
85221345Sdim  // - Local splitting.
86221345Sdim  // - Spilling.
87221345Sdim  //
88221345Sdim  // Ranges produced by one of the stages skip the previous stages when they are
89221345Sdim  // dequeued. This improves performance because we can skip interference checks
90221345Sdim  // that are unlikely to give any results. It also guarantees that the live
91221345Sdim  // range splitting algorithm terminates, something that is otherwise hard to
92221345Sdim  // ensure.
93221345Sdim  enum LiveRangeStage {
94221345Sdim    RS_New,      ///< Never seen before.
95221345Sdim    RS_First,    ///< First time in the queue.
96221345Sdim    RS_Second,   ///< Second time in the queue.
97221345Sdim    RS_Global,   ///< Produced by global splitting.
98221345Sdim    RS_Local,    ///< Produced by local splitting.
99221345Sdim    RS_Spill     ///< Produced by spilling.
100221345Sdim  };
101221345Sdim
102223017Sdim  static const char *const StageName[];
103223017Sdim
104221345Sdim  IndexedMap<unsigned char, VirtReg2IndexFunctor> LRStage;
105221345Sdim
106221345Sdim  LiveRangeStage getStage(const LiveInterval &VirtReg) const {
107221345Sdim    return LiveRangeStage(LRStage[VirtReg.reg]);
108221345Sdim  }
109221345Sdim
110221345Sdim  template<typename Iterator>
111221345Sdim  void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) {
112221345Sdim    LRStage.resize(MRI->getNumVirtRegs());
113221345Sdim    for (;Begin != End; ++Begin) {
114221345Sdim      unsigned Reg = (*Begin)->reg;
115221345Sdim      if (LRStage[Reg] == RS_New)
116221345Sdim        LRStage[Reg] = NewStage;
117221345Sdim    }
118221345Sdim  }
119221345Sdim
120223017Sdim  // Eviction. Sometimes an assigned live range can be evicted without
121223017Sdim  // conditions, but other times it must be split after being evicted to avoid
122223017Sdim  // infinite loops.
123223017Sdim  enum CanEvict {
124223017Sdim    CE_Never,    ///< Can never evict.
125223017Sdim    CE_Always,   ///< Can always evict.
126223017Sdim    CE_WithSplit ///< Can evict only if range is also split or spilled.
127223017Sdim  };
128223017Sdim
129218885Sdim  // splitting state.
130221345Sdim  std::auto_ptr<SplitAnalysis> SA;
131221345Sdim  std::auto_ptr<SplitEditor> SE;
132218885Sdim
133221345Sdim  /// Cached per-block interference maps
134221345Sdim  InterferenceCache IntfCache;
135218885Sdim
136221345Sdim  /// All basic blocks where the current register has uses.
137221345Sdim  SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints;
138221345Sdim
139221345Sdim  /// Global live range splitting candidate info.
140221345Sdim  struct GlobalSplitCandidate {
141221345Sdim    unsigned PhysReg;
142221345Sdim    BitVector LiveBundles;
143221345Sdim    SmallVector<unsigned, 8> ActiveBlocks;
144221345Sdim
145221345Sdim    void reset(unsigned Reg) {
146221345Sdim      PhysReg = Reg;
147221345Sdim      LiveBundles.clear();
148221345Sdim      ActiveBlocks.clear();
149221345Sdim    }
150221345Sdim  };
151221345Sdim
152221345Sdim  /// Candidate info for for each PhysReg in AllocationOrder.
153221345Sdim  /// This vector never shrinks, but grows to the size of the largest register
154221345Sdim  /// class.
155221345Sdim  SmallVector<GlobalSplitCandidate, 32> GlobalCand;
156221345Sdim
157218885Sdimpublic:
158218885Sdim  RAGreedy();
159218885Sdim
160218885Sdim  /// Return the pass name.
161218885Sdim  virtual const char* getPassName() const {
162218885Sdim    return "Greedy Register Allocator";
163218885Sdim  }
164218885Sdim
165218885Sdim  /// RAGreedy analysis usage.
166218885Sdim  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
167218885Sdim  virtual void releaseMemory();
168218885Sdim  virtual Spiller &spiller() { return *SpillerInstance; }
169219077Sdim  virtual void enqueue(LiveInterval *LI);
170219077Sdim  virtual LiveInterval *dequeue();
171218885Sdim  virtual unsigned selectOrSplit(LiveInterval&,
172218885Sdim                                 SmallVectorImpl<LiveInterval*>&);
173218885Sdim
174218885Sdim  /// Perform register allocation.
175218885Sdim  virtual bool runOnMachineFunction(MachineFunction &mf);
176218885Sdim
177218885Sdim  static char ID;
178218885Sdim
179218885Sdimprivate:
180221345Sdim  void LRE_WillEraseInstruction(MachineInstr*);
181221345Sdim  bool LRE_CanEraseVirtReg(unsigned);
182221345Sdim  void LRE_WillShrinkVirtReg(unsigned);
183221345Sdim  void LRE_DidCloneVirtReg(unsigned, unsigned);
184221345Sdim
185221345Sdim  float calcSpillCost();
186221345Sdim  bool addSplitConstraints(InterferenceCache::Cursor, float&);
187221345Sdim  void addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>);
188221345Sdim  void growRegion(GlobalSplitCandidate &Cand, InterferenceCache::Cursor);
189221345Sdim  float calcGlobalSplitCost(GlobalSplitCandidate&, InterferenceCache::Cursor);
190221345Sdim  void splitAroundRegion(LiveInterval&, GlobalSplitCandidate&,
191218885Sdim                         SmallVectorImpl<LiveInterval*>&);
192218885Sdim  void calcGapWeights(unsigned, SmallVectorImpl<float>&);
193223017Sdim  CanEvict canEvict(LiveInterval &A, LiveInterval &B);
194221345Sdim  bool canEvictInterference(LiveInterval&, unsigned, float&);
195218885Sdim
196221345Sdim  unsigned tryAssign(LiveInterval&, AllocationOrder&,
197221345Sdim                     SmallVectorImpl<LiveInterval*>&);
198219077Sdim  unsigned tryEvict(LiveInterval&, AllocationOrder&,
199221345Sdim                    SmallVectorImpl<LiveInterval*>&, unsigned = ~0u);
200218885Sdim  unsigned tryRegionSplit(LiveInterval&, AllocationOrder&,
201218885Sdim                          SmallVectorImpl<LiveInterval*>&);
202218885Sdim  unsigned tryLocalSplit(LiveInterval&, AllocationOrder&,
203218885Sdim    SmallVectorImpl<LiveInterval*>&);
204218885Sdim  unsigned trySplit(LiveInterval&, AllocationOrder&,
205218885Sdim                    SmallVectorImpl<LiveInterval*>&);
206218885Sdim};
207218885Sdim} // end anonymous namespace
208218885Sdim
209218885Sdimchar RAGreedy::ID = 0;
210218885Sdim
211223017Sdim#ifndef NDEBUG
212223017Sdimconst char *const RAGreedy::StageName[] = {
213223017Sdim  "RS_New",
214223017Sdim  "RS_First",
215223017Sdim  "RS_Second",
216223017Sdim  "RS_Global",
217223017Sdim  "RS_Local",
218223017Sdim  "RS_Spill"
219223017Sdim};
220223017Sdim#endif
221223017Sdim
222221345Sdim// Hysteresis to use when comparing floats.
223221345Sdim// This helps stabilize decisions based on float comparisons.
224221345Sdimconst float Hysteresis = 0.98f;
225221345Sdim
226221345Sdim
227218885SdimFunctionPass* llvm::createGreedyRegisterAllocator() {
228218885Sdim  return new RAGreedy();
229218885Sdim}
230218885Sdim
231221345SdimRAGreedy::RAGreedy(): MachineFunctionPass(ID), LRStage(RS_New) {
232221345Sdim  initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
233218885Sdim  initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
234218885Sdim  initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
235218885Sdim  initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
236218885Sdim  initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry());
237218885Sdim  initializeRegisterCoalescerAnalysisGroup(*PassRegistry::getPassRegistry());
238218885Sdim  initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
239218885Sdim  initializeLiveStacksPass(*PassRegistry::getPassRegistry());
240218885Sdim  initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
241218885Sdim  initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
242218885Sdim  initializeMachineLoopRangesPass(*PassRegistry::getPassRegistry());
243218885Sdim  initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
244218885Sdim  initializeEdgeBundlesPass(*PassRegistry::getPassRegistry());
245218885Sdim  initializeSpillPlacementPass(*PassRegistry::getPassRegistry());
246218885Sdim}
247218885Sdim
248218885Sdimvoid RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
249218885Sdim  AU.setPreservesCFG();
250218885Sdim  AU.addRequired<AliasAnalysis>();
251218885Sdim  AU.addPreserved<AliasAnalysis>();
252218885Sdim  AU.addRequired<LiveIntervals>();
253218885Sdim  AU.addRequired<SlotIndexes>();
254218885Sdim  AU.addPreserved<SlotIndexes>();
255221345Sdim  AU.addRequired<LiveDebugVariables>();
256221345Sdim  AU.addPreserved<LiveDebugVariables>();
257218885Sdim  if (StrongPHIElim)
258218885Sdim    AU.addRequiredID(StrongPHIEliminationID);
259218885Sdim  AU.addRequiredTransitive<RegisterCoalescer>();
260218885Sdim  AU.addRequired<CalculateSpillWeights>();
261218885Sdim  AU.addRequired<LiveStacks>();
262218885Sdim  AU.addPreserved<LiveStacks>();
263218885Sdim  AU.addRequired<MachineDominatorTree>();
264218885Sdim  AU.addPreserved<MachineDominatorTree>();
265218885Sdim  AU.addRequired<MachineLoopInfo>();
266218885Sdim  AU.addPreserved<MachineLoopInfo>();
267218885Sdim  AU.addRequired<MachineLoopRanges>();
268218885Sdim  AU.addPreserved<MachineLoopRanges>();
269218885Sdim  AU.addRequired<VirtRegMap>();
270218885Sdim  AU.addPreserved<VirtRegMap>();
271218885Sdim  AU.addRequired<EdgeBundles>();
272218885Sdim  AU.addRequired<SpillPlacement>();
273218885Sdim  MachineFunctionPass::getAnalysisUsage(AU);
274218885Sdim}
275218885Sdim
276221345Sdim
277221345Sdim//===----------------------------------------------------------------------===//
278221345Sdim//                     LiveRangeEdit delegate methods
279221345Sdim//===----------------------------------------------------------------------===//
280221345Sdim
281221345Sdimvoid RAGreedy::LRE_WillEraseInstruction(MachineInstr *MI) {
282221345Sdim  // LRE itself will remove from SlotIndexes and parent basic block.
283221345Sdim  VRM->RemoveMachineInstrFromMaps(MI);
284221345Sdim}
285221345Sdim
286221345Sdimbool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) {
287221345Sdim  if (unsigned PhysReg = VRM->getPhys(VirtReg)) {
288221345Sdim    unassign(LIS->getInterval(VirtReg), PhysReg);
289221345Sdim    return true;
290221345Sdim  }
291221345Sdim  // Unassigned virtreg is probably in the priority queue.
292221345Sdim  // RegAllocBase will erase it after dequeueing.
293221345Sdim  return false;
294221345Sdim}
295221345Sdim
296221345Sdimvoid RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) {
297221345Sdim  unsigned PhysReg = VRM->getPhys(VirtReg);
298221345Sdim  if (!PhysReg)
299221345Sdim    return;
300221345Sdim
301221345Sdim  // Register is assigned, put it back on the queue for reassignment.
302221345Sdim  LiveInterval &LI = LIS->getInterval(VirtReg);
303221345Sdim  unassign(LI, PhysReg);
304221345Sdim  enqueue(&LI);
305221345Sdim}
306221345Sdim
307221345Sdimvoid RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) {
308221345Sdim  // LRE may clone a virtual register because dead code elimination causes it to
309221345Sdim  // be split into connected components. Ensure that the new register gets the
310221345Sdim  // same stage as the parent.
311221345Sdim  LRStage.grow(New);
312221345Sdim  LRStage[New] = LRStage[Old];
313221345Sdim}
314221345Sdim
315218885Sdimvoid RAGreedy::releaseMemory() {
316218885Sdim  SpillerInstance.reset(0);
317221345Sdim  LRStage.clear();
318221345Sdim  GlobalCand.clear();
319218885Sdim  RegAllocBase::releaseMemory();
320218885Sdim}
321218885Sdim
322219077Sdimvoid RAGreedy::enqueue(LiveInterval *LI) {
323219077Sdim  // Prioritize live ranges by size, assigning larger ranges first.
324219077Sdim  // The queue holds (size, reg) pairs.
325219077Sdim  const unsigned Size = LI->getSize();
326219077Sdim  const unsigned Reg = LI->reg;
327219077Sdim  assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
328219077Sdim         "Can only enqueue virtual registers");
329219077Sdim  unsigned Prio;
330218885Sdim
331221345Sdim  LRStage.grow(Reg);
332221345Sdim  if (LRStage[Reg] == RS_New)
333221345Sdim    LRStage[Reg] = RS_First;
334221345Sdim
335221345Sdim  if (LRStage[Reg] == RS_Second)
336221345Sdim    // Unsplit ranges that couldn't be allocated immediately are deferred until
337221345Sdim    // everything else has been allocated. Long ranges are allocated last so
338221345Sdim    // they are split against realistic interference.
339221345Sdim    Prio = (1u << 31) - Size;
340221345Sdim  else {
341221345Sdim    // Everything else is allocated in long->short order. Long ranges that don't
342221345Sdim    // fit should be spilled ASAP so they don't create interference.
343219077Sdim    Prio = (1u << 31) + Size;
344218885Sdim
345221345Sdim    // Boost ranges that have a physical register hint.
346221345Sdim    if (TargetRegisterInfo::isPhysicalRegister(VRM->getRegAllocPref(Reg)))
347221345Sdim      Prio |= (1u << 30);
348221345Sdim  }
349219077Sdim
350219077Sdim  Queue.push(std::make_pair(Prio, Reg));
351218885Sdim}
352218885Sdim
353219077SdimLiveInterval *RAGreedy::dequeue() {
354219077Sdim  if (Queue.empty())
355219077Sdim    return 0;
356219077Sdim  LiveInterval *LI = &LIS->getInterval(Queue.top().second);
357219077Sdim  Queue.pop();
358219077Sdim  return LI;
359219077Sdim}
360218885Sdim
361221345Sdim
362218885Sdim//===----------------------------------------------------------------------===//
363221345Sdim//                            Direct Assignment
364218885Sdim//===----------------------------------------------------------------------===//
365218885Sdim
366221345Sdim/// tryAssign - Try to assign VirtReg to an available register.
367221345Sdimunsigned RAGreedy::tryAssign(LiveInterval &VirtReg,
368221345Sdim                             AllocationOrder &Order,
369221345Sdim                             SmallVectorImpl<LiveInterval*> &NewVRegs) {
370221345Sdim  Order.rewind();
371221345Sdim  unsigned PhysReg;
372221345Sdim  while ((PhysReg = Order.next()))
373221345Sdim    if (!checkPhysRegInterference(VirtReg, PhysReg))
374221345Sdim      break;
375221345Sdim  if (!PhysReg || Order.isHint(PhysReg))
376221345Sdim    return PhysReg;
377218885Sdim
378221345Sdim  // PhysReg is available. Try to evict interference from a cheaper alternative.
379221345Sdim  unsigned Cost = TRI->getCostPerUse(PhysReg);
380218885Sdim
381221345Sdim  // Most registers have 0 additional cost.
382221345Sdim  if (!Cost)
383221345Sdim    return PhysReg;
384218885Sdim
385221345Sdim  DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is available at cost " << Cost
386221345Sdim               << '\n');
387221345Sdim  unsigned CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost);
388221345Sdim  return CheapReg ? CheapReg : PhysReg;
389218885Sdim}
390218885Sdim
391218885Sdim
392219077Sdim//===----------------------------------------------------------------------===//
393219077Sdim//                         Interference eviction
394219077Sdim//===----------------------------------------------------------------------===//
395219077Sdim
396223017Sdim/// canEvict - determine if A can evict the assigned live range B. The eviction
397223017Sdim/// policy defined by this function together with the allocation order defined
398223017Sdim/// by enqueue() decides which registers ultimately end up being split and
399223017Sdim/// spilled.
400223017Sdim///
401223017Sdim/// This function must define a non-circular relation when it returns CE_Always,
402223017Sdim/// otherwise infinite eviction loops are possible. When evicting a <= RS_Second
403223017Sdim/// range, it is possible to return CE_WithSplit which forces the evicted
404223017Sdim/// register to be split or spilled before it can evict anything again. That
405223017Sdim/// guarantees progress.
406223017SdimRAGreedy::CanEvict RAGreedy::canEvict(LiveInterval &A, LiveInterval &B) {
407223017Sdim  return A.weight > B.weight ? CE_Always : CE_Never;
408223017Sdim}
409223017Sdim
410219077Sdim/// canEvict - Return true if all interferences between VirtReg and PhysReg can
411221345Sdim/// be evicted.
412221345Sdim/// Return false if any interference is heavier than MaxWeight.
413221345Sdim/// On return, set MaxWeight to the maximal spill weight of an interference.
414219077Sdimbool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg,
415221345Sdim                                    float &MaxWeight) {
416219077Sdim  float Weight = 0;
417219077Sdim  for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI) {
418219077Sdim    LiveIntervalUnion::Query &Q = query(VirtReg, *AliasI);
419221345Sdim    // If there is 10 or more interferences, chances are one is heavier.
420221345Sdim    if (Q.collectInterferingVRegs(10, MaxWeight) >= 10)
421219077Sdim      return false;
422219077Sdim
423221345Sdim    // Check if any interfering live range is heavier than MaxWeight.
424221345Sdim    for (unsigned i = Q.interferingVRegs().size(); i; --i) {
425221345Sdim      LiveInterval *Intf = Q.interferingVRegs()[i - 1];
426219077Sdim      if (TargetRegisterInfo::isPhysicalRegister(Intf->reg))
427219077Sdim        return false;
428221345Sdim      if (Intf->weight >= MaxWeight)
429219077Sdim        return false;
430223017Sdim      switch (canEvict(VirtReg, *Intf)) {
431223017Sdim      case CE_Always:
432223017Sdim        break;
433223017Sdim      case CE_Never:
434223017Sdim        return false;
435223017Sdim      case CE_WithSplit:
436223017Sdim        if (getStage(*Intf) > RS_Second)
437223017Sdim          return false;
438223017Sdim        break;
439223017Sdim      }
440219077Sdim      Weight = std::max(Weight, Intf->weight);
441218885Sdim    }
442218885Sdim  }
443219077Sdim  MaxWeight = Weight;
444219077Sdim  return true;
445219077Sdim}
446218885Sdim
447219077Sdim/// tryEvict - Try to evict all interferences for a physreg.
448219077Sdim/// @param  VirtReg Currently unassigned virtual register.
449219077Sdim/// @param  Order   Physregs to try.
450219077Sdim/// @return         Physreg to assign VirtReg, or 0.
451219077Sdimunsigned RAGreedy::tryEvict(LiveInterval &VirtReg,
452219077Sdim                            AllocationOrder &Order,
453221345Sdim                            SmallVectorImpl<LiveInterval*> &NewVRegs,
454221345Sdim                            unsigned CostPerUseLimit) {
455219077Sdim  NamedRegionTimer T("Evict", TimerGroupName, TimePassesIsEnabled);
456219077Sdim
457219077Sdim  // Keep track of the lightest single interference seen so far.
458223017Sdim  float BestWeight = HUGE_VALF;
459219077Sdim  unsigned BestPhys = 0;
460219077Sdim
461219077Sdim  Order.rewind();
462219077Sdim  while (unsigned PhysReg = Order.next()) {
463221345Sdim    if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit)
464219077Sdim      continue;
465221345Sdim    // The first use of a register in a function has cost 1.
466221345Sdim    if (CostPerUseLimit == 1 && !MRI->isPhysRegUsed(PhysReg))
467221345Sdim      continue;
468219077Sdim
469221345Sdim    float Weight = BestWeight;
470221345Sdim    if (!canEvictInterference(VirtReg, PhysReg, Weight))
471221345Sdim      continue;
472221345Sdim
473219077Sdim    // This is an eviction candidate.
474221345Sdim    DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " interference = "
475219077Sdim                 << Weight << '\n');
476219077Sdim    if (BestPhys && Weight >= BestWeight)
477219077Sdim      continue;
478219077Sdim
479219077Sdim    // Best so far.
480219077Sdim    BestPhys = PhysReg;
481219077Sdim    BestWeight = Weight;
482219077Sdim    // Stop if the hint can be used.
483219077Sdim    if (Order.isHint(PhysReg))
484219077Sdim      break;
485218885Sdim  }
486218885Sdim
487219077Sdim  if (!BestPhys)
488219077Sdim    return 0;
489219077Sdim
490219077Sdim  DEBUG(dbgs() << "evicting " << PrintReg(BestPhys, TRI) << " interference\n");
491219077Sdim  for (const unsigned *AliasI = TRI->getOverlaps(BestPhys); *AliasI; ++AliasI) {
492219077Sdim    LiveIntervalUnion::Query &Q = query(VirtReg, *AliasI);
493219077Sdim    assert(Q.seenAllInterferences() && "Didn't check all interfererences.");
494219077Sdim    for (unsigned i = 0, e = Q.interferingVRegs().size(); i != e; ++i) {
495219077Sdim      LiveInterval *Intf = Q.interferingVRegs()[i];
496219077Sdim      unassign(*Intf, VRM->getPhys(Intf->reg));
497219077Sdim      ++NumEvicted;
498219077Sdim      NewVRegs.push_back(Intf);
499223017Sdim      // Prevent looping by forcing the evicted ranges to be split before they
500223017Sdim      // can evict anything else.
501223017Sdim      if (getStage(*Intf) < RS_Second &&
502223017Sdim          canEvict(VirtReg, *Intf) == CE_WithSplit)
503223017Sdim        LRStage[Intf->reg] = RS_Second;
504219077Sdim    }
505219077Sdim  }
506219077Sdim  return BestPhys;
507218885Sdim}
508218885Sdim
509218885Sdim
510218885Sdim//===----------------------------------------------------------------------===//
511218885Sdim//                              Region Splitting
512218885Sdim//===----------------------------------------------------------------------===//
513218885Sdim
514221345Sdim/// addSplitConstraints - Fill out the SplitConstraints vector based on the
515221345Sdim/// interference pattern in Physreg and its aliases. Add the constraints to
516221345Sdim/// SpillPlacement and return the static cost of this split in Cost, assuming
517221345Sdim/// that all preferences in SplitConstraints are met.
518221345Sdim/// Return false if there are no bundles with positive bias.
519221345Sdimbool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf,
520221345Sdim                                   float &Cost) {
521221345Sdim  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
522221345Sdim
523218885Sdim  // Reset interference dependent info.
524221345Sdim  SplitConstraints.resize(UseBlocks.size());
525221345Sdim  float StaticCost = 0;
526221345Sdim  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
527221345Sdim    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
528221345Sdim    SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
529221345Sdim
530218885Sdim    BC.Number = BI.MBB->getNumber();
531221345Sdim    Intf.moveToBlock(BC.Number);
532221345Sdim    BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
533221345Sdim    BC.Exit = BI.LiveOut ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
534218885Sdim
535221345Sdim    if (!Intf.hasInterference())
536218885Sdim      continue;
537218885Sdim
538221345Sdim    // Number of spill code instructions to insert.
539221345Sdim    unsigned Ins = 0;
540218885Sdim
541221345Sdim    // Interference for the live-in value.
542221345Sdim    if (BI.LiveIn) {
543221345Sdim      if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number))
544221345Sdim        BC.Entry = SpillPlacement::MustSpill, ++Ins;
545221345Sdim      else if (Intf.first() < BI.FirstUse)
546221345Sdim        BC.Entry = SpillPlacement::PrefSpill, ++Ins;
547223017Sdim      else if (Intf.first() < BI.LastUse)
548221345Sdim        ++Ins;
549221345Sdim    }
550218885Sdim
551221345Sdim    // Interference for the live-out value.
552221345Sdim    if (BI.LiveOut) {
553221345Sdim      if (Intf.last() >= SA->getLastSplitPoint(BC.Number))
554221345Sdim        BC.Exit = SpillPlacement::MustSpill, ++Ins;
555221345Sdim      else if (Intf.last() > BI.LastUse)
556221345Sdim        BC.Exit = SpillPlacement::PrefSpill, ++Ins;
557223017Sdim      else if (Intf.last() > BI.FirstUse)
558221345Sdim        ++Ins;
559218885Sdim    }
560218885Sdim
561221345Sdim    // Accumulate the total frequency of inserted spill code.
562221345Sdim    if (Ins)
563221345Sdim      StaticCost += Ins * SpillPlacer->getBlockFrequency(BC.Number);
564221345Sdim  }
565221345Sdim  Cost = StaticCost;
566218885Sdim
567221345Sdim  // Add constraints for use-blocks. Note that these are the only constraints
568221345Sdim  // that may add a positive bias, it is downhill from here.
569221345Sdim  SpillPlacer->addConstraints(SplitConstraints);
570221345Sdim  return SpillPlacer->scanActiveBundles();
571221345Sdim}
572218885Sdim
573218885Sdim
574221345Sdim/// addThroughConstraints - Add constraints and links to SpillPlacer from the
575221345Sdim/// live-through blocks in Blocks.
576221345Sdimvoid RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf,
577221345Sdim                                     ArrayRef<unsigned> Blocks) {
578221345Sdim  const unsigned GroupSize = 8;
579221345Sdim  SpillPlacement::BlockConstraint BCS[GroupSize];
580221345Sdim  unsigned TBS[GroupSize];
581221345Sdim  unsigned B = 0, T = 0;
582218885Sdim
583221345Sdim  for (unsigned i = 0; i != Blocks.size(); ++i) {
584221345Sdim    unsigned Number = Blocks[i];
585221345Sdim    Intf.moveToBlock(Number);
586218885Sdim
587221345Sdim    if (!Intf.hasInterference()) {
588221345Sdim      assert(T < GroupSize && "Array overflow");
589221345Sdim      TBS[T] = Number;
590221345Sdim      if (++T == GroupSize) {
591221345Sdim        SpillPlacer->addLinks(ArrayRef<unsigned>(TBS, T));
592221345Sdim        T = 0;
593218885Sdim      }
594221345Sdim      continue;
595221345Sdim    }
596218885Sdim
597221345Sdim    assert(B < GroupSize && "Array overflow");
598221345Sdim    BCS[B].Number = Number;
599218885Sdim
600221345Sdim    // Interference for the live-in value.
601221345Sdim    if (Intf.first() <= Indexes->getMBBStartIdx(Number))
602221345Sdim      BCS[B].Entry = SpillPlacement::MustSpill;
603221345Sdim    else
604221345Sdim      BCS[B].Entry = SpillPlacement::PrefSpill;
605218885Sdim
606221345Sdim    // Interference for the live-out value.
607221345Sdim    if (Intf.last() >= SA->getLastSplitPoint(Number))
608221345Sdim      BCS[B].Exit = SpillPlacement::MustSpill;
609221345Sdim    else
610221345Sdim      BCS[B].Exit = SpillPlacement::PrefSpill;
611221345Sdim
612221345Sdim    if (++B == GroupSize) {
613221345Sdim      ArrayRef<SpillPlacement::BlockConstraint> Array(BCS, B);
614221345Sdim      SpillPlacer->addConstraints(Array);
615221345Sdim      B = 0;
616218885Sdim    }
617218885Sdim  }
618218885Sdim
619221345Sdim  ArrayRef<SpillPlacement::BlockConstraint> Array(BCS, B);
620221345Sdim  SpillPlacer->addConstraints(Array);
621221345Sdim  SpillPlacer->addLinks(ArrayRef<unsigned>(TBS, T));
622221345Sdim}
623218885Sdim
624221345Sdimvoid RAGreedy::growRegion(GlobalSplitCandidate &Cand,
625221345Sdim                          InterferenceCache::Cursor Intf) {
626221345Sdim  // Keep track of through blocks that have not been added to SpillPlacer.
627221345Sdim  BitVector Todo = SA->getThroughBlocks();
628221345Sdim  SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks;
629221345Sdim  unsigned AddedTo = 0;
630221345Sdim#ifndef NDEBUG
631221345Sdim  unsigned Visited = 0;
632221345Sdim#endif
633218885Sdim
634221345Sdim  for (;;) {
635221345Sdim    ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive();
636221345Sdim    if (NewBundles.empty())
637221345Sdim      break;
638221345Sdim    // Find new through blocks in the periphery of PrefRegBundles.
639221345Sdim    for (int i = 0, e = NewBundles.size(); i != e; ++i) {
640221345Sdim      unsigned Bundle = NewBundles[i];
641221345Sdim      // Look at all blocks connected to Bundle in the full graph.
642221345Sdim      ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle);
643221345Sdim      for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end();
644221345Sdim           I != E; ++I) {
645221345Sdim        unsigned Block = *I;
646221345Sdim        if (!Todo.test(Block))
647221345Sdim          continue;
648221345Sdim        Todo.reset(Block);
649221345Sdim        // This is a new through block. Add it to SpillPlacer later.
650221345Sdim        ActiveBlocks.push_back(Block);
651221345Sdim#ifndef NDEBUG
652221345Sdim        ++Visited;
653221345Sdim#endif
654221345Sdim      }
655221345Sdim    }
656221345Sdim    // Any new blocks to add?
657221345Sdim    if (ActiveBlocks.size() > AddedTo) {
658221345Sdim      ArrayRef<unsigned> Add(&ActiveBlocks[AddedTo],
659221345Sdim                             ActiveBlocks.size() - AddedTo);
660221345Sdim      addThroughConstraints(Intf, Add);
661221345Sdim      AddedTo = ActiveBlocks.size();
662221345Sdim    }
663221345Sdim    // Perhaps iterating can enable more bundles?
664221345Sdim    SpillPlacer->iterate();
665221345Sdim  }
666221345Sdim  DEBUG(dbgs() << ", v=" << Visited);
667221345Sdim}
668218885Sdim
669221345Sdim/// calcSpillCost - Compute how expensive it would be to split the live range in
670221345Sdim/// SA around all use blocks instead of forming bundle regions.
671221345Sdimfloat RAGreedy::calcSpillCost() {
672221345Sdim  float Cost = 0;
673221345Sdim  const LiveInterval &LI = SA->getParent();
674221345Sdim  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
675221345Sdim  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
676221345Sdim    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
677221345Sdim    unsigned Number = BI.MBB->getNumber();
678221345Sdim    // We normally only need one spill instruction - a load or a store.
679221345Sdim    Cost += SpillPlacer->getBlockFrequency(Number);
680221345Sdim
681221345Sdim    // Unless the value is redefined in the block.
682221345Sdim    if (BI.LiveIn && BI.LiveOut) {
683221345Sdim      SlotIndex Start, Stop;
684221345Sdim      tie(Start, Stop) = Indexes->getMBBRange(Number);
685221345Sdim      LiveInterval::const_iterator I = LI.find(Start);
686221345Sdim      assert(I != LI.end() && "Expected live-in value");
687221345Sdim      // Is there a different live-out value? If so, we need an extra spill
688221345Sdim      // instruction.
689221345Sdim      if (I->end < Stop)
690221345Sdim        Cost += SpillPlacer->getBlockFrequency(Number);
691221345Sdim    }
692218885Sdim  }
693221345Sdim  return Cost;
694218885Sdim}
695218885Sdim
696218885Sdim/// calcGlobalSplitCost - Return the global split cost of following the split
697218885Sdim/// pattern in LiveBundles. This cost should be added to the local cost of the
698221345Sdim/// interference pattern in SplitConstraints.
699218885Sdim///
700221345Sdimfloat RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand,
701221345Sdim                                    InterferenceCache::Cursor Intf) {
702218885Sdim  float GlobalCost = 0;
703221345Sdim  const BitVector &LiveBundles = Cand.LiveBundles;
704221345Sdim  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
705221345Sdim  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
706221345Sdim    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
707221345Sdim    SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
708221345Sdim    bool RegIn  = LiveBundles[Bundles->getBundle(BC.Number, 0)];
709221345Sdim    bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, 1)];
710221345Sdim    unsigned Ins = 0;
711221345Sdim
712221345Sdim    if (BI.LiveIn)
713221345Sdim      Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
714221345Sdim    if (BI.LiveOut)
715221345Sdim      Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
716221345Sdim    if (Ins)
717221345Sdim      GlobalCost += Ins * SpillPlacer->getBlockFrequency(BC.Number);
718218885Sdim  }
719221345Sdim
720221345Sdim  for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) {
721221345Sdim    unsigned Number = Cand.ActiveBlocks[i];
722221345Sdim    bool RegIn  = LiveBundles[Bundles->getBundle(Number, 0)];
723221345Sdim    bool RegOut = LiveBundles[Bundles->getBundle(Number, 1)];
724221345Sdim    if (!RegIn && !RegOut)
725221345Sdim      continue;
726221345Sdim    if (RegIn && RegOut) {
727221345Sdim      // We need double spill code if this block has interference.
728221345Sdim      Intf.moveToBlock(Number);
729221345Sdim      if (Intf.hasInterference())
730221345Sdim        GlobalCost += 2*SpillPlacer->getBlockFrequency(Number);
731221345Sdim      continue;
732221345Sdim    }
733221345Sdim    // live-in / stack-out or stack-in live-out.
734221345Sdim    GlobalCost += SpillPlacer->getBlockFrequency(Number);
735221345Sdim  }
736218885Sdim  return GlobalCost;
737218885Sdim}
738218885Sdim
739218885Sdim/// splitAroundRegion - Split VirtReg around the region determined by
740218885Sdim/// LiveBundles. Make an effort to avoid interference from PhysReg.
741218885Sdim///
742218885Sdim/// The 'register' interval is going to contain as many uses as possible while
743218885Sdim/// avoiding interference. The 'stack' interval is the complement constructed by
744218885Sdim/// SplitEditor. It will contain the rest.
745218885Sdim///
746221345Sdimvoid RAGreedy::splitAroundRegion(LiveInterval &VirtReg,
747221345Sdim                                 GlobalSplitCandidate &Cand,
748218885Sdim                                 SmallVectorImpl<LiveInterval*> &NewVRegs) {
749221345Sdim  const BitVector &LiveBundles = Cand.LiveBundles;
750221345Sdim
751218885Sdim  DEBUG({
752221345Sdim    dbgs() << "Splitting around region for " << PrintReg(Cand.PhysReg, TRI)
753218885Sdim           << " with bundles";
754218885Sdim    for (int i = LiveBundles.find_first(); i>=0; i = LiveBundles.find_next(i))
755218885Sdim      dbgs() << " EB#" << i;
756218885Sdim    dbgs() << ".\n";
757218885Sdim  });
758218885Sdim
759221345Sdim  InterferenceCache::Cursor Intf(IntfCache, Cand.PhysReg);
760221345Sdim  LiveRangeEdit LREdit(VirtReg, NewVRegs, this);
761221345Sdim  SE->reset(LREdit);
762218885Sdim
763218885Sdim  // Create the main cross-block interval.
764221345Sdim  const unsigned MainIntv = SE->openIntv();
765218885Sdim
766218885Sdim  // First add all defs that are live out of a block.
767221345Sdim  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
768221345Sdim  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
769221345Sdim    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
770218885Sdim    bool RegIn  = LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 0)];
771218885Sdim    bool RegOut = LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 1)];
772218885Sdim
773221345Sdim    // Create separate intervals for isolated blocks with multiple uses.
774221345Sdim    if (!RegIn && !RegOut && BI.FirstUse != BI.LastUse) {
775221345Sdim      DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " isolated.\n");
776221345Sdim      SE->splitSingleBlock(BI);
777221345Sdim      SE->selectIntv(MainIntv);
778221345Sdim      continue;
779221345Sdim    }
780221345Sdim
781218885Sdim    // Should the register be live out?
782218885Sdim    if (!BI.LiveOut || !RegOut)
783218885Sdim      continue;
784218885Sdim
785218885Sdim    SlotIndex Start, Stop;
786218885Sdim    tie(Start, Stop) = Indexes->getMBBRange(BI.MBB);
787221345Sdim    Intf.moveToBlock(BI.MBB->getNumber());
788218885Sdim    DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " -> EB#"
789218885Sdim                 << Bundles->getBundle(BI.MBB->getNumber(), 1)
790221345Sdim                 << " [" << Start << ';'
791221345Sdim                 << SA->getLastSplitPoint(BI.MBB->getNumber()) << '-' << Stop
792221345Sdim                 << ") intf [" << Intf.first() << ';' << Intf.last() << ')');
793218885Sdim
794218885Sdim    // The interference interval should either be invalid or overlap MBB.
795221345Sdim    assert((!Intf.hasInterference() || Intf.first() < Stop)
796221345Sdim           && "Bad interference");
797221345Sdim    assert((!Intf.hasInterference() || Intf.last() > Start)
798221345Sdim           && "Bad interference");
799218885Sdim
800218885Sdim    // Check interference leaving the block.
801221345Sdim    if (!Intf.hasInterference()) {
802218885Sdim      // Block is interference-free.
803218885Sdim      DEBUG(dbgs() << ", no interference");
804218885Sdim      if (!BI.LiveThrough) {
805218885Sdim        DEBUG(dbgs() << ", not live-through.\n");
806223017Sdim        SE->useIntv(SE->enterIntvBefore(BI.FirstUse), Stop);
807218885Sdim        continue;
808218885Sdim      }
809218885Sdim      if (!RegIn) {
810218885Sdim        // Block is live-through, but entry bundle is on the stack.
811218885Sdim        // Reload just before the first use.
812218885Sdim        DEBUG(dbgs() << ", not live-in, enter before first use.\n");
813221345Sdim        SE->useIntv(SE->enterIntvBefore(BI.FirstUse), Stop);
814218885Sdim        continue;
815218885Sdim      }
816218885Sdim      DEBUG(dbgs() << ", live-through.\n");
817218885Sdim      continue;
818218885Sdim    }
819218885Sdim
820218885Sdim    // Block has interference.
821221345Sdim    DEBUG(dbgs() << ", interference to " << Intf.last());
822218885Sdim
823223017Sdim    if (!BI.LiveThrough && Intf.last() <= BI.FirstUse) {
824218885Sdim      // The interference doesn't reach the outgoing segment.
825223017Sdim      DEBUG(dbgs() << " doesn't affect def from " << BI.FirstUse << '\n');
826223017Sdim      SE->useIntv(BI.FirstUse, Stop);
827218885Sdim      continue;
828218885Sdim    }
829218885Sdim
830221345Sdim    SlotIndex LastSplitPoint = SA->getLastSplitPoint(BI.MBB->getNumber());
831221345Sdim    if (Intf.last().getBoundaryIndex() < BI.LastUse) {
832218885Sdim      // There are interference-free uses at the end of the block.
833218885Sdim      // Find the first use that can get the live-out register.
834218885Sdim      SmallVectorImpl<SlotIndex>::const_iterator UI =
835218885Sdim        std::lower_bound(SA->UseSlots.begin(), SA->UseSlots.end(),
836221345Sdim                         Intf.last().getBoundaryIndex());
837218885Sdim      assert(UI != SA->UseSlots.end() && "Couldn't find last use");
838218885Sdim      SlotIndex Use = *UI;
839218885Sdim      assert(Use <= BI.LastUse && "Couldn't find last use");
840218885Sdim      // Only attempt a split befroe the last split point.
841221345Sdim      if (Use.getBaseIndex() <= LastSplitPoint) {
842218885Sdim        DEBUG(dbgs() << ", free use at " << Use << ".\n");
843221345Sdim        SlotIndex SegStart = SE->enterIntvBefore(Use);
844221345Sdim        assert(SegStart >= Intf.last() && "Couldn't avoid interference");
845221345Sdim        assert(SegStart < LastSplitPoint && "Impossible split point");
846221345Sdim        SE->useIntv(SegStart, Stop);
847218885Sdim        continue;
848218885Sdim      }
849218885Sdim    }
850218885Sdim
851218885Sdim    // Interference is after the last use.
852218885Sdim    DEBUG(dbgs() << " after last use.\n");
853221345Sdim    SlotIndex SegStart = SE->enterIntvAtEnd(*BI.MBB);
854221345Sdim    assert(SegStart >= Intf.last() && "Couldn't avoid interference");
855218885Sdim  }
856218885Sdim
857218885Sdim  // Now all defs leading to live bundles are handled, do everything else.
858221345Sdim  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
859221345Sdim    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
860218885Sdim    bool RegIn  = LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 0)];
861218885Sdim    bool RegOut = LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 1)];
862218885Sdim
863218885Sdim    // Is the register live-in?
864218885Sdim    if (!BI.LiveIn || !RegIn)
865218885Sdim      continue;
866218885Sdim
867218885Sdim    // We have an incoming register. Check for interference.
868218885Sdim    SlotIndex Start, Stop;
869218885Sdim    tie(Start, Stop) = Indexes->getMBBRange(BI.MBB);
870221345Sdim    Intf.moveToBlock(BI.MBB->getNumber());
871218885Sdim    DEBUG(dbgs() << "EB#" << Bundles->getBundle(BI.MBB->getNumber(), 0)
872221345Sdim                 << " -> BB#" << BI.MBB->getNumber() << " [" << Start << ';'
873221345Sdim                 << SA->getLastSplitPoint(BI.MBB->getNumber()) << '-' << Stop
874221345Sdim                 << ')');
875218885Sdim
876218885Sdim    // Check interference entering the block.
877221345Sdim    if (!Intf.hasInterference()) {
878218885Sdim      // Block is interference-free.
879218885Sdim      DEBUG(dbgs() << ", no interference");
880218885Sdim      if (!BI.LiveThrough) {
881218885Sdim        DEBUG(dbgs() << ", killed in block.\n");
882223017Sdim        SE->useIntv(Start, SE->leaveIntvAfter(BI.LastUse));
883218885Sdim        continue;
884218885Sdim      }
885218885Sdim      if (!RegOut) {
886221345Sdim        SlotIndex LastSplitPoint = SA->getLastSplitPoint(BI.MBB->getNumber());
887218885Sdim        // Block is live-through, but exit bundle is on the stack.
888218885Sdim        // Spill immediately after the last use.
889221345Sdim        if (BI.LastUse < LastSplitPoint) {
890218885Sdim          DEBUG(dbgs() << ", uses, stack-out.\n");
891221345Sdim          SE->useIntv(Start, SE->leaveIntvAfter(BI.LastUse));
892218885Sdim          continue;
893218885Sdim        }
894218885Sdim        // The last use is after the last split point, it is probably an
895218885Sdim        // indirect jump.
896218885Sdim        DEBUG(dbgs() << ", uses at " << BI.LastUse << " after split point "
897221345Sdim                     << LastSplitPoint << ", stack-out.\n");
898221345Sdim        SlotIndex SegEnd = SE->leaveIntvBefore(LastSplitPoint);
899221345Sdim        SE->useIntv(Start, SegEnd);
900218885Sdim        // Run a double interval from the split to the last use.
901218885Sdim        // This makes it possible to spill the complement without affecting the
902218885Sdim        // indirect branch.
903221345Sdim        SE->overlapIntv(SegEnd, BI.LastUse);
904218885Sdim        continue;
905218885Sdim      }
906218885Sdim      // Register is live-through.
907218885Sdim      DEBUG(dbgs() << ", uses, live-through.\n");
908221345Sdim      SE->useIntv(Start, Stop);
909218885Sdim      continue;
910218885Sdim    }
911218885Sdim
912218885Sdim    // Block has interference.
913221345Sdim    DEBUG(dbgs() << ", interference from " << Intf.first());
914218885Sdim
915223017Sdim    if (!BI.LiveThrough && Intf.first() >= BI.LastUse) {
916218885Sdim      // The interference doesn't reach the outgoing segment.
917223017Sdim      DEBUG(dbgs() << " doesn't affect kill at " << BI.LastUse << '\n');
918223017Sdim      SE->useIntv(Start, BI.LastUse);
919218885Sdim      continue;
920218885Sdim    }
921218885Sdim
922221345Sdim    if (Intf.first().getBaseIndex() > BI.FirstUse) {
923218885Sdim      // There are interference-free uses at the beginning of the block.
924218885Sdim      // Find the last use that can get the register.
925218885Sdim      SmallVectorImpl<SlotIndex>::const_iterator UI =
926218885Sdim        std::lower_bound(SA->UseSlots.begin(), SA->UseSlots.end(),
927221345Sdim                         Intf.first().getBaseIndex());
928218885Sdim      assert(UI != SA->UseSlots.begin() && "Couldn't find first use");
929218885Sdim      SlotIndex Use = (--UI)->getBoundaryIndex();
930218885Sdim      DEBUG(dbgs() << ", free use at " << *UI << ".\n");
931221345Sdim      SlotIndex SegEnd = SE->leaveIntvAfter(Use);
932221345Sdim      assert(SegEnd <= Intf.first() && "Couldn't avoid interference");
933221345Sdim      SE->useIntv(Start, SegEnd);
934218885Sdim      continue;
935218885Sdim    }
936218885Sdim
937218885Sdim    // Interference is before the first use.
938218885Sdim    DEBUG(dbgs() << " before first use.\n");
939221345Sdim    SlotIndex SegEnd = SE->leaveIntvAtTop(*BI.MBB);
940221345Sdim    assert(SegEnd <= Intf.first() && "Couldn't avoid interference");
941218885Sdim  }
942218885Sdim
943221345Sdim  // Handle live-through blocks.
944221345Sdim  for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) {
945221345Sdim    unsigned Number = Cand.ActiveBlocks[i];
946221345Sdim    bool RegIn  = LiveBundles[Bundles->getBundle(Number, 0)];
947221345Sdim    bool RegOut = LiveBundles[Bundles->getBundle(Number, 1)];
948221345Sdim    DEBUG(dbgs() << "Live through BB#" << Number << '\n');
949221345Sdim    if (RegIn && RegOut) {
950221345Sdim      Intf.moveToBlock(Number);
951221345Sdim      if (!Intf.hasInterference()) {
952221345Sdim        SE->useIntv(Indexes->getMBBStartIdx(Number),
953221345Sdim                    Indexes->getMBBEndIdx(Number));
954221345Sdim        continue;
955221345Sdim      }
956221345Sdim    }
957221345Sdim    MachineBasicBlock *MBB = MF->getBlockNumbered(Number);
958221345Sdim    if (RegIn)
959221345Sdim      SE->leaveIntvAtTop(*MBB);
960221345Sdim    if (RegOut)
961221345Sdim      SE->enterIntvAtEnd(*MBB);
962221345Sdim  }
963218885Sdim
964218885Sdim  ++NumGlobalSplits;
965218885Sdim
966221345Sdim  SmallVector<unsigned, 8> IntvMap;
967221345Sdim  SE->finish(&IntvMap);
968223017Sdim  DebugVars->splitRegister(VirtReg.reg, LREdit.regs());
969223017Sdim
970221345Sdim  LRStage.resize(MRI->getNumVirtRegs());
971223017Sdim  unsigned OrigBlocks = SA->getNumLiveBlocks();
972218885Sdim
973221345Sdim  // Sort out the new intervals created by splitting. We get four kinds:
974221345Sdim  // - Remainder intervals should not be split again.
975221345Sdim  // - Candidate intervals can be assigned to Cand.PhysReg.
976221345Sdim  // - Block-local splits are candidates for local splitting.
977221345Sdim  // - DCE leftovers should go back on the queue.
978221345Sdim  for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
979221345Sdim    unsigned Reg = LREdit.get(i)->reg;
980221345Sdim
981221345Sdim    // Ignore old intervals from DCE.
982221345Sdim    if (LRStage[Reg] != RS_New)
983221345Sdim      continue;
984221345Sdim
985221345Sdim    // Remainder interval. Don't try splitting again, spill if it doesn't
986221345Sdim    // allocate.
987221345Sdim    if (IntvMap[i] == 0) {
988221345Sdim      LRStage[Reg] = RS_Global;
989221345Sdim      continue;
990221345Sdim    }
991221345Sdim
992221345Sdim    // Main interval. Allow repeated splitting as long as the number of live
993221345Sdim    // blocks is strictly decreasing.
994221345Sdim    if (IntvMap[i] == MainIntv) {
995221345Sdim      if (SA->countLiveBlocks(LREdit.get(i)) >= OrigBlocks) {
996221345Sdim        DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
997221345Sdim                     << " blocks as original.\n");
998221345Sdim        // Don't allow repeated splitting as a safe guard against looping.
999221345Sdim        LRStage[Reg] = RS_Global;
1000218885Sdim      }
1001221345Sdim      continue;
1002221345Sdim    }
1003221345Sdim
1004221345Sdim    // Other intervals are treated as new. This includes local intervals created
1005221345Sdim    // for blocks with multiple uses, and anything created by DCE.
1006218885Sdim  }
1007221345Sdim
1008221345Sdim  if (VerifyEnabled)
1009221345Sdim    MF->verify(this, "After splitting live range around region");
1010218885Sdim}
1011218885Sdim
1012218885Sdimunsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1013218885Sdim                                  SmallVectorImpl<LiveInterval*> &NewVRegs) {
1014221345Sdim  float BestCost = Hysteresis * calcSpillCost();
1015221345Sdim  DEBUG(dbgs() << "Cost of isolating all blocks = " << BestCost << '\n');
1016221345Sdim  const unsigned NoCand = ~0u;
1017221345Sdim  unsigned BestCand = NoCand;
1018221345Sdim
1019218885Sdim  Order.rewind();
1020221345Sdim  for (unsigned Cand = 0; unsigned PhysReg = Order.next(); ++Cand) {
1021221345Sdim    if (GlobalCand.size() <= Cand)
1022221345Sdim      GlobalCand.resize(Cand+1);
1023221345Sdim    GlobalCand[Cand].reset(PhysReg);
1024221345Sdim
1025221345Sdim    SpillPlacer->prepare(GlobalCand[Cand].LiveBundles);
1026221345Sdim    float Cost;
1027221345Sdim    InterferenceCache::Cursor Intf(IntfCache, PhysReg);
1028221345Sdim    if (!addSplitConstraints(Intf, Cost)) {
1029221345Sdim      DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tno positive bundles\n");
1030218885Sdim      continue;
1031221345Sdim    }
1032221345Sdim    DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tstatic = " << Cost);
1033221345Sdim    if (Cost >= BestCost) {
1034221345Sdim      DEBUG({
1035221345Sdim        if (BestCand == NoCand)
1036221345Sdim          dbgs() << " worse than no bundles\n";
1037221345Sdim        else
1038221345Sdim          dbgs() << " worse than "
1039221345Sdim                 << PrintReg(GlobalCand[BestCand].PhysReg, TRI) << '\n';
1040221345Sdim      });
1041221345Sdim      continue;
1042221345Sdim    }
1043221345Sdim    growRegion(GlobalCand[Cand], Intf);
1044218885Sdim
1045221345Sdim    SpillPlacer->finish();
1046221345Sdim
1047218885Sdim    // No live bundles, defer to splitSingleBlocks().
1048221345Sdim    if (!GlobalCand[Cand].LiveBundles.any()) {
1049221345Sdim      DEBUG(dbgs() << " no bundles.\n");
1050218885Sdim      continue;
1051221345Sdim    }
1052218885Sdim
1053221345Sdim    Cost += calcGlobalSplitCost(GlobalCand[Cand], Intf);
1054221345Sdim    DEBUG({
1055221345Sdim      dbgs() << ", total = " << Cost << " with bundles";
1056221345Sdim      for (int i = GlobalCand[Cand].LiveBundles.find_first(); i>=0;
1057221345Sdim           i = GlobalCand[Cand].LiveBundles.find_next(i))
1058221345Sdim        dbgs() << " EB#" << i;
1059221345Sdim      dbgs() << ".\n";
1060221345Sdim    });
1061221345Sdim    if (Cost < BestCost) {
1062221345Sdim      BestCand = Cand;
1063221345Sdim      BestCost = Hysteresis * Cost; // Prevent rounding effects.
1064218885Sdim    }
1065218885Sdim  }
1066218885Sdim
1067221345Sdim  if (BestCand == NoCand)
1068218885Sdim    return 0;
1069218885Sdim
1070221345Sdim  splitAroundRegion(VirtReg, GlobalCand[BestCand], NewVRegs);
1071218885Sdim  return 0;
1072218885Sdim}
1073218885Sdim
1074218885Sdim
1075218885Sdim//===----------------------------------------------------------------------===//
1076218885Sdim//                             Local Splitting
1077218885Sdim//===----------------------------------------------------------------------===//
1078218885Sdim
1079218885Sdim
1080218885Sdim/// calcGapWeights - Compute the maximum spill weight that needs to be evicted
1081218885Sdim/// in order to use PhysReg between two entries in SA->UseSlots.
1082218885Sdim///
1083218885Sdim/// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1].
1084218885Sdim///
1085218885Sdimvoid RAGreedy::calcGapWeights(unsigned PhysReg,
1086218885Sdim                              SmallVectorImpl<float> &GapWeight) {
1087221345Sdim  assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
1088221345Sdim  const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1089218885Sdim  const SmallVectorImpl<SlotIndex> &Uses = SA->UseSlots;
1090218885Sdim  const unsigned NumGaps = Uses.size()-1;
1091218885Sdim
1092218885Sdim  // Start and end points for the interference check.
1093218885Sdim  SlotIndex StartIdx = BI.LiveIn ? BI.FirstUse.getBaseIndex() : BI.FirstUse;
1094218885Sdim  SlotIndex StopIdx = BI.LiveOut ? BI.LastUse.getBoundaryIndex() : BI.LastUse;
1095218885Sdim
1096218885Sdim  GapWeight.assign(NumGaps, 0.0f);
1097218885Sdim
1098218885Sdim  // Add interference from each overlapping register.
1099218885Sdim  for (const unsigned *AI = TRI->getOverlaps(PhysReg); *AI; ++AI) {
1100218885Sdim    if (!query(const_cast<LiveInterval&>(SA->getParent()), *AI)
1101218885Sdim           .checkInterference())
1102218885Sdim      continue;
1103218885Sdim
1104218885Sdim    // We know that VirtReg is a continuous interval from FirstUse to LastUse,
1105218885Sdim    // so we don't need InterferenceQuery.
1106218885Sdim    //
1107218885Sdim    // Interference that overlaps an instruction is counted in both gaps
1108218885Sdim    // surrounding the instruction. The exception is interference before
1109218885Sdim    // StartIdx and after StopIdx.
1110218885Sdim    //
1111218885Sdim    LiveIntervalUnion::SegmentIter IntI = PhysReg2LiveUnion[*AI].find(StartIdx);
1112218885Sdim    for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
1113218885Sdim      // Skip the gaps before IntI.
1114218885Sdim      while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
1115218885Sdim        if (++Gap == NumGaps)
1116218885Sdim          break;
1117218885Sdim      if (Gap == NumGaps)
1118218885Sdim        break;
1119218885Sdim
1120218885Sdim      // Update the gaps covered by IntI.
1121218885Sdim      const float weight = IntI.value()->weight;
1122218885Sdim      for (; Gap != NumGaps; ++Gap) {
1123218885Sdim        GapWeight[Gap] = std::max(GapWeight[Gap], weight);
1124218885Sdim        if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
1125218885Sdim          break;
1126218885Sdim      }
1127218885Sdim      if (Gap == NumGaps)
1128218885Sdim        break;
1129218885Sdim    }
1130218885Sdim  }
1131218885Sdim}
1132218885Sdim
1133218885Sdim/// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
1134218885Sdim/// basic block.
1135218885Sdim///
1136218885Sdimunsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1137218885Sdim                                 SmallVectorImpl<LiveInterval*> &NewVRegs) {
1138221345Sdim  assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
1139221345Sdim  const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1140218885Sdim
1141218885Sdim  // Note that it is possible to have an interval that is live-in or live-out
1142218885Sdim  // while only covering a single block - A phi-def can use undef values from
1143218885Sdim  // predecessors, and the block could be a single-block loop.
1144218885Sdim  // We don't bother doing anything clever about such a case, we simply assume
1145218885Sdim  // that the interval is continuous from FirstUse to LastUse. We should make
1146218885Sdim  // sure that we don't do anything illegal to such an interval, though.
1147218885Sdim
1148218885Sdim  const SmallVectorImpl<SlotIndex> &Uses = SA->UseSlots;
1149218885Sdim  if (Uses.size() <= 2)
1150218885Sdim    return 0;
1151218885Sdim  const unsigned NumGaps = Uses.size()-1;
1152218885Sdim
1153218885Sdim  DEBUG({
1154218885Sdim    dbgs() << "tryLocalSplit: ";
1155218885Sdim    for (unsigned i = 0, e = Uses.size(); i != e; ++i)
1156218885Sdim      dbgs() << ' ' << SA->UseSlots[i];
1157218885Sdim    dbgs() << '\n';
1158218885Sdim  });
1159218885Sdim
1160223017Sdim  // Since we allow local split results to be split again, there is a risk of
1161223017Sdim  // creating infinite loops. It is tempting to require that the new live
1162223017Sdim  // ranges have less instructions than the original. That would guarantee
1163223017Sdim  // convergence, but it is too strict. A live range with 3 instructions can be
1164223017Sdim  // split 2+3 (including the COPY), and we want to allow that.
1165223017Sdim  //
1166223017Sdim  // Instead we use these rules:
1167223017Sdim  //
1168223017Sdim  // 1. Allow any split for ranges with getStage() < RS_Local. (Except for the
1169223017Sdim  //    noop split, of course).
1170223017Sdim  // 2. Require progress be made for ranges with getStage() >= RS_Local. All
1171223017Sdim  //    the new ranges must have fewer instructions than before the split.
1172223017Sdim  // 3. New ranges with the same number of instructions are marked RS_Local,
1173223017Sdim  //    smaller ranges are marked RS_New.
1174223017Sdim  //
1175223017Sdim  // These rules allow a 3 -> 2+3 split once, which we need. They also prevent
1176223017Sdim  // excessive splitting and infinite loops.
1177223017Sdim  //
1178223017Sdim  bool ProgressRequired = getStage(VirtReg) >= RS_Local;
1179218885Sdim
1180223017Sdim  // Best split candidate.
1181218885Sdim  unsigned BestBefore = NumGaps;
1182218885Sdim  unsigned BestAfter = 0;
1183218885Sdim  float BestDiff = 0;
1184218885Sdim
1185221345Sdim  const float blockFreq = SpillPlacer->getBlockFrequency(BI.MBB->getNumber());
1186218885Sdim  SmallVector<float, 8> GapWeight;
1187218885Sdim
1188218885Sdim  Order.rewind();
1189218885Sdim  while (unsigned PhysReg = Order.next()) {
1190218885Sdim    // Keep track of the largest spill weight that would need to be evicted in
1191218885Sdim    // order to make use of PhysReg between UseSlots[i] and UseSlots[i+1].
1192218885Sdim    calcGapWeights(PhysReg, GapWeight);
1193218885Sdim
1194218885Sdim    // Try to find the best sequence of gaps to close.
1195218885Sdim    // The new spill weight must be larger than any gap interference.
1196218885Sdim
1197218885Sdim    // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
1198223017Sdim    unsigned SplitBefore = 0, SplitAfter = 1;
1199218885Sdim
1200218885Sdim    // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
1201218885Sdim    // It is the spill weight that needs to be evicted.
1202218885Sdim    float MaxGap = GapWeight[0];
1203218885Sdim
1204218885Sdim    for (;;) {
1205218885Sdim      // Live before/after split?
1206218885Sdim      const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
1207218885Sdim      const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
1208218885Sdim
1209218885Sdim      DEBUG(dbgs() << PrintReg(PhysReg, TRI) << ' '
1210218885Sdim                   << Uses[SplitBefore] << '-' << Uses[SplitAfter]
1211218885Sdim                   << " i=" << MaxGap);
1212218885Sdim
1213218885Sdim      // Stop before the interval gets so big we wouldn't be making progress.
1214218885Sdim      if (!LiveBefore && !LiveAfter) {
1215218885Sdim        DEBUG(dbgs() << " all\n");
1216218885Sdim        break;
1217218885Sdim      }
1218218885Sdim      // Should the interval be extended or shrunk?
1219218885Sdim      bool Shrink = true;
1220218885Sdim
1221223017Sdim      // How many gaps would the new range have?
1222223017Sdim      unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter;
1223223017Sdim
1224223017Sdim      // Legally, without causing looping?
1225223017Sdim      bool Legal = !ProgressRequired || NewGaps < NumGaps;
1226223017Sdim
1227223017Sdim      if (Legal && MaxGap < HUGE_VALF) {
1228223017Sdim        // Estimate the new spill weight. Each instruction reads or writes the
1229223017Sdim        // register. Conservatively assume there are no read-modify-write
1230223017Sdim        // instructions.
1231218885Sdim        //
1232223017Sdim        // Try to guess the size of the new interval.
1233223017Sdim        const float EstWeight = normalizeSpillWeight(blockFreq * (NewGaps + 1),
1234223017Sdim                                 Uses[SplitBefore].distance(Uses[SplitAfter]) +
1235223017Sdim                                 (LiveBefore + LiveAfter)*SlotIndex::InstrDist);
1236218885Sdim        // Would this split be possible to allocate?
1237218885Sdim        // Never allocate all gaps, we wouldn't be making progress.
1238221345Sdim        DEBUG(dbgs() << " w=" << EstWeight);
1239221345Sdim        if (EstWeight * Hysteresis >= MaxGap) {
1240218885Sdim          Shrink = false;
1241221345Sdim          float Diff = EstWeight - MaxGap;
1242218885Sdim          if (Diff > BestDiff) {
1243218885Sdim            DEBUG(dbgs() << " (best)");
1244221345Sdim            BestDiff = Hysteresis * Diff;
1245218885Sdim            BestBefore = SplitBefore;
1246218885Sdim            BestAfter = SplitAfter;
1247218885Sdim          }
1248218885Sdim        }
1249218885Sdim      }
1250218885Sdim
1251218885Sdim      // Try to shrink.
1252218885Sdim      if (Shrink) {
1253223017Sdim        if (++SplitBefore < SplitAfter) {
1254218885Sdim          DEBUG(dbgs() << " shrink\n");
1255218885Sdim          // Recompute the max when necessary.
1256218885Sdim          if (GapWeight[SplitBefore - 1] >= MaxGap) {
1257218885Sdim            MaxGap = GapWeight[SplitBefore];
1258218885Sdim            for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i)
1259218885Sdim              MaxGap = std::max(MaxGap, GapWeight[i]);
1260218885Sdim          }
1261218885Sdim          continue;
1262218885Sdim        }
1263218885Sdim        MaxGap = 0;
1264218885Sdim      }
1265218885Sdim
1266218885Sdim      // Try to extend the interval.
1267218885Sdim      if (SplitAfter >= NumGaps) {
1268218885Sdim        DEBUG(dbgs() << " end\n");
1269218885Sdim        break;
1270218885Sdim      }
1271218885Sdim
1272218885Sdim      DEBUG(dbgs() << " extend\n");
1273223017Sdim      MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]);
1274218885Sdim    }
1275218885Sdim  }
1276218885Sdim
1277218885Sdim  // Didn't find any candidates?
1278218885Sdim  if (BestBefore == NumGaps)
1279218885Sdim    return 0;
1280218885Sdim
1281218885Sdim  DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore]
1282218885Sdim               << '-' << Uses[BestAfter] << ", " << BestDiff
1283218885Sdim               << ", " << (BestAfter - BestBefore + 1) << " instrs\n");
1284218885Sdim
1285221345Sdim  LiveRangeEdit LREdit(VirtReg, NewVRegs, this);
1286221345Sdim  SE->reset(LREdit);
1287218885Sdim
1288221345Sdim  SE->openIntv();
1289221345Sdim  SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
1290221345Sdim  SlotIndex SegStop  = SE->leaveIntvAfter(Uses[BestAfter]);
1291221345Sdim  SE->useIntv(SegStart, SegStop);
1292223017Sdim  SmallVector<unsigned, 8> IntvMap;
1293223017Sdim  SE->finish(&IntvMap);
1294223017Sdim  DebugVars->splitRegister(VirtReg.reg, LREdit.regs());
1295223017Sdim
1296223017Sdim  // If the new range has the same number of instructions as before, mark it as
1297223017Sdim  // RS_Local so the next split will be forced to make progress. Otherwise,
1298223017Sdim  // leave the new intervals as RS_New so they can compete.
1299223017Sdim  bool LiveBefore = BestBefore != 0 || BI.LiveIn;
1300223017Sdim  bool LiveAfter = BestAfter != NumGaps || BI.LiveOut;
1301223017Sdim  unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter;
1302223017Sdim  if (NewGaps >= NumGaps) {
1303223017Sdim    DEBUG(dbgs() << "Tagging non-progress ranges: ");
1304223017Sdim    assert(!ProgressRequired && "Didn't make progress when it was required.");
1305223017Sdim    LRStage.resize(MRI->getNumVirtRegs());
1306223017Sdim    for (unsigned i = 0, e = IntvMap.size(); i != e; ++i)
1307223017Sdim      if (IntvMap[i] == 1) {
1308223017Sdim        LRStage[LREdit.get(i)->reg] = RS_Local;
1309223017Sdim        DEBUG(dbgs() << PrintReg(LREdit.get(i)->reg));
1310223017Sdim      }
1311223017Sdim    DEBUG(dbgs() << '\n');
1312223017Sdim  }
1313218885Sdim  ++NumLocalSplits;
1314218885Sdim
1315218885Sdim  return 0;
1316218885Sdim}
1317218885Sdim
1318218885Sdim//===----------------------------------------------------------------------===//
1319218885Sdim//                          Live Range Splitting
1320218885Sdim//===----------------------------------------------------------------------===//
1321218885Sdim
1322218885Sdim/// trySplit - Try to split VirtReg or one of its interferences, making it
1323218885Sdim/// assignable.
1324218885Sdim/// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
1325218885Sdimunsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
1326218885Sdim                            SmallVectorImpl<LiveInterval*>&NewVRegs) {
1327218885Sdim  // Local intervals are handled separately.
1328218885Sdim  if (LIS->intervalIsInOneMBB(VirtReg)) {
1329218885Sdim    NamedRegionTimer T("Local Splitting", TimerGroupName, TimePassesIsEnabled);
1330221345Sdim    SA->analyze(&VirtReg);
1331218885Sdim    return tryLocalSplit(VirtReg, Order, NewVRegs);
1332218885Sdim  }
1333218885Sdim
1334218885Sdim  NamedRegionTimer T("Global Splitting", TimerGroupName, TimePassesIsEnabled);
1335218885Sdim
1336221345Sdim  // Don't iterate global splitting.
1337221345Sdim  // Move straight to spilling if this range was produced by a global split.
1338221345Sdim  if (getStage(VirtReg) >= RS_Global)
1339221345Sdim    return 0;
1340221345Sdim
1341221345Sdim  SA->analyze(&VirtReg);
1342221345Sdim
1343223017Sdim  // FIXME: SplitAnalysis may repair broken live ranges coming from the
1344223017Sdim  // coalescer. That may cause the range to become allocatable which means that
1345223017Sdim  // tryRegionSplit won't be making progress. This check should be replaced with
1346223017Sdim  // an assertion when the coalescer is fixed.
1347223017Sdim  if (SA->didRepairRange()) {
1348223017Sdim    // VirtReg has changed, so all cached queries are invalid.
1349223017Sdim    invalidateVirtRegs();
1350223017Sdim    if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs))
1351223017Sdim      return PhysReg;
1352223017Sdim  }
1353223017Sdim
1354218885Sdim  // First try to split around a region spanning multiple blocks.
1355218885Sdim  unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
1356218885Sdim  if (PhysReg || !NewVRegs.empty())
1357218885Sdim    return PhysReg;
1358218885Sdim
1359218885Sdim  // Then isolate blocks with multiple uses.
1360218885Sdim  SplitAnalysis::BlockPtrSet Blocks;
1361218885Sdim  if (SA->getMultiUseBlocks(Blocks)) {
1362221345Sdim    LiveRangeEdit LREdit(VirtReg, NewVRegs, this);
1363221345Sdim    SE->reset(LREdit);
1364221345Sdim    SE->splitSingleBlocks(Blocks);
1365221345Sdim    setStage(NewVRegs.begin(), NewVRegs.end(), RS_Global);
1366218885Sdim    if (VerifyEnabled)
1367218885Sdim      MF->verify(this, "After splitting live range around basic blocks");
1368218885Sdim  }
1369218885Sdim
1370218885Sdim  // Don't assign any physregs.
1371218885Sdim  return 0;
1372218885Sdim}
1373218885Sdim
1374218885Sdim
1375218885Sdim//===----------------------------------------------------------------------===//
1376218885Sdim//                            Main Entry Point
1377218885Sdim//===----------------------------------------------------------------------===//
1378218885Sdim
1379218885Sdimunsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg,
1380218885Sdim                                 SmallVectorImpl<LiveInterval*> &NewVRegs) {
1381218885Sdim  // First try assigning a free register.
1382223017Sdim  AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo);
1383221345Sdim  if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs))
1384218885Sdim    return PhysReg;
1385218885Sdim
1386223017Sdim  LiveRangeStage Stage = getStage(VirtReg);
1387223017Sdim  DEBUG(dbgs() << StageName[Stage] << '\n');
1388219077Sdim
1389223017Sdim  // Try to evict a less worthy live range, but only for ranges from the primary
1390223017Sdim  // queue. The RS_Second ranges already failed to do this, and they should not
1391223017Sdim  // get a second chance until they have been split.
1392223017Sdim  if (Stage != RS_Second)
1393223017Sdim    if (unsigned PhysReg = tryEvict(VirtReg, Order, NewVRegs))
1394223017Sdim      return PhysReg;
1395223017Sdim
1396218885Sdim  assert(NewVRegs.empty() && "Cannot append to existing NewVRegs");
1397218885Sdim
1398219077Sdim  // The first time we see a live range, don't try to split or spill.
1399219077Sdim  // Wait until the second time, when all smaller ranges have been allocated.
1400219077Sdim  // This gives a better picture of the interference to split around.
1401221345Sdim  if (Stage == RS_First) {
1402221345Sdim    LRStage[VirtReg.reg] = RS_Second;
1403221345Sdim    DEBUG(dbgs() << "wait for second round\n");
1404219077Sdim    NewVRegs.push_back(&VirtReg);
1405219077Sdim    return 0;
1406219077Sdim  }
1407219077Sdim
1408223017Sdim  // If we couldn't allocate a register from spilling, there is probably some
1409223017Sdim  // invalid inline assembly. The base class wil report it.
1410223017Sdim  if (Stage >= RS_Spill)
1411223017Sdim    return ~0u;
1412221345Sdim
1413218885Sdim  // Try splitting VirtReg or interferences.
1414218885Sdim  unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs);
1415218885Sdim  if (PhysReg || !NewVRegs.empty())
1416218885Sdim    return PhysReg;
1417218885Sdim
1418218885Sdim  // Finally spill VirtReg itself.
1419218885Sdim  NamedRegionTimer T("Spiller", TimerGroupName, TimePassesIsEnabled);
1420221345Sdim  LiveRangeEdit LRE(VirtReg, NewVRegs, this);
1421221345Sdim  spiller().spill(LRE);
1422221345Sdim  setStage(NewVRegs.begin(), NewVRegs.end(), RS_Spill);
1423218885Sdim
1424221345Sdim  if (VerifyEnabled)
1425221345Sdim    MF->verify(this, "After spilling");
1426221345Sdim
1427218885Sdim  // The live virtual register requesting allocation was spilled, so tell
1428218885Sdim  // the caller not to allocate anything during this round.
1429218885Sdim  return 0;
1430218885Sdim}
1431218885Sdim
1432218885Sdimbool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
1433218885Sdim  DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
1434218885Sdim               << "********** Function: "
1435218885Sdim               << ((Value*)mf.getFunction())->getName() << '\n');
1436218885Sdim
1437218885Sdim  MF = &mf;
1438218885Sdim  if (VerifyEnabled)
1439218885Sdim    MF->verify(this, "Before greedy register allocator");
1440218885Sdim
1441218885Sdim  RegAllocBase::init(getAnalysis<VirtRegMap>(), getAnalysis<LiveIntervals>());
1442218885Sdim  Indexes = &getAnalysis<SlotIndexes>();
1443218885Sdim  DomTree = &getAnalysis<MachineDominatorTree>();
1444218885Sdim  SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
1445218885Sdim  Loops = &getAnalysis<MachineLoopInfo>();
1446218885Sdim  LoopRanges = &getAnalysis<MachineLoopRanges>();
1447218885Sdim  Bundles = &getAnalysis<EdgeBundles>();
1448218885Sdim  SpillPlacer = &getAnalysis<SpillPlacement>();
1449223017Sdim  DebugVars = &getAnalysis<LiveDebugVariables>();
1450218885Sdim
1451218885Sdim  SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
1452221345Sdim  SE.reset(new SplitEditor(*SA, *LIS, *VRM, *DomTree));
1453221345Sdim  LRStage.clear();
1454221345Sdim  LRStage.resize(MRI->getNumVirtRegs());
1455221345Sdim  IntfCache.init(MF, &PhysReg2LiveUnion[0], Indexes, TRI);
1456218885Sdim
1457218885Sdim  allocatePhysRegs();
1458218885Sdim  addMBBLiveIns(MF);
1459218885Sdim  LIS->addKillFlags();
1460218885Sdim
1461218885Sdim  // Run rewriter
1462218885Sdim  {
1463218885Sdim    NamedRegionTimer T("Rewriter", TimerGroupName, TimePassesIsEnabled);
1464218885Sdim    VRM->rewrite(Indexes);
1465218885Sdim  }
1466218885Sdim
1467221345Sdim  // Write out new DBG_VALUE instructions.
1468223017Sdim  DebugVars->emitDebugValues(VRM);
1469221345Sdim
1470218885Sdim  // The pass output is in VirtRegMap. Release all the transient data.
1471218885Sdim  releaseMemory();
1472218885Sdim
1473218885Sdim  return true;
1474218885Sdim}
1475