GlobalsModRef.cpp revision 212904
1//===- GlobalsModRef.cpp - Simple Mod/Ref Analysis for Globals ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This simple pass provides alias and mod/ref information for global values
11// that do not have their address taken, and keeps track of whether functions
12// read or write memory (are "pure").  For this simple (but very common) case,
13// we can provide pretty accurate and useful information.
14//
15//===----------------------------------------------------------------------===//
16
17#define DEBUG_TYPE "globalsmodref-aa"
18#include "llvm/Analysis/Passes.h"
19#include "llvm/Module.h"
20#include "llvm/Pass.h"
21#include "llvm/Instructions.h"
22#include "llvm/Constants.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/Analysis/AliasAnalysis.h"
25#include "llvm/Analysis/CallGraph.h"
26#include "llvm/Analysis/MemoryBuiltins.h"
27#include "llvm/Support/CommandLine.h"
28#include "llvm/Support/InstIterator.h"
29#include "llvm/ADT/Statistic.h"
30#include "llvm/ADT/SCCIterator.h"
31#include <set>
32using namespace llvm;
33
34STATISTIC(NumNonAddrTakenGlobalVars,
35          "Number of global vars without address taken");
36STATISTIC(NumNonAddrTakenFunctions,"Number of functions without address taken");
37STATISTIC(NumNoMemFunctions, "Number of functions that do not access memory");
38STATISTIC(NumReadMemFunctions, "Number of functions that only read memory");
39STATISTIC(NumIndirectGlobalVars, "Number of indirect global objects");
40
41namespace {
42  /// FunctionRecord - One instance of this structure is stored for every
43  /// function in the program.  Later, the entries for these functions are
44  /// removed if the function is found to call an external function (in which
45  /// case we know nothing about it.
46  struct FunctionRecord {
47    /// GlobalInfo - Maintain mod/ref info for all of the globals without
48    /// addresses taken that are read or written (transitively) by this
49    /// function.
50    std::map<const GlobalValue*, unsigned> GlobalInfo;
51
52    /// MayReadAnyGlobal - May read global variables, but it is not known which.
53    bool MayReadAnyGlobal;
54
55    unsigned getInfoForGlobal(const GlobalValue *GV) const {
56      unsigned Effect = MayReadAnyGlobal ? AliasAnalysis::Ref : 0;
57      std::map<const GlobalValue*, unsigned>::const_iterator I =
58        GlobalInfo.find(GV);
59      if (I != GlobalInfo.end())
60        Effect |= I->second;
61      return Effect;
62    }
63
64    /// FunctionEffect - Capture whether or not this function reads or writes to
65    /// ANY memory.  If not, we can do a lot of aggressive analysis on it.
66    unsigned FunctionEffect;
67
68    FunctionRecord() : MayReadAnyGlobal (false), FunctionEffect(0) {}
69  };
70
71  /// GlobalsModRef - The actual analysis pass.
72  class GlobalsModRef : public ModulePass, public AliasAnalysis {
73    /// NonAddressTakenGlobals - The globals that do not have their addresses
74    /// taken.
75    std::set<const GlobalValue*> NonAddressTakenGlobals;
76
77    /// IndirectGlobals - The memory pointed to by this global is known to be
78    /// 'owned' by the global.
79    std::set<const GlobalValue*> IndirectGlobals;
80
81    /// AllocsForIndirectGlobals - If an instruction allocates memory for an
82    /// indirect global, this map indicates which one.
83    std::map<const Value*, const GlobalValue*> AllocsForIndirectGlobals;
84
85    /// FunctionInfo - For each function, keep track of what globals are
86    /// modified or read.
87    std::map<const Function*, FunctionRecord> FunctionInfo;
88
89  public:
90    static char ID;
91    GlobalsModRef() : ModulePass(ID) {}
92
93    bool runOnModule(Module &M) {
94      InitializeAliasAnalysis(this);                 // set up super class
95      AnalyzeGlobals(M);                          // find non-addr taken globals
96      AnalyzeCallGraph(getAnalysis<CallGraph>(), M); // Propagate on CG
97      return false;
98    }
99
100    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
101      AliasAnalysis::getAnalysisUsage(AU);
102      AU.addRequired<CallGraph>();
103      AU.setPreservesAll();                         // Does not transform code
104    }
105
106    //------------------------------------------------
107    // Implement the AliasAnalysis API
108    //
109    AliasResult alias(const Value *V1, unsigned V1Size,
110                      const Value *V2, unsigned V2Size);
111    ModRefResult getModRefInfo(ImmutableCallSite CS,
112                               const Value *P, unsigned Size);
113    ModRefResult getModRefInfo(ImmutableCallSite CS1,
114                               ImmutableCallSite CS2) {
115      return AliasAnalysis::getModRefInfo(CS1, CS2);
116    }
117
118    /// getModRefBehavior - Return the behavior of the specified function if
119    /// called from the specified call site.  The call site may be null in which
120    /// case the most generic behavior of this function should be returned.
121    ModRefBehavior getModRefBehavior(const Function *F) {
122      if (FunctionRecord *FR = getFunctionInfo(F)) {
123        if (FR->FunctionEffect == 0)
124          return DoesNotAccessMemory;
125        else if ((FR->FunctionEffect & Mod) == 0)
126          return OnlyReadsMemory;
127      }
128      return AliasAnalysis::getModRefBehavior(F);
129    }
130
131    /// getModRefBehavior - Return the behavior of the specified function if
132    /// called from the specified call site.  The call site may be null in which
133    /// case the most generic behavior of this function should be returned.
134    ModRefBehavior getModRefBehavior(ImmutableCallSite CS) {
135      const Function* F = CS.getCalledFunction();
136      if (!F) return AliasAnalysis::getModRefBehavior(CS);
137      if (FunctionRecord *FR = getFunctionInfo(F)) {
138        if (FR->FunctionEffect == 0)
139          return DoesNotAccessMemory;
140        else if ((FR->FunctionEffect & Mod) == 0)
141          return OnlyReadsMemory;
142      }
143      return AliasAnalysis::getModRefBehavior(CS);
144    }
145
146    virtual void deleteValue(Value *V);
147    virtual void copyValue(Value *From, Value *To);
148
149    /// getAdjustedAnalysisPointer - This method is used when a pass implements
150    /// an analysis interface through multiple inheritance.  If needed, it
151    /// should override this to adjust the this pointer as needed for the
152    /// specified pass info.
153    virtual void *getAdjustedAnalysisPointer(AnalysisID PI) {
154      if (PI == &AliasAnalysis::ID)
155        return (AliasAnalysis*)this;
156      return this;
157    }
158
159  private:
160    /// getFunctionInfo - Return the function info for the function, or null if
161    /// we don't have anything useful to say about it.
162    FunctionRecord *getFunctionInfo(const Function *F) {
163      std::map<const Function*, FunctionRecord>::iterator I =
164        FunctionInfo.find(F);
165      if (I != FunctionInfo.end())
166        return &I->second;
167      return 0;
168    }
169
170    void AnalyzeGlobals(Module &M);
171    void AnalyzeCallGraph(CallGraph &CG, Module &M);
172    bool AnalyzeUsesOfPointer(Value *V, std::vector<Function*> &Readers,
173                              std::vector<Function*> &Writers,
174                              GlobalValue *OkayStoreDest = 0);
175    bool AnalyzeIndirectGlobalMemory(GlobalValue *GV);
176  };
177}
178
179char GlobalsModRef::ID = 0;
180INITIALIZE_AG_PASS(GlobalsModRef, AliasAnalysis,
181                "globalsmodref-aa", "Simple mod/ref analysis for globals",
182                false, true, false);
183
184Pass *llvm::createGlobalsModRefPass() { return new GlobalsModRef(); }
185
186/// AnalyzeGlobals - Scan through the users of all of the internal
187/// GlobalValue's in the program.  If none of them have their "address taken"
188/// (really, their address passed to something nontrivial), record this fact,
189/// and record the functions that they are used directly in.
190void GlobalsModRef::AnalyzeGlobals(Module &M) {
191  std::vector<Function*> Readers, Writers;
192  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
193    if (I->hasLocalLinkage()) {
194      if (!AnalyzeUsesOfPointer(I, Readers, Writers)) {
195        // Remember that we are tracking this global.
196        NonAddressTakenGlobals.insert(I);
197        ++NumNonAddrTakenFunctions;
198      }
199      Readers.clear(); Writers.clear();
200    }
201
202  for (Module::global_iterator I = M.global_begin(), E = M.global_end();
203       I != E; ++I)
204    if (I->hasLocalLinkage()) {
205      if (!AnalyzeUsesOfPointer(I, Readers, Writers)) {
206        // Remember that we are tracking this global, and the mod/ref fns
207        NonAddressTakenGlobals.insert(I);
208
209        for (unsigned i = 0, e = Readers.size(); i != e; ++i)
210          FunctionInfo[Readers[i]].GlobalInfo[I] |= Ref;
211
212        if (!I->isConstant())  // No need to keep track of writers to constants
213          for (unsigned i = 0, e = Writers.size(); i != e; ++i)
214            FunctionInfo[Writers[i]].GlobalInfo[I] |= Mod;
215        ++NumNonAddrTakenGlobalVars;
216
217        // If this global holds a pointer type, see if it is an indirect global.
218        if (I->getType()->getElementType()->isPointerTy() &&
219            AnalyzeIndirectGlobalMemory(I))
220          ++NumIndirectGlobalVars;
221      }
222      Readers.clear(); Writers.clear();
223    }
224}
225
226/// AnalyzeUsesOfPointer - Look at all of the users of the specified pointer.
227/// If this is used by anything complex (i.e., the address escapes), return
228/// true.  Also, while we are at it, keep track of those functions that read and
229/// write to the value.
230///
231/// If OkayStoreDest is non-null, stores into this global are allowed.
232bool GlobalsModRef::AnalyzeUsesOfPointer(Value *V,
233                                         std::vector<Function*> &Readers,
234                                         std::vector<Function*> &Writers,
235                                         GlobalValue *OkayStoreDest) {
236  if (!V->getType()->isPointerTy()) return true;
237
238  for (Value::use_iterator UI = V->use_begin(), E=V->use_end(); UI != E; ++UI) {
239    User *U = *UI;
240    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
241      Readers.push_back(LI->getParent()->getParent());
242    } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
243      if (V == SI->getOperand(1)) {
244        Writers.push_back(SI->getParent()->getParent());
245      } else if (SI->getOperand(1) != OkayStoreDest) {
246        return true;  // Storing the pointer
247      }
248    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
249      if (AnalyzeUsesOfPointer(GEP, Readers, Writers)) return true;
250    } else if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
251      if (AnalyzeUsesOfPointer(BCI, Readers, Writers, OkayStoreDest))
252        return true;
253    } else if (isFreeCall(U)) {
254      Writers.push_back(cast<Instruction>(U)->getParent()->getParent());
255    } else if (CallInst *CI = dyn_cast<CallInst>(U)) {
256      // Make sure that this is just the function being called, not that it is
257      // passing into the function.
258      for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i)
259        if (CI->getArgOperand(i) == V) return true;
260    } else if (InvokeInst *II = dyn_cast<InvokeInst>(U)) {
261      // Make sure that this is just the function being called, not that it is
262      // passing into the function.
263      for (unsigned i = 0, e = II->getNumArgOperands(); i != e; ++i)
264        if (II->getArgOperand(i) == V) return true;
265    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
266      if (CE->getOpcode() == Instruction::GetElementPtr ||
267          CE->getOpcode() == Instruction::BitCast) {
268        if (AnalyzeUsesOfPointer(CE, Readers, Writers))
269          return true;
270      } else {
271        return true;
272      }
273    } else if (ICmpInst *ICI = dyn_cast<ICmpInst>(U)) {
274      if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
275        return true;  // Allow comparison against null.
276    } else {
277      return true;
278    }
279  }
280
281  return false;
282}
283
284/// AnalyzeIndirectGlobalMemory - We found an non-address-taken global variable
285/// which holds a pointer type.  See if the global always points to non-aliased
286/// heap memory: that is, all initializers of the globals are allocations, and
287/// those allocations have no use other than initialization of the global.
288/// Further, all loads out of GV must directly use the memory, not store the
289/// pointer somewhere.  If this is true, we consider the memory pointed to by
290/// GV to be owned by GV and can disambiguate other pointers from it.
291bool GlobalsModRef::AnalyzeIndirectGlobalMemory(GlobalValue *GV) {
292  // Keep track of values related to the allocation of the memory, f.e. the
293  // value produced by the malloc call and any casts.
294  std::vector<Value*> AllocRelatedValues;
295
296  // Walk the user list of the global.  If we find anything other than a direct
297  // load or store, bail out.
298  for (Value::use_iterator I = GV->use_begin(), E = GV->use_end(); I != E; ++I){
299    User *U = *I;
300    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
301      // The pointer loaded from the global can only be used in simple ways:
302      // we allow addressing of it and loading storing to it.  We do *not* allow
303      // storing the loaded pointer somewhere else or passing to a function.
304      std::vector<Function*> ReadersWriters;
305      if (AnalyzeUsesOfPointer(LI, ReadersWriters, ReadersWriters))
306        return false;  // Loaded pointer escapes.
307      // TODO: Could try some IP mod/ref of the loaded pointer.
308    } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
309      // Storing the global itself.
310      if (SI->getOperand(0) == GV) return false;
311
312      // If storing the null pointer, ignore it.
313      if (isa<ConstantPointerNull>(SI->getOperand(0)))
314        continue;
315
316      // Check the value being stored.
317      Value *Ptr = SI->getOperand(0)->getUnderlyingObject();
318
319      if (isMalloc(Ptr)) {
320        // Okay, easy case.
321      } else if (CallInst *CI = dyn_cast<CallInst>(Ptr)) {
322        Function *F = CI->getCalledFunction();
323        if (!F || !F->isDeclaration()) return false;     // Too hard to analyze.
324        if (F->getName() != "calloc") return false;   // Not calloc.
325      } else {
326        return false;  // Too hard to analyze.
327      }
328
329      // Analyze all uses of the allocation.  If any of them are used in a
330      // non-simple way (e.g. stored to another global) bail out.
331      std::vector<Function*> ReadersWriters;
332      if (AnalyzeUsesOfPointer(Ptr, ReadersWriters, ReadersWriters, GV))
333        return false;  // Loaded pointer escapes.
334
335      // Remember that this allocation is related to the indirect global.
336      AllocRelatedValues.push_back(Ptr);
337    } else {
338      // Something complex, bail out.
339      return false;
340    }
341  }
342
343  // Okay, this is an indirect global.  Remember all of the allocations for
344  // this global in AllocsForIndirectGlobals.
345  while (!AllocRelatedValues.empty()) {
346    AllocsForIndirectGlobals[AllocRelatedValues.back()] = GV;
347    AllocRelatedValues.pop_back();
348  }
349  IndirectGlobals.insert(GV);
350  return true;
351}
352
353/// AnalyzeCallGraph - At this point, we know the functions where globals are
354/// immediately stored to and read from.  Propagate this information up the call
355/// graph to all callers and compute the mod/ref info for all memory for each
356/// function.
357void GlobalsModRef::AnalyzeCallGraph(CallGraph &CG, Module &M) {
358  // We do a bottom-up SCC traversal of the call graph.  In other words, we
359  // visit all callees before callers (leaf-first).
360  for (scc_iterator<CallGraph*> I = scc_begin(&CG), E = scc_end(&CG); I != E;
361       ++I) {
362    std::vector<CallGraphNode *> &SCC = *I;
363    assert(!SCC.empty() && "SCC with no functions?");
364
365    if (!SCC[0]->getFunction()) {
366      // Calls externally - can't say anything useful.  Remove any existing
367      // function records (may have been created when scanning globals).
368      for (unsigned i = 0, e = SCC.size(); i != e; ++i)
369        FunctionInfo.erase(SCC[i]->getFunction());
370      continue;
371    }
372
373    FunctionRecord &FR = FunctionInfo[SCC[0]->getFunction()];
374
375    bool KnowNothing = false;
376    unsigned FunctionEffect = 0;
377
378    // Collect the mod/ref properties due to called functions.  We only compute
379    // one mod-ref set.
380    for (unsigned i = 0, e = SCC.size(); i != e && !KnowNothing; ++i) {
381      Function *F = SCC[i]->getFunction();
382      if (!F) {
383        KnowNothing = true;
384        break;
385      }
386
387      if (F->isDeclaration()) {
388        // Try to get mod/ref behaviour from function attributes.
389        if (F->doesNotAccessMemory()) {
390          // Can't do better than that!
391        } else if (F->onlyReadsMemory()) {
392          FunctionEffect |= Ref;
393          if (!F->isIntrinsic())
394            // This function might call back into the module and read a global -
395            // consider every global as possibly being read by this function.
396            FR.MayReadAnyGlobal = true;
397        } else {
398          FunctionEffect |= ModRef;
399          // Can't say anything useful unless it's an intrinsic - they don't
400          // read or write global variables of the kind considered here.
401          KnowNothing = !F->isIntrinsic();
402        }
403        continue;
404      }
405
406      for (CallGraphNode::iterator CI = SCC[i]->begin(), E = SCC[i]->end();
407           CI != E && !KnowNothing; ++CI)
408        if (Function *Callee = CI->second->getFunction()) {
409          if (FunctionRecord *CalleeFR = getFunctionInfo(Callee)) {
410            // Propagate function effect up.
411            FunctionEffect |= CalleeFR->FunctionEffect;
412
413            // Incorporate callee's effects on globals into our info.
414            for (std::map<const GlobalValue*, unsigned>::iterator GI =
415                   CalleeFR->GlobalInfo.begin(), E = CalleeFR->GlobalInfo.end();
416                 GI != E; ++GI)
417              FR.GlobalInfo[GI->first] |= GI->second;
418            FR.MayReadAnyGlobal |= CalleeFR->MayReadAnyGlobal;
419          } else {
420            // Can't say anything about it.  However, if it is inside our SCC,
421            // then nothing needs to be done.
422            CallGraphNode *CalleeNode = CG[Callee];
423            if (std::find(SCC.begin(), SCC.end(), CalleeNode) == SCC.end())
424              KnowNothing = true;
425          }
426        } else {
427          KnowNothing = true;
428        }
429    }
430
431    // If we can't say anything useful about this SCC, remove all SCC functions
432    // from the FunctionInfo map.
433    if (KnowNothing) {
434      for (unsigned i = 0, e = SCC.size(); i != e; ++i)
435        FunctionInfo.erase(SCC[i]->getFunction());
436      continue;
437    }
438
439    // Scan the function bodies for explicit loads or stores.
440    for (unsigned i = 0, e = SCC.size(); i != e && FunctionEffect != ModRef;++i)
441      for (inst_iterator II = inst_begin(SCC[i]->getFunction()),
442             E = inst_end(SCC[i]->getFunction());
443           II != E && FunctionEffect != ModRef; ++II)
444        if (isa<LoadInst>(*II)) {
445          FunctionEffect |= Ref;
446          if (cast<LoadInst>(*II).isVolatile())
447            // Volatile loads may have side-effects, so mark them as writing
448            // memory (for example, a flag inside the processor).
449            FunctionEffect |= Mod;
450        } else if (isa<StoreInst>(*II)) {
451          FunctionEffect |= Mod;
452          if (cast<StoreInst>(*II).isVolatile())
453            // Treat volatile stores as reading memory somewhere.
454            FunctionEffect |= Ref;
455        } else if (isMalloc(&cast<Instruction>(*II)) ||
456                   isFreeCall(&cast<Instruction>(*II))) {
457          FunctionEffect |= ModRef;
458        }
459
460    if ((FunctionEffect & Mod) == 0)
461      ++NumReadMemFunctions;
462    if (FunctionEffect == 0)
463      ++NumNoMemFunctions;
464    FR.FunctionEffect = FunctionEffect;
465
466    // Finally, now that we know the full effect on this SCC, clone the
467    // information to each function in the SCC.
468    for (unsigned i = 1, e = SCC.size(); i != e; ++i)
469      FunctionInfo[SCC[i]->getFunction()] = FR;
470  }
471}
472
473
474
475/// alias - If one of the pointers is to a global that we are tracking, and the
476/// other is some random pointer, we know there cannot be an alias, because the
477/// address of the global isn't taken.
478AliasAnalysis::AliasResult
479GlobalsModRef::alias(const Value *V1, unsigned V1Size,
480                     const Value *V2, unsigned V2Size) {
481  // Get the base object these pointers point to.
482  const Value *UV1 = V1->getUnderlyingObject();
483  const Value *UV2 = V2->getUnderlyingObject();
484
485  // If either of the underlying values is a global, they may be non-addr-taken
486  // globals, which we can answer queries about.
487  const GlobalValue *GV1 = dyn_cast<GlobalValue>(UV1);
488  const GlobalValue *GV2 = dyn_cast<GlobalValue>(UV2);
489  if (GV1 || GV2) {
490    // If the global's address is taken, pretend we don't know it's a pointer to
491    // the global.
492    if (GV1 && !NonAddressTakenGlobals.count(GV1)) GV1 = 0;
493    if (GV2 && !NonAddressTakenGlobals.count(GV2)) GV2 = 0;
494
495    // If the two pointers are derived from two different non-addr-taken
496    // globals, or if one is and the other isn't, we know these can't alias.
497    if ((GV1 || GV2) && GV1 != GV2)
498      return NoAlias;
499
500    // Otherwise if they are both derived from the same addr-taken global, we
501    // can't know the two accesses don't overlap.
502  }
503
504  // These pointers may be based on the memory owned by an indirect global.  If
505  // so, we may be able to handle this.  First check to see if the base pointer
506  // is a direct load from an indirect global.
507  GV1 = GV2 = 0;
508  if (const LoadInst *LI = dyn_cast<LoadInst>(UV1))
509    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
510      if (IndirectGlobals.count(GV))
511        GV1 = GV;
512  if (const LoadInst *LI = dyn_cast<LoadInst>(UV2))
513    if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
514      if (IndirectGlobals.count(GV))
515        GV2 = GV;
516
517  // These pointers may also be from an allocation for the indirect global.  If
518  // so, also handle them.
519  if (AllocsForIndirectGlobals.count(UV1))
520    GV1 = AllocsForIndirectGlobals[UV1];
521  if (AllocsForIndirectGlobals.count(UV2))
522    GV2 = AllocsForIndirectGlobals[UV2];
523
524  // Now that we know whether the two pointers are related to indirect globals,
525  // use this to disambiguate the pointers.  If either pointer is based on an
526  // indirect global and if they are not both based on the same indirect global,
527  // they cannot alias.
528  if ((GV1 || GV2) && GV1 != GV2)
529    return NoAlias;
530
531  return AliasAnalysis::alias(V1, V1Size, V2, V2Size);
532}
533
534AliasAnalysis::ModRefResult
535GlobalsModRef::getModRefInfo(ImmutableCallSite CS,
536                             const Value *P, unsigned Size) {
537  unsigned Known = ModRef;
538
539  // If we are asking for mod/ref info of a direct call with a pointer to a
540  // global we are tracking, return information if we have it.
541  if (const GlobalValue *GV = dyn_cast<GlobalValue>(P->getUnderlyingObject()))
542    if (GV->hasLocalLinkage())
543      if (const Function *F = CS.getCalledFunction())
544        if (NonAddressTakenGlobals.count(GV))
545          if (const FunctionRecord *FR = getFunctionInfo(F))
546            Known = FR->getInfoForGlobal(GV);
547
548  if (Known == NoModRef)
549    return NoModRef; // No need to query other mod/ref analyses
550  return ModRefResult(Known & AliasAnalysis::getModRefInfo(CS, P, Size));
551}
552
553
554//===----------------------------------------------------------------------===//
555// Methods to update the analysis as a result of the client transformation.
556//
557void GlobalsModRef::deleteValue(Value *V) {
558  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
559    if (NonAddressTakenGlobals.erase(GV)) {
560      // This global might be an indirect global.  If so, remove it and remove
561      // any AllocRelatedValues for it.
562      if (IndirectGlobals.erase(GV)) {
563        // Remove any entries in AllocsForIndirectGlobals for this global.
564        for (std::map<const Value*, const GlobalValue*>::iterator
565             I = AllocsForIndirectGlobals.begin(),
566             E = AllocsForIndirectGlobals.end(); I != E; ) {
567          if (I->second == GV) {
568            AllocsForIndirectGlobals.erase(I++);
569          } else {
570            ++I;
571          }
572        }
573      }
574    }
575  }
576
577  // Otherwise, if this is an allocation related to an indirect global, remove
578  // it.
579  AllocsForIndirectGlobals.erase(V);
580
581  AliasAnalysis::deleteValue(V);
582}
583
584void GlobalsModRef::copyValue(Value *From, Value *To) {
585  AliasAnalysis::copyValue(From, To);
586}
587