BasicAliasAnalysis.cpp revision 263508
1264790Sbapt//===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
2264790Sbapt//
3272955Srodrigc//                     The LLVM Compiler Infrastructure
4264790Sbapt//
5264790Sbapt// This file is distributed under the University of Illinois Open Source
6264790Sbapt// License. See LICENSE.TXT for details.
7264790Sbapt//
8264790Sbapt//===----------------------------------------------------------------------===//
9264790Sbapt//
10264790Sbapt// This file defines the primary stateless implementation of the
11264790Sbapt// Alias Analysis interface that implements identities (two different
12264790Sbapt// globals cannot alias, etc), but does no stateful analysis.
13264790Sbapt//
14264790Sbapt//===----------------------------------------------------------------------===//
15264790Sbapt
16264790Sbapt#include "llvm/Analysis/Passes.h"
17264790Sbapt#include "llvm/ADT/SmallPtrSet.h"
18264790Sbapt#include "llvm/ADT/SmallVector.h"
19264790Sbapt#include "llvm/Analysis/AliasAnalysis.h"
20264790Sbapt#include "llvm/Analysis/CaptureTracking.h"
21264790Sbapt#include "llvm/Analysis/InstructionSimplify.h"
22264790Sbapt#include "llvm/Analysis/MemoryBuiltins.h"
23264790Sbapt#include "llvm/Analysis/ValueTracking.h"
24264790Sbapt#include "llvm/IR/Constants.h"
25264790Sbapt#include "llvm/IR/DataLayout.h"
26264790Sbapt#include "llvm/IR/DerivedTypes.h"
27264790Sbapt#include "llvm/IR/Function.h"
28264790Sbapt#include "llvm/IR/GlobalAlias.h"
29264790Sbapt#include "llvm/IR/GlobalVariable.h"
30264790Sbapt#include "llvm/IR/Instructions.h"
31264790Sbapt#include "llvm/IR/IntrinsicInst.h"
32264790Sbapt#include "llvm/IR/LLVMContext.h"
33264790Sbapt#include "llvm/IR/Operator.h"
34264790Sbapt#include "llvm/Pass.h"
35264790Sbapt#include "llvm/Support/ErrorHandling.h"
36264790Sbapt#include "llvm/Support/GetElementPtrTypeIterator.h"
37264790Sbapt#include "llvm/Target/TargetLibraryInfo.h"
38264790Sbapt#include <algorithm>
39264790Sbaptusing namespace llvm;
40264790Sbapt
41264790Sbapt//===----------------------------------------------------------------------===//
42264790Sbapt// Useful predicates
43264790Sbapt//===----------------------------------------------------------------------===//
44264790Sbapt
45264790Sbapt/// isNonEscapingLocalObject - Return true if the pointer is to a function-local
46264790Sbapt/// object that never escapes from the function.
47264790Sbaptstatic bool isNonEscapingLocalObject(const Value *V) {
48264790Sbapt  // If this is a local allocation, check to see if it escapes.
49264790Sbapt  if (isa<AllocaInst>(V) || isNoAliasCall(V))
50264790Sbapt    // Set StoreCaptures to True so that we can assume in our callers that the
51264790Sbapt    // pointer is not the result of a load instruction. Currently
52264790Sbapt    // PointerMayBeCaptured doesn't have any special analysis for the
53264790Sbapt    // StoreCaptures=false case; if it did, our callers could be refined to be
54264790Sbapt    // more precise.
55264790Sbapt    return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
56264790Sbapt
57264790Sbapt  // If this is an argument that corresponds to a byval or noalias argument,
58264790Sbapt  // then it has not escaped before entering the function.  Check if it escapes
59264790Sbapt  // inside the function.
60264790Sbapt  if (const Argument *A = dyn_cast<Argument>(V))
61264790Sbapt    if (A->hasByValAttr() || A->hasNoAliasAttr())
62264790Sbapt      // Note even if the argument is marked nocapture we still need to check
63264790Sbapt      // for copies made inside the function. The nocapture attribute only
64264790Sbapt      // specifies that there are no copies made that outlive the function.
65264790Sbapt      return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
66264790Sbapt
67264790Sbapt  return false;
68264790Sbapt}
69264790Sbapt
70264790Sbapt/// isEscapeSource - Return true if the pointer is one which would have
71264790Sbapt/// been considered an escape by isNonEscapingLocalObject.
72264790Sbaptstatic bool isEscapeSource(const Value *V) {
73264790Sbapt  if (isa<CallInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V))
74264790Sbapt    return true;
75264790Sbapt
76264790Sbapt  // The load case works because isNonEscapingLocalObject considers all
77264790Sbapt  // stores to be escapes (it passes true for the StoreCaptures argument
78264790Sbapt  // to PointerMayBeCaptured).
79264790Sbapt  if (isa<LoadInst>(V))
80264790Sbapt    return true;
81264790Sbapt
82264790Sbapt  return false;
83264790Sbapt}
84264790Sbapt
85264790Sbapt/// getObjectSize - Return the size of the object specified by V, or
86264790Sbapt/// UnknownSize if unknown.
87264790Sbaptstatic uint64_t getObjectSize(const Value *V, const DataLayout &TD,
88264790Sbapt                              const TargetLibraryInfo &TLI,
89264790Sbapt                              bool RoundToAlign = false) {
90264790Sbapt  uint64_t Size;
91264790Sbapt  if (getObjectSize(V, Size, &TD, &TLI, RoundToAlign))
92264790Sbapt    return Size;
93264790Sbapt  return AliasAnalysis::UnknownSize;
94264790Sbapt}
95264790Sbapt
96264790Sbapt/// isObjectSmallerThan - Return true if we can prove that the object specified
97264790Sbapt/// by V is smaller than Size.
98264790Sbaptstatic bool isObjectSmallerThan(const Value *V, uint64_t Size,
99264790Sbapt                                const DataLayout &TD,
100264790Sbapt                                const TargetLibraryInfo &TLI) {
101264790Sbapt  // Note that the meanings of the "object" are slightly different in the
102264790Sbapt  // following contexts:
103264790Sbapt  //    c1: llvm::getObjectSize()
104264790Sbapt  //    c2: llvm.objectsize() intrinsic
105264790Sbapt  //    c3: isObjectSmallerThan()
106264790Sbapt  // c1 and c2 share the same meaning; however, the meaning of "object" in c3
107264790Sbapt  // refers to the "entire object".
108264790Sbapt  //
109264790Sbapt  //  Consider this example:
110264790Sbapt  //     char *p = (char*)malloc(100)
111264790Sbapt  //     char *q = p+80;
112264790Sbapt  //
113264790Sbapt  //  In the context of c1 and c2, the "object" pointed by q refers to the
114264790Sbapt  // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20.
115264790Sbapt  //
116264790Sbapt  //  However, in the context of c3, the "object" refers to the chunk of memory
117264790Sbapt  // being allocated. So, the "object" has 100 bytes, and q points to the middle
118264790Sbapt  // the "object". In case q is passed to isObjectSmallerThan() as the 1st
119264790Sbapt  // parameter, before the llvm::getObjectSize() is called to get the size of
120264790Sbapt  // entire object, we should:
121264790Sbapt  //    - either rewind the pointer q to the base-address of the object in
122264790Sbapt  //      question (in this case rewind to p), or
123264790Sbapt  //    - just give up. It is up to caller to make sure the pointer is pointing
124264790Sbapt  //      to the base address the object.
125264790Sbapt  //
126264790Sbapt  // We go for 2nd option for simplicity.
127264790Sbapt  if (!isIdentifiedObject(V))
128264790Sbapt    return false;
129264790Sbapt
130264790Sbapt  // This function needs to use the aligned object size because we allow
131264790Sbapt  // reads a bit past the end given sufficient alignment.
132264790Sbapt  uint64_t ObjectSize = getObjectSize(V, TD, TLI, /*RoundToAlign*/true);
133264790Sbapt
134264790Sbapt  return ObjectSize != AliasAnalysis::UnknownSize && ObjectSize < Size;
135264790Sbapt}
136264790Sbapt
137264790Sbapt/// isObjectSize - Return true if we can prove that the object specified
138264790Sbapt/// by V has size Size.
139264790Sbaptstatic bool isObjectSize(const Value *V, uint64_t Size,
140264790Sbapt                         const DataLayout &TD, const TargetLibraryInfo &TLI) {
141264790Sbapt  uint64_t ObjectSize = getObjectSize(V, TD, TLI);
142264790Sbapt  return ObjectSize != AliasAnalysis::UnknownSize && ObjectSize == Size;
143264790Sbapt}
144264790Sbapt
145264790Sbapt/// isIdentifiedFunctionLocal - Return true if V is umabigously identified
146264790Sbapt/// at the function-level. Different IdentifiedFunctionLocals can't alias.
147264790Sbapt/// Further, an IdentifiedFunctionLocal can not alias with any function
148264790Sbapt/// arguments other than itself, which is not neccessarily true for
149264790Sbapt/// IdentifiedObjects.
150264790Sbaptstatic bool isIdentifiedFunctionLocal(const Value *V)
151264790Sbapt{
152264790Sbapt  return isa<AllocaInst>(V) || isNoAliasCall(V) || isNoAliasArgument(V);
153264790Sbapt}
154264790Sbapt
155264790Sbapt
156264790Sbapt//===----------------------------------------------------------------------===//
157264790Sbapt// GetElementPtr Instruction Decomposition and Analysis
158264790Sbapt//===----------------------------------------------------------------------===//
159264790Sbapt
160264790Sbaptnamespace {
161264790Sbapt  enum ExtensionKind {
162264790Sbapt    EK_NotExtended,
163264790Sbapt    EK_SignExt,
164264790Sbapt    EK_ZeroExt
165264790Sbapt  };
166264790Sbapt
167264790Sbapt  struct VariableGEPIndex {
168264790Sbapt    const Value *V;
169264790Sbapt    ExtensionKind Extension;
170264790Sbapt    int64_t Scale;
171264790Sbapt
172264790Sbapt    bool operator==(const VariableGEPIndex &Other) const {
173264790Sbapt      return V == Other.V && Extension == Other.Extension &&
174264790Sbapt        Scale == Other.Scale;
175264790Sbapt    }
176264790Sbapt
177264790Sbapt    bool operator!=(const VariableGEPIndex &Other) const {
178264790Sbapt      return !operator==(Other);
179264790Sbapt    }
180264790Sbapt  };
181264790Sbapt}
182264790Sbapt
183264790Sbapt
184264790Sbapt/// GetLinearExpression - Analyze the specified value as a linear expression:
185264790Sbapt/// "A*V + B", where A and B are constant integers.  Return the scale and offset
186264790Sbapt/// values as APInts and return V as a Value*, and return whether we looked
187264790Sbapt/// through any sign or zero extends.  The incoming Value is known to have
188264790Sbapt/// IntegerType and it may already be sign or zero extended.
189264790Sbapt///
190264790Sbapt/// Note that this looks through extends, so the high bits may not be
191264790Sbapt/// represented in the result.
192264790Sbaptstatic Value *GetLinearExpression(Value *V, APInt &Scale, APInt &Offset,
193264790Sbapt                                  ExtensionKind &Extension,
194264790Sbapt                                  const DataLayout &TD, unsigned Depth) {
195264790Sbapt  assert(V->getType()->isIntegerTy() && "Not an integer value");
196264790Sbapt
197264790Sbapt  // Limit our recursion depth.
198264790Sbapt  if (Depth == 6) {
199264790Sbapt    Scale = 1;
200264790Sbapt    Offset = 0;
201264790Sbapt    return V;
202264790Sbapt  }
203264790Sbapt
204264790Sbapt  if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) {
205264790Sbapt    if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
206264790Sbapt      switch (BOp->getOpcode()) {
207264790Sbapt      default: break;
208264790Sbapt      case Instruction::Or:
209264790Sbapt        // X|C == X+C if all the bits in C are unset in X.  Otherwise we can't
210264790Sbapt        // analyze it.
211264790Sbapt        if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), &TD))
212264790Sbapt          break;
213264790Sbapt        // FALL THROUGH.
214264790Sbapt      case Instruction::Add:
215264790Sbapt        V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
216264790Sbapt                                TD, Depth+1);
217264790Sbapt        Offset += RHSC->getValue();
218264790Sbapt        return V;
219264790Sbapt      case Instruction::Mul:
220264790Sbapt        V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
221264790Sbapt                                TD, Depth+1);
222264790Sbapt        Offset *= RHSC->getValue();
223264790Sbapt        Scale *= RHSC->getValue();
224264790Sbapt        return V;
225264790Sbapt      case Instruction::Shl:
226264790Sbapt        V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
227264790Sbapt                                TD, Depth+1);
228264790Sbapt        Offset <<= RHSC->getValue().getLimitedValue();
229264790Sbapt        Scale <<= RHSC->getValue().getLimitedValue();
230264790Sbapt        return V;
231264790Sbapt      }
232264790Sbapt    }
233264790Sbapt  }
234264790Sbapt
235264790Sbapt  // Since GEP indices are sign extended anyway, we don't care about the high
236264790Sbapt  // bits of a sign or zero extended value - just scales and offsets.  The
237264790Sbapt  // extensions have to be consistent though.
238264790Sbapt  if ((isa<SExtInst>(V) && Extension != EK_ZeroExt) ||
239264790Sbapt      (isa<ZExtInst>(V) && Extension != EK_SignExt)) {
240264790Sbapt    Value *CastOp = cast<CastInst>(V)->getOperand(0);
241264790Sbapt    unsigned OldWidth = Scale.getBitWidth();
242264790Sbapt    unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits();
243264790Sbapt    Scale = Scale.trunc(SmallWidth);
244264790Sbapt    Offset = Offset.trunc(SmallWidth);
245264790Sbapt    Extension = isa<SExtInst>(V) ? EK_SignExt : EK_ZeroExt;
246264790Sbapt
247264790Sbapt    Value *Result = GetLinearExpression(CastOp, Scale, Offset, Extension,
248264790Sbapt                                        TD, Depth+1);
249264790Sbapt    Scale = Scale.zext(OldWidth);
250264790Sbapt    Offset = Offset.zext(OldWidth);
251264790Sbapt
252264790Sbapt    return Result;
253264790Sbapt  }
254264790Sbapt
255264790Sbapt  Scale = 1;
256264790Sbapt  Offset = 0;
257264790Sbapt  return V;
258264790Sbapt}
259264790Sbapt
260264790Sbapt/// DecomposeGEPExpression - If V is a symbolic pointer expression, decompose it
261264790Sbapt/// into a base pointer with a constant offset and a number of scaled symbolic
262264790Sbapt/// offsets.
263264790Sbapt///
264264790Sbapt/// The scaled symbolic offsets (represented by pairs of a Value* and a scale in
265264790Sbapt/// the VarIndices vector) are Value*'s that are known to be scaled by the
266264790Sbapt/// specified amount, but which may have other unrepresented high bits. As such,
267264790Sbapt/// the gep cannot necessarily be reconstructed from its decomposed form.
268264790Sbapt///
269264790Sbapt/// When DataLayout is around, this function is capable of analyzing everything
270264790Sbapt/// that GetUnderlyingObject can look through.  When not, it just looks
271264790Sbapt/// through pointer casts.
272264790Sbapt///
273264790Sbaptstatic const Value *
274264790SbaptDecomposeGEPExpression(const Value *V, int64_t &BaseOffs,
275264790Sbapt                       SmallVectorImpl<VariableGEPIndex> &VarIndices,
276264790Sbapt                       const DataLayout *TD) {
277264790Sbapt  // Limit recursion depth to limit compile time in crazy cases.
278264790Sbapt  unsigned MaxLookup = 6;
279264790Sbapt
280264790Sbapt  BaseOffs = 0;
281264790Sbapt  do {
282264790Sbapt    // See if this is a bitcast or GEP.
283264790Sbapt    const Operator *Op = dyn_cast<Operator>(V);
284264790Sbapt    if (Op == 0) {
285264790Sbapt      // The only non-operator case we can handle are GlobalAliases.
286264790Sbapt      if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
287264790Sbapt        if (!GA->mayBeOverridden()) {
288264790Sbapt          V = GA->getAliasee();
289272955Srodrigc          continue;
290272955Srodrigc        }
291272955Srodrigc      }
292272955Srodrigc      return V;
293272955Srodrigc    }
294272955Srodrigc
295272955Srodrigc    if (Op->getOpcode() == Instruction::BitCast) {
296272955Srodrigc      V = Op->getOperand(0);
297272955Srodrigc      continue;
298272955Srodrigc    }
299272955Srodrigc
300272955Srodrigc    const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
301272955Srodrigc    if (GEPOp == 0) {
302272955Srodrigc      // If it's not a GEP, hand it off to SimplifyInstruction to see if it
303272955Srodrigc      // can come up with something. This matches what GetUnderlyingObject does.
304272955Srodrigc      if (const Instruction *I = dyn_cast<Instruction>(V))
305272955Srodrigc        // TODO: Get a DominatorTree and use it here.
306272955Srodrigc        if (const Value *Simplified =
307272955Srodrigc              SimplifyInstruction(const_cast<Instruction *>(I), TD)) {
308272955Srodrigc          V = Simplified;
309272955Srodrigc          continue;
310272955Srodrigc        }
311272955Srodrigc
312272955Srodrigc      return V;
313272955Srodrigc    }
314272955Srodrigc
315272955Srodrigc    // Don't attempt to analyze GEPs over unsized objects.
316272955Srodrigc    if (!GEPOp->getOperand(0)->getType()->getPointerElementType()->isSized())
317272955Srodrigc      return V;
318272955Srodrigc
319264790Sbapt    // If we are lacking DataLayout information, we can't compute the offets of
320264790Sbapt    // elements computed by GEPs.  However, we can handle bitcast equivalent
321264790Sbapt    // GEPs.
322264790Sbapt    if (TD == 0) {
323264790Sbapt      if (!GEPOp->hasAllZeroIndices())
324264790Sbapt        return V;
325264790Sbapt      V = GEPOp->getOperand(0);
326264790Sbapt      continue;
327264790Sbapt    }
328264790Sbapt
329264790Sbapt    unsigned AS = GEPOp->getPointerAddressSpace();
330264790Sbapt    // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
331264790Sbapt    gep_type_iterator GTI = gep_type_begin(GEPOp);
332264790Sbapt    for (User::const_op_iterator I = GEPOp->op_begin()+1,
333264790Sbapt         E = GEPOp->op_end(); I != E; ++I) {
334264790Sbapt      Value *Index = *I;
335264790Sbapt      // Compute the (potentially symbolic) offset in bytes for this index.
336264790Sbapt      if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
337264790Sbapt        // For a struct, add the member offset.
338264790Sbapt        unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
339264790Sbapt        if (FieldNo == 0) continue;
340264790Sbapt
341264790Sbapt        BaseOffs += TD->getStructLayout(STy)->getElementOffset(FieldNo);
342264790Sbapt        continue;
343264790Sbapt      }
344264790Sbapt
345264790Sbapt      // For an array/pointer, add the element offset, explicitly scaled.
346264790Sbapt      if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
347264790Sbapt        if (CIdx->isZero()) continue;
348264790Sbapt        BaseOffs += TD->getTypeAllocSize(*GTI)*CIdx->getSExtValue();
349264790Sbapt        continue;
350264790Sbapt      }
351264790Sbapt
352264790Sbapt      uint64_t Scale = TD->getTypeAllocSize(*GTI);
353264790Sbapt      ExtensionKind Extension = EK_NotExtended;
354264790Sbapt
355264790Sbapt      // If the integer type is smaller than the pointer size, it is implicitly
356264790Sbapt      // sign extended to pointer size.
357264790Sbapt      unsigned Width = Index->getType()->getIntegerBitWidth();
358264790Sbapt      if (TD->getPointerSizeInBits(AS) > Width)
359264790Sbapt        Extension = EK_SignExt;
360264790Sbapt
361264790Sbapt      // Use GetLinearExpression to decompose the index into a C1*V+C2 form.
362264790Sbapt      APInt IndexScale(Width, 0), IndexOffset(Width, 0);
363264790Sbapt      Index = GetLinearExpression(Index, IndexScale, IndexOffset, Extension,
364264790Sbapt                                  *TD, 0);
365264790Sbapt
366264790Sbapt      // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
367264790Sbapt      // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
368264790Sbapt      BaseOffs += IndexOffset.getSExtValue()*Scale;
369264790Sbapt      Scale *= IndexScale.getSExtValue();
370264790Sbapt
371264790Sbapt      // If we already had an occurrence of this index variable, merge this
372264790Sbapt      // scale into it.  For example, we want to handle:
373264790Sbapt      //   A[x][x] -> x*16 + x*4 -> x*20
374264790Sbapt      // This also ensures that 'x' only appears in the index list once.
375264790Sbapt      for (unsigned i = 0, e = VarIndices.size(); i != e; ++i) {
376264790Sbapt        if (VarIndices[i].V == Index &&
377264790Sbapt            VarIndices[i].Extension == Extension) {
378264790Sbapt          Scale += VarIndices[i].Scale;
379264790Sbapt          VarIndices.erase(VarIndices.begin()+i);
380264790Sbapt          break;
381264790Sbapt        }
382264790Sbapt      }
383264790Sbapt
384264790Sbapt      // Make sure that we have a scale that makes sense for this target's
385264790Sbapt      // pointer size.
386264790Sbapt      if (unsigned ShiftBits = 64 - TD->getPointerSizeInBits(AS)) {
387264790Sbapt        Scale <<= ShiftBits;
388264790Sbapt        Scale = (int64_t)Scale >> ShiftBits;
389264790Sbapt      }
390264790Sbapt
391264790Sbapt      if (Scale) {
392264790Sbapt        VariableGEPIndex Entry = {Index, Extension,
393264790Sbapt                                  static_cast<int64_t>(Scale)};
394264790Sbapt        VarIndices.push_back(Entry);
395264790Sbapt      }
396264790Sbapt    }
397264790Sbapt
398264790Sbapt    // Analyze the base pointer next.
399264790Sbapt    V = GEPOp->getOperand(0);
400264790Sbapt  } while (--MaxLookup);
401264790Sbapt
402264790Sbapt  // If the chain of expressions is too deep, just return early.
403264790Sbapt  return V;
404264790Sbapt}
405264790Sbapt
406264790Sbapt/// GetIndexDifference - Dest and Src are the variable indices from two
407264790Sbapt/// decomposed GetElementPtr instructions GEP1 and GEP2 which have common base
408264790Sbapt/// pointers.  Subtract the GEP2 indices from GEP1 to find the symbolic
409264790Sbapt/// difference between the two pointers.
410264790Sbaptstatic void GetIndexDifference(SmallVectorImpl<VariableGEPIndex> &Dest,
411264790Sbapt                               const SmallVectorImpl<VariableGEPIndex> &Src) {
412264790Sbapt  if (Src.empty()) return;
413264790Sbapt
414264790Sbapt  for (unsigned i = 0, e = Src.size(); i != e; ++i) {
415264790Sbapt    const Value *V = Src[i].V;
416264790Sbapt    ExtensionKind Extension = Src[i].Extension;
417264790Sbapt    int64_t Scale = Src[i].Scale;
418264790Sbapt
419264790Sbapt    // Find V in Dest.  This is N^2, but pointer indices almost never have more
420264790Sbapt    // than a few variable indexes.
421264790Sbapt    for (unsigned j = 0, e = Dest.size(); j != e; ++j) {
422264790Sbapt      if (Dest[j].V != V || Dest[j].Extension != Extension) continue;
423264790Sbapt
424264790Sbapt      // If we found it, subtract off Scale V's from the entry in Dest.  If it
425264790Sbapt      // goes to zero, remove the entry.
426264790Sbapt      if (Dest[j].Scale != Scale)
427264790Sbapt        Dest[j].Scale -= Scale;
428264790Sbapt      else
429264790Sbapt        Dest.erase(Dest.begin()+j);
430264790Sbapt      Scale = 0;
431264790Sbapt      break;
432264790Sbapt    }
433264790Sbapt
434264790Sbapt    // If we didn't consume this entry, add it to the end of the Dest list.
435264790Sbapt    if (Scale) {
436264790Sbapt      VariableGEPIndex Entry = { V, Extension, -Scale };
437264790Sbapt      Dest.push_back(Entry);
438264790Sbapt    }
439264790Sbapt  }
440264790Sbapt}
441264790Sbapt
442264790Sbapt//===----------------------------------------------------------------------===//
443264790Sbapt// BasicAliasAnalysis Pass
444264790Sbapt//===----------------------------------------------------------------------===//
445264790Sbapt
446264790Sbapt#ifndef NDEBUG
447264790Sbaptstatic const Function *getParent(const Value *V) {
448264790Sbapt  if (const Instruction *inst = dyn_cast<Instruction>(V))
449264790Sbapt    return inst->getParent()->getParent();
450264790Sbapt
451264790Sbapt  if (const Argument *arg = dyn_cast<Argument>(V))
452264790Sbapt    return arg->getParent();
453264790Sbapt
454264790Sbapt  return NULL;
455264790Sbapt}
456264790Sbapt
457264790Sbaptstatic bool notDifferentParent(const Value *O1, const Value *O2) {
458264790Sbapt
459264790Sbapt  const Function *F1 = getParent(O1);
460264790Sbapt  const Function *F2 = getParent(O2);
461264790Sbapt
462264790Sbapt  return !F1 || !F2 || F1 == F2;
463264790Sbapt}
464264790Sbapt#endif
465264790Sbapt
466264790Sbaptnamespace {
467264790Sbapt  /// BasicAliasAnalysis - This is the primary alias analysis implementation.
468264790Sbapt  struct BasicAliasAnalysis : public ImmutablePass, public AliasAnalysis {
469264790Sbapt    static char ID; // Class identification, replacement for typeinfo
470264790Sbapt    BasicAliasAnalysis() : ImmutablePass(ID) {
471264790Sbapt      initializeBasicAliasAnalysisPass(*PassRegistry::getPassRegistry());
472264790Sbapt    }
473264790Sbapt
474264790Sbapt    virtual void initializePass() {
475264790Sbapt      InitializeAliasAnalysis(this);
476264790Sbapt    }
477264790Sbapt
478264790Sbapt    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
479264790Sbapt      AU.addRequired<AliasAnalysis>();
480264790Sbapt      AU.addRequired<TargetLibraryInfo>();
481264790Sbapt    }
482264790Sbapt
483264790Sbapt    virtual AliasResult alias(const Location &LocA,
484264790Sbapt                              const Location &LocB) {
485264790Sbapt      assert(AliasCache.empty() && "AliasCache must be cleared after use!");
486264790Sbapt      assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
487264790Sbapt             "BasicAliasAnalysis doesn't support interprocedural queries.");
488264790Sbapt      AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.TBAATag,
489264790Sbapt                                     LocB.Ptr, LocB.Size, LocB.TBAATag);
490264790Sbapt      // AliasCache rarely has more than 1 or 2 elements, always use
491264790Sbapt      // shrink_and_clear so it quickly returns to the inline capacity of the
492264790Sbapt      // SmallDenseMap if it ever grows larger.
493264790Sbapt      // FIXME: This should really be shrink_to_inline_capacity_and_clear().
494264790Sbapt      AliasCache.shrink_and_clear();
495264790Sbapt      return Alias;
496264790Sbapt    }
497264790Sbapt
498264790Sbapt    virtual ModRefResult getModRefInfo(ImmutableCallSite CS,
499264790Sbapt                                       const Location &Loc);
500264790Sbapt
501264790Sbapt    virtual ModRefResult getModRefInfo(ImmutableCallSite CS1,
502264790Sbapt                                       ImmutableCallSite CS2) {
503264790Sbapt      // The AliasAnalysis base class has some smarts, lets use them.
504264790Sbapt      return AliasAnalysis::getModRefInfo(CS1, CS2);
505264790Sbapt    }
506264790Sbapt
507264790Sbapt    /// pointsToConstantMemory - Chase pointers until we find a (constant
508264790Sbapt    /// global) or not.
509264790Sbapt    virtual bool pointsToConstantMemory(const Location &Loc, bool OrLocal);
510264790Sbapt
511264790Sbapt    /// getModRefBehavior - Return the behavior when calling the given
512264790Sbapt    /// call site.
513264790Sbapt    virtual ModRefBehavior getModRefBehavior(ImmutableCallSite CS);
514264790Sbapt
515264790Sbapt    /// getModRefBehavior - Return the behavior when calling the given function.
516264790Sbapt    /// For use when the call site is not known.
517264790Sbapt    virtual ModRefBehavior getModRefBehavior(const Function *F);
518264790Sbapt
519264790Sbapt    /// getAdjustedAnalysisPointer - This method is used when a pass implements
520264790Sbapt    /// an analysis interface through multiple inheritance.  If needed, it
521264790Sbapt    /// should override this to adjust the this pointer as needed for the
522264790Sbapt    /// specified pass info.
523264790Sbapt    virtual void *getAdjustedAnalysisPointer(const void *ID) {
524264790Sbapt      if (ID == &AliasAnalysis::ID)
525264790Sbapt        return (AliasAnalysis*)this;
526264790Sbapt      return this;
527264790Sbapt    }
528264790Sbapt
529272955Srodrigc  private:
530264790Sbapt    // AliasCache - Track alias queries to guard against recursion.
531264790Sbapt    typedef std::pair<Location, Location> LocPair;
532264790Sbapt    typedef SmallDenseMap<LocPair, AliasResult, 8> AliasCacheTy;
533264790Sbapt    AliasCacheTy AliasCache;
534264790Sbapt
535264790Sbapt    // Visited - Track instructions visited by pointsToConstantMemory.
536264790Sbapt    SmallPtrSet<const Value*, 16> Visited;
537264790Sbapt
538272955Srodrigc    // aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP
539264790Sbapt    // instruction against another.
540264790Sbapt    AliasResult aliasGEP(const GEPOperator *V1, uint64_t V1Size,
541272955Srodrigc                         const MDNode *V1TBAAInfo,
542272955Srodrigc                         const Value *V2, uint64_t V2Size,
543264790Sbapt                         const MDNode *V2TBAAInfo,
544264790Sbapt                         const Value *UnderlyingV1, const Value *UnderlyingV2);
545264790Sbapt
546264790Sbapt    // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI
547264790Sbapt    // instruction against another.
548264790Sbapt    AliasResult aliasPHI(const PHINode *PN, uint64_t PNSize,
549264790Sbapt                         const MDNode *PNTBAAInfo,
550264790Sbapt                         const Value *V2, uint64_t V2Size,
551264790Sbapt                         const MDNode *V2TBAAInfo);
552264790Sbapt
553264790Sbapt    /// aliasSelect - Disambiguate a Select instruction against another value.
554264790Sbapt    AliasResult aliasSelect(const SelectInst *SI, uint64_t SISize,
555264790Sbapt                            const MDNode *SITBAAInfo,
556264790Sbapt                            const Value *V2, uint64_t V2Size,
557264790Sbapt                            const MDNode *V2TBAAInfo);
558264790Sbapt
559264790Sbapt    AliasResult aliasCheck(const Value *V1, uint64_t V1Size,
560264790Sbapt                           const MDNode *V1TBAATag,
561264790Sbapt                           const Value *V2, uint64_t V2Size,
562264790Sbapt                           const MDNode *V2TBAATag);
563264790Sbapt  };
564264790Sbapt}  // End of anonymous namespace
565264790Sbapt
566264790Sbapt// Register this pass...
567264790Sbaptchar BasicAliasAnalysis::ID = 0;
568264790SbaptINITIALIZE_AG_PASS_BEGIN(BasicAliasAnalysis, AliasAnalysis, "basicaa",
569264790Sbapt                   "Basic Alias Analysis (stateless AA impl)",
570264790Sbapt                   false, true, false)
571264790SbaptINITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
572264790SbaptINITIALIZE_AG_PASS_END(BasicAliasAnalysis, AliasAnalysis, "basicaa",
573264790Sbapt                   "Basic Alias Analysis (stateless AA impl)",
574264790Sbapt                   false, true, false)
575264790Sbapt
576264790Sbapt
577264790SbaptImmutablePass *llvm::createBasicAliasAnalysisPass() {
578264790Sbapt  return new BasicAliasAnalysis();
579264790Sbapt}
580264790Sbapt
581264790Sbapt/// pointsToConstantMemory - Returns whether the given pointer value
582264790Sbapt/// points to memory that is local to the function, with global constants being
583264790Sbapt/// considered local to all functions.
584264790Sbaptbool
585264790SbaptBasicAliasAnalysis::pointsToConstantMemory(const Location &Loc, bool OrLocal) {
586264790Sbapt  assert(Visited.empty() && "Visited must be cleared after use!");
587264790Sbapt
588264790Sbapt  unsigned MaxLookup = 8;
589264790Sbapt  SmallVector<const Value *, 16> Worklist;
590264790Sbapt  Worklist.push_back(Loc.Ptr);
591264790Sbapt  do {
592264790Sbapt    const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), TD);
593264790Sbapt    if (!Visited.insert(V)) {
594264790Sbapt      Visited.clear();
595264790Sbapt      return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
596264790Sbapt    }
597264790Sbapt
598264790Sbapt    // An alloca instruction defines local memory.
599264790Sbapt    if (OrLocal && isa<AllocaInst>(V))
600264790Sbapt      continue;
601264790Sbapt
602264790Sbapt    // A global constant counts as local memory for our purposes.
603264790Sbapt    if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
604264790Sbapt      // Note: this doesn't require GV to be "ODR" because it isn't legal for a
605264790Sbapt      // global to be marked constant in some modules and non-constant in
606264790Sbapt      // others.  GV may even be a declaration, not a definition.
607264790Sbapt      if (!GV->isConstant()) {
608264790Sbapt        Visited.clear();
609264790Sbapt        return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
610264790Sbapt      }
611264790Sbapt      continue;
612264790Sbapt    }
613264790Sbapt
614264790Sbapt    // If both select values point to local memory, then so does the select.
615264790Sbapt    if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
616264790Sbapt      Worklist.push_back(SI->getTrueValue());
617264790Sbapt      Worklist.push_back(SI->getFalseValue());
618264790Sbapt      continue;
619264790Sbapt    }
620264790Sbapt
621264790Sbapt    // If all values incoming to a phi node point to local memory, then so does
622264790Sbapt    // the phi.
623264790Sbapt    if (const PHINode *PN = dyn_cast<PHINode>(V)) {
624264790Sbapt      // Don't bother inspecting phi nodes with many operands.
625264790Sbapt      if (PN->getNumIncomingValues() > MaxLookup) {
626264790Sbapt        Visited.clear();
627264790Sbapt        return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
628264790Sbapt      }
629264790Sbapt      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
630264790Sbapt        Worklist.push_back(PN->getIncomingValue(i));
631264790Sbapt      continue;
632264790Sbapt    }
633264790Sbapt
634264790Sbapt    // Otherwise be conservative.
635264790Sbapt    Visited.clear();
636264790Sbapt    return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
637264790Sbapt
638264790Sbapt  } while (!Worklist.empty() && --MaxLookup);
639264790Sbapt
640264790Sbapt  Visited.clear();
641264790Sbapt  return Worklist.empty();
642264790Sbapt}
643264790Sbapt
644264790Sbapt/// getModRefBehavior - Return the behavior when calling the given call site.
645264790SbaptAliasAnalysis::ModRefBehavior
646264790SbaptBasicAliasAnalysis::getModRefBehavior(ImmutableCallSite CS) {
647264790Sbapt  if (CS.doesNotAccessMemory())
648264790Sbapt    // Can't do better than this.
649264790Sbapt    return DoesNotAccessMemory;
650264790Sbapt
651264790Sbapt  ModRefBehavior Min = UnknownModRefBehavior;
652264790Sbapt
653264790Sbapt  // If the callsite knows it only reads memory, don't return worse
654264790Sbapt  // than that.
655264790Sbapt  if (CS.onlyReadsMemory())
656264790Sbapt    Min = OnlyReadsMemory;
657264790Sbapt
658264790Sbapt  // The AliasAnalysis base class has some smarts, lets use them.
659264790Sbapt  return ModRefBehavior(AliasAnalysis::getModRefBehavior(CS) & Min);
660264790Sbapt}
661264790Sbapt
662264790Sbapt/// getModRefBehavior - Return the behavior when calling the given function.
663264790Sbapt/// For use when the call site is not known.
664264790SbaptAliasAnalysis::ModRefBehavior
665264790SbaptBasicAliasAnalysis::getModRefBehavior(const Function *F) {
666264790Sbapt  // If the function declares it doesn't access memory, we can't do better.
667264790Sbapt  if (F->doesNotAccessMemory())
668264790Sbapt    return DoesNotAccessMemory;
669264790Sbapt
670264790Sbapt  // For intrinsics, we can check the table.
671264790Sbapt  if (unsigned iid = F->getIntrinsicID()) {
672264790Sbapt#define GET_INTRINSIC_MODREF_BEHAVIOR
673264790Sbapt#include "llvm/IR/Intrinsics.gen"
674264790Sbapt#undef GET_INTRINSIC_MODREF_BEHAVIOR
675264790Sbapt  }
676264790Sbapt
677264790Sbapt  ModRefBehavior Min = UnknownModRefBehavior;
678264790Sbapt
679264790Sbapt  // If the function declares it only reads memory, go with that.
680264790Sbapt  if (F->onlyReadsMemory())
681264790Sbapt    Min = OnlyReadsMemory;
682264790Sbapt
683264790Sbapt  // Otherwise be conservative.
684264790Sbapt  return ModRefBehavior(AliasAnalysis::getModRefBehavior(F) & Min);
685264790Sbapt}
686264790Sbapt
687264790Sbapt/// getModRefInfo - Check to see if the specified callsite can clobber the
688264790Sbapt/// specified memory object.  Since we only look at local properties of this
689264790Sbapt/// function, we really can't say much about this query.  We do, however, use
690264790Sbapt/// simple "address taken" analysis on local objects.
691264790SbaptAliasAnalysis::ModRefResult
692264790SbaptBasicAliasAnalysis::getModRefInfo(ImmutableCallSite CS,
693264790Sbapt                                  const Location &Loc) {
694264790Sbapt  assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) &&
695264790Sbapt         "AliasAnalysis query involving multiple functions!");
696264790Sbapt
697264790Sbapt  const Value *Object = GetUnderlyingObject(Loc.Ptr, TD);
698264790Sbapt
699264790Sbapt  // If this is a tail call and Loc.Ptr points to a stack location, we know that
700264790Sbapt  // the tail call cannot access or modify the local stack.
701264790Sbapt  // We cannot exclude byval arguments here; these belong to the caller of
702264790Sbapt  // the current function not to the current function, and a tail callee
703264790Sbapt  // may reference them.
704264790Sbapt  if (isa<AllocaInst>(Object))
705264790Sbapt    if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
706264790Sbapt      if (CI->isTailCall())
707264790Sbapt        return NoModRef;
708264790Sbapt
709264790Sbapt  // If the pointer is to a locally allocated object that does not escape,
710264790Sbapt  // then the call can not mod/ref the pointer unless the call takes the pointer
711264790Sbapt  // as an argument, and itself doesn't capture it.
712264790Sbapt  if (!isa<Constant>(Object) && CS.getInstruction() != Object &&
713264790Sbapt      isNonEscapingLocalObject(Object)) {
714264790Sbapt    bool PassedAsArg = false;
715264790Sbapt    unsigned ArgNo = 0;
716264790Sbapt    for (ImmutableCallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
717264790Sbapt         CI != CE; ++CI, ++ArgNo) {
718264790Sbapt      // Only look at the no-capture or byval pointer arguments.  If this
719264790Sbapt      // pointer were passed to arguments that were neither of these, then it
720264790Sbapt      // couldn't be no-capture.
721264790Sbapt      if (!(*CI)->getType()->isPointerTy() ||
722264790Sbapt          (!CS.doesNotCapture(ArgNo) && !CS.isByValArgument(ArgNo)))
723264790Sbapt        continue;
724264790Sbapt
725264790Sbapt      // If this is a no-capture pointer argument, see if we can tell that it
726272955Srodrigc      // is impossible to alias the pointer we're checking.  If not, we have to
727272955Srodrigc      // assume that the call could touch the pointer, even though it doesn't
728264790Sbapt      // escape.
729264790Sbapt      if (!isNoAlias(Location(*CI), Location(Object))) {
730264790Sbapt        PassedAsArg = true;
731264790Sbapt        break;
732264790Sbapt      }
733264790Sbapt    }
734264790Sbapt
735264790Sbapt    if (!PassedAsArg)
736264790Sbapt      return NoModRef;
737264790Sbapt  }
738264790Sbapt
739264790Sbapt  const TargetLibraryInfo &TLI = getAnalysis<TargetLibraryInfo>();
740264790Sbapt  ModRefResult Min = ModRef;
741264790Sbapt
742264790Sbapt  // Finally, handle specific knowledge of intrinsics.
743264790Sbapt  const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction());
744264790Sbapt  if (II != 0)
745264790Sbapt    switch (II->getIntrinsicID()) {
746264790Sbapt    default: break;
747264790Sbapt    case Intrinsic::memcpy:
748264790Sbapt    case Intrinsic::memmove: {
749264790Sbapt      uint64_t Len = UnknownSize;
750264790Sbapt      if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2)))
751264790Sbapt        Len = LenCI->getZExtValue();
752264790Sbapt      Value *Dest = II->getArgOperand(0);
753264790Sbapt      Value *Src = II->getArgOperand(1);
754264790Sbapt      // If it can't overlap the source dest, then it doesn't modref the loc.
755264790Sbapt      if (isNoAlias(Location(Dest, Len), Loc)) {
756264790Sbapt        if (isNoAlias(Location(Src, Len), Loc))
757264790Sbapt          return NoModRef;
758264790Sbapt        // If it can't overlap the dest, then worst case it reads the loc.
759264790Sbapt        Min = Ref;
760264790Sbapt      } else if (isNoAlias(Location(Src, Len), Loc)) {
761264790Sbapt        // If it can't overlap the source, then worst case it mutates the loc.
762264790Sbapt        Min = Mod;
763264790Sbapt      }
764264790Sbapt      break;
765264790Sbapt    }
766264790Sbapt    case Intrinsic::memset:
767264790Sbapt      // Since memset is 'accesses arguments' only, the AliasAnalysis base class
768264790Sbapt      // will handle it for the variable length case.
769264790Sbapt      if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2))) {
770264790Sbapt        uint64_t Len = LenCI->getZExtValue();
771264790Sbapt        Value *Dest = II->getArgOperand(0);
772264790Sbapt        if (isNoAlias(Location(Dest, Len), Loc))
773264790Sbapt          return NoModRef;
774264790Sbapt      }
775264790Sbapt      // We know that memset doesn't load anything.
776264790Sbapt      Min = Mod;
777264790Sbapt      break;
778264790Sbapt    case Intrinsic::lifetime_start:
779264790Sbapt    case Intrinsic::lifetime_end:
780264790Sbapt    case Intrinsic::invariant_start: {
781264790Sbapt      uint64_t PtrSize =
782264790Sbapt        cast<ConstantInt>(II->getArgOperand(0))->getZExtValue();
783264790Sbapt      if (isNoAlias(Location(II->getArgOperand(1),
784264790Sbapt                             PtrSize,
785264790Sbapt                             II->getMetadata(LLVMContext::MD_tbaa)),
786264790Sbapt                    Loc))
787264790Sbapt        return NoModRef;
788264790Sbapt      break;
789264790Sbapt    }
790264790Sbapt    case Intrinsic::invariant_end: {
791264790Sbapt      uint64_t PtrSize =
792264790Sbapt        cast<ConstantInt>(II->getArgOperand(1))->getZExtValue();
793264790Sbapt      if (isNoAlias(Location(II->getArgOperand(2),
794264790Sbapt                             PtrSize,
795264790Sbapt                             II->getMetadata(LLVMContext::MD_tbaa)),
796264790Sbapt                    Loc))
797264790Sbapt        return NoModRef;
798264790Sbapt      break;
799264790Sbapt    }
800264790Sbapt    case Intrinsic::arm_neon_vld1: {
801264790Sbapt      // LLVM's vld1 and vst1 intrinsics currently only support a single
802264790Sbapt      // vector register.
803264790Sbapt      uint64_t Size =
804264790Sbapt        TD ? TD->getTypeStoreSize(II->getType()) : UnknownSize;
805264790Sbapt      if (isNoAlias(Location(II->getArgOperand(0), Size,
806264790Sbapt                             II->getMetadata(LLVMContext::MD_tbaa)),
807264790Sbapt                    Loc))
808264790Sbapt        return NoModRef;
809264790Sbapt      break;
810264790Sbapt    }
811264790Sbapt    case Intrinsic::arm_neon_vst1: {
812264790Sbapt      uint64_t Size =
813264790Sbapt        TD ? TD->getTypeStoreSize(II->getArgOperand(1)->getType()) : UnknownSize;
814264790Sbapt      if (isNoAlias(Location(II->getArgOperand(0), Size,
815264790Sbapt                             II->getMetadata(LLVMContext::MD_tbaa)),
816264790Sbapt                    Loc))
817264790Sbapt        return NoModRef;
818264790Sbapt      break;
819264790Sbapt    }
820264790Sbapt    }
821264790Sbapt
822264790Sbapt  // We can bound the aliasing properties of memset_pattern16 just as we can
823272955Srodrigc  // for memcpy/memset.  This is particularly important because the
824264790Sbapt  // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16
825272955Srodrigc  // whenever possible.
826264790Sbapt  else if (TLI.has(LibFunc::memset_pattern16) &&
827264790Sbapt           CS.getCalledFunction() &&
828272955Srodrigc           CS.getCalledFunction()->getName() == "memset_pattern16") {
829264790Sbapt    const Function *MS = CS.getCalledFunction();
830264790Sbapt    FunctionType *MemsetType = MS->getFunctionType();
831264790Sbapt    if (!MemsetType->isVarArg() && MemsetType->getNumParams() == 3 &&
832264790Sbapt        isa<PointerType>(MemsetType->getParamType(0)) &&
833264790Sbapt        isa<PointerType>(MemsetType->getParamType(1)) &&
834264790Sbapt        isa<IntegerType>(MemsetType->getParamType(2))) {
835264790Sbapt      uint64_t Len = UnknownSize;
836264790Sbapt      if (const ConstantInt *LenCI = dyn_cast<ConstantInt>(CS.getArgument(2)))
837264790Sbapt        Len = LenCI->getZExtValue();
838264790Sbapt      const Value *Dest = CS.getArgument(0);
839264790Sbapt      const Value *Src = CS.getArgument(1);
840264790Sbapt      // If it can't overlap the source dest, then it doesn't modref the loc.
841264790Sbapt      if (isNoAlias(Location(Dest, Len), Loc)) {
842264790Sbapt        // Always reads 16 bytes of the source.
843264790Sbapt        if (isNoAlias(Location(Src, 16), Loc))
844264790Sbapt          return NoModRef;
845264790Sbapt        // If it can't overlap the dest, then worst case it reads the loc.
846264790Sbapt        Min = Ref;
847264790Sbapt      // Always reads 16 bytes of the source.
848264790Sbapt      } else if (isNoAlias(Location(Src, 16), Loc)) {
849264790Sbapt        // If it can't overlap the source, then worst case it mutates the loc.
850264790Sbapt        Min = Mod;
851264790Sbapt      }
852264790Sbapt    }
853264790Sbapt  }
854264790Sbapt
855264790Sbapt  // The AliasAnalysis base class has some smarts, lets use them.
856264790Sbapt  return ModRefResult(AliasAnalysis::getModRefInfo(CS, Loc) & Min);
857264790Sbapt}
858264790Sbapt
859264790Sbaptstatic bool areVarIndicesEqual(SmallVectorImpl<VariableGEPIndex> &Indices1,
860264790Sbapt                               SmallVectorImpl<VariableGEPIndex> &Indices2) {
861264790Sbapt  unsigned Size1 = Indices1.size();
862264790Sbapt  unsigned Size2 = Indices2.size();
863264790Sbapt
864264790Sbapt  if (Size1 != Size2)
865264790Sbapt    return false;
866264790Sbapt
867264790Sbapt  for (unsigned I = 0; I != Size1; ++I)
868264790Sbapt    if (Indices1[I] != Indices2[I])
869264790Sbapt      return false;
870264790Sbapt
871264790Sbapt  return true;
872264790Sbapt}
873264790Sbapt
874264790Sbapt/// aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP instruction
875264790Sbapt/// against another pointer.  We know that V1 is a GEP, but we don't know
876264790Sbapt/// anything about V2.  UnderlyingV1 is GetUnderlyingObject(GEP1, TD),
877264790Sbapt/// UnderlyingV2 is the same for V2.
878264790Sbapt///
879264790SbaptAliasAnalysis::AliasResult
880264790SbaptBasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size,
881264790Sbapt                             const MDNode *V1TBAAInfo,
882264790Sbapt                             const Value *V2, uint64_t V2Size,
883272955Srodrigc                             const MDNode *V2TBAAInfo,
884264790Sbapt                             const Value *UnderlyingV1,
885264790Sbapt                             const Value *UnderlyingV2) {
886264790Sbapt  int64_t GEP1BaseOffset;
887264790Sbapt  SmallVector<VariableGEPIndex, 4> GEP1VariableIndices;
888264790Sbapt
889264790Sbapt  // If we have two gep instructions with must-alias or not-alias'ing base
890264790Sbapt  // pointers, figure out if the indexes to the GEP tell us anything about the
891264790Sbapt  // derived pointer.
892264790Sbapt  if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) {
893264790Sbapt    // Do the base pointers alias?
894264790Sbapt    AliasResult BaseAlias = aliasCheck(UnderlyingV1, UnknownSize, 0,
895264790Sbapt                                       UnderlyingV2, UnknownSize, 0);
896264790Sbapt
897264790Sbapt    // Check for geps of non-aliasing underlying pointers where the offsets are
898264790Sbapt    // identical.
899264790Sbapt    if ((BaseAlias == MayAlias) && V1Size == V2Size) {
900264790Sbapt      // Do the base pointers alias assuming type and size.
901264790Sbapt      AliasResult PreciseBaseAlias = aliasCheck(UnderlyingV1, V1Size,
902264790Sbapt                                                V1TBAAInfo, UnderlyingV2,
903264790Sbapt                                                V2Size, V2TBAAInfo);
904264790Sbapt      if (PreciseBaseAlias == NoAlias) {
905264790Sbapt        // See if the computed offset from the common pointer tells us about the
906264790Sbapt        // relation of the resulting pointer.
907264790Sbapt        int64_t GEP2BaseOffset;
908264790Sbapt        SmallVector<VariableGEPIndex, 4> GEP2VariableIndices;
909264790Sbapt        const Value *GEP2BasePtr =
910264790Sbapt          DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, TD);
911264790Sbapt        const Value *GEP1BasePtr =
912264790Sbapt          DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD);
913264790Sbapt        // DecomposeGEPExpression and GetUnderlyingObject should return the
914264790Sbapt        // same result except when DecomposeGEPExpression has no DataLayout.
915264790Sbapt        if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) {
916264790Sbapt          assert(TD == 0 &&
917264790Sbapt             "DecomposeGEPExpression and GetUnderlyingObject disagree!");
918264790Sbapt          return MayAlias;
919264790Sbapt        }
920264790Sbapt        // Same offsets.
921264790Sbapt        if (GEP1BaseOffset == GEP2BaseOffset &&
922264790Sbapt            areVarIndicesEqual(GEP1VariableIndices, GEP2VariableIndices))
923264790Sbapt          return NoAlias;
924264790Sbapt        GEP1VariableIndices.clear();
925264790Sbapt      }
926264790Sbapt    }
927264790Sbapt
928264790Sbapt    // If we get a No or May, then return it immediately, no amount of analysis
929264790Sbapt    // will improve this situation.
930264790Sbapt    if (BaseAlias != MustAlias) return BaseAlias;
931264790Sbapt
932264790Sbapt    // Otherwise, we have a MustAlias.  Since the base pointers alias each other
933264790Sbapt    // exactly, see if the computed offset from the common pointer tells us
934264790Sbapt    // about the relation of the resulting pointer.
935264790Sbapt    const Value *GEP1BasePtr =
936264790Sbapt      DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD);
937264790Sbapt
938264790Sbapt    int64_t GEP2BaseOffset;
939264790Sbapt    SmallVector<VariableGEPIndex, 4> GEP2VariableIndices;
940264790Sbapt    const Value *GEP2BasePtr =
941264790Sbapt      DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, TD);
942264790Sbapt
943264790Sbapt    // DecomposeGEPExpression and GetUnderlyingObject should return the
944264790Sbapt    // same result except when DecomposeGEPExpression has no DataLayout.
945264790Sbapt    if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) {
946264790Sbapt      assert(TD == 0 &&
947264790Sbapt             "DecomposeGEPExpression and GetUnderlyingObject disagree!");
948264790Sbapt      return MayAlias;
949264790Sbapt    }
950264790Sbapt
951264790Sbapt    // Subtract the GEP2 pointer from the GEP1 pointer to find out their
952264790Sbapt    // symbolic difference.
953264790Sbapt    GEP1BaseOffset -= GEP2BaseOffset;
954264790Sbapt    GetIndexDifference(GEP1VariableIndices, GEP2VariableIndices);
955264790Sbapt
956264790Sbapt  } else {
957264790Sbapt    // Check to see if these two pointers are related by the getelementptr
958264790Sbapt    // instruction.  If one pointer is a GEP with a non-zero index of the other
959264790Sbapt    // pointer, we know they cannot alias.
960264790Sbapt
961264790Sbapt    // If both accesses are unknown size, we can't do anything useful here.
962264790Sbapt    if (V1Size == UnknownSize && V2Size == UnknownSize)
963264790Sbapt      return MayAlias;
964264790Sbapt
965264790Sbapt    AliasResult R = aliasCheck(UnderlyingV1, UnknownSize, 0,
966264790Sbapt                               V2, V2Size, V2TBAAInfo);
967264790Sbapt    if (R != MustAlias)
968264790Sbapt      // If V2 may alias GEP base pointer, conservatively returns MayAlias.
969264790Sbapt      // If V2 is known not to alias GEP base pointer, then the two values
970264790Sbapt      // cannot alias per GEP semantics: "A pointer value formed from a
971264790Sbapt      // getelementptr instruction is associated with the addresses associated
972264790Sbapt      // with the first operand of the getelementptr".
973264790Sbapt      return R;
974264790Sbapt
975264790Sbapt    const Value *GEP1BasePtr =
976264790Sbapt      DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD);
977272955Srodrigc
978264790Sbapt    // DecomposeGEPExpression and GetUnderlyingObject should return the
979272955Srodrigc    // same result except when DecomposeGEPExpression has no DataLayout.
980264790Sbapt    if (GEP1BasePtr != UnderlyingV1) {
981264790Sbapt      assert(TD == 0 &&
982272955Srodrigc             "DecomposeGEPExpression and GetUnderlyingObject disagree!");
983264790Sbapt      return MayAlias;
984272955Srodrigc    }
985264790Sbapt  }
986264790Sbapt
987264790Sbapt  // In the two GEP Case, if there is no difference in the offsets of the
988264790Sbapt  // computed pointers, the resultant pointers are a must alias.  This
989264790Sbapt  // hapens when we have two lexically identical GEP's (for example).
990264790Sbapt  //
991264790Sbapt  // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2
992264790Sbapt  // must aliases the GEP, the end result is a must alias also.
993272955Srodrigc  if (GEP1BaseOffset == 0 && GEP1VariableIndices.empty())
994264790Sbapt    return MustAlias;
995272955Srodrigc
996264790Sbapt  // If there is a constant difference between the pointers, but the difference
997264790Sbapt  // is less than the size of the associated memory object, then we know
998272955Srodrigc  // that the objects are partially overlapping.  If the difference is
999264790Sbapt  // greater, we know they do not overlap.
1000264790Sbapt  if (GEP1BaseOffset != 0 && GEP1VariableIndices.empty()) {
1001264790Sbapt    if (GEP1BaseOffset >= 0) {
1002264790Sbapt      if (V2Size != UnknownSize) {
1003264790Sbapt        if ((uint64_t)GEP1BaseOffset < V2Size)
1004264790Sbapt          return PartialAlias;
1005264790Sbapt        return NoAlias;
1006264790Sbapt      }
1007264790Sbapt    } else {
1008264790Sbapt      if (V1Size != UnknownSize) {
1009264790Sbapt        if (-(uint64_t)GEP1BaseOffset < V1Size)
1010264790Sbapt          return PartialAlias;
1011264790Sbapt        return NoAlias;
1012264790Sbapt      }
1013264790Sbapt    }
1014264790Sbapt  }
1015264790Sbapt
1016264790Sbapt  // Try to distinguish something like &A[i][1] against &A[42][0].
1017264790Sbapt  // Grab the least significant bit set in any of the scales.
1018264790Sbapt  if (!GEP1VariableIndices.empty()) {
1019264790Sbapt    uint64_t Modulo = 0;
1020264790Sbapt    for (unsigned i = 0, e = GEP1VariableIndices.size(); i != e; ++i)
1021264790Sbapt      Modulo |= (uint64_t)GEP1VariableIndices[i].Scale;
1022264790Sbapt    Modulo = Modulo ^ (Modulo & (Modulo - 1));
1023264790Sbapt
1024264790Sbapt    // We can compute the difference between the two addresses
1025264790Sbapt    // mod Modulo. Check whether that difference guarantees that the
1026264790Sbapt    // two locations do not alias.
1027264790Sbapt    uint64_t ModOffset = (uint64_t)GEP1BaseOffset & (Modulo - 1);
1028272955Srodrigc    if (V1Size != UnknownSize && V2Size != UnknownSize &&
1029264790Sbapt        ModOffset >= V2Size && V1Size <= Modulo - ModOffset)
1030272955Srodrigc      return NoAlias;
1031264790Sbapt  }
1032264790Sbapt
1033272955Srodrigc  // Statically, we can see that the base objects are the same, but the
1034264790Sbapt  // pointers have dynamic offsets which we can't resolve. And none of our
1035264790Sbapt  // little tricks above worked.
1036264790Sbapt  //
1037264790Sbapt  // TODO: Returning PartialAlias instead of MayAlias is a mild hack; the
1038264790Sbapt  // practical effect of this is protecting TBAA in the case of dynamic
1039264790Sbapt  // indices into arrays of unions or malloc'd memory.
1040264790Sbapt  return PartialAlias;
1041264790Sbapt}
1042264790Sbapt
1043264790Sbaptstatic AliasAnalysis::AliasResult
1044264790SbaptMergeAliasResults(AliasAnalysis::AliasResult A, AliasAnalysis::AliasResult B) {
1045264790Sbapt  // If the results agree, take it.
1046264790Sbapt  if (A == B)
1047264790Sbapt    return A;
1048264790Sbapt  // A mix of PartialAlias and MustAlias is PartialAlias.
1049264790Sbapt  if ((A == AliasAnalysis::PartialAlias && B == AliasAnalysis::MustAlias) ||
1050264790Sbapt      (B == AliasAnalysis::PartialAlias && A == AliasAnalysis::MustAlias))
1051264790Sbapt    return AliasAnalysis::PartialAlias;
1052264790Sbapt  // Otherwise, we don't know anything.
1053264790Sbapt  return AliasAnalysis::MayAlias;
1054264790Sbapt}
1055264790Sbapt
1056264790Sbapt/// aliasSelect - Provide a bunch of ad-hoc rules to disambiguate a Select
1057264790Sbapt/// instruction against another.
1058264790SbaptAliasAnalysis::AliasResult
1059264790SbaptBasicAliasAnalysis::aliasSelect(const SelectInst *SI, uint64_t SISize,
1060264790Sbapt                                const MDNode *SITBAAInfo,
1061264790Sbapt                                const Value *V2, uint64_t V2Size,
1062264790Sbapt                                const MDNode *V2TBAAInfo) {
1063264790Sbapt  // If the values are Selects with the same condition, we can do a more precise
1064264790Sbapt  // check: just check for aliases between the values on corresponding arms.
1065264790Sbapt  if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
1066264790Sbapt    if (SI->getCondition() == SI2->getCondition()) {
1067264790Sbapt      AliasResult Alias =
1068264790Sbapt        aliasCheck(SI->getTrueValue(), SISize, SITBAAInfo,
1069264790Sbapt                   SI2->getTrueValue(), V2Size, V2TBAAInfo);
1070264790Sbapt      if (Alias == MayAlias)
1071264790Sbapt        return MayAlias;
1072264790Sbapt      AliasResult ThisAlias =
1073264790Sbapt        aliasCheck(SI->getFalseValue(), SISize, SITBAAInfo,
1074264790Sbapt                   SI2->getFalseValue(), V2Size, V2TBAAInfo);
1075264790Sbapt      return MergeAliasResults(ThisAlias, Alias);
1076264790Sbapt    }
1077264790Sbapt
1078264790Sbapt  // If both arms of the Select node NoAlias or MustAlias V2, then returns
1079264790Sbapt  // NoAlias / MustAlias. Otherwise, returns MayAlias.
1080264790Sbapt  AliasResult Alias =
1081264790Sbapt    aliasCheck(V2, V2Size, V2TBAAInfo, SI->getTrueValue(), SISize, SITBAAInfo);
1082264790Sbapt  if (Alias == MayAlias)
1083264790Sbapt    return MayAlias;
1084264790Sbapt
1085264790Sbapt  AliasResult ThisAlias =
1086264790Sbapt    aliasCheck(V2, V2Size, V2TBAAInfo, SI->getFalseValue(), SISize, SITBAAInfo);
1087264790Sbapt  return MergeAliasResults(ThisAlias, Alias);
1088264790Sbapt}
1089264790Sbapt
1090264790Sbapt// aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI instruction
1091264790Sbapt// against another.
1092264790SbaptAliasAnalysis::AliasResult
1093264790SbaptBasicAliasAnalysis::aliasPHI(const PHINode *PN, uint64_t PNSize,
1094264790Sbapt                             const MDNode *PNTBAAInfo,
1095264790Sbapt                             const Value *V2, uint64_t V2Size,
1096264790Sbapt                             const MDNode *V2TBAAInfo) {
1097264790Sbapt  // If the values are PHIs in the same block, we can do a more precise
1098264790Sbapt  // as well as efficient check: just check for aliases between the values
1099264790Sbapt  // on corresponding edges.
1100264790Sbapt  if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
1101264790Sbapt    if (PN2->getParent() == PN->getParent()) {
1102264790Sbapt      LocPair Locs(Location(PN, PNSize, PNTBAAInfo),
1103264790Sbapt                   Location(V2, V2Size, V2TBAAInfo));
1104264790Sbapt      if (PN > V2)
1105264790Sbapt        std::swap(Locs.first, Locs.second);
1106264790Sbapt      // Analyse the PHIs' inputs under the assumption that the PHIs are
1107264790Sbapt      // NoAlias.
1108264790Sbapt      // If the PHIs are May/MustAlias there must be (recursively) an input
1109264790Sbapt      // operand from outside the PHIs' cycle that is MayAlias/MustAlias or
1110264790Sbapt      // there must be an operation on the PHIs within the PHIs' value cycle
1111264790Sbapt      // that causes a MayAlias.
1112264790Sbapt      // Pretend the phis do not alias.
1113264790Sbapt      AliasResult Alias = NoAlias;
1114264790Sbapt      assert(AliasCache.count(Locs) &&
1115264790Sbapt             "There must exist an entry for the phi node");
1116264790Sbapt      AliasResult OrigAliasResult = AliasCache[Locs];
1117264790Sbapt      AliasCache[Locs] = NoAlias;
1118264790Sbapt
1119264790Sbapt      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1120264790Sbapt        AliasResult ThisAlias =
1121264790Sbapt          aliasCheck(PN->getIncomingValue(i), PNSize, PNTBAAInfo,
1122264790Sbapt                     PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)),
1123264790Sbapt                     V2Size, V2TBAAInfo);
1124264790Sbapt        Alias = MergeAliasResults(ThisAlias, Alias);
1125264790Sbapt        if (Alias == MayAlias)
1126264790Sbapt          break;
1127264790Sbapt      }
1128264790Sbapt
1129264790Sbapt      // Reset if speculation failed.
1130264790Sbapt      if (Alias != NoAlias)
1131264790Sbapt        AliasCache[Locs] = OrigAliasResult;
1132264790Sbapt
1133264790Sbapt      return Alias;
1134264790Sbapt    }
1135264790Sbapt
1136264790Sbapt  SmallPtrSet<Value*, 4> UniqueSrc;
1137264790Sbapt  SmallVector<Value*, 4> V1Srcs;
1138264790Sbapt  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1139264790Sbapt    Value *PV1 = PN->getIncomingValue(i);
1140264790Sbapt    if (isa<PHINode>(PV1))
1141264790Sbapt      // If any of the source itself is a PHI, return MayAlias conservatively
1142264790Sbapt      // to avoid compile time explosion. The worst possible case is if both
1143264790Sbapt      // sides are PHI nodes. In which case, this is O(m x n) time where 'm'
1144264790Sbapt      // and 'n' are the number of PHI sources.
1145264790Sbapt      return MayAlias;
1146264790Sbapt    if (UniqueSrc.insert(PV1))
1147264790Sbapt      V1Srcs.push_back(PV1);
1148264790Sbapt  }
1149264790Sbapt
1150264790Sbapt  AliasResult Alias = aliasCheck(V2, V2Size, V2TBAAInfo,
1151264790Sbapt                                 V1Srcs[0], PNSize, PNTBAAInfo);
1152264790Sbapt  // Early exit if the check of the first PHI source against V2 is MayAlias.
1153264790Sbapt  // Other results are not possible.
1154264790Sbapt  if (Alias == MayAlias)
1155264790Sbapt    return MayAlias;
1156264790Sbapt
1157264790Sbapt  // If all sources of the PHI node NoAlias or MustAlias V2, then returns
1158264790Sbapt  // NoAlias / MustAlias. Otherwise, returns MayAlias.
1159264790Sbapt  for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
1160264790Sbapt    Value *V = V1Srcs[i];
1161264790Sbapt
1162264790Sbapt    AliasResult ThisAlias = aliasCheck(V2, V2Size, V2TBAAInfo,
1163264790Sbapt                                       V, PNSize, PNTBAAInfo);
1164264790Sbapt    Alias = MergeAliasResults(ThisAlias, Alias);
1165264790Sbapt    if (Alias == MayAlias)
1166264790Sbapt      break;
1167264790Sbapt  }
1168264790Sbapt
1169264790Sbapt  return Alias;
1170264790Sbapt}
1171264790Sbapt
1172264790Sbapt// aliasCheck - Provide a bunch of ad-hoc rules to disambiguate in common cases,
1173264790Sbapt// such as array references.
1174264790Sbapt//
1175264790SbaptAliasAnalysis::AliasResult
1176264790SbaptBasicAliasAnalysis::aliasCheck(const Value *V1, uint64_t V1Size,
1177264790Sbapt                               const MDNode *V1TBAAInfo,
1178264790Sbapt                               const Value *V2, uint64_t V2Size,
1179264790Sbapt                               const MDNode *V2TBAAInfo) {
1180264790Sbapt  // If either of the memory references is empty, it doesn't matter what the
1181264790Sbapt  // pointer values are.
1182264790Sbapt  if (V1Size == 0 || V2Size == 0)
1183264790Sbapt    return NoAlias;
1184264790Sbapt
1185264790Sbapt  // Strip off any casts if they exist.
1186264790Sbapt  V1 = V1->stripPointerCasts();
1187264790Sbapt  V2 = V2->stripPointerCasts();
1188264790Sbapt
1189264790Sbapt  // Are we checking for alias of the same value?
1190264790Sbapt  if (V1 == V2) return MustAlias;
1191264790Sbapt
1192264790Sbapt  if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
1193264790Sbapt    return NoAlias;  // Scalars cannot alias each other
1194264790Sbapt
1195264790Sbapt  // Figure out what objects these things are pointing to if we can.
1196264790Sbapt  const Value *O1 = GetUnderlyingObject(V1, TD);
1197264790Sbapt  const Value *O2 = GetUnderlyingObject(V2, TD);
1198264790Sbapt
1199264790Sbapt  // Null values in the default address space don't point to any object, so they
1200264790Sbapt  // don't alias any other pointer.
1201264790Sbapt  if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
1202264790Sbapt    if (CPN->getType()->getAddressSpace() == 0)
1203264790Sbapt      return NoAlias;
1204264790Sbapt  if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
1205264790Sbapt    if (CPN->getType()->getAddressSpace() == 0)
1206264790Sbapt      return NoAlias;
1207264790Sbapt
1208264790Sbapt  if (O1 != O2) {
1209264790Sbapt    // If V1/V2 point to two different objects we know that we have no alias.
1210264790Sbapt    if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
1211264790Sbapt      return NoAlias;
1212264790Sbapt
1213264790Sbapt    // Constant pointers can't alias with non-const isIdentifiedObject objects.
1214264790Sbapt    if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) ||
1215264790Sbapt        (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1)))
1216264790Sbapt      return NoAlias;
1217264790Sbapt
1218264790Sbapt    // Function arguments can't alias with things that are known to be
1219264790Sbapt    // unambigously identified at the function level.
1220264790Sbapt    if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) ||
1221264790Sbapt        (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1)))
1222264790Sbapt      return NoAlias;
1223264790Sbapt
1224264790Sbapt    // Most objects can't alias null.
1225264790Sbapt    if ((isa<ConstantPointerNull>(O2) && isKnownNonNull(O1)) ||
1226264790Sbapt        (isa<ConstantPointerNull>(O1) && isKnownNonNull(O2)))
1227264790Sbapt      return NoAlias;
1228264790Sbapt
1229264790Sbapt    // If one pointer is the result of a call/invoke or load and the other is a
1230264790Sbapt    // non-escaping local object within the same function, then we know the
1231264790Sbapt    // object couldn't escape to a point where the call could return it.
1232264790Sbapt    //
1233264790Sbapt    // Note that if the pointers are in different functions, there are a
1234264790Sbapt    // variety of complications. A call with a nocapture argument may still
1235264790Sbapt    // temporary store the nocapture argument's value in a temporary memory
1236264790Sbapt    // location if that memory location doesn't escape. Or it may pass a
1237264790Sbapt    // nocapture value to other functions as long as they don't capture it.
1238264790Sbapt    if (isEscapeSource(O1) && isNonEscapingLocalObject(O2))
1239264790Sbapt      return NoAlias;
1240264790Sbapt    if (isEscapeSource(O2) && isNonEscapingLocalObject(O1))
1241264790Sbapt      return NoAlias;
1242264790Sbapt  }
1243264790Sbapt
1244264790Sbapt  // If the size of one access is larger than the entire object on the other
1245264790Sbapt  // side, then we know such behavior is undefined and can assume no alias.
1246272955Srodrigc  if (TD)
1247264790Sbapt    if ((V1Size != UnknownSize && isObjectSmallerThan(O2, V1Size, *TD, *TLI)) ||
1248264790Sbapt        (V2Size != UnknownSize && isObjectSmallerThan(O1, V2Size, *TD, *TLI)))
1249264790Sbapt      return NoAlias;
1250264790Sbapt
1251264790Sbapt  // Check the cache before climbing up use-def chains. This also terminates
1252264790Sbapt  // otherwise infinitely recursive queries.
1253264790Sbapt  LocPair Locs(Location(V1, V1Size, V1TBAAInfo),
1254264790Sbapt               Location(V2, V2Size, V2TBAAInfo));
1255264790Sbapt  if (V1 > V2)
1256264790Sbapt    std::swap(Locs.first, Locs.second);
1257264790Sbapt  std::pair<AliasCacheTy::iterator, bool> Pair =
1258264790Sbapt    AliasCache.insert(std::make_pair(Locs, MayAlias));
1259264790Sbapt  if (!Pair.second)
1260264790Sbapt    return Pair.first->second;
1261264790Sbapt
1262264790Sbapt  // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the
1263264790Sbapt  // GEP can't simplify, we don't even look at the PHI cases.
1264264790Sbapt  if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) {
1265264790Sbapt    std::swap(V1, V2);
1266264790Sbapt    std::swap(V1Size, V2Size);
1267264790Sbapt    std::swap(O1, O2);
1268264790Sbapt    std::swap(V1TBAAInfo, V2TBAAInfo);
1269264790Sbapt  }
1270264790Sbapt  if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) {
1271264790Sbapt    AliasResult Result = aliasGEP(GV1, V1Size, V1TBAAInfo, V2, V2Size, V2TBAAInfo, O1, O2);
1272264790Sbapt    if (Result != MayAlias) return AliasCache[Locs] = Result;
1273264790Sbapt  }
1274264790Sbapt
1275264790Sbapt  if (isa<PHINode>(V2) && !isa<PHINode>(V1)) {
1276264790Sbapt    std::swap(V1, V2);
1277264790Sbapt    std::swap(V1Size, V2Size);
1278264790Sbapt    std::swap(V1TBAAInfo, V2TBAAInfo);
1279264790Sbapt  }
1280264790Sbapt  if (const PHINode *PN = dyn_cast<PHINode>(V1)) {
1281264790Sbapt    AliasResult Result = aliasPHI(PN, V1Size, V1TBAAInfo,
1282264790Sbapt                                  V2, V2Size, V2TBAAInfo);
1283264790Sbapt    if (Result != MayAlias) return AliasCache[Locs] = Result;
1284264790Sbapt  }
1285264790Sbapt
1286264790Sbapt  if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) {
1287264790Sbapt    std::swap(V1, V2);
1288264790Sbapt    std::swap(V1Size, V2Size);
1289264790Sbapt    std::swap(V1TBAAInfo, V2TBAAInfo);
1290264790Sbapt  }
1291264790Sbapt  if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) {
1292264790Sbapt    AliasResult Result = aliasSelect(S1, V1Size, V1TBAAInfo,
1293264790Sbapt                                     V2, V2Size, V2TBAAInfo);
1294264790Sbapt    if (Result != MayAlias) return AliasCache[Locs] = Result;
1295264790Sbapt  }
1296264790Sbapt
1297272955Srodrigc  // If both pointers are pointing into the same object and one of them
1298272955Srodrigc  // accesses is accessing the entire object, then the accesses must
1299264790Sbapt  // overlap in some way.
1300264790Sbapt  if (TD && O1 == O2)
1301264790Sbapt    if ((V1Size != UnknownSize && isObjectSize(O1, V1Size, *TD, *TLI)) ||
1302264790Sbapt        (V2Size != UnknownSize && isObjectSize(O2, V2Size, *TD, *TLI)))
1303264790Sbapt      return AliasCache[Locs] = PartialAlias;
1304264790Sbapt
1305264790Sbapt  AliasResult Result =
1306264790Sbapt    AliasAnalysis::alias(Location(V1, V1Size, V1TBAAInfo),
1307264790Sbapt                         Location(V2, V2Size, V2TBAAInfo));
1308264790Sbapt  return AliasCache[Locs] = Result;
1309264790Sbapt}
1310264790Sbapt