PHIElimination.cpp revision 218893
1//===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass eliminates machine instruction PHI nodes by inserting copy
11// instructions.  This destroys SSA information, but is the desired input for
12// some register allocators.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "phielim"
17#include "PHIEliminationUtils.h"
18#include "llvm/CodeGen/LiveVariables.h"
19#include "llvm/CodeGen/Passes.h"
20#include "llvm/CodeGen/MachineDominators.h"
21#include "llvm/CodeGen/MachineInstr.h"
22#include "llvm/CodeGen/MachineInstrBuilder.h"
23#include "llvm/CodeGen/MachineLoopInfo.h"
24#include "llvm/CodeGen/MachineRegisterInfo.h"
25#include "llvm/Target/TargetInstrInfo.h"
26#include "llvm/Function.h"
27#include "llvm/Target/TargetMachine.h"
28#include "llvm/ADT/SmallPtrSet.h"
29#include "llvm/ADT/STLExtras.h"
30#include "llvm/ADT/Statistic.h"
31#include "llvm/Support/Compiler.h"
32#include "llvm/Support/Debug.h"
33#include <algorithm>
34#include <map>
35using namespace llvm;
36
37namespace {
38  class PHIElimination : public MachineFunctionPass {
39    MachineRegisterInfo *MRI; // Machine register information
40
41  public:
42    static char ID; // Pass identification, replacement for typeid
43    PHIElimination() : MachineFunctionPass(ID) {
44      initializePHIEliminationPass(*PassRegistry::getPassRegistry());
45    }
46
47    virtual bool runOnMachineFunction(MachineFunction &Fn);
48    virtual void getAnalysisUsage(AnalysisUsage &AU) const;
49
50  private:
51    /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
52    /// in predecessor basic blocks.
53    ///
54    bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
55    void LowerAtomicPHINode(MachineBasicBlock &MBB,
56                            MachineBasicBlock::iterator AfterPHIsIt);
57
58    /// analyzePHINodes - Gather information about the PHI nodes in
59    /// here. In particular, we want to map the number of uses of a virtual
60    /// register which is used in a PHI node. We map that to the BB the
61    /// vreg is coming from. This is used later to determine when the vreg
62    /// is killed in the BB.
63    ///
64    void analyzePHINodes(const MachineFunction& Fn);
65
66    /// Split critical edges where necessary for good coalescer performance.
67    bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB,
68                       LiveVariables &LV, MachineLoopInfo *MLI);
69
70    typedef std::pair<unsigned, unsigned> BBVRegPair;
71    typedef DenseMap<BBVRegPair, unsigned> VRegPHIUse;
72
73    VRegPHIUse VRegPHIUseCount;
74
75    // Defs of PHI sources which are implicit_def.
76    SmallPtrSet<MachineInstr*, 4> ImpDefs;
77
78    // Map reusable lowered PHI node -> incoming join register.
79    typedef DenseMap<MachineInstr*, unsigned,
80                     MachineInstrExpressionTrait> LoweredPHIMap;
81    LoweredPHIMap LoweredPHIs;
82  };
83}
84
85STATISTIC(NumAtomic, "Number of atomic phis lowered");
86STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split");
87STATISTIC(NumReused, "Number of reused lowered phis");
88
89char PHIElimination::ID = 0;
90INITIALIZE_PASS(PHIElimination, "phi-node-elimination",
91                "Eliminate PHI nodes for register allocation", false, false)
92
93char& llvm::PHIEliminationID = PHIElimination::ID;
94
95void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
96  AU.addPreserved<LiveVariables>();
97  AU.addPreserved<MachineDominatorTree>();
98  AU.addPreserved<MachineLoopInfo>();
99  MachineFunctionPass::getAnalysisUsage(AU);
100}
101
102bool PHIElimination::runOnMachineFunction(MachineFunction &MF) {
103  MRI = &MF.getRegInfo();
104
105  bool Changed = false;
106
107  // Split critical edges to help the coalescer
108  if (LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>()) {
109    MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>();
110    for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
111      Changed |= SplitPHIEdges(MF, *I, *LV, MLI);
112  }
113
114  // Populate VRegPHIUseCount
115  analyzePHINodes(MF);
116
117  // Eliminate PHI instructions by inserting copies into predecessor blocks.
118  for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
119    Changed |= EliminatePHINodes(MF, *I);
120
121  // Remove dead IMPLICIT_DEF instructions.
122  for (SmallPtrSet<MachineInstr*, 4>::iterator I = ImpDefs.begin(),
123         E = ImpDefs.end(); I != E; ++I) {
124    MachineInstr *DefMI = *I;
125    unsigned DefReg = DefMI->getOperand(0).getReg();
126    if (MRI->use_nodbg_empty(DefReg))
127      DefMI->eraseFromParent();
128  }
129
130  // Clean up the lowered PHI instructions.
131  for (LoweredPHIMap::iterator I = LoweredPHIs.begin(), E = LoweredPHIs.end();
132       I != E; ++I)
133    MF.DeleteMachineInstr(I->first);
134
135  LoweredPHIs.clear();
136  ImpDefs.clear();
137  VRegPHIUseCount.clear();
138
139  return Changed;
140}
141
142/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
143/// predecessor basic blocks.
144///
145bool PHIElimination::EliminatePHINodes(MachineFunction &MF,
146                                             MachineBasicBlock &MBB) {
147  if (MBB.empty() || !MBB.front().isPHI())
148    return false;   // Quick exit for basic blocks without PHIs.
149
150  // Get an iterator to the first instruction after the last PHI node (this may
151  // also be the end of the basic block).
152  MachineBasicBlock::iterator AfterPHIsIt = MBB.SkipPHIsAndLabels(MBB.begin());
153
154  while (MBB.front().isPHI())
155    LowerAtomicPHINode(MBB, AfterPHIsIt);
156
157  return true;
158}
159
160/// isSourceDefinedByImplicitDef - Return true if all sources of the phi node
161/// are implicit_def's.
162static bool isSourceDefinedByImplicitDef(const MachineInstr *MPhi,
163                                         const MachineRegisterInfo *MRI) {
164  for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) {
165    unsigned SrcReg = MPhi->getOperand(i).getReg();
166    const MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
167    if (!DefMI || !DefMI->isImplicitDef())
168      return false;
169  }
170  return true;
171}
172
173
174
175/// LowerAtomicPHINode - Lower the PHI node at the top of the specified block,
176/// under the assuption that it needs to be lowered in a way that supports
177/// atomic execution of PHIs.  This lowering method is always correct all of the
178/// time.
179///
180void PHIElimination::LowerAtomicPHINode(
181                                      MachineBasicBlock &MBB,
182                                      MachineBasicBlock::iterator AfterPHIsIt) {
183  ++NumAtomic;
184  // Unlink the PHI node from the basic block, but don't delete the PHI yet.
185  MachineInstr *MPhi = MBB.remove(MBB.begin());
186
187  unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
188  unsigned DestReg = MPhi->getOperand(0).getReg();
189  assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs");
190  bool isDead = MPhi->getOperand(0).isDead();
191
192  // Create a new register for the incoming PHI arguments.
193  MachineFunction &MF = *MBB.getParent();
194  unsigned IncomingReg = 0;
195  bool reusedIncoming = false;  // Is IncomingReg reused from an earlier PHI?
196
197  // Insert a register to register copy at the top of the current block (but
198  // after any remaining phi nodes) which copies the new incoming register
199  // into the phi node destination.
200  const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
201  if (isSourceDefinedByImplicitDef(MPhi, MRI))
202    // If all sources of a PHI node are implicit_def, just emit an
203    // implicit_def instead of a copy.
204    BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
205            TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
206  else {
207    // Can we reuse an earlier PHI node? This only happens for critical edges,
208    // typically those created by tail duplication.
209    unsigned &entry = LoweredPHIs[MPhi];
210    if (entry) {
211      // An identical PHI node was already lowered. Reuse the incoming register.
212      IncomingReg = entry;
213      reusedIncoming = true;
214      ++NumReused;
215      DEBUG(dbgs() << "Reusing " << PrintReg(IncomingReg) << " for " << *MPhi);
216    } else {
217      const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
218      entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
219    }
220    BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
221            TII->get(TargetOpcode::COPY), DestReg)
222      .addReg(IncomingReg);
223  }
224
225  // Update live variable information if there is any.
226  LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>();
227  if (LV) {
228    MachineInstr *PHICopy = prior(AfterPHIsIt);
229
230    if (IncomingReg) {
231      LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg);
232
233      // Increment use count of the newly created virtual register.
234      VI.NumUses++;
235      LV->setPHIJoin(IncomingReg);
236
237      // When we are reusing the incoming register, it may already have been
238      // killed in this block. The old kill will also have been inserted at
239      // AfterPHIsIt, so it appears before the current PHICopy.
240      if (reusedIncoming)
241        if (MachineInstr *OldKill = VI.findKill(&MBB)) {
242          DEBUG(dbgs() << "Remove old kill from " << *OldKill);
243          LV->removeVirtualRegisterKilled(IncomingReg, OldKill);
244          DEBUG(MBB.dump());
245        }
246
247      // Add information to LiveVariables to know that the incoming value is
248      // killed.  Note that because the value is defined in several places (once
249      // each for each incoming block), the "def" block and instruction fields
250      // for the VarInfo is not filled in.
251      LV->addVirtualRegisterKilled(IncomingReg, PHICopy);
252    }
253
254    // Since we are going to be deleting the PHI node, if it is the last use of
255    // any registers, or if the value itself is dead, we need to move this
256    // information over to the new copy we just inserted.
257    LV->removeVirtualRegistersKilled(MPhi);
258
259    // If the result is dead, update LV.
260    if (isDead) {
261      LV->addVirtualRegisterDead(DestReg, PHICopy);
262      LV->removeVirtualRegisterDead(DestReg, MPhi);
263    }
264  }
265
266  // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
267  for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
268    --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i+1).getMBB()->getNumber(),
269                                 MPhi->getOperand(i).getReg())];
270
271  // Now loop over all of the incoming arguments, changing them to copy into the
272  // IncomingReg register in the corresponding predecessor basic block.
273  SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
274  for (int i = NumSrcs - 1; i >= 0; --i) {
275    unsigned SrcReg = MPhi->getOperand(i*2+1).getReg();
276    unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg();
277
278    assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
279           "Machine PHI Operands must all be virtual registers!");
280
281    // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
282    // path the PHI.
283    MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
284
285    // If source is defined by an implicit def, there is no need to insert a
286    // copy.
287    MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
288    if (DefMI->isImplicitDef()) {
289      ImpDefs.insert(DefMI);
290      continue;
291    }
292
293    // Check to make sure we haven't already emitted the copy for this block.
294    // This can happen because PHI nodes may have multiple entries for the same
295    // basic block.
296    if (!MBBsInsertedInto.insert(&opBlock))
297      continue;  // If the copy has already been emitted, we're done.
298
299    // Find a safe location to insert the copy, this may be the first terminator
300    // in the block (or end()).
301    MachineBasicBlock::iterator InsertPos =
302      findPHICopyInsertPoint(&opBlock, &MBB, SrcReg);
303
304    // Insert the copy.
305    if (!reusedIncoming && IncomingReg)
306      BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
307              TII->get(TargetOpcode::COPY), IncomingReg).addReg(SrcReg, 0, SrcSubReg);
308
309    // Now update live variable information if we have it.  Otherwise we're done
310    if (!LV) continue;
311
312    // We want to be able to insert a kill of the register if this PHI (aka, the
313    // copy we just inserted) is the last use of the source value.  Live
314    // variable analysis conservatively handles this by saying that the value is
315    // live until the end of the block the PHI entry lives in.  If the value
316    // really is dead at the PHI copy, there will be no successor blocks which
317    // have the value live-in.
318
319    // Also check to see if this register is in use by another PHI node which
320    // has not yet been eliminated.  If so, it will be killed at an appropriate
321    // point later.
322
323    // Is it used by any PHI instructions in this block?
324    bool ValueIsUsed = VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)];
325
326    // Okay, if we now know that the value is not live out of the block, we can
327    // add a kill marker in this block saying that it kills the incoming value!
328    if (!ValueIsUsed && !LV->isLiveOut(SrcReg, opBlock)) {
329      // In our final twist, we have to decide which instruction kills the
330      // register.  In most cases this is the copy, however, the first
331      // terminator instruction at the end of the block may also use the value.
332      // In this case, we should mark *it* as being the killing block, not the
333      // copy.
334      MachineBasicBlock::iterator KillInst;
335      MachineBasicBlock::iterator Term = opBlock.getFirstTerminator();
336      if (Term != opBlock.end() && Term->readsRegister(SrcReg)) {
337        KillInst = Term;
338
339        // Check that no other terminators use values.
340#ifndef NDEBUG
341        for (MachineBasicBlock::iterator TI = llvm::next(Term);
342             TI != opBlock.end(); ++TI) {
343          if (TI->isDebugValue())
344            continue;
345          assert(!TI->readsRegister(SrcReg) &&
346                 "Terminator instructions cannot use virtual registers unless"
347                 "they are the first terminator in a block!");
348        }
349#endif
350      } else if (reusedIncoming || !IncomingReg) {
351        // We may have to rewind a bit if we didn't insert a copy this time.
352        KillInst = Term;
353        while (KillInst != opBlock.begin()) {
354          --KillInst;
355          if (KillInst->isDebugValue())
356            continue;
357          if (KillInst->readsRegister(SrcReg))
358            break;
359        }
360      } else {
361        // We just inserted this copy.
362        KillInst = prior(InsertPos);
363      }
364      assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction");
365
366      // Finally, mark it killed.
367      LV->addVirtualRegisterKilled(SrcReg, KillInst);
368
369      // This vreg no longer lives all of the way through opBlock.
370      unsigned opBlockNum = opBlock.getNumber();
371      LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum);
372    }
373  }
374
375  // Really delete the PHI instruction now, if it is not in the LoweredPHIs map.
376  if (reusedIncoming || !IncomingReg)
377    MF.DeleteMachineInstr(MPhi);
378}
379
380/// analyzePHINodes - Gather information about the PHI nodes in here. In
381/// particular, we want to map the number of uses of a virtual register which is
382/// used in a PHI node. We map that to the BB the vreg is coming from. This is
383/// used later to determine when the vreg is killed in the BB.
384///
385void PHIElimination::analyzePHINodes(const MachineFunction& MF) {
386  for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
387       I != E; ++I)
388    for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
389         BBI != BBE && BBI->isPHI(); ++BBI)
390      for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
391        ++VRegPHIUseCount[BBVRegPair(BBI->getOperand(i+1).getMBB()->getNumber(),
392                                     BBI->getOperand(i).getReg())];
393}
394
395bool PHIElimination::SplitPHIEdges(MachineFunction &MF,
396                                   MachineBasicBlock &MBB,
397                                   LiveVariables &LV,
398                                   MachineLoopInfo *MLI) {
399  if (MBB.empty() || !MBB.front().isPHI() || MBB.isLandingPad())
400    return false;   // Quick exit for basic blocks without PHIs.
401
402  bool Changed = false;
403  for (MachineBasicBlock::const_iterator BBI = MBB.begin(), BBE = MBB.end();
404       BBI != BBE && BBI->isPHI(); ++BBI) {
405    for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
406      unsigned Reg = BBI->getOperand(i).getReg();
407      MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB();
408      // We break edges when registers are live out from the predecessor block
409      // (not considering PHI nodes). If the register is live in to this block
410      // anyway, we would gain nothing from splitting.
411      // Avoid splitting backedges of loops. It would introduce small
412      // out-of-line blocks into the loop which is very bad for code placement.
413      if (PreMBB != &MBB &&
414          !LV.isLiveIn(Reg, MBB) && LV.isLiveOut(Reg, *PreMBB)) {
415        if (!MLI ||
416            !(MLI->getLoopFor(PreMBB) == MLI->getLoopFor(&MBB) &&
417              MLI->isLoopHeader(&MBB))) {
418          if (PreMBB->SplitCriticalEdge(&MBB, this)) {
419            Changed = true;
420            ++NumCriticalEdgesSplit;
421          }
422        }
423      }
424    }
425  }
426  return Changed;
427}
428