MachineSink.cpp revision 198090
1//===-- MachineSink.cpp - Sinking for machine instructions ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass moves instructions into successor blocks, when possible, so that
11// they aren't executed on paths where their results aren't needed.
12//
13// This pass is not intended to be a replacement or a complete alternative
14// for an LLVM-IR-level sinking pass. It is only designed to sink simple
15// constructs that are not exposed before lowering and instruction selection.
16//
17//===----------------------------------------------------------------------===//
18
19#define DEBUG_TYPE "machine-sink"
20#include "llvm/CodeGen/Passes.h"
21#include "llvm/CodeGen/MachineRegisterInfo.h"
22#include "llvm/CodeGen/MachineDominators.h"
23#include "llvm/Analysis/AliasAnalysis.h"
24#include "llvm/Target/TargetRegisterInfo.h"
25#include "llvm/Target/TargetInstrInfo.h"
26#include "llvm/Target/TargetMachine.h"
27#include "llvm/ADT/Statistic.h"
28#include "llvm/Support/Compiler.h"
29#include "llvm/Support/Debug.h"
30#include "llvm/Support/raw_ostream.h"
31using namespace llvm;
32
33STATISTIC(NumSunk, "Number of machine instructions sunk");
34
35namespace {
36  class VISIBILITY_HIDDEN MachineSinking : public MachineFunctionPass {
37    const TargetMachine   *TM;
38    const TargetInstrInfo *TII;
39    const TargetRegisterInfo *TRI;
40    MachineFunction       *CurMF; // Current MachineFunction
41    MachineRegisterInfo  *RegInfo; // Machine register information
42    MachineDominatorTree *DT;   // Machine dominator tree
43    AliasAnalysis *AA;
44    BitVector AllocatableSet;   // Which physregs are allocatable?
45
46  public:
47    static char ID; // Pass identification
48    MachineSinking() : MachineFunctionPass(&ID) {}
49
50    virtual bool runOnMachineFunction(MachineFunction &MF);
51
52    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
53      AU.setPreservesCFG();
54      MachineFunctionPass::getAnalysisUsage(AU);
55      AU.addRequired<AliasAnalysis>();
56      AU.addRequired<MachineDominatorTree>();
57      AU.addPreserved<MachineDominatorTree>();
58    }
59  private:
60    bool ProcessBlock(MachineBasicBlock &MBB);
61    bool SinkInstruction(MachineInstr *MI, bool &SawStore);
62    bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB) const;
63  };
64} // end anonymous namespace
65
66char MachineSinking::ID = 0;
67static RegisterPass<MachineSinking>
68X("machine-sink", "Machine code sinking");
69
70FunctionPass *llvm::createMachineSinkingPass() { return new MachineSinking(); }
71
72/// AllUsesDominatedByBlock - Return true if all uses of the specified register
73/// occur in blocks dominated by the specified block.
74bool MachineSinking::AllUsesDominatedByBlock(unsigned Reg,
75                                             MachineBasicBlock *MBB) const {
76  assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
77         "Only makes sense for vregs");
78  for (MachineRegisterInfo::use_iterator I = RegInfo->use_begin(Reg),
79       E = RegInfo->use_end(); I != E; ++I) {
80    // Determine the block of the use.
81    MachineInstr *UseInst = &*I;
82    MachineBasicBlock *UseBlock = UseInst->getParent();
83    if (UseInst->getOpcode() == TargetInstrInfo::PHI) {
84      // PHI nodes use the operand in the predecessor block, not the block with
85      // the PHI.
86      UseBlock = UseInst->getOperand(I.getOperandNo()+1).getMBB();
87    }
88    // Check that it dominates.
89    if (!DT->dominates(MBB, UseBlock))
90      return false;
91  }
92  return true;
93}
94
95
96
97bool MachineSinking::runOnMachineFunction(MachineFunction &MF) {
98  DEBUG(errs() << "******** Machine Sinking ********\n");
99
100  CurMF = &MF;
101  TM = &CurMF->getTarget();
102  TII = TM->getInstrInfo();
103  TRI = TM->getRegisterInfo();
104  RegInfo = &CurMF->getRegInfo();
105  DT = &getAnalysis<MachineDominatorTree>();
106  AA = &getAnalysis<AliasAnalysis>();
107  AllocatableSet = TRI->getAllocatableSet(*CurMF);
108
109  bool EverMadeChange = false;
110
111  while (1) {
112    bool MadeChange = false;
113
114    // Process all basic blocks.
115    for (MachineFunction::iterator I = CurMF->begin(), E = CurMF->end();
116         I != E; ++I)
117      MadeChange |= ProcessBlock(*I);
118
119    // If this iteration over the code changed anything, keep iterating.
120    if (!MadeChange) break;
121    EverMadeChange = true;
122  }
123  return EverMadeChange;
124}
125
126bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) {
127  // Can't sink anything out of a block that has less than two successors.
128  if (MBB.succ_size() <= 1 || MBB.empty()) return false;
129
130  bool MadeChange = false;
131
132  // Walk the basic block bottom-up.  Remember if we saw a store.
133  MachineBasicBlock::iterator I = MBB.end();
134  --I;
135  bool ProcessedBegin, SawStore = false;
136  do {
137    MachineInstr *MI = I;  // The instruction to sink.
138
139    // Predecrement I (if it's not begin) so that it isn't invalidated by
140    // sinking.
141    ProcessedBegin = I == MBB.begin();
142    if (!ProcessedBegin)
143      --I;
144
145    if (SinkInstruction(MI, SawStore))
146      ++NumSunk, MadeChange = true;
147
148    // If we just processed the first instruction in the block, we're done.
149  } while (!ProcessedBegin);
150
151  return MadeChange;
152}
153
154/// SinkInstruction - Determine whether it is safe to sink the specified machine
155/// instruction out of its current block into a successor.
156bool MachineSinking::SinkInstruction(MachineInstr *MI, bool &SawStore) {
157  // Check if it's safe to move the instruction.
158  if (!MI->isSafeToMove(TII, SawStore, AA))
159    return false;
160
161  // FIXME: This should include support for sinking instructions within the
162  // block they are currently in to shorten the live ranges.  We often get
163  // instructions sunk into the top of a large block, but it would be better to
164  // also sink them down before their first use in the block.  This xform has to
165  // be careful not to *increase* register pressure though, e.g. sinking
166  // "x = y + z" down if it kills y and z would increase the live ranges of y
167  // and z and only shrink the live range of x.
168
169  // Loop over all the operands of the specified instruction.  If there is
170  // anything we can't handle, bail out.
171  MachineBasicBlock *ParentBlock = MI->getParent();
172
173  // SuccToSinkTo - This is the successor to sink this instruction to, once we
174  // decide.
175  MachineBasicBlock *SuccToSinkTo = 0;
176
177  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
178    const MachineOperand &MO = MI->getOperand(i);
179    if (!MO.isReg()) continue;  // Ignore non-register operands.
180
181    unsigned Reg = MO.getReg();
182    if (Reg == 0) continue;
183
184    if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
185      if (MO.isUse()) {
186        // If the physreg has no defs anywhere, it's just an ambient register
187        // and we can freely move its uses. Alternatively, if it's allocatable,
188        // it could get allocated to something with a def during allocation.
189        if (!RegInfo->def_empty(Reg))
190          return false;
191        if (AllocatableSet.test(Reg))
192          return false;
193        // Check for a def among the register's aliases too.
194        for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
195          unsigned AliasReg = *Alias;
196          if (!RegInfo->def_empty(AliasReg))
197            return false;
198          if (AllocatableSet.test(AliasReg))
199            return false;
200        }
201      } else if (!MO.isDead()) {
202        // A def that isn't dead. We can't move it.
203        return false;
204      }
205    } else {
206      // Virtual register uses are always safe to sink.
207      if (MO.isUse()) continue;
208
209      // If it's not safe to move defs of the register class, then abort.
210      if (!TII->isSafeToMoveRegClassDefs(RegInfo->getRegClass(Reg)))
211        return false;
212
213      // FIXME: This picks a successor to sink into based on having one
214      // successor that dominates all the uses.  However, there are cases where
215      // sinking can happen but where the sink point isn't a successor.  For
216      // example:
217      //   x = computation
218      //   if () {} else {}
219      //   use x
220      // the instruction could be sunk over the whole diamond for the
221      // if/then/else (or loop, etc), allowing it to be sunk into other blocks
222      // after that.
223
224      // Virtual register defs can only be sunk if all their uses are in blocks
225      // dominated by one of the successors.
226      if (SuccToSinkTo) {
227        // If a previous operand picked a block to sink to, then this operand
228        // must be sinkable to the same block.
229        if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo))
230          return false;
231        continue;
232      }
233
234      // Otherwise, we should look at all the successors and decide which one
235      // we should sink to.
236      for (MachineBasicBlock::succ_iterator SI = ParentBlock->succ_begin(),
237           E = ParentBlock->succ_end(); SI != E; ++SI) {
238        if (AllUsesDominatedByBlock(Reg, *SI)) {
239          SuccToSinkTo = *SI;
240          break;
241        }
242      }
243
244      // If we couldn't find a block to sink to, ignore this instruction.
245      if (SuccToSinkTo == 0)
246        return false;
247    }
248  }
249
250  // If there are no outputs, it must have side-effects.
251  if (SuccToSinkTo == 0)
252    return false;
253
254  // It's not safe to sink instructions to EH landing pad. Control flow into
255  // landing pad is implicitly defined.
256  if (SuccToSinkTo->isLandingPad())
257    return false;
258
259  // If is not possible to sink an instruction into its own block.  This can
260  // happen with loops.
261  if (MI->getParent() == SuccToSinkTo)
262    return false;
263
264  DEBUG(errs() << "Sink instr " << *MI);
265  DEBUG(errs() << "to block " << *SuccToSinkTo);
266
267  // If the block has multiple predecessors, this would introduce computation on
268  // a path that it doesn't already exist.  We could split the critical edge,
269  // but for now we just punt.
270  // FIXME: Split critical edges if not backedges.
271  if (SuccToSinkTo->pred_size() > 1) {
272    DEBUG(errs() << " *** PUNTING: Critical edge found\n");
273    return false;
274  }
275
276  // Determine where to insert into.  Skip phi nodes.
277  MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin();
278  while (InsertPos != SuccToSinkTo->end() &&
279         InsertPos->getOpcode() == TargetInstrInfo::PHI)
280    ++InsertPos;
281
282  // Move the instruction.
283  SuccToSinkTo->splice(InsertPos, ParentBlock, MI,
284                       ++MachineBasicBlock::iterator(MI));
285  return true;
286}
287