GlobalsModRef.cpp revision 218893
1//===- GlobalsModRef.cpp - Simple Mod/Ref Analysis for Globals ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This simple pass provides alias and mod/ref information for global values
11// that do not have their address taken, and keeps track of whether functions
12// read or write memory (are "pure").  For this simple (but very common) case,
13// we can provide pretty accurate and useful information.
14//
15//===----------------------------------------------------------------------===//
16
17#define DEBUG_TYPE "globalsmodref-aa"
18#include "llvm/Analysis/Passes.h"
19#include "llvm/Module.h"
20#include "llvm/Pass.h"
21#include "llvm/Instructions.h"
22#include "llvm/Constants.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/Analysis/AliasAnalysis.h"
25#include "llvm/Analysis/CallGraph.h"
26#include "llvm/Analysis/MemoryBuiltins.h"
27#include "llvm/Analysis/ValueTracking.h"
28#include "llvm/Support/CommandLine.h"
29#include "llvm/Support/InstIterator.h"
30#include "llvm/ADT/Statistic.h"
31#include "llvm/ADT/SCCIterator.h"
32#include <set>
33using namespace llvm;
34
35STATISTIC(NumNonAddrTakenGlobalVars,
36          "Number of global vars without address taken");
37STATISTIC(NumNonAddrTakenFunctions,"Number of functions without address taken");
38STATISTIC(NumNoMemFunctions, "Number of functions that do not access memory");
39STATISTIC(NumReadMemFunctions, "Number of functions that only read memory");
40STATISTIC(NumIndirectGlobalVars, "Number of indirect global objects");
41
42namespace {
43  /// FunctionRecord - One instance of this structure is stored for every
44  /// function in the program.  Later, the entries for these functions are
45  /// removed if the function is found to call an external function (in which
46  /// case we know nothing about it.
47  struct FunctionRecord {
48    /// GlobalInfo - Maintain mod/ref info for all of the globals without
49    /// addresses taken that are read or written (transitively) by this
50    /// function.
51    std::map<const GlobalValue*, unsigned> GlobalInfo;
52
53    /// MayReadAnyGlobal - May read global variables, but it is not known which.
54    bool MayReadAnyGlobal;
55
56    unsigned getInfoForGlobal(const GlobalValue *GV) const {
57      unsigned Effect = MayReadAnyGlobal ? AliasAnalysis::Ref : 0;
58      std::map<const GlobalValue*, unsigned>::const_iterator I =
59        GlobalInfo.find(GV);
60      if (I != GlobalInfo.end())
61        Effect |= I->second;
62      return Effect;
63    }
64
65    /// FunctionEffect - Capture whether or not this function reads or writes to
66    /// ANY memory.  If not, we can do a lot of aggressive analysis on it.
67    unsigned FunctionEffect;
68
69    FunctionRecord() : MayReadAnyGlobal (false), FunctionEffect(0) {}
70  };
71
72  /// GlobalsModRef - The actual analysis pass.
73  class GlobalsModRef : public ModulePass, public AliasAnalysis {
74    /// NonAddressTakenGlobals - The globals that do not have their addresses
75    /// taken.
76    std::set<const GlobalValue*> NonAddressTakenGlobals;
77
78    /// IndirectGlobals - The memory pointed to by this global is known to be
79    /// 'owned' by the global.
80    std::set<const GlobalValue*> IndirectGlobals;
81
82    /// AllocsForIndirectGlobals - If an instruction allocates memory for an
83    /// indirect global, this map indicates which one.
84    std::map<const Value*, const GlobalValue*> AllocsForIndirectGlobals;
85
86    /// FunctionInfo - For each function, keep track of what globals are
87    /// modified or read.
88    std::map<const Function*, FunctionRecord> FunctionInfo;
89
90  public:
91    static char ID;
92    GlobalsModRef() : ModulePass(ID) {
93      initializeGlobalsModRefPass(*PassRegistry::getPassRegistry());
94    }
95
96    bool runOnModule(Module &M) {
97      InitializeAliasAnalysis(this);                 // set up super class
98      AnalyzeGlobals(M);                          // find non-addr taken globals
99      AnalyzeCallGraph(getAnalysis<CallGraph>(), M); // Propagate on CG
100      return false;
101    }
102
103    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
104      AliasAnalysis::getAnalysisUsage(AU);
105      AU.addRequired<CallGraph>();
106      AU.setPreservesAll();                         // Does not transform code
107    }
108
109    //------------------------------------------------
110    // Implement the AliasAnalysis API
111    //
112    AliasResult alias(const Location &LocA, const Location &LocB);
113    ModRefResult getModRefInfo(ImmutableCallSite CS,
114                               const Location &Loc);
115    ModRefResult getModRefInfo(ImmutableCallSite CS1,
116                               ImmutableCallSite CS2) {
117      return AliasAnalysis::getModRefInfo(CS1, CS2);
118    }
119
120    /// getModRefBehavior - Return the behavior of the specified function if
121    /// called from the specified call site.  The call site may be null in which
122    /// case the most generic behavior of this function should be returned.
123    ModRefBehavior getModRefBehavior(const Function *F) {
124      ModRefBehavior Min = UnknownModRefBehavior;
125
126      if (FunctionRecord *FR = getFunctionInfo(F)) {
127        if (FR->FunctionEffect == 0)
128          Min = DoesNotAccessMemory;
129        else if ((FR->FunctionEffect & Mod) == 0)
130          Min = OnlyReadsMemory;
131      }
132
133      return ModRefBehavior(AliasAnalysis::getModRefBehavior(F) & Min);
134    }
135
136    /// getModRefBehavior - Return the behavior of the specified function if
137    /// called from the specified call site.  The call site may be null in which
138    /// case the most generic behavior of this function should be returned.
139    ModRefBehavior getModRefBehavior(ImmutableCallSite CS) {
140      ModRefBehavior Min = UnknownModRefBehavior;
141
142      if (const Function* F = CS.getCalledFunction())
143        if (FunctionRecord *FR = getFunctionInfo(F)) {
144          if (FR->FunctionEffect == 0)
145            Min = DoesNotAccessMemory;
146          else if ((FR->FunctionEffect & Mod) == 0)
147            Min = OnlyReadsMemory;
148        }
149
150      return ModRefBehavior(AliasAnalysis::getModRefBehavior(CS) & Min);
151    }
152
153    virtual void deleteValue(Value *V);
154    virtual void copyValue(Value *From, Value *To);
155    virtual void addEscapingUse(Use &U);
156
157    /// getAdjustedAnalysisPointer - This method is used when a pass implements
158    /// an analysis interface through multiple inheritance.  If needed, it
159    /// should override this to adjust the this pointer as needed for the
160    /// specified pass info.
161    virtual void *getAdjustedAnalysisPointer(AnalysisID PI) {
162      if (PI == &AliasAnalysis::ID)
163        return (AliasAnalysis*)this;
164      return this;
165    }
166
167  private:
168    /// getFunctionInfo - Return the function info for the function, or null if
169    /// we don't have anything useful to say about it.
170    FunctionRecord *getFunctionInfo(const Function *F) {
171      std::map<const Function*, FunctionRecord>::iterator I =
172        FunctionInfo.find(F);
173      if (I != FunctionInfo.end())
174        return &I->second;
175      return 0;
176    }
177
178    void AnalyzeGlobals(Module &M);
179    void AnalyzeCallGraph(CallGraph &CG, Module &M);
180    bool AnalyzeUsesOfPointer(Value *V, std::vector<Function*> &Readers,
181                              std::vector<Function*> &Writers,
182                              GlobalValue *OkayStoreDest = 0);
183    bool AnalyzeIndirectGlobalMemory(GlobalValue *GV);
184  };
185}
186
187char GlobalsModRef::ID = 0;
188INITIALIZE_AG_PASS_BEGIN(GlobalsModRef, AliasAnalysis,
189                "globalsmodref-aa", "Simple mod/ref analysis for globals",
190                false, true, false)
191INITIALIZE_AG_DEPENDENCY(CallGraph)
192INITIALIZE_AG_PASS_END(GlobalsModRef, AliasAnalysis,
193                "globalsmodref-aa", "Simple mod/ref analysis for globals",
194                false, true, false)
195
196Pass *llvm::createGlobalsModRefPass() { return new GlobalsModRef(); }
197
198/// AnalyzeGlobals - Scan through the users of all of the internal
199/// GlobalValue's in the program.  If none of them have their "address taken"
200/// (really, their address passed to something nontrivial), record this fact,
201/// and record the functions that they are used directly in.
202void GlobalsModRef::AnalyzeGlobals(Module &M) {
203  std::vector<Function*> Readers, Writers;
204  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
205    if (I->hasLocalLinkage()) {
206      if (!AnalyzeUsesOfPointer(I, Readers, Writers)) {
207        // Remember that we are tracking this global.
208        NonAddressTakenGlobals.insert(I);
209        ++NumNonAddrTakenFunctions;
210      }
211      Readers.clear(); Writers.clear();
212    }
213
214  for (Module::global_iterator I = M.global_begin(), E = M.global_end();
215       I != E; ++I)
216    if (I->hasLocalLinkage()) {
217      if (!AnalyzeUsesOfPointer(I, Readers, Writers)) {
218        // Remember that we are tracking this global, and the mod/ref fns
219        NonAddressTakenGlobals.insert(I);
220
221        for (unsigned i = 0, e = Readers.size(); i != e; ++i)
222          FunctionInfo[Readers[i]].GlobalInfo[I] |= Ref;
223
224        if (!I->isConstant())  // No need to keep track of writers to constants
225          for (unsigned i = 0, e = Writers.size(); i != e; ++i)
226            FunctionInfo[Writers[i]].GlobalInfo[I] |= Mod;
227        ++NumNonAddrTakenGlobalVars;
228
229        // If this global holds a pointer type, see if it is an indirect global.
230        if (I->getType()->getElementType()->isPointerTy() &&
231            AnalyzeIndirectGlobalMemory(I))
232          ++NumIndirectGlobalVars;
233      }
234      Readers.clear(); Writers.clear();
235    }
236}
237
238/// AnalyzeUsesOfPointer - Look at all of the users of the specified pointer.
239/// If this is used by anything complex (i.e., the address escapes), return
240/// true.  Also, while we are at it, keep track of those functions that read and
241/// write to the value.
242///
243/// If OkayStoreDest is non-null, stores into this global are allowed.
244bool GlobalsModRef::AnalyzeUsesOfPointer(Value *V,
245                                         std::vector<Function*> &Readers,
246                                         std::vector<Function*> &Writers,
247                                         GlobalValue *OkayStoreDest) {
248  if (!V->getType()->isPointerTy()) return true;
249
250  for (Value::use_iterator UI = V->use_begin(), E=V->use_end(); UI != E; ++UI) {
251    User *U = *UI;
252    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
253      Readers.push_back(LI->getParent()->getParent());
254    } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
255      if (V == SI->getOperand(1)) {
256        Writers.push_back(SI->getParent()->getParent());
257      } else if (SI->getOperand(1) != OkayStoreDest) {
258        return true;  // Storing the pointer
259      }
260    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
261      if (AnalyzeUsesOfPointer(GEP, Readers, Writers)) return true;
262    } else if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
263      if (AnalyzeUsesOfPointer(BCI, Readers, Writers, OkayStoreDest))
264        return true;
265    } else if (isFreeCall(U)) {
266      Writers.push_back(cast<Instruction>(U)->getParent()->getParent());
267    } else if (CallInst *CI = dyn_cast<CallInst>(U)) {
268      // Make sure that this is just the function being called, not that it is
269      // passing into the function.
270      for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i)
271        if (CI->getArgOperand(i) == V) return true;
272    } else if (InvokeInst *II = dyn_cast<InvokeInst>(U)) {
273      // Make sure that this is just the function being called, not that it is
274      // passing into the function.
275      for (unsigned i = 0, e = II->getNumArgOperands(); i != e; ++i)
276        if (II->getArgOperand(i) == V) return true;
277    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
278      if (CE->getOpcode() == Instruction::GetElementPtr ||
279          CE->getOpcode() == Instruction::BitCast) {
280        if (AnalyzeUsesOfPointer(CE, Readers, Writers))
281          return true;
282      } else {
283        return true;
284      }
285    } else if (ICmpInst *ICI = dyn_cast<ICmpInst>(U)) {
286      if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
287        return true;  // Allow comparison against null.
288    } else {
289      return true;
290    }
291  }
292
293  return false;
294}
295
296/// AnalyzeIndirectGlobalMemory - We found an non-address-taken global variable
297/// which holds a pointer type.  See if the global always points to non-aliased
298/// heap memory: that is, all initializers of the globals are allocations, and
299/// those allocations have no use other than initialization of the global.
300/// Further, all loads out of GV must directly use the memory, not store the
301/// pointer somewhere.  If this is true, we consider the memory pointed to by
302/// GV to be owned by GV and can disambiguate other pointers from it.
303bool GlobalsModRef::AnalyzeIndirectGlobalMemory(GlobalValue *GV) {
304  // Keep track of values related to the allocation of the memory, f.e. the
305  // value produced by the malloc call and any casts.
306  std::vector<Value*> AllocRelatedValues;
307
308  // Walk the user list of the global.  If we find anything other than a direct
309  // load or store, bail out.
310  for (Value::use_iterator I = GV->use_begin(), E = GV->use_end(); I != E; ++I){
311    User *U = *I;
312    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
313      // The pointer loaded from the global can only be used in simple ways:
314      // we allow addressing of it and loading storing to it.  We do *not* allow
315      // storing the loaded pointer somewhere else or passing to a function.
316      std::vector<Function*> ReadersWriters;
317      if (AnalyzeUsesOfPointer(LI, ReadersWriters, ReadersWriters))
318        return false;  // Loaded pointer escapes.
319      // TODO: Could try some IP mod/ref of the loaded pointer.
320    } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
321      // Storing the global itself.
322      if (SI->getOperand(0) == GV) return false;
323
324      // If storing the null pointer, ignore it.
325      if (isa<ConstantPointerNull>(SI->getOperand(0)))
326        continue;
327
328      // Check the value being stored.
329      Value *Ptr = GetUnderlyingObject(SI->getOperand(0));
330
331      if (isMalloc(Ptr)) {
332        // Okay, easy case.
333      } else if (CallInst *CI = dyn_cast<CallInst>(Ptr)) {
334        Function *F = CI->getCalledFunction();
335        if (!F || !F->isDeclaration()) return false;     // Too hard to analyze.
336        if (F->getName() != "calloc") return false;   // Not calloc.
337      } else {
338        return false;  // Too hard to analyze.
339      }
340
341      // Analyze all uses of the allocation.  If any of them are used in a
342      // non-simple way (e.g. stored to another global) bail out.
343      std::vector<Function*> ReadersWriters;
344      if (AnalyzeUsesOfPointer(Ptr, ReadersWriters, ReadersWriters, GV))
345        return false;  // Loaded pointer escapes.
346
347      // Remember that this allocation is related to the indirect global.
348      AllocRelatedValues.push_back(Ptr);
349    } else {
350      // Something complex, bail out.
351      return false;
352    }
353  }
354
355  // Okay, this is an indirect global.  Remember all of the allocations for
356  // this global in AllocsForIndirectGlobals.
357  while (!AllocRelatedValues.empty()) {
358    AllocsForIndirectGlobals[AllocRelatedValues.back()] = GV;
359    AllocRelatedValues.pop_back();
360  }
361  IndirectGlobals.insert(GV);
362  return true;
363}
364
365/// AnalyzeCallGraph - At this point, we know the functions where globals are
366/// immediately stored to and read from.  Propagate this information up the call
367/// graph to all callers and compute the mod/ref info for all memory for each
368/// function.
369void GlobalsModRef::AnalyzeCallGraph(CallGraph &CG, Module &M) {
370  // We do a bottom-up SCC traversal of the call graph.  In other words, we
371  // visit all callees before callers (leaf-first).
372  for (scc_iterator<CallGraph*> I = scc_begin(&CG), E = scc_end(&CG); I != E;
373       ++I) {
374    std::vector<CallGraphNode *> &SCC = *I;
375    assert(!SCC.empty() && "SCC with no functions?");
376
377    if (!SCC[0]->getFunction()) {
378      // Calls externally - can't say anything useful.  Remove any existing
379      // function records (may have been created when scanning globals).
380      for (unsigned i = 0, e = SCC.size(); i != e; ++i)
381        FunctionInfo.erase(SCC[i]->getFunction());
382      continue;
383    }
384
385    FunctionRecord &FR = FunctionInfo[SCC[0]->getFunction()];
386
387    bool KnowNothing = false;
388    unsigned FunctionEffect = 0;
389
390    // Collect the mod/ref properties due to called functions.  We only compute
391    // one mod-ref set.
392    for (unsigned i = 0, e = SCC.size(); i != e && !KnowNothing; ++i) {
393      Function *F = SCC[i]->getFunction();
394      if (!F) {
395        KnowNothing = true;
396        break;
397      }
398
399      if (F->isDeclaration()) {
400        // Try to get mod/ref behaviour from function attributes.
401        if (F->doesNotAccessMemory()) {
402          // Can't do better than that!
403        } else if (F->onlyReadsMemory()) {
404          FunctionEffect |= Ref;
405          if (!F->isIntrinsic())
406            // This function might call back into the module and read a global -
407            // consider every global as possibly being read by this function.
408            FR.MayReadAnyGlobal = true;
409        } else {
410          FunctionEffect |= ModRef;
411          // Can't say anything useful unless it's an intrinsic - they don't
412          // read or write global variables of the kind considered here.
413          KnowNothing = !F->isIntrinsic();
414        }
415        continue;
416      }
417
418      for (CallGraphNode::iterator CI = SCC[i]->begin(), E = SCC[i]->end();
419           CI != E && !KnowNothing; ++CI)
420        if (Function *Callee = CI->second->getFunction()) {
421          if (FunctionRecord *CalleeFR = getFunctionInfo(Callee)) {
422            // Propagate function effect up.
423            FunctionEffect |= CalleeFR->FunctionEffect;
424
425            // Incorporate callee's effects on globals into our info.
426            for (std::map<const GlobalValue*, unsigned>::iterator GI =
427                   CalleeFR->GlobalInfo.begin(), E = CalleeFR->GlobalInfo.end();
428                 GI != E; ++GI)
429              FR.GlobalInfo[GI->first] |= GI->second;
430            FR.MayReadAnyGlobal |= CalleeFR->MayReadAnyGlobal;
431          } else {
432            // Can't say anything about it.  However, if it is inside our SCC,
433            // then nothing needs to be done.
434            CallGraphNode *CalleeNode = CG[Callee];
435            if (std::find(SCC.begin(), SCC.end(), CalleeNode) == SCC.end())
436              KnowNothing = true;
437          }
438        } else {
439          KnowNothing = true;
440        }
441    }
442
443    // If we can't say anything useful about this SCC, remove all SCC functions
444    // from the FunctionInfo map.
445    if (KnowNothing) {
446      for (unsigned i = 0, e = SCC.size(); i != e; ++i)
447        FunctionInfo.erase(SCC[i]->getFunction());
448      continue;
449    }
450
451    // Scan the function bodies for explicit loads or stores.
452    for (unsigned i = 0, e = SCC.size(); i != e && FunctionEffect != ModRef;++i)
453      for (inst_iterator II = inst_begin(SCC[i]->getFunction()),
454             E = inst_end(SCC[i]->getFunction());
455           II != E && FunctionEffect != ModRef; ++II)
456        if (isa<LoadInst>(*II)) {
457          FunctionEffect |= Ref;
458          if (cast<LoadInst>(*II).isVolatile())
459            // Volatile loads may have side-effects, so mark them as writing
460            // memory (for example, a flag inside the processor).
461            FunctionEffect |= Mod;
462        } else if (isa<StoreInst>(*II)) {
463          FunctionEffect |= Mod;
464          if (cast<StoreInst>(*II).isVolatile())
465            // Treat volatile stores as reading memory somewhere.
466            FunctionEffect |= Ref;
467        } else if (isMalloc(&cast<Instruction>(*II)) ||
468                   isFreeCall(&cast<Instruction>(*II))) {
469          FunctionEffect |= ModRef;
470        }
471
472    if ((FunctionEffect & Mod) == 0)
473      ++NumReadMemFunctions;
474    if (FunctionEffect == 0)
475      ++NumNoMemFunctions;
476    FR.FunctionEffect = FunctionEffect;
477
478    // Finally, now that we know the full effect on this SCC, clone the
479    // information to each function in the SCC.
480    for (unsigned i = 1, e = SCC.size(); i != e; ++i)
481      FunctionInfo[SCC[i]->getFunction()] = FR;
482  }
483}
484
485
486
487/// alias - If one of the pointers is to a global that we are tracking, and the
488/// other is some random pointer, we know there cannot be an alias, because the
489/// address of the global isn't taken.
490AliasAnalysis::AliasResult
491GlobalsModRef::alias(const Location &LocA,
492                     const Location &LocB) {
493  // Get the base object these pointers point to.
494  const Value *UV1 = GetUnderlyingObject(LocA.Ptr);
495  const Value *UV2 = GetUnderlyingObject(LocB.Ptr);
496
497  // If either of the underlying values is a global, they may be non-addr-taken
498  // globals, which we can answer queries about.
499  const GlobalValue *GV1 = dyn_cast<GlobalValue>(UV1);
500  const GlobalValue *GV2 = dyn_cast<GlobalValue>(UV2);
501  if (GV1 || GV2) {
502    // If the global's address is taken, pretend we don't know it's a pointer to
503    // the global.
504    if (GV1 && !NonAddressTakenGlobals.count(GV1)) GV1 = 0;
505    if (GV2 && !NonAddressTakenGlobals.count(GV2)) GV2 = 0;
506
507    // If the two pointers are derived from two different non-addr-taken
508    // globals, or if one is and the other isn't, we know these can't alias.
509    if ((GV1 || GV2) && GV1 != GV2)
510      return NoAlias;
511
512    // Otherwise if they are both derived from the same addr-taken global, we
513    // can't know the two accesses don't overlap.
514  }
515
516  // These pointers may be based on the memory owned by an indirect global.  If
517  // so, we may be able to handle this.  First check to see if the base pointer
518  // is a direct load from an indirect global.
519  GV1 = GV2 = 0;
520  if (const LoadInst *LI = dyn_cast<LoadInst>(UV1))
521    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
522      if (IndirectGlobals.count(GV))
523        GV1 = GV;
524  if (const LoadInst *LI = dyn_cast<LoadInst>(UV2))
525    if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
526      if (IndirectGlobals.count(GV))
527        GV2 = GV;
528
529  // These pointers may also be from an allocation for the indirect global.  If
530  // so, also handle them.
531  if (AllocsForIndirectGlobals.count(UV1))
532    GV1 = AllocsForIndirectGlobals[UV1];
533  if (AllocsForIndirectGlobals.count(UV2))
534    GV2 = AllocsForIndirectGlobals[UV2];
535
536  // Now that we know whether the two pointers are related to indirect globals,
537  // use this to disambiguate the pointers.  If either pointer is based on an
538  // indirect global and if they are not both based on the same indirect global,
539  // they cannot alias.
540  if ((GV1 || GV2) && GV1 != GV2)
541    return NoAlias;
542
543  return AliasAnalysis::alias(LocA, LocB);
544}
545
546AliasAnalysis::ModRefResult
547GlobalsModRef::getModRefInfo(ImmutableCallSite CS,
548                             const Location &Loc) {
549  unsigned Known = ModRef;
550
551  // If we are asking for mod/ref info of a direct call with a pointer to a
552  // global we are tracking, return information if we have it.
553  if (const GlobalValue *GV =
554        dyn_cast<GlobalValue>(GetUnderlyingObject(Loc.Ptr)))
555    if (GV->hasLocalLinkage())
556      if (const Function *F = CS.getCalledFunction())
557        if (NonAddressTakenGlobals.count(GV))
558          if (const FunctionRecord *FR = getFunctionInfo(F))
559            Known = FR->getInfoForGlobal(GV);
560
561  if (Known == NoModRef)
562    return NoModRef; // No need to query other mod/ref analyses
563  return ModRefResult(Known & AliasAnalysis::getModRefInfo(CS, Loc));
564}
565
566
567//===----------------------------------------------------------------------===//
568// Methods to update the analysis as a result of the client transformation.
569//
570void GlobalsModRef::deleteValue(Value *V) {
571  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
572    if (NonAddressTakenGlobals.erase(GV)) {
573      // This global might be an indirect global.  If so, remove it and remove
574      // any AllocRelatedValues for it.
575      if (IndirectGlobals.erase(GV)) {
576        // Remove any entries in AllocsForIndirectGlobals for this global.
577        for (std::map<const Value*, const GlobalValue*>::iterator
578             I = AllocsForIndirectGlobals.begin(),
579             E = AllocsForIndirectGlobals.end(); I != E; ) {
580          if (I->second == GV) {
581            AllocsForIndirectGlobals.erase(I++);
582          } else {
583            ++I;
584          }
585        }
586      }
587    }
588  }
589
590  // Otherwise, if this is an allocation related to an indirect global, remove
591  // it.
592  AllocsForIndirectGlobals.erase(V);
593
594  AliasAnalysis::deleteValue(V);
595}
596
597void GlobalsModRef::copyValue(Value *From, Value *To) {
598  AliasAnalysis::copyValue(From, To);
599}
600
601void GlobalsModRef::addEscapingUse(Use &U) {
602  // For the purposes of this analysis, it is conservatively correct to treat
603  // a newly escaping value equivalently to a deleted one.  We could perhaps
604  // be more precise by processing the new use and attempting to update our
605  // saved analysis results to accomodate it.
606  deleteValue(U);
607
608  AliasAnalysis::addEscapingUse(U);
609}
610