BasicAliasAnalysis.cpp revision 256281
1//===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the primary stateless implementation of the
11// Alias Analysis interface that implements identities (two different
12// globals cannot alias, etc), but does no stateful analysis.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Analysis/Passes.h"
17#include "llvm/ADT/SmallPtrSet.h"
18#include "llvm/ADT/SmallVector.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Analysis/CaptureTracking.h"
21#include "llvm/Analysis/InstructionSimplify.h"
22#include "llvm/Analysis/MemoryBuiltins.h"
23#include "llvm/Analysis/ValueTracking.h"
24#include "llvm/IR/Constants.h"
25#include "llvm/IR/DataLayout.h"
26#include "llvm/IR/DerivedTypes.h"
27#include "llvm/IR/Function.h"
28#include "llvm/IR/GlobalAlias.h"
29#include "llvm/IR/GlobalVariable.h"
30#include "llvm/IR/Instructions.h"
31#include "llvm/IR/IntrinsicInst.h"
32#include "llvm/IR/LLVMContext.h"
33#include "llvm/IR/Operator.h"
34#include "llvm/Pass.h"
35#include "llvm/Support/ErrorHandling.h"
36#include "llvm/Support/GetElementPtrTypeIterator.h"
37#include "llvm/Target/TargetLibraryInfo.h"
38#include <algorithm>
39using namespace llvm;
40
41//===----------------------------------------------------------------------===//
42// Useful predicates
43//===----------------------------------------------------------------------===//
44
45/// isNonEscapingLocalObject - Return true if the pointer is to a function-local
46/// object that never escapes from the function.
47static bool isNonEscapingLocalObject(const Value *V) {
48  // If this is a local allocation, check to see if it escapes.
49  if (isa<AllocaInst>(V) || isNoAliasCall(V))
50    // Set StoreCaptures to True so that we can assume in our callers that the
51    // pointer is not the result of a load instruction. Currently
52    // PointerMayBeCaptured doesn't have any special analysis for the
53    // StoreCaptures=false case; if it did, our callers could be refined to be
54    // more precise.
55    return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
56
57  // If this is an argument that corresponds to a byval or noalias argument,
58  // then it has not escaped before entering the function.  Check if it escapes
59  // inside the function.
60  if (const Argument *A = dyn_cast<Argument>(V))
61    if (A->hasByValAttr() || A->hasNoAliasAttr())
62      // Note even if the argument is marked nocapture we still need to check
63      // for copies made inside the function. The nocapture attribute only
64      // specifies that there are no copies made that outlive the function.
65      return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
66
67  return false;
68}
69
70/// isEscapeSource - Return true if the pointer is one which would have
71/// been considered an escape by isNonEscapingLocalObject.
72static bool isEscapeSource(const Value *V) {
73  if (isa<CallInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V))
74    return true;
75
76  // The load case works because isNonEscapingLocalObject considers all
77  // stores to be escapes (it passes true for the StoreCaptures argument
78  // to PointerMayBeCaptured).
79  if (isa<LoadInst>(V))
80    return true;
81
82  return false;
83}
84
85/// getObjectSize - Return the size of the object specified by V, or
86/// UnknownSize if unknown.
87static uint64_t getObjectSize(const Value *V, const DataLayout &TD,
88                              const TargetLibraryInfo &TLI,
89                              bool RoundToAlign = false) {
90  uint64_t Size;
91  if (getObjectSize(V, Size, &TD, &TLI, RoundToAlign))
92    return Size;
93  return AliasAnalysis::UnknownSize;
94}
95
96/// isObjectSmallerThan - Return true if we can prove that the object specified
97/// by V is smaller than Size.
98static bool isObjectSmallerThan(const Value *V, uint64_t Size,
99                                const DataLayout &TD,
100                                const TargetLibraryInfo &TLI) {
101  // Note that the meanings of the "object" are slightly different in the
102  // following contexts:
103  //    c1: llvm::getObjectSize()
104  //    c2: llvm.objectsize() intrinsic
105  //    c3: isObjectSmallerThan()
106  // c1 and c2 share the same meaning; however, the meaning of "object" in c3
107  // refers to the "entire object".
108  //
109  //  Consider this example:
110  //     char *p = (char*)malloc(100)
111  //     char *q = p+80;
112  //
113  //  In the context of c1 and c2, the "object" pointed by q refers to the
114  // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20.
115  //
116  //  However, in the context of c3, the "object" refers to the chunk of memory
117  // being allocated. So, the "object" has 100 bytes, and q points to the middle
118  // the "object". In case q is passed to isObjectSmallerThan() as the 1st
119  // parameter, before the llvm::getObjectSize() is called to get the size of
120  // entire object, we should:
121  //    - either rewind the pointer q to the base-address of the object in
122  //      question (in this case rewind to p), or
123  //    - just give up. It is up to caller to make sure the pointer is pointing
124  //      to the base address the object.
125  //
126  // We go for 2nd option for simplicity.
127  if (!isIdentifiedObject(V))
128    return false;
129
130  // This function needs to use the aligned object size because we allow
131  // reads a bit past the end given sufficient alignment.
132  uint64_t ObjectSize = getObjectSize(V, TD, TLI, /*RoundToAlign*/true);
133
134  return ObjectSize != AliasAnalysis::UnknownSize && ObjectSize < Size;
135}
136
137/// isObjectSize - Return true if we can prove that the object specified
138/// by V has size Size.
139static bool isObjectSize(const Value *V, uint64_t Size,
140                         const DataLayout &TD, const TargetLibraryInfo &TLI) {
141  uint64_t ObjectSize = getObjectSize(V, TD, TLI);
142  return ObjectSize != AliasAnalysis::UnknownSize && ObjectSize == Size;
143}
144
145//===----------------------------------------------------------------------===//
146// GetElementPtr Instruction Decomposition and Analysis
147//===----------------------------------------------------------------------===//
148
149namespace {
150  enum ExtensionKind {
151    EK_NotExtended,
152    EK_SignExt,
153    EK_ZeroExt
154  };
155
156  struct VariableGEPIndex {
157    const Value *V;
158    ExtensionKind Extension;
159    int64_t Scale;
160
161    bool operator==(const VariableGEPIndex &Other) const {
162      return V == Other.V && Extension == Other.Extension &&
163        Scale == Other.Scale;
164    }
165
166    bool operator!=(const VariableGEPIndex &Other) const {
167      return !operator==(Other);
168    }
169  };
170}
171
172
173/// GetLinearExpression - Analyze the specified value as a linear expression:
174/// "A*V + B", where A and B are constant integers.  Return the scale and offset
175/// values as APInts and return V as a Value*, and return whether we looked
176/// through any sign or zero extends.  The incoming Value is known to have
177/// IntegerType and it may already be sign or zero extended.
178///
179/// Note that this looks through extends, so the high bits may not be
180/// represented in the result.
181static Value *GetLinearExpression(Value *V, APInt &Scale, APInt &Offset,
182                                  ExtensionKind &Extension,
183                                  const DataLayout &TD, unsigned Depth) {
184  assert(V->getType()->isIntegerTy() && "Not an integer value");
185
186  // Limit our recursion depth.
187  if (Depth == 6) {
188    Scale = 1;
189    Offset = 0;
190    return V;
191  }
192
193  if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) {
194    if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
195      switch (BOp->getOpcode()) {
196      default: break;
197      case Instruction::Or:
198        // X|C == X+C if all the bits in C are unset in X.  Otherwise we can't
199        // analyze it.
200        if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), &TD))
201          break;
202        // FALL THROUGH.
203      case Instruction::Add:
204        V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
205                                TD, Depth+1);
206        Offset += RHSC->getValue();
207        return V;
208      case Instruction::Mul:
209        V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
210                                TD, Depth+1);
211        Offset *= RHSC->getValue();
212        Scale *= RHSC->getValue();
213        return V;
214      case Instruction::Shl:
215        V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
216                                TD, Depth+1);
217        Offset <<= RHSC->getValue().getLimitedValue();
218        Scale <<= RHSC->getValue().getLimitedValue();
219        return V;
220      }
221    }
222  }
223
224  // Since GEP indices are sign extended anyway, we don't care about the high
225  // bits of a sign or zero extended value - just scales and offsets.  The
226  // extensions have to be consistent though.
227  if ((isa<SExtInst>(V) && Extension != EK_ZeroExt) ||
228      (isa<ZExtInst>(V) && Extension != EK_SignExt)) {
229    Value *CastOp = cast<CastInst>(V)->getOperand(0);
230    unsigned OldWidth = Scale.getBitWidth();
231    unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits();
232    Scale = Scale.trunc(SmallWidth);
233    Offset = Offset.trunc(SmallWidth);
234    Extension = isa<SExtInst>(V) ? EK_SignExt : EK_ZeroExt;
235
236    Value *Result = GetLinearExpression(CastOp, Scale, Offset, Extension,
237                                        TD, Depth+1);
238    Scale = Scale.zext(OldWidth);
239    Offset = Offset.zext(OldWidth);
240
241    return Result;
242  }
243
244  Scale = 1;
245  Offset = 0;
246  return V;
247}
248
249/// DecomposeGEPExpression - If V is a symbolic pointer expression, decompose it
250/// into a base pointer with a constant offset and a number of scaled symbolic
251/// offsets.
252///
253/// The scaled symbolic offsets (represented by pairs of a Value* and a scale in
254/// the VarIndices vector) are Value*'s that are known to be scaled by the
255/// specified amount, but which may have other unrepresented high bits. As such,
256/// the gep cannot necessarily be reconstructed from its decomposed form.
257///
258/// When DataLayout is around, this function is capable of analyzing everything
259/// that GetUnderlyingObject can look through.  When not, it just looks
260/// through pointer casts.
261///
262static const Value *
263DecomposeGEPExpression(const Value *V, int64_t &BaseOffs,
264                       SmallVectorImpl<VariableGEPIndex> &VarIndices,
265                       const DataLayout *TD) {
266  // Limit recursion depth to limit compile time in crazy cases.
267  unsigned MaxLookup = 6;
268
269  BaseOffs = 0;
270  do {
271    // See if this is a bitcast or GEP.
272    const Operator *Op = dyn_cast<Operator>(V);
273    if (Op == 0) {
274      // The only non-operator case we can handle are GlobalAliases.
275      if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
276        if (!GA->mayBeOverridden()) {
277          V = GA->getAliasee();
278          continue;
279        }
280      }
281      return V;
282    }
283
284    if (Op->getOpcode() == Instruction::BitCast) {
285      V = Op->getOperand(0);
286      continue;
287    }
288
289    const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
290    if (GEPOp == 0) {
291      // If it's not a GEP, hand it off to SimplifyInstruction to see if it
292      // can come up with something. This matches what GetUnderlyingObject does.
293      if (const Instruction *I = dyn_cast<Instruction>(V))
294        // TODO: Get a DominatorTree and use it here.
295        if (const Value *Simplified =
296              SimplifyInstruction(const_cast<Instruction *>(I), TD)) {
297          V = Simplified;
298          continue;
299        }
300
301      return V;
302    }
303
304    // Don't attempt to analyze GEPs over unsized objects.
305    if (!cast<PointerType>(GEPOp->getOperand(0)->getType())
306        ->getElementType()->isSized())
307      return V;
308
309    // If we are lacking DataLayout information, we can't compute the offets of
310    // elements computed by GEPs.  However, we can handle bitcast equivalent
311    // GEPs.
312    if (TD == 0) {
313      if (!GEPOp->hasAllZeroIndices())
314        return V;
315      V = GEPOp->getOperand(0);
316      continue;
317    }
318
319    // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
320    gep_type_iterator GTI = gep_type_begin(GEPOp);
321    for (User::const_op_iterator I = GEPOp->op_begin()+1,
322         E = GEPOp->op_end(); I != E; ++I) {
323      Value *Index = *I;
324      // Compute the (potentially symbolic) offset in bytes for this index.
325      if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
326        // For a struct, add the member offset.
327        unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
328        if (FieldNo == 0) continue;
329
330        BaseOffs += TD->getStructLayout(STy)->getElementOffset(FieldNo);
331        continue;
332      }
333
334      // For an array/pointer, add the element offset, explicitly scaled.
335      if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
336        if (CIdx->isZero()) continue;
337        BaseOffs += TD->getTypeAllocSize(*GTI)*CIdx->getSExtValue();
338        continue;
339      }
340
341      uint64_t Scale = TD->getTypeAllocSize(*GTI);
342      ExtensionKind Extension = EK_NotExtended;
343
344      // If the integer type is smaller than the pointer size, it is implicitly
345      // sign extended to pointer size.
346      unsigned Width = cast<IntegerType>(Index->getType())->getBitWidth();
347      if (TD->getPointerSizeInBits() > Width)
348        Extension = EK_SignExt;
349
350      // Use GetLinearExpression to decompose the index into a C1*V+C2 form.
351      APInt IndexScale(Width, 0), IndexOffset(Width, 0);
352      Index = GetLinearExpression(Index, IndexScale, IndexOffset, Extension,
353                                  *TD, 0);
354
355      // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
356      // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
357      BaseOffs += IndexOffset.getSExtValue()*Scale;
358      Scale *= IndexScale.getSExtValue();
359
360
361      // If we already had an occurrence of this index variable, merge this
362      // scale into it.  For example, we want to handle:
363      //   A[x][x] -> x*16 + x*4 -> x*20
364      // This also ensures that 'x' only appears in the index list once.
365      for (unsigned i = 0, e = VarIndices.size(); i != e; ++i) {
366        if (VarIndices[i].V == Index &&
367            VarIndices[i].Extension == Extension) {
368          Scale += VarIndices[i].Scale;
369          VarIndices.erase(VarIndices.begin()+i);
370          break;
371        }
372      }
373
374      // Make sure that we have a scale that makes sense for this target's
375      // pointer size.
376      if (unsigned ShiftBits = 64-TD->getPointerSizeInBits()) {
377        Scale <<= ShiftBits;
378        Scale = (int64_t)Scale >> ShiftBits;
379      }
380
381      if (Scale) {
382        VariableGEPIndex Entry = {Index, Extension,
383                                  static_cast<int64_t>(Scale)};
384        VarIndices.push_back(Entry);
385      }
386    }
387
388    // Analyze the base pointer next.
389    V = GEPOp->getOperand(0);
390  } while (--MaxLookup);
391
392  // If the chain of expressions is too deep, just return early.
393  return V;
394}
395
396/// GetIndexDifference - Dest and Src are the variable indices from two
397/// decomposed GetElementPtr instructions GEP1 and GEP2 which have common base
398/// pointers.  Subtract the GEP2 indices from GEP1 to find the symbolic
399/// difference between the two pointers.
400static void GetIndexDifference(SmallVectorImpl<VariableGEPIndex> &Dest,
401                               const SmallVectorImpl<VariableGEPIndex> &Src) {
402  if (Src.empty()) return;
403
404  for (unsigned i = 0, e = Src.size(); i != e; ++i) {
405    const Value *V = Src[i].V;
406    ExtensionKind Extension = Src[i].Extension;
407    int64_t Scale = Src[i].Scale;
408
409    // Find V in Dest.  This is N^2, but pointer indices almost never have more
410    // than a few variable indexes.
411    for (unsigned j = 0, e = Dest.size(); j != e; ++j) {
412      if (Dest[j].V != V || Dest[j].Extension != Extension) continue;
413
414      // If we found it, subtract off Scale V's from the entry in Dest.  If it
415      // goes to zero, remove the entry.
416      if (Dest[j].Scale != Scale)
417        Dest[j].Scale -= Scale;
418      else
419        Dest.erase(Dest.begin()+j);
420      Scale = 0;
421      break;
422    }
423
424    // If we didn't consume this entry, add it to the end of the Dest list.
425    if (Scale) {
426      VariableGEPIndex Entry = { V, Extension, -Scale };
427      Dest.push_back(Entry);
428    }
429  }
430}
431
432//===----------------------------------------------------------------------===//
433// BasicAliasAnalysis Pass
434//===----------------------------------------------------------------------===//
435
436#ifndef NDEBUG
437static const Function *getParent(const Value *V) {
438  if (const Instruction *inst = dyn_cast<Instruction>(V))
439    return inst->getParent()->getParent();
440
441  if (const Argument *arg = dyn_cast<Argument>(V))
442    return arg->getParent();
443
444  return NULL;
445}
446
447static bool notDifferentParent(const Value *O1, const Value *O2) {
448
449  const Function *F1 = getParent(O1);
450  const Function *F2 = getParent(O2);
451
452  return !F1 || !F2 || F1 == F2;
453}
454#endif
455
456namespace {
457  /// BasicAliasAnalysis - This is the primary alias analysis implementation.
458  struct BasicAliasAnalysis : public ImmutablePass, public AliasAnalysis {
459    static char ID; // Class identification, replacement for typeinfo
460    BasicAliasAnalysis() : ImmutablePass(ID) {
461      initializeBasicAliasAnalysisPass(*PassRegistry::getPassRegistry());
462    }
463
464    virtual void initializePass() {
465      InitializeAliasAnalysis(this);
466    }
467
468    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
469      AU.addRequired<AliasAnalysis>();
470      AU.addRequired<TargetLibraryInfo>();
471    }
472
473    virtual AliasResult alias(const Location &LocA,
474                              const Location &LocB) {
475      assert(AliasCache.empty() && "AliasCache must be cleared after use!");
476      assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
477             "BasicAliasAnalysis doesn't support interprocedural queries.");
478      AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.TBAATag,
479                                     LocB.Ptr, LocB.Size, LocB.TBAATag);
480      // AliasCache rarely has more than 1 or 2 elements, always use
481      // shrink_and_clear so it quickly returns to the inline capacity of the
482      // SmallDenseMap if it ever grows larger.
483      // FIXME: This should really be shrink_to_inline_capacity_and_clear().
484      AliasCache.shrink_and_clear();
485      return Alias;
486    }
487
488    virtual ModRefResult getModRefInfo(ImmutableCallSite CS,
489                                       const Location &Loc);
490
491    virtual ModRefResult getModRefInfo(ImmutableCallSite CS1,
492                                       ImmutableCallSite CS2) {
493      // The AliasAnalysis base class has some smarts, lets use them.
494      return AliasAnalysis::getModRefInfo(CS1, CS2);
495    }
496
497    /// pointsToConstantMemory - Chase pointers until we find a (constant
498    /// global) or not.
499    virtual bool pointsToConstantMemory(const Location &Loc, bool OrLocal);
500
501    /// getModRefBehavior - Return the behavior when calling the given
502    /// call site.
503    virtual ModRefBehavior getModRefBehavior(ImmutableCallSite CS);
504
505    /// getModRefBehavior - Return the behavior when calling the given function.
506    /// For use when the call site is not known.
507    virtual ModRefBehavior getModRefBehavior(const Function *F);
508
509    /// getAdjustedAnalysisPointer - This method is used when a pass implements
510    /// an analysis interface through multiple inheritance.  If needed, it
511    /// should override this to adjust the this pointer as needed for the
512    /// specified pass info.
513    virtual void *getAdjustedAnalysisPointer(const void *ID) {
514      if (ID == &AliasAnalysis::ID)
515        return (AliasAnalysis*)this;
516      return this;
517    }
518
519  private:
520    // AliasCache - Track alias queries to guard against recursion.
521    typedef std::pair<Location, Location> LocPair;
522    typedef SmallDenseMap<LocPair, AliasResult, 8> AliasCacheTy;
523    AliasCacheTy AliasCache;
524
525    // Visited - Track instructions visited by pointsToConstantMemory.
526    SmallPtrSet<const Value*, 16> Visited;
527
528    // aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP
529    // instruction against another.
530    AliasResult aliasGEP(const GEPOperator *V1, uint64_t V1Size,
531                         const MDNode *V1TBAAInfo,
532                         const Value *V2, uint64_t V2Size,
533                         const MDNode *V2TBAAInfo,
534                         const Value *UnderlyingV1, const Value *UnderlyingV2);
535
536    // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI
537    // instruction against another.
538    AliasResult aliasPHI(const PHINode *PN, uint64_t PNSize,
539                         const MDNode *PNTBAAInfo,
540                         const Value *V2, uint64_t V2Size,
541                         const MDNode *V2TBAAInfo);
542
543    /// aliasSelect - Disambiguate a Select instruction against another value.
544    AliasResult aliasSelect(const SelectInst *SI, uint64_t SISize,
545                            const MDNode *SITBAAInfo,
546                            const Value *V2, uint64_t V2Size,
547                            const MDNode *V2TBAAInfo);
548
549    AliasResult aliasCheck(const Value *V1, uint64_t V1Size,
550                           const MDNode *V1TBAATag,
551                           const Value *V2, uint64_t V2Size,
552                           const MDNode *V2TBAATag);
553  };
554}  // End of anonymous namespace
555
556// Register this pass...
557char BasicAliasAnalysis::ID = 0;
558INITIALIZE_AG_PASS_BEGIN(BasicAliasAnalysis, AliasAnalysis, "basicaa",
559                   "Basic Alias Analysis (stateless AA impl)",
560                   false, true, false)
561INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
562INITIALIZE_AG_PASS_END(BasicAliasAnalysis, AliasAnalysis, "basicaa",
563                   "Basic Alias Analysis (stateless AA impl)",
564                   false, true, false)
565
566
567ImmutablePass *llvm::createBasicAliasAnalysisPass() {
568  return new BasicAliasAnalysis();
569}
570
571/// pointsToConstantMemory - Returns whether the given pointer value
572/// points to memory that is local to the function, with global constants being
573/// considered local to all functions.
574bool
575BasicAliasAnalysis::pointsToConstantMemory(const Location &Loc, bool OrLocal) {
576  assert(Visited.empty() && "Visited must be cleared after use!");
577
578  unsigned MaxLookup = 8;
579  SmallVector<const Value *, 16> Worklist;
580  Worklist.push_back(Loc.Ptr);
581  do {
582    const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), TD);
583    if (!Visited.insert(V)) {
584      Visited.clear();
585      return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
586    }
587
588    // An alloca instruction defines local memory.
589    if (OrLocal && isa<AllocaInst>(V))
590      continue;
591
592    // A global constant counts as local memory for our purposes.
593    if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
594      // Note: this doesn't require GV to be "ODR" because it isn't legal for a
595      // global to be marked constant in some modules and non-constant in
596      // others.  GV may even be a declaration, not a definition.
597      if (!GV->isConstant()) {
598        Visited.clear();
599        return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
600      }
601      continue;
602    }
603
604    // If both select values point to local memory, then so does the select.
605    if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
606      Worklist.push_back(SI->getTrueValue());
607      Worklist.push_back(SI->getFalseValue());
608      continue;
609    }
610
611    // If all values incoming to a phi node point to local memory, then so does
612    // the phi.
613    if (const PHINode *PN = dyn_cast<PHINode>(V)) {
614      // Don't bother inspecting phi nodes with many operands.
615      if (PN->getNumIncomingValues() > MaxLookup) {
616        Visited.clear();
617        return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
618      }
619      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
620        Worklist.push_back(PN->getIncomingValue(i));
621      continue;
622    }
623
624    // Otherwise be conservative.
625    Visited.clear();
626    return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
627
628  } while (!Worklist.empty() && --MaxLookup);
629
630  Visited.clear();
631  return Worklist.empty();
632}
633
634/// getModRefBehavior - Return the behavior when calling the given call site.
635AliasAnalysis::ModRefBehavior
636BasicAliasAnalysis::getModRefBehavior(ImmutableCallSite CS) {
637  if (CS.doesNotAccessMemory())
638    // Can't do better than this.
639    return DoesNotAccessMemory;
640
641  ModRefBehavior Min = UnknownModRefBehavior;
642
643  // If the callsite knows it only reads memory, don't return worse
644  // than that.
645  if (CS.onlyReadsMemory())
646    Min = OnlyReadsMemory;
647
648  // The AliasAnalysis base class has some smarts, lets use them.
649  return ModRefBehavior(AliasAnalysis::getModRefBehavior(CS) & Min);
650}
651
652/// getModRefBehavior - Return the behavior when calling the given function.
653/// For use when the call site is not known.
654AliasAnalysis::ModRefBehavior
655BasicAliasAnalysis::getModRefBehavior(const Function *F) {
656  // If the function declares it doesn't access memory, we can't do better.
657  if (F->doesNotAccessMemory())
658    return DoesNotAccessMemory;
659
660  // For intrinsics, we can check the table.
661  if (unsigned iid = F->getIntrinsicID()) {
662#define GET_INTRINSIC_MODREF_BEHAVIOR
663#include "llvm/IR/Intrinsics.gen"
664#undef GET_INTRINSIC_MODREF_BEHAVIOR
665  }
666
667  ModRefBehavior Min = UnknownModRefBehavior;
668
669  // If the function declares it only reads memory, go with that.
670  if (F->onlyReadsMemory())
671    Min = OnlyReadsMemory;
672
673  // Otherwise be conservative.
674  return ModRefBehavior(AliasAnalysis::getModRefBehavior(F) & Min);
675}
676
677/// getModRefInfo - Check to see if the specified callsite can clobber the
678/// specified memory object.  Since we only look at local properties of this
679/// function, we really can't say much about this query.  We do, however, use
680/// simple "address taken" analysis on local objects.
681AliasAnalysis::ModRefResult
682BasicAliasAnalysis::getModRefInfo(ImmutableCallSite CS,
683                                  const Location &Loc) {
684  assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) &&
685         "AliasAnalysis query involving multiple functions!");
686
687  const Value *Object = GetUnderlyingObject(Loc.Ptr, TD);
688
689  // If this is a tail call and Loc.Ptr points to a stack location, we know that
690  // the tail call cannot access or modify the local stack.
691  // We cannot exclude byval arguments here; these belong to the caller of
692  // the current function not to the current function, and a tail callee
693  // may reference them.
694  if (isa<AllocaInst>(Object))
695    if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
696      if (CI->isTailCall())
697        return NoModRef;
698
699  // If the pointer is to a locally allocated object that does not escape,
700  // then the call can not mod/ref the pointer unless the call takes the pointer
701  // as an argument, and itself doesn't capture it.
702  if (!isa<Constant>(Object) && CS.getInstruction() != Object &&
703      isNonEscapingLocalObject(Object)) {
704    bool PassedAsArg = false;
705    unsigned ArgNo = 0;
706    for (ImmutableCallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
707         CI != CE; ++CI, ++ArgNo) {
708      // Only look at the no-capture or byval pointer arguments.  If this
709      // pointer were passed to arguments that were neither of these, then it
710      // couldn't be no-capture.
711      if (!(*CI)->getType()->isPointerTy() ||
712          (!CS.doesNotCapture(ArgNo) && !CS.isByValArgument(ArgNo)))
713        continue;
714
715      // If this is a no-capture pointer argument, see if we can tell that it
716      // is impossible to alias the pointer we're checking.  If not, we have to
717      // assume that the call could touch the pointer, even though it doesn't
718      // escape.
719      if (!isNoAlias(Location(*CI), Location(Object))) {
720        PassedAsArg = true;
721        break;
722      }
723    }
724
725    if (!PassedAsArg)
726      return NoModRef;
727  }
728
729  const TargetLibraryInfo &TLI = getAnalysis<TargetLibraryInfo>();
730  ModRefResult Min = ModRef;
731
732  // Finally, handle specific knowledge of intrinsics.
733  const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction());
734  if (II != 0)
735    switch (II->getIntrinsicID()) {
736    default: break;
737    case Intrinsic::memcpy:
738    case Intrinsic::memmove: {
739      uint64_t Len = UnknownSize;
740      if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2)))
741        Len = LenCI->getZExtValue();
742      Value *Dest = II->getArgOperand(0);
743      Value *Src = II->getArgOperand(1);
744      // If it can't overlap the source dest, then it doesn't modref the loc.
745      if (isNoAlias(Location(Dest, Len), Loc)) {
746        if (isNoAlias(Location(Src, Len), Loc))
747          return NoModRef;
748        // If it can't overlap the dest, then worst case it reads the loc.
749        Min = Ref;
750      } else if (isNoAlias(Location(Src, Len), Loc)) {
751        // If it can't overlap the source, then worst case it mutates the loc.
752        Min = Mod;
753      }
754      break;
755    }
756    case Intrinsic::memset:
757      // Since memset is 'accesses arguments' only, the AliasAnalysis base class
758      // will handle it for the variable length case.
759      if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2))) {
760        uint64_t Len = LenCI->getZExtValue();
761        Value *Dest = II->getArgOperand(0);
762        if (isNoAlias(Location(Dest, Len), Loc))
763          return NoModRef;
764      }
765      // We know that memset doesn't load anything.
766      Min = Mod;
767      break;
768    case Intrinsic::lifetime_start:
769    case Intrinsic::lifetime_end:
770    case Intrinsic::invariant_start: {
771      uint64_t PtrSize =
772        cast<ConstantInt>(II->getArgOperand(0))->getZExtValue();
773      if (isNoAlias(Location(II->getArgOperand(1),
774                             PtrSize,
775                             II->getMetadata(LLVMContext::MD_tbaa)),
776                    Loc))
777        return NoModRef;
778      break;
779    }
780    case Intrinsic::invariant_end: {
781      uint64_t PtrSize =
782        cast<ConstantInt>(II->getArgOperand(1))->getZExtValue();
783      if (isNoAlias(Location(II->getArgOperand(2),
784                             PtrSize,
785                             II->getMetadata(LLVMContext::MD_tbaa)),
786                    Loc))
787        return NoModRef;
788      break;
789    }
790    case Intrinsic::arm_neon_vld1: {
791      // LLVM's vld1 and vst1 intrinsics currently only support a single
792      // vector register.
793      uint64_t Size =
794        TD ? TD->getTypeStoreSize(II->getType()) : UnknownSize;
795      if (isNoAlias(Location(II->getArgOperand(0), Size,
796                             II->getMetadata(LLVMContext::MD_tbaa)),
797                    Loc))
798        return NoModRef;
799      break;
800    }
801    case Intrinsic::arm_neon_vst1: {
802      uint64_t Size =
803        TD ? TD->getTypeStoreSize(II->getArgOperand(1)->getType()) : UnknownSize;
804      if (isNoAlias(Location(II->getArgOperand(0), Size,
805                             II->getMetadata(LLVMContext::MD_tbaa)),
806                    Loc))
807        return NoModRef;
808      break;
809    }
810    }
811
812  // We can bound the aliasing properties of memset_pattern16 just as we can
813  // for memcpy/memset.  This is particularly important because the
814  // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16
815  // whenever possible.
816  else if (TLI.has(LibFunc::memset_pattern16) &&
817           CS.getCalledFunction() &&
818           CS.getCalledFunction()->getName() == "memset_pattern16") {
819    const Function *MS = CS.getCalledFunction();
820    FunctionType *MemsetType = MS->getFunctionType();
821    if (!MemsetType->isVarArg() && MemsetType->getNumParams() == 3 &&
822        isa<PointerType>(MemsetType->getParamType(0)) &&
823        isa<PointerType>(MemsetType->getParamType(1)) &&
824        isa<IntegerType>(MemsetType->getParamType(2))) {
825      uint64_t Len = UnknownSize;
826      if (const ConstantInt *LenCI = dyn_cast<ConstantInt>(CS.getArgument(2)))
827        Len = LenCI->getZExtValue();
828      const Value *Dest = CS.getArgument(0);
829      const Value *Src = CS.getArgument(1);
830      // If it can't overlap the source dest, then it doesn't modref the loc.
831      if (isNoAlias(Location(Dest, Len), Loc)) {
832        // Always reads 16 bytes of the source.
833        if (isNoAlias(Location(Src, 16), Loc))
834          return NoModRef;
835        // If it can't overlap the dest, then worst case it reads the loc.
836        Min = Ref;
837      // Always reads 16 bytes of the source.
838      } else if (isNoAlias(Location(Src, 16), Loc)) {
839        // If it can't overlap the source, then worst case it mutates the loc.
840        Min = Mod;
841      }
842    }
843  }
844
845  // The AliasAnalysis base class has some smarts, lets use them.
846  return ModRefResult(AliasAnalysis::getModRefInfo(CS, Loc) & Min);
847}
848
849static bool areVarIndicesEqual(SmallVector<VariableGEPIndex, 4> &Indices1,
850                               SmallVector<VariableGEPIndex, 4> &Indices2) {
851  unsigned Size1 = Indices1.size();
852  unsigned Size2 = Indices2.size();
853
854  if (Size1 != Size2)
855    return false;
856
857  for (unsigned I = 0; I != Size1; ++I)
858    if (Indices1[I] != Indices2[I])
859      return false;
860
861  return true;
862}
863
864/// aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP instruction
865/// against another pointer.  We know that V1 is a GEP, but we don't know
866/// anything about V2.  UnderlyingV1 is GetUnderlyingObject(GEP1, TD),
867/// UnderlyingV2 is the same for V2.
868///
869AliasAnalysis::AliasResult
870BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size,
871                             const MDNode *V1TBAAInfo,
872                             const Value *V2, uint64_t V2Size,
873                             const MDNode *V2TBAAInfo,
874                             const Value *UnderlyingV1,
875                             const Value *UnderlyingV2) {
876  int64_t GEP1BaseOffset;
877  SmallVector<VariableGEPIndex, 4> GEP1VariableIndices;
878
879  // If we have two gep instructions with must-alias or not-alias'ing base
880  // pointers, figure out if the indexes to the GEP tell us anything about the
881  // derived pointer.
882  if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) {
883    // Do the base pointers alias?
884    AliasResult BaseAlias = aliasCheck(UnderlyingV1, UnknownSize, 0,
885                                       UnderlyingV2, UnknownSize, 0);
886
887    // Check for geps of non-aliasing underlying pointers where the offsets are
888    // identical.
889    if ((BaseAlias == MayAlias) && V1Size == V2Size) {
890      // Do the base pointers alias assuming type and size.
891      AliasResult PreciseBaseAlias = aliasCheck(UnderlyingV1, V1Size,
892                                                V1TBAAInfo, UnderlyingV2,
893                                                V2Size, V2TBAAInfo);
894      if (PreciseBaseAlias == NoAlias) {
895        // See if the computed offset from the common pointer tells us about the
896        // relation of the resulting pointer.
897        int64_t GEP2BaseOffset;
898        SmallVector<VariableGEPIndex, 4> GEP2VariableIndices;
899        const Value *GEP2BasePtr =
900          DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, TD);
901        const Value *GEP1BasePtr =
902          DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD);
903        // DecomposeGEPExpression and GetUnderlyingObject should return the
904        // same result except when DecomposeGEPExpression has no DataLayout.
905        if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) {
906          assert(TD == 0 &&
907             "DecomposeGEPExpression and GetUnderlyingObject disagree!");
908          return MayAlias;
909        }
910        // Same offsets.
911        if (GEP1BaseOffset == GEP2BaseOffset &&
912            areVarIndicesEqual(GEP1VariableIndices, GEP2VariableIndices))
913          return NoAlias;
914        GEP1VariableIndices.clear();
915      }
916    }
917
918    // If we get a No or May, then return it immediately, no amount of analysis
919    // will improve this situation.
920    if (BaseAlias != MustAlias) return BaseAlias;
921
922    // Otherwise, we have a MustAlias.  Since the base pointers alias each other
923    // exactly, see if the computed offset from the common pointer tells us
924    // about the relation of the resulting pointer.
925    const Value *GEP1BasePtr =
926      DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD);
927
928    int64_t GEP2BaseOffset;
929    SmallVector<VariableGEPIndex, 4> GEP2VariableIndices;
930    const Value *GEP2BasePtr =
931      DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, TD);
932
933    // DecomposeGEPExpression and GetUnderlyingObject should return the
934    // same result except when DecomposeGEPExpression has no DataLayout.
935    if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) {
936      assert(TD == 0 &&
937             "DecomposeGEPExpression and GetUnderlyingObject disagree!");
938      return MayAlias;
939    }
940
941    // Subtract the GEP2 pointer from the GEP1 pointer to find out their
942    // symbolic difference.
943    GEP1BaseOffset -= GEP2BaseOffset;
944    GetIndexDifference(GEP1VariableIndices, GEP2VariableIndices);
945
946  } else {
947    // Check to see if these two pointers are related by the getelementptr
948    // instruction.  If one pointer is a GEP with a non-zero index of the other
949    // pointer, we know they cannot alias.
950
951    // If both accesses are unknown size, we can't do anything useful here.
952    if (V1Size == UnknownSize && V2Size == UnknownSize)
953      return MayAlias;
954
955    AliasResult R = aliasCheck(UnderlyingV1, UnknownSize, 0,
956                               V2, V2Size, V2TBAAInfo);
957    if (R != MustAlias)
958      // If V2 may alias GEP base pointer, conservatively returns MayAlias.
959      // If V2 is known not to alias GEP base pointer, then the two values
960      // cannot alias per GEP semantics: "A pointer value formed from a
961      // getelementptr instruction is associated with the addresses associated
962      // with the first operand of the getelementptr".
963      return R;
964
965    const Value *GEP1BasePtr =
966      DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD);
967
968    // DecomposeGEPExpression and GetUnderlyingObject should return the
969    // same result except when DecomposeGEPExpression has no DataLayout.
970    if (GEP1BasePtr != UnderlyingV1) {
971      assert(TD == 0 &&
972             "DecomposeGEPExpression and GetUnderlyingObject disagree!");
973      return MayAlias;
974    }
975  }
976
977  // In the two GEP Case, if there is no difference in the offsets of the
978  // computed pointers, the resultant pointers are a must alias.  This
979  // hapens when we have two lexically identical GEP's (for example).
980  //
981  // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2
982  // must aliases the GEP, the end result is a must alias also.
983  if (GEP1BaseOffset == 0 && GEP1VariableIndices.empty())
984    return MustAlias;
985
986  // If there is a constant difference between the pointers, but the difference
987  // is less than the size of the associated memory object, then we know
988  // that the objects are partially overlapping.  If the difference is
989  // greater, we know they do not overlap.
990  if (GEP1BaseOffset != 0 && GEP1VariableIndices.empty()) {
991    if (GEP1BaseOffset >= 0) {
992      if (V2Size != UnknownSize) {
993        if ((uint64_t)GEP1BaseOffset < V2Size)
994          return PartialAlias;
995        return NoAlias;
996      }
997    } else {
998      if (V1Size != UnknownSize) {
999        if (-(uint64_t)GEP1BaseOffset < V1Size)
1000          return PartialAlias;
1001        return NoAlias;
1002      }
1003    }
1004  }
1005
1006  // Try to distinguish something like &A[i][1] against &A[42][0].
1007  // Grab the least significant bit set in any of the scales.
1008  if (!GEP1VariableIndices.empty()) {
1009    uint64_t Modulo = 0;
1010    for (unsigned i = 0, e = GEP1VariableIndices.size(); i != e; ++i)
1011      Modulo |= (uint64_t)GEP1VariableIndices[i].Scale;
1012    Modulo = Modulo ^ (Modulo & (Modulo - 1));
1013
1014    // We can compute the difference between the two addresses
1015    // mod Modulo. Check whether that difference guarantees that the
1016    // two locations do not alias.
1017    uint64_t ModOffset = (uint64_t)GEP1BaseOffset & (Modulo - 1);
1018    if (V1Size != UnknownSize && V2Size != UnknownSize &&
1019        ModOffset >= V2Size && V1Size <= Modulo - ModOffset)
1020      return NoAlias;
1021  }
1022
1023  // Statically, we can see that the base objects are the same, but the
1024  // pointers have dynamic offsets which we can't resolve. And none of our
1025  // little tricks above worked.
1026  //
1027  // TODO: Returning PartialAlias instead of MayAlias is a mild hack; the
1028  // practical effect of this is protecting TBAA in the case of dynamic
1029  // indices into arrays of unions or malloc'd memory.
1030  return PartialAlias;
1031}
1032
1033static AliasAnalysis::AliasResult
1034MergeAliasResults(AliasAnalysis::AliasResult A, AliasAnalysis::AliasResult B) {
1035  // If the results agree, take it.
1036  if (A == B)
1037    return A;
1038  // A mix of PartialAlias and MustAlias is PartialAlias.
1039  if ((A == AliasAnalysis::PartialAlias && B == AliasAnalysis::MustAlias) ||
1040      (B == AliasAnalysis::PartialAlias && A == AliasAnalysis::MustAlias))
1041    return AliasAnalysis::PartialAlias;
1042  // Otherwise, we don't know anything.
1043  return AliasAnalysis::MayAlias;
1044}
1045
1046/// aliasSelect - Provide a bunch of ad-hoc rules to disambiguate a Select
1047/// instruction against another.
1048AliasAnalysis::AliasResult
1049BasicAliasAnalysis::aliasSelect(const SelectInst *SI, uint64_t SISize,
1050                                const MDNode *SITBAAInfo,
1051                                const Value *V2, uint64_t V2Size,
1052                                const MDNode *V2TBAAInfo) {
1053  // If the values are Selects with the same condition, we can do a more precise
1054  // check: just check for aliases between the values on corresponding arms.
1055  if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
1056    if (SI->getCondition() == SI2->getCondition()) {
1057      AliasResult Alias =
1058        aliasCheck(SI->getTrueValue(), SISize, SITBAAInfo,
1059                   SI2->getTrueValue(), V2Size, V2TBAAInfo);
1060      if (Alias == MayAlias)
1061        return MayAlias;
1062      AliasResult ThisAlias =
1063        aliasCheck(SI->getFalseValue(), SISize, SITBAAInfo,
1064                   SI2->getFalseValue(), V2Size, V2TBAAInfo);
1065      return MergeAliasResults(ThisAlias, Alias);
1066    }
1067
1068  // If both arms of the Select node NoAlias or MustAlias V2, then returns
1069  // NoAlias / MustAlias. Otherwise, returns MayAlias.
1070  AliasResult Alias =
1071    aliasCheck(V2, V2Size, V2TBAAInfo, SI->getTrueValue(), SISize, SITBAAInfo);
1072  if (Alias == MayAlias)
1073    return MayAlias;
1074
1075  AliasResult ThisAlias =
1076    aliasCheck(V2, V2Size, V2TBAAInfo, SI->getFalseValue(), SISize, SITBAAInfo);
1077  return MergeAliasResults(ThisAlias, Alias);
1078}
1079
1080// aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI instruction
1081// against another.
1082AliasAnalysis::AliasResult
1083BasicAliasAnalysis::aliasPHI(const PHINode *PN, uint64_t PNSize,
1084                             const MDNode *PNTBAAInfo,
1085                             const Value *V2, uint64_t V2Size,
1086                             const MDNode *V2TBAAInfo) {
1087  // If the values are PHIs in the same block, we can do a more precise
1088  // as well as efficient check: just check for aliases between the values
1089  // on corresponding edges.
1090  if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
1091    if (PN2->getParent() == PN->getParent()) {
1092      LocPair Locs(Location(PN, PNSize, PNTBAAInfo),
1093                   Location(V2, V2Size, V2TBAAInfo));
1094      if (PN > V2)
1095        std::swap(Locs.first, Locs.second);
1096      // Analyse the PHIs' inputs under the assumption that the PHIs are
1097      // NoAlias.
1098      // If the PHIs are May/MustAlias there must be (recursively) an input
1099      // operand from outside the PHIs' cycle that is MayAlias/MustAlias or
1100      // there must be an operation on the PHIs within the PHIs' value cycle
1101      // that causes a MayAlias.
1102      // Pretend the phis do not alias.
1103      AliasResult Alias = NoAlias;
1104      assert(AliasCache.count(Locs) &&
1105             "There must exist an entry for the phi node");
1106      AliasResult OrigAliasResult = AliasCache[Locs];
1107      AliasCache[Locs] = NoAlias;
1108
1109      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1110        AliasResult ThisAlias =
1111          aliasCheck(PN->getIncomingValue(i), PNSize, PNTBAAInfo,
1112                     PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)),
1113                     V2Size, V2TBAAInfo);
1114        Alias = MergeAliasResults(ThisAlias, Alias);
1115        if (Alias == MayAlias)
1116          break;
1117      }
1118
1119      // Reset if speculation failed.
1120      if (Alias != NoAlias)
1121        AliasCache[Locs] = OrigAliasResult;
1122
1123      return Alias;
1124    }
1125
1126  SmallPtrSet<Value*, 4> UniqueSrc;
1127  SmallVector<Value*, 4> V1Srcs;
1128  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1129    Value *PV1 = PN->getIncomingValue(i);
1130    if (isa<PHINode>(PV1))
1131      // If any of the source itself is a PHI, return MayAlias conservatively
1132      // to avoid compile time explosion. The worst possible case is if both
1133      // sides are PHI nodes. In which case, this is O(m x n) time where 'm'
1134      // and 'n' are the number of PHI sources.
1135      return MayAlias;
1136    if (UniqueSrc.insert(PV1))
1137      V1Srcs.push_back(PV1);
1138  }
1139
1140  AliasResult Alias = aliasCheck(V2, V2Size, V2TBAAInfo,
1141                                 V1Srcs[0], PNSize, PNTBAAInfo);
1142  // Early exit if the check of the first PHI source against V2 is MayAlias.
1143  // Other results are not possible.
1144  if (Alias == MayAlias)
1145    return MayAlias;
1146
1147  // If all sources of the PHI node NoAlias or MustAlias V2, then returns
1148  // NoAlias / MustAlias. Otherwise, returns MayAlias.
1149  for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
1150    Value *V = V1Srcs[i];
1151
1152    AliasResult ThisAlias = aliasCheck(V2, V2Size, V2TBAAInfo,
1153                                       V, PNSize, PNTBAAInfo);
1154    Alias = MergeAliasResults(ThisAlias, Alias);
1155    if (Alias == MayAlias)
1156      break;
1157  }
1158
1159  return Alias;
1160}
1161
1162// aliasCheck - Provide a bunch of ad-hoc rules to disambiguate in common cases,
1163// such as array references.
1164//
1165AliasAnalysis::AliasResult
1166BasicAliasAnalysis::aliasCheck(const Value *V1, uint64_t V1Size,
1167                               const MDNode *V1TBAAInfo,
1168                               const Value *V2, uint64_t V2Size,
1169                               const MDNode *V2TBAAInfo) {
1170  // If either of the memory references is empty, it doesn't matter what the
1171  // pointer values are.
1172  if (V1Size == 0 || V2Size == 0)
1173    return NoAlias;
1174
1175  // Strip off any casts if they exist.
1176  V1 = V1->stripPointerCasts();
1177  V2 = V2->stripPointerCasts();
1178
1179  // Are we checking for alias of the same value?
1180  if (V1 == V2) return MustAlias;
1181
1182  if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
1183    return NoAlias;  // Scalars cannot alias each other
1184
1185  // Figure out what objects these things are pointing to if we can.
1186  const Value *O1 = GetUnderlyingObject(V1, TD);
1187  const Value *O2 = GetUnderlyingObject(V2, TD);
1188
1189  // Null values in the default address space don't point to any object, so they
1190  // don't alias any other pointer.
1191  if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
1192    if (CPN->getType()->getAddressSpace() == 0)
1193      return NoAlias;
1194  if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
1195    if (CPN->getType()->getAddressSpace() == 0)
1196      return NoAlias;
1197
1198  if (O1 != O2) {
1199    // If V1/V2 point to two different objects we know that we have no alias.
1200    if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
1201      return NoAlias;
1202
1203    // Constant pointers can't alias with non-const isIdentifiedObject objects.
1204    if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) ||
1205        (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1)))
1206      return NoAlias;
1207
1208    // Arguments can't alias with local allocations or noalias calls
1209    // in the same function.
1210    if (((isa<Argument>(O1) && (isa<AllocaInst>(O2) || isNoAliasCall(O2))) ||
1211         (isa<Argument>(O2) && (isa<AllocaInst>(O1) || isNoAliasCall(O1)))))
1212      return NoAlias;
1213
1214    // Most objects can't alias null.
1215    if ((isa<ConstantPointerNull>(O2) && isKnownNonNull(O1)) ||
1216        (isa<ConstantPointerNull>(O1) && isKnownNonNull(O2)))
1217      return NoAlias;
1218
1219    // If one pointer is the result of a call/invoke or load and the other is a
1220    // non-escaping local object within the same function, then we know the
1221    // object couldn't escape to a point where the call could return it.
1222    //
1223    // Note that if the pointers are in different functions, there are a
1224    // variety of complications. A call with a nocapture argument may still
1225    // temporary store the nocapture argument's value in a temporary memory
1226    // location if that memory location doesn't escape. Or it may pass a
1227    // nocapture value to other functions as long as they don't capture it.
1228    if (isEscapeSource(O1) && isNonEscapingLocalObject(O2))
1229      return NoAlias;
1230    if (isEscapeSource(O2) && isNonEscapingLocalObject(O1))
1231      return NoAlias;
1232  }
1233
1234  // If the size of one access is larger than the entire object on the other
1235  // side, then we know such behavior is undefined and can assume no alias.
1236  if (TD)
1237    if ((V1Size != UnknownSize && isObjectSmallerThan(O2, V1Size, *TD, *TLI)) ||
1238        (V2Size != UnknownSize && isObjectSmallerThan(O1, V2Size, *TD, *TLI)))
1239      return NoAlias;
1240
1241  // Check the cache before climbing up use-def chains. This also terminates
1242  // otherwise infinitely recursive queries.
1243  LocPair Locs(Location(V1, V1Size, V1TBAAInfo),
1244               Location(V2, V2Size, V2TBAAInfo));
1245  if (V1 > V2)
1246    std::swap(Locs.first, Locs.second);
1247  std::pair<AliasCacheTy::iterator, bool> Pair =
1248    AliasCache.insert(std::make_pair(Locs, MayAlias));
1249  if (!Pair.second)
1250    return Pair.first->second;
1251
1252  // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the
1253  // GEP can't simplify, we don't even look at the PHI cases.
1254  if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) {
1255    std::swap(V1, V2);
1256    std::swap(V1Size, V2Size);
1257    std::swap(O1, O2);
1258    std::swap(V1TBAAInfo, V2TBAAInfo);
1259  }
1260  if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) {
1261    AliasResult Result = aliasGEP(GV1, V1Size, V1TBAAInfo, V2, V2Size, V2TBAAInfo, O1, O2);
1262    if (Result != MayAlias) return AliasCache[Locs] = Result;
1263  }
1264
1265  if (isa<PHINode>(V2) && !isa<PHINode>(V1)) {
1266    std::swap(V1, V2);
1267    std::swap(V1Size, V2Size);
1268    std::swap(V1TBAAInfo, V2TBAAInfo);
1269  }
1270  if (const PHINode *PN = dyn_cast<PHINode>(V1)) {
1271    AliasResult Result = aliasPHI(PN, V1Size, V1TBAAInfo,
1272                                  V2, V2Size, V2TBAAInfo);
1273    if (Result != MayAlias) return AliasCache[Locs] = Result;
1274  }
1275
1276  if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) {
1277    std::swap(V1, V2);
1278    std::swap(V1Size, V2Size);
1279    std::swap(V1TBAAInfo, V2TBAAInfo);
1280  }
1281  if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) {
1282    AliasResult Result = aliasSelect(S1, V1Size, V1TBAAInfo,
1283                                     V2, V2Size, V2TBAAInfo);
1284    if (Result != MayAlias) return AliasCache[Locs] = Result;
1285  }
1286
1287  // If both pointers are pointing into the same object and one of them
1288  // accesses is accessing the entire object, then the accesses must
1289  // overlap in some way.
1290  if (TD && O1 == O2)
1291    if ((V1Size != UnknownSize && isObjectSize(O1, V1Size, *TD, *TLI)) ||
1292        (V2Size != UnknownSize && isObjectSize(O2, V2Size, *TD, *TLI)))
1293      return AliasCache[Locs] = PartialAlias;
1294
1295  AliasResult Result =
1296    AliasAnalysis::alias(Location(V1, V1Size, V1TBAAInfo),
1297                         Location(V2, V2Size, V2TBAAInfo));
1298  return AliasCache[Locs] = Result;
1299}
1300