GlobalsModRef.cpp revision 234353
1//===- GlobalsModRef.cpp - Simple Mod/Ref Analysis for Globals ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This simple pass provides alias and mod/ref information for global values
11// that do not have their address taken, and keeps track of whether functions
12// read or write memory (are "pure").  For this simple (but very common) case,
13// we can provide pretty accurate and useful information.
14//
15//===----------------------------------------------------------------------===//
16
17#define DEBUG_TYPE "globalsmodref-aa"
18#include "llvm/Analysis/Passes.h"
19#include "llvm/Module.h"
20#include "llvm/Pass.h"
21#include "llvm/Instructions.h"
22#include "llvm/Constants.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/IntrinsicInst.h"
25#include "llvm/Analysis/AliasAnalysis.h"
26#include "llvm/Analysis/CallGraph.h"
27#include "llvm/Analysis/MemoryBuiltins.h"
28#include "llvm/Analysis/ValueTracking.h"
29#include "llvm/Support/CommandLine.h"
30#include "llvm/Support/InstIterator.h"
31#include "llvm/ADT/Statistic.h"
32#include "llvm/ADT/SCCIterator.h"
33#include <set>
34using namespace llvm;
35
36STATISTIC(NumNonAddrTakenGlobalVars,
37          "Number of global vars without address taken");
38STATISTIC(NumNonAddrTakenFunctions,"Number of functions without address taken");
39STATISTIC(NumNoMemFunctions, "Number of functions that do not access memory");
40STATISTIC(NumReadMemFunctions, "Number of functions that only read memory");
41STATISTIC(NumIndirectGlobalVars, "Number of indirect global objects");
42
43namespace {
44  /// FunctionRecord - One instance of this structure is stored for every
45  /// function in the program.  Later, the entries for these functions are
46  /// removed if the function is found to call an external function (in which
47  /// case we know nothing about it.
48  struct FunctionRecord {
49    /// GlobalInfo - Maintain mod/ref info for all of the globals without
50    /// addresses taken that are read or written (transitively) by this
51    /// function.
52    std::map<const GlobalValue*, unsigned> GlobalInfo;
53
54    /// MayReadAnyGlobal - May read global variables, but it is not known which.
55    bool MayReadAnyGlobal;
56
57    unsigned getInfoForGlobal(const GlobalValue *GV) const {
58      unsigned Effect = MayReadAnyGlobal ? AliasAnalysis::Ref : 0;
59      std::map<const GlobalValue*, unsigned>::const_iterator I =
60        GlobalInfo.find(GV);
61      if (I != GlobalInfo.end())
62        Effect |= I->second;
63      return Effect;
64    }
65
66    /// FunctionEffect - Capture whether or not this function reads or writes to
67    /// ANY memory.  If not, we can do a lot of aggressive analysis on it.
68    unsigned FunctionEffect;
69
70    FunctionRecord() : MayReadAnyGlobal (false), FunctionEffect(0) {}
71  };
72
73  /// GlobalsModRef - The actual analysis pass.
74  class GlobalsModRef : public ModulePass, public AliasAnalysis {
75    /// NonAddressTakenGlobals - The globals that do not have their addresses
76    /// taken.
77    std::set<const GlobalValue*> NonAddressTakenGlobals;
78
79    /// IndirectGlobals - The memory pointed to by this global is known to be
80    /// 'owned' by the global.
81    std::set<const GlobalValue*> IndirectGlobals;
82
83    /// AllocsForIndirectGlobals - If an instruction allocates memory for an
84    /// indirect global, this map indicates which one.
85    std::map<const Value*, const GlobalValue*> AllocsForIndirectGlobals;
86
87    /// FunctionInfo - For each function, keep track of what globals are
88    /// modified or read.
89    std::map<const Function*, FunctionRecord> FunctionInfo;
90
91  public:
92    static char ID;
93    GlobalsModRef() : ModulePass(ID) {
94      initializeGlobalsModRefPass(*PassRegistry::getPassRegistry());
95    }
96
97    bool runOnModule(Module &M) {
98      InitializeAliasAnalysis(this);                 // set up super class
99      AnalyzeGlobals(M);                          // find non-addr taken globals
100      AnalyzeCallGraph(getAnalysis<CallGraph>(), M); // Propagate on CG
101      return false;
102    }
103
104    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
105      AliasAnalysis::getAnalysisUsage(AU);
106      AU.addRequired<CallGraph>();
107      AU.setPreservesAll();                         // Does not transform code
108    }
109
110    //------------------------------------------------
111    // Implement the AliasAnalysis API
112    //
113    AliasResult alias(const Location &LocA, const Location &LocB);
114    ModRefResult getModRefInfo(ImmutableCallSite CS,
115                               const Location &Loc);
116    ModRefResult getModRefInfo(ImmutableCallSite CS1,
117                               ImmutableCallSite CS2) {
118      return AliasAnalysis::getModRefInfo(CS1, CS2);
119    }
120
121    /// getModRefBehavior - Return the behavior of the specified function if
122    /// called from the specified call site.  The call site may be null in which
123    /// case the most generic behavior of this function should be returned.
124    ModRefBehavior getModRefBehavior(const Function *F) {
125      ModRefBehavior Min = UnknownModRefBehavior;
126
127      if (FunctionRecord *FR = getFunctionInfo(F)) {
128        if (FR->FunctionEffect == 0)
129          Min = DoesNotAccessMemory;
130        else if ((FR->FunctionEffect & Mod) == 0)
131          Min = OnlyReadsMemory;
132      }
133
134      return ModRefBehavior(AliasAnalysis::getModRefBehavior(F) & Min);
135    }
136
137    /// getModRefBehavior - Return the behavior of the specified function if
138    /// called from the specified call site.  The call site may be null in which
139    /// case the most generic behavior of this function should be returned.
140    ModRefBehavior getModRefBehavior(ImmutableCallSite CS) {
141      ModRefBehavior Min = UnknownModRefBehavior;
142
143      if (const Function* F = CS.getCalledFunction())
144        if (FunctionRecord *FR = getFunctionInfo(F)) {
145          if (FR->FunctionEffect == 0)
146            Min = DoesNotAccessMemory;
147          else if ((FR->FunctionEffect & Mod) == 0)
148            Min = OnlyReadsMemory;
149        }
150
151      return ModRefBehavior(AliasAnalysis::getModRefBehavior(CS) & Min);
152    }
153
154    virtual void deleteValue(Value *V);
155    virtual void copyValue(Value *From, Value *To);
156    virtual void addEscapingUse(Use &U);
157
158    /// getAdjustedAnalysisPointer - This method is used when a pass implements
159    /// an analysis interface through multiple inheritance.  If needed, it
160    /// should override this to adjust the this pointer as needed for the
161    /// specified pass info.
162    virtual void *getAdjustedAnalysisPointer(AnalysisID PI) {
163      if (PI == &AliasAnalysis::ID)
164        return (AliasAnalysis*)this;
165      return this;
166    }
167
168  private:
169    /// getFunctionInfo - Return the function info for the function, or null if
170    /// we don't have anything useful to say about it.
171    FunctionRecord *getFunctionInfo(const Function *F) {
172      std::map<const Function*, FunctionRecord>::iterator I =
173        FunctionInfo.find(F);
174      if (I != FunctionInfo.end())
175        return &I->second;
176      return 0;
177    }
178
179    void AnalyzeGlobals(Module &M);
180    void AnalyzeCallGraph(CallGraph &CG, Module &M);
181    bool AnalyzeUsesOfPointer(Value *V, std::vector<Function*> &Readers,
182                              std::vector<Function*> &Writers,
183                              GlobalValue *OkayStoreDest = 0);
184    bool AnalyzeIndirectGlobalMemory(GlobalValue *GV);
185  };
186}
187
188char GlobalsModRef::ID = 0;
189INITIALIZE_AG_PASS_BEGIN(GlobalsModRef, AliasAnalysis,
190                "globalsmodref-aa", "Simple mod/ref analysis for globals",
191                false, true, false)
192INITIALIZE_AG_DEPENDENCY(CallGraph)
193INITIALIZE_AG_PASS_END(GlobalsModRef, AliasAnalysis,
194                "globalsmodref-aa", "Simple mod/ref analysis for globals",
195                false, true, false)
196
197Pass *llvm::createGlobalsModRefPass() { return new GlobalsModRef(); }
198
199/// AnalyzeGlobals - Scan through the users of all of the internal
200/// GlobalValue's in the program.  If none of them have their "address taken"
201/// (really, their address passed to something nontrivial), record this fact,
202/// and record the functions that they are used directly in.
203void GlobalsModRef::AnalyzeGlobals(Module &M) {
204  std::vector<Function*> Readers, Writers;
205  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
206    if (I->hasLocalLinkage()) {
207      if (!AnalyzeUsesOfPointer(I, Readers, Writers)) {
208        // Remember that we are tracking this global.
209        NonAddressTakenGlobals.insert(I);
210        ++NumNonAddrTakenFunctions;
211      }
212      Readers.clear(); Writers.clear();
213    }
214
215  for (Module::global_iterator I = M.global_begin(), E = M.global_end();
216       I != E; ++I)
217    if (I->hasLocalLinkage()) {
218      if (!AnalyzeUsesOfPointer(I, Readers, Writers)) {
219        // Remember that we are tracking this global, and the mod/ref fns
220        NonAddressTakenGlobals.insert(I);
221
222        for (unsigned i = 0, e = Readers.size(); i != e; ++i)
223          FunctionInfo[Readers[i]].GlobalInfo[I] |= Ref;
224
225        if (!I->isConstant())  // No need to keep track of writers to constants
226          for (unsigned i = 0, e = Writers.size(); i != e; ++i)
227            FunctionInfo[Writers[i]].GlobalInfo[I] |= Mod;
228        ++NumNonAddrTakenGlobalVars;
229
230        // If this global holds a pointer type, see if it is an indirect global.
231        if (I->getType()->getElementType()->isPointerTy() &&
232            AnalyzeIndirectGlobalMemory(I))
233          ++NumIndirectGlobalVars;
234      }
235      Readers.clear(); Writers.clear();
236    }
237}
238
239/// AnalyzeUsesOfPointer - Look at all of the users of the specified pointer.
240/// If this is used by anything complex (i.e., the address escapes), return
241/// true.  Also, while we are at it, keep track of those functions that read and
242/// write to the value.
243///
244/// If OkayStoreDest is non-null, stores into this global are allowed.
245bool GlobalsModRef::AnalyzeUsesOfPointer(Value *V,
246                                         std::vector<Function*> &Readers,
247                                         std::vector<Function*> &Writers,
248                                         GlobalValue *OkayStoreDest) {
249  if (!V->getType()->isPointerTy()) return true;
250
251  for (Value::use_iterator UI = V->use_begin(), E=V->use_end(); UI != E; ++UI) {
252    User *U = *UI;
253    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
254      Readers.push_back(LI->getParent()->getParent());
255    } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
256      if (V == SI->getOperand(1)) {
257        Writers.push_back(SI->getParent()->getParent());
258      } else if (SI->getOperand(1) != OkayStoreDest) {
259        return true;  // Storing the pointer
260      }
261    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
262      if (AnalyzeUsesOfPointer(GEP, Readers, Writers)) return true;
263    } else if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
264      if (AnalyzeUsesOfPointer(BCI, Readers, Writers, OkayStoreDest))
265        return true;
266    } else if (isFreeCall(U)) {
267      Writers.push_back(cast<Instruction>(U)->getParent()->getParent());
268    } else if (CallInst *CI = dyn_cast<CallInst>(U)) {
269      // Make sure that this is just the function being called, not that it is
270      // passing into the function.
271      for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i)
272        if (CI->getArgOperand(i) == V) return true;
273    } else if (InvokeInst *II = dyn_cast<InvokeInst>(U)) {
274      // Make sure that this is just the function being called, not that it is
275      // passing into the function.
276      for (unsigned i = 0, e = II->getNumArgOperands(); i != e; ++i)
277        if (II->getArgOperand(i) == V) return true;
278    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
279      if (CE->getOpcode() == Instruction::GetElementPtr ||
280          CE->getOpcode() == Instruction::BitCast) {
281        if (AnalyzeUsesOfPointer(CE, Readers, Writers))
282          return true;
283      } else {
284        return true;
285      }
286    } else if (ICmpInst *ICI = dyn_cast<ICmpInst>(U)) {
287      if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
288        return true;  // Allow comparison against null.
289    } else {
290      return true;
291    }
292  }
293
294  return false;
295}
296
297/// AnalyzeIndirectGlobalMemory - We found an non-address-taken global variable
298/// which holds a pointer type.  See if the global always points to non-aliased
299/// heap memory: that is, all initializers of the globals are allocations, and
300/// those allocations have no use other than initialization of the global.
301/// Further, all loads out of GV must directly use the memory, not store the
302/// pointer somewhere.  If this is true, we consider the memory pointed to by
303/// GV to be owned by GV and can disambiguate other pointers from it.
304bool GlobalsModRef::AnalyzeIndirectGlobalMemory(GlobalValue *GV) {
305  // Keep track of values related to the allocation of the memory, f.e. the
306  // value produced by the malloc call and any casts.
307  std::vector<Value*> AllocRelatedValues;
308
309  // Walk the user list of the global.  If we find anything other than a direct
310  // load or store, bail out.
311  for (Value::use_iterator I = GV->use_begin(), E = GV->use_end(); I != E; ++I){
312    User *U = *I;
313    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
314      // The pointer loaded from the global can only be used in simple ways:
315      // we allow addressing of it and loading storing to it.  We do *not* allow
316      // storing the loaded pointer somewhere else or passing to a function.
317      std::vector<Function*> ReadersWriters;
318      if (AnalyzeUsesOfPointer(LI, ReadersWriters, ReadersWriters))
319        return false;  // Loaded pointer escapes.
320      // TODO: Could try some IP mod/ref of the loaded pointer.
321    } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
322      // Storing the global itself.
323      if (SI->getOperand(0) == GV) return false;
324
325      // If storing the null pointer, ignore it.
326      if (isa<ConstantPointerNull>(SI->getOperand(0)))
327        continue;
328
329      // Check the value being stored.
330      Value *Ptr = GetUnderlyingObject(SI->getOperand(0));
331
332      if (isMalloc(Ptr)) {
333        // Okay, easy case.
334      } else if (CallInst *CI = dyn_cast<CallInst>(Ptr)) {
335        Function *F = CI->getCalledFunction();
336        if (!F || !F->isDeclaration()) return false;     // Too hard to analyze.
337        if (F->getName() != "calloc") return false;   // Not calloc.
338      } else {
339        return false;  // Too hard to analyze.
340      }
341
342      // Analyze all uses of the allocation.  If any of them are used in a
343      // non-simple way (e.g. stored to another global) bail out.
344      std::vector<Function*> ReadersWriters;
345      if (AnalyzeUsesOfPointer(Ptr, ReadersWriters, ReadersWriters, GV))
346        return false;  // Loaded pointer escapes.
347
348      // Remember that this allocation is related to the indirect global.
349      AllocRelatedValues.push_back(Ptr);
350    } else {
351      // Something complex, bail out.
352      return false;
353    }
354  }
355
356  // Okay, this is an indirect global.  Remember all of the allocations for
357  // this global in AllocsForIndirectGlobals.
358  while (!AllocRelatedValues.empty()) {
359    AllocsForIndirectGlobals[AllocRelatedValues.back()] = GV;
360    AllocRelatedValues.pop_back();
361  }
362  IndirectGlobals.insert(GV);
363  return true;
364}
365
366/// AnalyzeCallGraph - At this point, we know the functions where globals are
367/// immediately stored to and read from.  Propagate this information up the call
368/// graph to all callers and compute the mod/ref info for all memory for each
369/// function.
370void GlobalsModRef::AnalyzeCallGraph(CallGraph &CG, Module &M) {
371  // We do a bottom-up SCC traversal of the call graph.  In other words, we
372  // visit all callees before callers (leaf-first).
373  for (scc_iterator<CallGraph*> I = scc_begin(&CG), E = scc_end(&CG); I != E;
374       ++I) {
375    std::vector<CallGraphNode *> &SCC = *I;
376    assert(!SCC.empty() && "SCC with no functions?");
377
378    if (!SCC[0]->getFunction()) {
379      // Calls externally - can't say anything useful.  Remove any existing
380      // function records (may have been created when scanning globals).
381      for (unsigned i = 0, e = SCC.size(); i != e; ++i)
382        FunctionInfo.erase(SCC[i]->getFunction());
383      continue;
384    }
385
386    FunctionRecord &FR = FunctionInfo[SCC[0]->getFunction()];
387
388    bool KnowNothing = false;
389    unsigned FunctionEffect = 0;
390
391    // Collect the mod/ref properties due to called functions.  We only compute
392    // one mod-ref set.
393    for (unsigned i = 0, e = SCC.size(); i != e && !KnowNothing; ++i) {
394      Function *F = SCC[i]->getFunction();
395      if (!F) {
396        KnowNothing = true;
397        break;
398      }
399
400      if (F->isDeclaration()) {
401        // Try to get mod/ref behaviour from function attributes.
402        if (F->doesNotAccessMemory()) {
403          // Can't do better than that!
404        } else if (F->onlyReadsMemory()) {
405          FunctionEffect |= Ref;
406          if (!F->isIntrinsic())
407            // This function might call back into the module and read a global -
408            // consider every global as possibly being read by this function.
409            FR.MayReadAnyGlobal = true;
410        } else {
411          FunctionEffect |= ModRef;
412          // Can't say anything useful unless it's an intrinsic - they don't
413          // read or write global variables of the kind considered here.
414          KnowNothing = !F->isIntrinsic();
415        }
416        continue;
417      }
418
419      for (CallGraphNode::iterator CI = SCC[i]->begin(), E = SCC[i]->end();
420           CI != E && !KnowNothing; ++CI)
421        if (Function *Callee = CI->second->getFunction()) {
422          if (FunctionRecord *CalleeFR = getFunctionInfo(Callee)) {
423            // Propagate function effect up.
424            FunctionEffect |= CalleeFR->FunctionEffect;
425
426            // Incorporate callee's effects on globals into our info.
427            for (std::map<const GlobalValue*, unsigned>::iterator GI =
428                   CalleeFR->GlobalInfo.begin(), E = CalleeFR->GlobalInfo.end();
429                 GI != E; ++GI)
430              FR.GlobalInfo[GI->first] |= GI->second;
431            FR.MayReadAnyGlobal |= CalleeFR->MayReadAnyGlobal;
432          } else {
433            // Can't say anything about it.  However, if it is inside our SCC,
434            // then nothing needs to be done.
435            CallGraphNode *CalleeNode = CG[Callee];
436            if (std::find(SCC.begin(), SCC.end(), CalleeNode) == SCC.end())
437              KnowNothing = true;
438          }
439        } else {
440          KnowNothing = true;
441        }
442    }
443
444    // If we can't say anything useful about this SCC, remove all SCC functions
445    // from the FunctionInfo map.
446    if (KnowNothing) {
447      for (unsigned i = 0, e = SCC.size(); i != e; ++i)
448        FunctionInfo.erase(SCC[i]->getFunction());
449      continue;
450    }
451
452    // Scan the function bodies for explicit loads or stores.
453    for (unsigned i = 0, e = SCC.size(); i != e && FunctionEffect != ModRef;++i)
454      for (inst_iterator II = inst_begin(SCC[i]->getFunction()),
455             E = inst_end(SCC[i]->getFunction());
456           II != E && FunctionEffect != ModRef; ++II)
457        if (isa<LoadInst>(*II)) {
458          FunctionEffect |= Ref;
459          if (cast<LoadInst>(*II).isVolatile())
460            // Volatile loads may have side-effects, so mark them as writing
461            // memory (for example, a flag inside the processor).
462            FunctionEffect |= Mod;
463        } else if (isa<StoreInst>(*II)) {
464          FunctionEffect |= Mod;
465          if (cast<StoreInst>(*II).isVolatile())
466            // Treat volatile stores as reading memory somewhere.
467            FunctionEffect |= Ref;
468        } else if (isMalloc(&cast<Instruction>(*II)) ||
469                   isFreeCall(&cast<Instruction>(*II))) {
470          FunctionEffect |= ModRef;
471        } else if (IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(&*II)) {
472          // The callgraph doesn't include intrinsic calls.
473          Function *Callee = Intrinsic->getCalledFunction();
474          ModRefBehavior Behaviour = AliasAnalysis::getModRefBehavior(Callee);
475          FunctionEffect |= (Behaviour & ModRef);
476        }
477
478    if ((FunctionEffect & Mod) == 0)
479      ++NumReadMemFunctions;
480    if (FunctionEffect == 0)
481      ++NumNoMemFunctions;
482    FR.FunctionEffect = FunctionEffect;
483
484    // Finally, now that we know the full effect on this SCC, clone the
485    // information to each function in the SCC.
486    for (unsigned i = 1, e = SCC.size(); i != e; ++i)
487      FunctionInfo[SCC[i]->getFunction()] = FR;
488  }
489}
490
491
492
493/// alias - If one of the pointers is to a global that we are tracking, and the
494/// other is some random pointer, we know there cannot be an alias, because the
495/// address of the global isn't taken.
496AliasAnalysis::AliasResult
497GlobalsModRef::alias(const Location &LocA,
498                     const Location &LocB) {
499  // Get the base object these pointers point to.
500  const Value *UV1 = GetUnderlyingObject(LocA.Ptr);
501  const Value *UV2 = GetUnderlyingObject(LocB.Ptr);
502
503  // If either of the underlying values is a global, they may be non-addr-taken
504  // globals, which we can answer queries about.
505  const GlobalValue *GV1 = dyn_cast<GlobalValue>(UV1);
506  const GlobalValue *GV2 = dyn_cast<GlobalValue>(UV2);
507  if (GV1 || GV2) {
508    // If the global's address is taken, pretend we don't know it's a pointer to
509    // the global.
510    if (GV1 && !NonAddressTakenGlobals.count(GV1)) GV1 = 0;
511    if (GV2 && !NonAddressTakenGlobals.count(GV2)) GV2 = 0;
512
513    // If the two pointers are derived from two different non-addr-taken
514    // globals, or if one is and the other isn't, we know these can't alias.
515    if ((GV1 || GV2) && GV1 != GV2)
516      return NoAlias;
517
518    // Otherwise if they are both derived from the same addr-taken global, we
519    // can't know the two accesses don't overlap.
520  }
521
522  // These pointers may be based on the memory owned by an indirect global.  If
523  // so, we may be able to handle this.  First check to see if the base pointer
524  // is a direct load from an indirect global.
525  GV1 = GV2 = 0;
526  if (const LoadInst *LI = dyn_cast<LoadInst>(UV1))
527    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
528      if (IndirectGlobals.count(GV))
529        GV1 = GV;
530  if (const LoadInst *LI = dyn_cast<LoadInst>(UV2))
531    if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
532      if (IndirectGlobals.count(GV))
533        GV2 = GV;
534
535  // These pointers may also be from an allocation for the indirect global.  If
536  // so, also handle them.
537  if (AllocsForIndirectGlobals.count(UV1))
538    GV1 = AllocsForIndirectGlobals[UV1];
539  if (AllocsForIndirectGlobals.count(UV2))
540    GV2 = AllocsForIndirectGlobals[UV2];
541
542  // Now that we know whether the two pointers are related to indirect globals,
543  // use this to disambiguate the pointers.  If either pointer is based on an
544  // indirect global and if they are not both based on the same indirect global,
545  // they cannot alias.
546  if ((GV1 || GV2) && GV1 != GV2)
547    return NoAlias;
548
549  return AliasAnalysis::alias(LocA, LocB);
550}
551
552AliasAnalysis::ModRefResult
553GlobalsModRef::getModRefInfo(ImmutableCallSite CS,
554                             const Location &Loc) {
555  unsigned Known = ModRef;
556
557  // If we are asking for mod/ref info of a direct call with a pointer to a
558  // global we are tracking, return information if we have it.
559  if (const GlobalValue *GV =
560        dyn_cast<GlobalValue>(GetUnderlyingObject(Loc.Ptr)))
561    if (GV->hasLocalLinkage())
562      if (const Function *F = CS.getCalledFunction())
563        if (NonAddressTakenGlobals.count(GV))
564          if (const FunctionRecord *FR = getFunctionInfo(F))
565            Known = FR->getInfoForGlobal(GV);
566
567  if (Known == NoModRef)
568    return NoModRef; // No need to query other mod/ref analyses
569  return ModRefResult(Known & AliasAnalysis::getModRefInfo(CS, Loc));
570}
571
572
573//===----------------------------------------------------------------------===//
574// Methods to update the analysis as a result of the client transformation.
575//
576void GlobalsModRef::deleteValue(Value *V) {
577  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
578    if (NonAddressTakenGlobals.erase(GV)) {
579      // This global might be an indirect global.  If so, remove it and remove
580      // any AllocRelatedValues for it.
581      if (IndirectGlobals.erase(GV)) {
582        // Remove any entries in AllocsForIndirectGlobals for this global.
583        for (std::map<const Value*, const GlobalValue*>::iterator
584             I = AllocsForIndirectGlobals.begin(),
585             E = AllocsForIndirectGlobals.end(); I != E; ) {
586          if (I->second == GV) {
587            AllocsForIndirectGlobals.erase(I++);
588          } else {
589            ++I;
590          }
591        }
592      }
593    }
594  }
595
596  // Otherwise, if this is an allocation related to an indirect global, remove
597  // it.
598  AllocsForIndirectGlobals.erase(V);
599
600  AliasAnalysis::deleteValue(V);
601}
602
603void GlobalsModRef::copyValue(Value *From, Value *To) {
604  AliasAnalysis::copyValue(From, To);
605}
606
607void GlobalsModRef::addEscapingUse(Use &U) {
608  // For the purposes of this analysis, it is conservatively correct to treat
609  // a newly escaping value equivalently to a deleted one.  We could perhaps
610  // be more precise by processing the new use and attempting to update our
611  // saved analysis results to accommodate it.
612  deleteValue(U);
613
614  AliasAnalysis::addEscapingUse(U);
615}
616