BasicAliasAnalysis.cpp revision 239462
1//===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the primary stateless implementation of the
11// Alias Analysis interface that implements identities (two different
12// globals cannot alias, etc), but does no stateful analysis.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Analysis/AliasAnalysis.h"
17#include "llvm/Analysis/Passes.h"
18#include "llvm/Constants.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Function.h"
21#include "llvm/GlobalAlias.h"
22#include "llvm/GlobalVariable.h"
23#include "llvm/Instructions.h"
24#include "llvm/IntrinsicInst.h"
25#include "llvm/LLVMContext.h"
26#include "llvm/Operator.h"
27#include "llvm/Pass.h"
28#include "llvm/Analysis/CaptureTracking.h"
29#include "llvm/Analysis/MemoryBuiltins.h"
30#include "llvm/Analysis/InstructionSimplify.h"
31#include "llvm/Analysis/ValueTracking.h"
32#include "llvm/Target/TargetData.h"
33#include "llvm/Target/TargetLibraryInfo.h"
34#include "llvm/ADT/SmallPtrSet.h"
35#include "llvm/ADT/SmallVector.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/GetElementPtrTypeIterator.h"
38#include <algorithm>
39using namespace llvm;
40
41//===----------------------------------------------------------------------===//
42// Useful predicates
43//===----------------------------------------------------------------------===//
44
45/// isNonEscapingLocalObject - Return true if the pointer is to a function-local
46/// object that never escapes from the function.
47static bool isNonEscapingLocalObject(const Value *V) {
48  // If this is a local allocation, check to see if it escapes.
49  if (isa<AllocaInst>(V) || isNoAliasCall(V))
50    // Set StoreCaptures to True so that we can assume in our callers that the
51    // pointer is not the result of a load instruction. Currently
52    // PointerMayBeCaptured doesn't have any special analysis for the
53    // StoreCaptures=false case; if it did, our callers could be refined to be
54    // more precise.
55    return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
56
57  // If this is an argument that corresponds to a byval or noalias argument,
58  // then it has not escaped before entering the function.  Check if it escapes
59  // inside the function.
60  if (const Argument *A = dyn_cast<Argument>(V))
61    if (A->hasByValAttr() || A->hasNoAliasAttr()) {
62      // Don't bother analyzing arguments already known not to escape.
63      if (A->hasNoCaptureAttr())
64        return true;
65      return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
66    }
67  return false;
68}
69
70/// isEscapeSource - Return true if the pointer is one which would have
71/// been considered an escape by isNonEscapingLocalObject.
72static bool isEscapeSource(const Value *V) {
73  if (isa<CallInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V))
74    return true;
75
76  // The load case works because isNonEscapingLocalObject considers all
77  // stores to be escapes (it passes true for the StoreCaptures argument
78  // to PointerMayBeCaptured).
79  if (isa<LoadInst>(V))
80    return true;
81
82  return false;
83}
84
85/// getObjectSize - Return the size of the object specified by V, or
86/// UnknownSize if unknown.
87static uint64_t getObjectSize(const Value *V, const TargetData &TD,
88                              bool RoundToAlign = false) {
89  uint64_t Size;
90  if (getObjectSize(V, Size, &TD, RoundToAlign))
91    return Size;
92  return AliasAnalysis::UnknownSize;
93}
94
95/// isObjectSmallerThan - Return true if we can prove that the object specified
96/// by V is smaller than Size.
97static bool isObjectSmallerThan(const Value *V, uint64_t Size,
98                                const TargetData &TD) {
99  // This function needs to use the aligned object size because we allow
100  // reads a bit past the end given sufficient alignment.
101  uint64_t ObjectSize = getObjectSize(V, TD, /*RoundToAlign*/true);
102
103  return ObjectSize != AliasAnalysis::UnknownSize && ObjectSize < Size;
104}
105
106/// isObjectSize - Return true if we can prove that the object specified
107/// by V has size Size.
108static bool isObjectSize(const Value *V, uint64_t Size,
109                         const TargetData &TD) {
110  uint64_t ObjectSize = getObjectSize(V, TD);
111  return ObjectSize != AliasAnalysis::UnknownSize && ObjectSize == Size;
112}
113
114//===----------------------------------------------------------------------===//
115// GetElementPtr Instruction Decomposition and Analysis
116//===----------------------------------------------------------------------===//
117
118namespace {
119  enum ExtensionKind {
120    EK_NotExtended,
121    EK_SignExt,
122    EK_ZeroExt
123  };
124
125  struct VariableGEPIndex {
126    const Value *V;
127    ExtensionKind Extension;
128    int64_t Scale;
129  };
130}
131
132
133/// GetLinearExpression - Analyze the specified value as a linear expression:
134/// "A*V + B", where A and B are constant integers.  Return the scale and offset
135/// values as APInts and return V as a Value*, and return whether we looked
136/// through any sign or zero extends.  The incoming Value is known to have
137/// IntegerType and it may already be sign or zero extended.
138///
139/// Note that this looks through extends, so the high bits may not be
140/// represented in the result.
141static Value *GetLinearExpression(Value *V, APInt &Scale, APInt &Offset,
142                                  ExtensionKind &Extension,
143                                  const TargetData &TD, unsigned Depth) {
144  assert(V->getType()->isIntegerTy() && "Not an integer value");
145
146  // Limit our recursion depth.
147  if (Depth == 6) {
148    Scale = 1;
149    Offset = 0;
150    return V;
151  }
152
153  if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) {
154    if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
155      switch (BOp->getOpcode()) {
156      default: break;
157      case Instruction::Or:
158        // X|C == X+C if all the bits in C are unset in X.  Otherwise we can't
159        // analyze it.
160        if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), &TD))
161          break;
162        // FALL THROUGH.
163      case Instruction::Add:
164        V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
165                                TD, Depth+1);
166        Offset += RHSC->getValue();
167        return V;
168      case Instruction::Mul:
169        V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
170                                TD, Depth+1);
171        Offset *= RHSC->getValue();
172        Scale *= RHSC->getValue();
173        return V;
174      case Instruction::Shl:
175        V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
176                                TD, Depth+1);
177        Offset <<= RHSC->getValue().getLimitedValue();
178        Scale <<= RHSC->getValue().getLimitedValue();
179        return V;
180      }
181    }
182  }
183
184  // Since GEP indices are sign extended anyway, we don't care about the high
185  // bits of a sign or zero extended value - just scales and offsets.  The
186  // extensions have to be consistent though.
187  if ((isa<SExtInst>(V) && Extension != EK_ZeroExt) ||
188      (isa<ZExtInst>(V) && Extension != EK_SignExt)) {
189    Value *CastOp = cast<CastInst>(V)->getOperand(0);
190    unsigned OldWidth = Scale.getBitWidth();
191    unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits();
192    Scale = Scale.trunc(SmallWidth);
193    Offset = Offset.trunc(SmallWidth);
194    Extension = isa<SExtInst>(V) ? EK_SignExt : EK_ZeroExt;
195
196    Value *Result = GetLinearExpression(CastOp, Scale, Offset, Extension,
197                                        TD, Depth+1);
198    Scale = Scale.zext(OldWidth);
199    Offset = Offset.zext(OldWidth);
200
201    return Result;
202  }
203
204  Scale = 1;
205  Offset = 0;
206  return V;
207}
208
209/// DecomposeGEPExpression - If V is a symbolic pointer expression, decompose it
210/// into a base pointer with a constant offset and a number of scaled symbolic
211/// offsets.
212///
213/// The scaled symbolic offsets (represented by pairs of a Value* and a scale in
214/// the VarIndices vector) are Value*'s that are known to be scaled by the
215/// specified amount, but which may have other unrepresented high bits. As such,
216/// the gep cannot necessarily be reconstructed from its decomposed form.
217///
218/// When TargetData is around, this function is capable of analyzing everything
219/// that GetUnderlyingObject can look through.  When not, it just looks
220/// through pointer casts.
221///
222static const Value *
223DecomposeGEPExpression(const Value *V, int64_t &BaseOffs,
224                       SmallVectorImpl<VariableGEPIndex> &VarIndices,
225                       const TargetData *TD) {
226  // Limit recursion depth to limit compile time in crazy cases.
227  unsigned MaxLookup = 6;
228
229  BaseOffs = 0;
230  do {
231    // See if this is a bitcast or GEP.
232    const Operator *Op = dyn_cast<Operator>(V);
233    if (Op == 0) {
234      // The only non-operator case we can handle are GlobalAliases.
235      if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
236        if (!GA->mayBeOverridden()) {
237          V = GA->getAliasee();
238          continue;
239        }
240      }
241      return V;
242    }
243
244    if (Op->getOpcode() == Instruction::BitCast) {
245      V = Op->getOperand(0);
246      continue;
247    }
248
249    const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
250    if (GEPOp == 0) {
251      // If it's not a GEP, hand it off to SimplifyInstruction to see if it
252      // can come up with something. This matches what GetUnderlyingObject does.
253      if (const Instruction *I = dyn_cast<Instruction>(V))
254        // TODO: Get a DominatorTree and use it here.
255        if (const Value *Simplified =
256              SimplifyInstruction(const_cast<Instruction *>(I), TD)) {
257          V = Simplified;
258          continue;
259        }
260
261      return V;
262    }
263
264    // Don't attempt to analyze GEPs over unsized objects.
265    if (!cast<PointerType>(GEPOp->getOperand(0)->getType())
266        ->getElementType()->isSized())
267      return V;
268
269    // If we are lacking TargetData information, we can't compute the offets of
270    // elements computed by GEPs.  However, we can handle bitcast equivalent
271    // GEPs.
272    if (TD == 0) {
273      if (!GEPOp->hasAllZeroIndices())
274        return V;
275      V = GEPOp->getOperand(0);
276      continue;
277    }
278
279    // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
280    gep_type_iterator GTI = gep_type_begin(GEPOp);
281    for (User::const_op_iterator I = GEPOp->op_begin()+1,
282         E = GEPOp->op_end(); I != E; ++I) {
283      Value *Index = *I;
284      // Compute the (potentially symbolic) offset in bytes for this index.
285      if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
286        // For a struct, add the member offset.
287        unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
288        if (FieldNo == 0) continue;
289
290        BaseOffs += TD->getStructLayout(STy)->getElementOffset(FieldNo);
291        continue;
292      }
293
294      // For an array/pointer, add the element offset, explicitly scaled.
295      if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
296        if (CIdx->isZero()) continue;
297        BaseOffs += TD->getTypeAllocSize(*GTI)*CIdx->getSExtValue();
298        continue;
299      }
300
301      uint64_t Scale = TD->getTypeAllocSize(*GTI);
302      ExtensionKind Extension = EK_NotExtended;
303
304      // If the integer type is smaller than the pointer size, it is implicitly
305      // sign extended to pointer size.
306      unsigned Width = cast<IntegerType>(Index->getType())->getBitWidth();
307      if (TD->getPointerSizeInBits() > Width)
308        Extension = EK_SignExt;
309
310      // Use GetLinearExpression to decompose the index into a C1*V+C2 form.
311      APInt IndexScale(Width, 0), IndexOffset(Width, 0);
312      Index = GetLinearExpression(Index, IndexScale, IndexOffset, Extension,
313                                  *TD, 0);
314
315      // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
316      // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
317      BaseOffs += IndexOffset.getSExtValue()*Scale;
318      Scale *= IndexScale.getSExtValue();
319
320
321      // If we already had an occurrence of this index variable, merge this
322      // scale into it.  For example, we want to handle:
323      //   A[x][x] -> x*16 + x*4 -> x*20
324      // This also ensures that 'x' only appears in the index list once.
325      for (unsigned i = 0, e = VarIndices.size(); i != e; ++i) {
326        if (VarIndices[i].V == Index &&
327            VarIndices[i].Extension == Extension) {
328          Scale += VarIndices[i].Scale;
329          VarIndices.erase(VarIndices.begin()+i);
330          break;
331        }
332      }
333
334      // Make sure that we have a scale that makes sense for this target's
335      // pointer size.
336      if (unsigned ShiftBits = 64-TD->getPointerSizeInBits()) {
337        Scale <<= ShiftBits;
338        Scale = (int64_t)Scale >> ShiftBits;
339      }
340
341      if (Scale) {
342        VariableGEPIndex Entry = {Index, Extension,
343                                  static_cast<int64_t>(Scale)};
344        VarIndices.push_back(Entry);
345      }
346    }
347
348    // Analyze the base pointer next.
349    V = GEPOp->getOperand(0);
350  } while (--MaxLookup);
351
352  // If the chain of expressions is too deep, just return early.
353  return V;
354}
355
356/// GetIndexDifference - Dest and Src are the variable indices from two
357/// decomposed GetElementPtr instructions GEP1 and GEP2 which have common base
358/// pointers.  Subtract the GEP2 indices from GEP1 to find the symbolic
359/// difference between the two pointers.
360static void GetIndexDifference(SmallVectorImpl<VariableGEPIndex> &Dest,
361                               const SmallVectorImpl<VariableGEPIndex> &Src) {
362  if (Src.empty()) return;
363
364  for (unsigned i = 0, e = Src.size(); i != e; ++i) {
365    const Value *V = Src[i].V;
366    ExtensionKind Extension = Src[i].Extension;
367    int64_t Scale = Src[i].Scale;
368
369    // Find V in Dest.  This is N^2, but pointer indices almost never have more
370    // than a few variable indexes.
371    for (unsigned j = 0, e = Dest.size(); j != e; ++j) {
372      if (Dest[j].V != V || Dest[j].Extension != Extension) continue;
373
374      // If we found it, subtract off Scale V's from the entry in Dest.  If it
375      // goes to zero, remove the entry.
376      if (Dest[j].Scale != Scale)
377        Dest[j].Scale -= Scale;
378      else
379        Dest.erase(Dest.begin()+j);
380      Scale = 0;
381      break;
382    }
383
384    // If we didn't consume this entry, add it to the end of the Dest list.
385    if (Scale) {
386      VariableGEPIndex Entry = { V, Extension, -Scale };
387      Dest.push_back(Entry);
388    }
389  }
390}
391
392//===----------------------------------------------------------------------===//
393// BasicAliasAnalysis Pass
394//===----------------------------------------------------------------------===//
395
396#ifndef NDEBUG
397static const Function *getParent(const Value *V) {
398  if (const Instruction *inst = dyn_cast<Instruction>(V))
399    return inst->getParent()->getParent();
400
401  if (const Argument *arg = dyn_cast<Argument>(V))
402    return arg->getParent();
403
404  return NULL;
405}
406
407static bool notDifferentParent(const Value *O1, const Value *O2) {
408
409  const Function *F1 = getParent(O1);
410  const Function *F2 = getParent(O2);
411
412  return !F1 || !F2 || F1 == F2;
413}
414#endif
415
416namespace {
417  /// BasicAliasAnalysis - This is the primary alias analysis implementation.
418  struct BasicAliasAnalysis : public ImmutablePass, public AliasAnalysis {
419    static char ID; // Class identification, replacement for typeinfo
420    BasicAliasAnalysis() : ImmutablePass(ID),
421                           // AliasCache rarely has more than 1 or 2 elements,
422                           // so start it off fairly small so that clear()
423                           // doesn't have to tromp through 64 (the default)
424                           // elements on each alias query. This really wants
425                           // something like a SmallDenseMap.
426                           AliasCache(8) {
427      initializeBasicAliasAnalysisPass(*PassRegistry::getPassRegistry());
428    }
429
430    virtual void initializePass() {
431      InitializeAliasAnalysis(this);
432    }
433
434    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
435      AU.addRequired<AliasAnalysis>();
436      AU.addRequired<TargetLibraryInfo>();
437    }
438
439    virtual AliasResult alias(const Location &LocA,
440                              const Location &LocB) {
441      assert(AliasCache.empty() && "AliasCache must be cleared after use!");
442      assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
443             "BasicAliasAnalysis doesn't support interprocedural queries.");
444      AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.TBAATag,
445                                     LocB.Ptr, LocB.Size, LocB.TBAATag);
446      AliasCache.clear();
447      return Alias;
448    }
449
450    virtual ModRefResult getModRefInfo(ImmutableCallSite CS,
451                                       const Location &Loc);
452
453    virtual ModRefResult getModRefInfo(ImmutableCallSite CS1,
454                                       ImmutableCallSite CS2) {
455      // The AliasAnalysis base class has some smarts, lets use them.
456      return AliasAnalysis::getModRefInfo(CS1, CS2);
457    }
458
459    /// pointsToConstantMemory - Chase pointers until we find a (constant
460    /// global) or not.
461    virtual bool pointsToConstantMemory(const Location &Loc, bool OrLocal);
462
463    /// getModRefBehavior - Return the behavior when calling the given
464    /// call site.
465    virtual ModRefBehavior getModRefBehavior(ImmutableCallSite CS);
466
467    /// getModRefBehavior - Return the behavior when calling the given function.
468    /// For use when the call site is not known.
469    virtual ModRefBehavior getModRefBehavior(const Function *F);
470
471    /// getAdjustedAnalysisPointer - This method is used when a pass implements
472    /// an analysis interface through multiple inheritance.  If needed, it
473    /// should override this to adjust the this pointer as needed for the
474    /// specified pass info.
475    virtual void *getAdjustedAnalysisPointer(const void *ID) {
476      if (ID == &AliasAnalysis::ID)
477        return (AliasAnalysis*)this;
478      return this;
479    }
480
481  private:
482    // AliasCache - Track alias queries to guard against recursion.
483    typedef std::pair<Location, Location> LocPair;
484    typedef DenseMap<LocPair, AliasResult> AliasCacheTy;
485    AliasCacheTy AliasCache;
486
487    // Visited - Track instructions visited by pointsToConstantMemory.
488    SmallPtrSet<const Value*, 16> Visited;
489
490    // aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP
491    // instruction against another.
492    AliasResult aliasGEP(const GEPOperator *V1, uint64_t V1Size,
493                         const Value *V2, uint64_t V2Size,
494                         const MDNode *V2TBAAInfo,
495                         const Value *UnderlyingV1, const Value *UnderlyingV2);
496
497    // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI
498    // instruction against another.
499    AliasResult aliasPHI(const PHINode *PN, uint64_t PNSize,
500                         const MDNode *PNTBAAInfo,
501                         const Value *V2, uint64_t V2Size,
502                         const MDNode *V2TBAAInfo);
503
504    /// aliasSelect - Disambiguate a Select instruction against another value.
505    AliasResult aliasSelect(const SelectInst *SI, uint64_t SISize,
506                            const MDNode *SITBAAInfo,
507                            const Value *V2, uint64_t V2Size,
508                            const MDNode *V2TBAAInfo);
509
510    AliasResult aliasCheck(const Value *V1, uint64_t V1Size,
511                           const MDNode *V1TBAATag,
512                           const Value *V2, uint64_t V2Size,
513                           const MDNode *V2TBAATag);
514  };
515}  // End of anonymous namespace
516
517// Register this pass...
518char BasicAliasAnalysis::ID = 0;
519INITIALIZE_AG_PASS_BEGIN(BasicAliasAnalysis, AliasAnalysis, "basicaa",
520                   "Basic Alias Analysis (stateless AA impl)",
521                   false, true, false)
522INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
523INITIALIZE_AG_PASS_END(BasicAliasAnalysis, AliasAnalysis, "basicaa",
524                   "Basic Alias Analysis (stateless AA impl)",
525                   false, true, false)
526
527
528ImmutablePass *llvm::createBasicAliasAnalysisPass() {
529  return new BasicAliasAnalysis();
530}
531
532/// pointsToConstantMemory - Returns whether the given pointer value
533/// points to memory that is local to the function, with global constants being
534/// considered local to all functions.
535bool
536BasicAliasAnalysis::pointsToConstantMemory(const Location &Loc, bool OrLocal) {
537  assert(Visited.empty() && "Visited must be cleared after use!");
538
539  unsigned MaxLookup = 8;
540  SmallVector<const Value *, 16> Worklist;
541  Worklist.push_back(Loc.Ptr);
542  do {
543    const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), TD);
544    if (!Visited.insert(V)) {
545      Visited.clear();
546      return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
547    }
548
549    // An alloca instruction defines local memory.
550    if (OrLocal && isa<AllocaInst>(V))
551      continue;
552
553    // A global constant counts as local memory for our purposes.
554    if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
555      // Note: this doesn't require GV to be "ODR" because it isn't legal for a
556      // global to be marked constant in some modules and non-constant in
557      // others.  GV may even be a declaration, not a definition.
558      if (!GV->isConstant()) {
559        Visited.clear();
560        return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
561      }
562      continue;
563    }
564
565    // If both select values point to local memory, then so does the select.
566    if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
567      Worklist.push_back(SI->getTrueValue());
568      Worklist.push_back(SI->getFalseValue());
569      continue;
570    }
571
572    // If all values incoming to a phi node point to local memory, then so does
573    // the phi.
574    if (const PHINode *PN = dyn_cast<PHINode>(V)) {
575      // Don't bother inspecting phi nodes with many operands.
576      if (PN->getNumIncomingValues() > MaxLookup) {
577        Visited.clear();
578        return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
579      }
580      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
581        Worklist.push_back(PN->getIncomingValue(i));
582      continue;
583    }
584
585    // Otherwise be conservative.
586    Visited.clear();
587    return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
588
589  } while (!Worklist.empty() && --MaxLookup);
590
591  Visited.clear();
592  return Worklist.empty();
593}
594
595/// getModRefBehavior - Return the behavior when calling the given call site.
596AliasAnalysis::ModRefBehavior
597BasicAliasAnalysis::getModRefBehavior(ImmutableCallSite CS) {
598  if (CS.doesNotAccessMemory())
599    // Can't do better than this.
600    return DoesNotAccessMemory;
601
602  ModRefBehavior Min = UnknownModRefBehavior;
603
604  // If the callsite knows it only reads memory, don't return worse
605  // than that.
606  if (CS.onlyReadsMemory())
607    Min = OnlyReadsMemory;
608
609  // The AliasAnalysis base class has some smarts, lets use them.
610  return ModRefBehavior(AliasAnalysis::getModRefBehavior(CS) & Min);
611}
612
613/// getModRefBehavior - Return the behavior when calling the given function.
614/// For use when the call site is not known.
615AliasAnalysis::ModRefBehavior
616BasicAliasAnalysis::getModRefBehavior(const Function *F) {
617  // If the function declares it doesn't access memory, we can't do better.
618  if (F->doesNotAccessMemory())
619    return DoesNotAccessMemory;
620
621  // For intrinsics, we can check the table.
622  if (unsigned iid = F->getIntrinsicID()) {
623#define GET_INTRINSIC_MODREF_BEHAVIOR
624#include "llvm/Intrinsics.gen"
625#undef GET_INTRINSIC_MODREF_BEHAVIOR
626  }
627
628  ModRefBehavior Min = UnknownModRefBehavior;
629
630  // If the function declares it only reads memory, go with that.
631  if (F->onlyReadsMemory())
632    Min = OnlyReadsMemory;
633
634  // Otherwise be conservative.
635  return ModRefBehavior(AliasAnalysis::getModRefBehavior(F) & Min);
636}
637
638/// getModRefInfo - Check to see if the specified callsite can clobber the
639/// specified memory object.  Since we only look at local properties of this
640/// function, we really can't say much about this query.  We do, however, use
641/// simple "address taken" analysis on local objects.
642AliasAnalysis::ModRefResult
643BasicAliasAnalysis::getModRefInfo(ImmutableCallSite CS,
644                                  const Location &Loc) {
645  assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) &&
646         "AliasAnalysis query involving multiple functions!");
647
648  const Value *Object = GetUnderlyingObject(Loc.Ptr, TD);
649
650  // If this is a tail call and Loc.Ptr points to a stack location, we know that
651  // the tail call cannot access or modify the local stack.
652  // We cannot exclude byval arguments here; these belong to the caller of
653  // the current function not to the current function, and a tail callee
654  // may reference them.
655  if (isa<AllocaInst>(Object))
656    if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
657      if (CI->isTailCall())
658        return NoModRef;
659
660  // If the pointer is to a locally allocated object that does not escape,
661  // then the call can not mod/ref the pointer unless the call takes the pointer
662  // as an argument, and itself doesn't capture it.
663  if (!isa<Constant>(Object) && CS.getInstruction() != Object &&
664      isNonEscapingLocalObject(Object)) {
665    bool PassedAsArg = false;
666    unsigned ArgNo = 0;
667    for (ImmutableCallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
668         CI != CE; ++CI, ++ArgNo) {
669      // Only look at the no-capture or byval pointer arguments.  If this
670      // pointer were passed to arguments that were neither of these, then it
671      // couldn't be no-capture.
672      if (!(*CI)->getType()->isPointerTy() ||
673          (!CS.doesNotCapture(ArgNo) && !CS.isByValArgument(ArgNo)))
674        continue;
675
676      // If this is a no-capture pointer argument, see if we can tell that it
677      // is impossible to alias the pointer we're checking.  If not, we have to
678      // assume that the call could touch the pointer, even though it doesn't
679      // escape.
680      if (!isNoAlias(Location(*CI), Location(Object))) {
681        PassedAsArg = true;
682        break;
683      }
684    }
685
686    if (!PassedAsArg)
687      return NoModRef;
688  }
689
690  const TargetLibraryInfo &TLI = getAnalysis<TargetLibraryInfo>();
691  ModRefResult Min = ModRef;
692
693  // Finally, handle specific knowledge of intrinsics.
694  const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction());
695  if (II != 0)
696    switch (II->getIntrinsicID()) {
697    default: break;
698    case Intrinsic::memcpy:
699    case Intrinsic::memmove: {
700      uint64_t Len = UnknownSize;
701      if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2)))
702        Len = LenCI->getZExtValue();
703      Value *Dest = II->getArgOperand(0);
704      Value *Src = II->getArgOperand(1);
705      // If it can't overlap the source dest, then it doesn't modref the loc.
706      if (isNoAlias(Location(Dest, Len), Loc)) {
707        if (isNoAlias(Location(Src, Len), Loc))
708          return NoModRef;
709        // If it can't overlap the dest, then worst case it reads the loc.
710        Min = Ref;
711      } else if (isNoAlias(Location(Src, Len), Loc)) {
712        // If it can't overlap the source, then worst case it mutates the loc.
713        Min = Mod;
714      }
715      break;
716    }
717    case Intrinsic::memset:
718      // Since memset is 'accesses arguments' only, the AliasAnalysis base class
719      // will handle it for the variable length case.
720      if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2))) {
721        uint64_t Len = LenCI->getZExtValue();
722        Value *Dest = II->getArgOperand(0);
723        if (isNoAlias(Location(Dest, Len), Loc))
724          return NoModRef;
725      }
726      // We know that memset doesn't load anything.
727      Min = Mod;
728      break;
729    case Intrinsic::lifetime_start:
730    case Intrinsic::lifetime_end:
731    case Intrinsic::invariant_start: {
732      uint64_t PtrSize =
733        cast<ConstantInt>(II->getArgOperand(0))->getZExtValue();
734      if (isNoAlias(Location(II->getArgOperand(1),
735                             PtrSize,
736                             II->getMetadata(LLVMContext::MD_tbaa)),
737                    Loc))
738        return NoModRef;
739      break;
740    }
741    case Intrinsic::invariant_end: {
742      uint64_t PtrSize =
743        cast<ConstantInt>(II->getArgOperand(1))->getZExtValue();
744      if (isNoAlias(Location(II->getArgOperand(2),
745                             PtrSize,
746                             II->getMetadata(LLVMContext::MD_tbaa)),
747                    Loc))
748        return NoModRef;
749      break;
750    }
751    case Intrinsic::arm_neon_vld1: {
752      // LLVM's vld1 and vst1 intrinsics currently only support a single
753      // vector register.
754      uint64_t Size =
755        TD ? TD->getTypeStoreSize(II->getType()) : UnknownSize;
756      if (isNoAlias(Location(II->getArgOperand(0), Size,
757                             II->getMetadata(LLVMContext::MD_tbaa)),
758                    Loc))
759        return NoModRef;
760      break;
761    }
762    case Intrinsic::arm_neon_vst1: {
763      uint64_t Size =
764        TD ? TD->getTypeStoreSize(II->getArgOperand(1)->getType()) : UnknownSize;
765      if (isNoAlias(Location(II->getArgOperand(0), Size,
766                             II->getMetadata(LLVMContext::MD_tbaa)),
767                    Loc))
768        return NoModRef;
769      break;
770    }
771    }
772
773  // We can bound the aliasing properties of memset_pattern16 just as we can
774  // for memcpy/memset.  This is particularly important because the
775  // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16
776  // whenever possible.
777  else if (TLI.has(LibFunc::memset_pattern16) &&
778           CS.getCalledFunction() &&
779           CS.getCalledFunction()->getName() == "memset_pattern16") {
780    const Function *MS = CS.getCalledFunction();
781    FunctionType *MemsetType = MS->getFunctionType();
782    if (!MemsetType->isVarArg() && MemsetType->getNumParams() == 3 &&
783        isa<PointerType>(MemsetType->getParamType(0)) &&
784        isa<PointerType>(MemsetType->getParamType(1)) &&
785        isa<IntegerType>(MemsetType->getParamType(2))) {
786      uint64_t Len = UnknownSize;
787      if (const ConstantInt *LenCI = dyn_cast<ConstantInt>(CS.getArgument(2)))
788        Len = LenCI->getZExtValue();
789      const Value *Dest = CS.getArgument(0);
790      const Value *Src = CS.getArgument(1);
791      // If it can't overlap the source dest, then it doesn't modref the loc.
792      if (isNoAlias(Location(Dest, Len), Loc)) {
793        // Always reads 16 bytes of the source.
794        if (isNoAlias(Location(Src, 16), Loc))
795          return NoModRef;
796        // If it can't overlap the dest, then worst case it reads the loc.
797        Min = Ref;
798      // Always reads 16 bytes of the source.
799      } else if (isNoAlias(Location(Src, 16), Loc)) {
800        // If it can't overlap the source, then worst case it mutates the loc.
801        Min = Mod;
802      }
803    }
804  }
805
806  // The AliasAnalysis base class has some smarts, lets use them.
807  return ModRefResult(AliasAnalysis::getModRefInfo(CS, Loc) & Min);
808}
809
810/// aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP instruction
811/// against another pointer.  We know that V1 is a GEP, but we don't know
812/// anything about V2.  UnderlyingV1 is GetUnderlyingObject(GEP1, TD),
813/// UnderlyingV2 is the same for V2.
814///
815AliasAnalysis::AliasResult
816BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size,
817                             const Value *V2, uint64_t V2Size,
818                             const MDNode *V2TBAAInfo,
819                             const Value *UnderlyingV1,
820                             const Value *UnderlyingV2) {
821  int64_t GEP1BaseOffset;
822  SmallVector<VariableGEPIndex, 4> GEP1VariableIndices;
823
824  // If we have two gep instructions with must-alias'ing base pointers, figure
825  // out if the indexes to the GEP tell us anything about the derived pointer.
826  if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) {
827    // Do the base pointers alias?
828    AliasResult BaseAlias = aliasCheck(UnderlyingV1, UnknownSize, 0,
829                                       UnderlyingV2, UnknownSize, 0);
830
831    // If we get a No or May, then return it immediately, no amount of analysis
832    // will improve this situation.
833    if (BaseAlias != MustAlias) return BaseAlias;
834
835    // Otherwise, we have a MustAlias.  Since the base pointers alias each other
836    // exactly, see if the computed offset from the common pointer tells us
837    // about the relation of the resulting pointer.
838    const Value *GEP1BasePtr =
839      DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD);
840
841    int64_t GEP2BaseOffset;
842    SmallVector<VariableGEPIndex, 4> GEP2VariableIndices;
843    const Value *GEP2BasePtr =
844      DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, TD);
845
846    // If DecomposeGEPExpression isn't able to look all the way through the
847    // addressing operation, we must not have TD and this is too complex for us
848    // to handle without it.
849    if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) {
850      assert(TD == 0 &&
851             "DecomposeGEPExpression and GetUnderlyingObject disagree!");
852      return MayAlias;
853    }
854
855    // Subtract the GEP2 pointer from the GEP1 pointer to find out their
856    // symbolic difference.
857    GEP1BaseOffset -= GEP2BaseOffset;
858    GetIndexDifference(GEP1VariableIndices, GEP2VariableIndices);
859
860  } else {
861    // Check to see if these two pointers are related by the getelementptr
862    // instruction.  If one pointer is a GEP with a non-zero index of the other
863    // pointer, we know they cannot alias.
864
865    // If both accesses are unknown size, we can't do anything useful here.
866    if (V1Size == UnknownSize && V2Size == UnknownSize)
867      return MayAlias;
868
869    AliasResult R = aliasCheck(UnderlyingV1, UnknownSize, 0,
870                               V2, V2Size, V2TBAAInfo);
871    if (R != MustAlias)
872      // If V2 may alias GEP base pointer, conservatively returns MayAlias.
873      // If V2 is known not to alias GEP base pointer, then the two values
874      // cannot alias per GEP semantics: "A pointer value formed from a
875      // getelementptr instruction is associated with the addresses associated
876      // with the first operand of the getelementptr".
877      return R;
878
879    const Value *GEP1BasePtr =
880      DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD);
881
882    // If DecomposeGEPExpression isn't able to look all the way through the
883    // addressing operation, we must not have TD and this is too complex for us
884    // to handle without it.
885    if (GEP1BasePtr != UnderlyingV1) {
886      assert(TD == 0 &&
887             "DecomposeGEPExpression and GetUnderlyingObject disagree!");
888      return MayAlias;
889    }
890  }
891
892  // In the two GEP Case, if there is no difference in the offsets of the
893  // computed pointers, the resultant pointers are a must alias.  This
894  // hapens when we have two lexically identical GEP's (for example).
895  //
896  // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2
897  // must aliases the GEP, the end result is a must alias also.
898  if (GEP1BaseOffset == 0 && GEP1VariableIndices.empty())
899    return MustAlias;
900
901  // If there is a constant difference between the pointers, but the difference
902  // is less than the size of the associated memory object, then we know
903  // that the objects are partially overlapping.  If the difference is
904  // greater, we know they do not overlap.
905  if (GEP1BaseOffset != 0 && GEP1VariableIndices.empty()) {
906    if (GEP1BaseOffset >= 0) {
907      if (V2Size != UnknownSize) {
908        if ((uint64_t)GEP1BaseOffset < V2Size)
909          return PartialAlias;
910        return NoAlias;
911      }
912    } else {
913      if (V1Size != UnknownSize) {
914        if (-(uint64_t)GEP1BaseOffset < V1Size)
915          return PartialAlias;
916        return NoAlias;
917      }
918    }
919  }
920
921  // Try to distinguish something like &A[i][1] against &A[42][0].
922  // Grab the least significant bit set in any of the scales.
923  if (!GEP1VariableIndices.empty()) {
924    uint64_t Modulo = 0;
925    for (unsigned i = 0, e = GEP1VariableIndices.size(); i != e; ++i)
926      Modulo |= (uint64_t)GEP1VariableIndices[i].Scale;
927    Modulo = Modulo ^ (Modulo & (Modulo - 1));
928
929    // We can compute the difference between the two addresses
930    // mod Modulo. Check whether that difference guarantees that the
931    // two locations do not alias.
932    uint64_t ModOffset = (uint64_t)GEP1BaseOffset & (Modulo - 1);
933    if (V1Size != UnknownSize && V2Size != UnknownSize &&
934        ModOffset >= V2Size && V1Size <= Modulo - ModOffset)
935      return NoAlias;
936  }
937
938  // Statically, we can see that the base objects are the same, but the
939  // pointers have dynamic offsets which we can't resolve. And none of our
940  // little tricks above worked.
941  //
942  // TODO: Returning PartialAlias instead of MayAlias is a mild hack; the
943  // practical effect of this is protecting TBAA in the case of dynamic
944  // indices into arrays of unions or malloc'd memory.
945  return PartialAlias;
946}
947
948static AliasAnalysis::AliasResult
949MergeAliasResults(AliasAnalysis::AliasResult A, AliasAnalysis::AliasResult B) {
950  // If the results agree, take it.
951  if (A == B)
952    return A;
953  // A mix of PartialAlias and MustAlias is PartialAlias.
954  if ((A == AliasAnalysis::PartialAlias && B == AliasAnalysis::MustAlias) ||
955      (B == AliasAnalysis::PartialAlias && A == AliasAnalysis::MustAlias))
956    return AliasAnalysis::PartialAlias;
957  // Otherwise, we don't know anything.
958  return AliasAnalysis::MayAlias;
959}
960
961/// aliasSelect - Provide a bunch of ad-hoc rules to disambiguate a Select
962/// instruction against another.
963AliasAnalysis::AliasResult
964BasicAliasAnalysis::aliasSelect(const SelectInst *SI, uint64_t SISize,
965                                const MDNode *SITBAAInfo,
966                                const Value *V2, uint64_t V2Size,
967                                const MDNode *V2TBAAInfo) {
968  // If the values are Selects with the same condition, we can do a more precise
969  // check: just check for aliases between the values on corresponding arms.
970  if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
971    if (SI->getCondition() == SI2->getCondition()) {
972      AliasResult Alias =
973        aliasCheck(SI->getTrueValue(), SISize, SITBAAInfo,
974                   SI2->getTrueValue(), V2Size, V2TBAAInfo);
975      if (Alias == MayAlias)
976        return MayAlias;
977      AliasResult ThisAlias =
978        aliasCheck(SI->getFalseValue(), SISize, SITBAAInfo,
979                   SI2->getFalseValue(), V2Size, V2TBAAInfo);
980      return MergeAliasResults(ThisAlias, Alias);
981    }
982
983  // If both arms of the Select node NoAlias or MustAlias V2, then returns
984  // NoAlias / MustAlias. Otherwise, returns MayAlias.
985  AliasResult Alias =
986    aliasCheck(V2, V2Size, V2TBAAInfo, SI->getTrueValue(), SISize, SITBAAInfo);
987  if (Alias == MayAlias)
988    return MayAlias;
989
990  AliasResult ThisAlias =
991    aliasCheck(V2, V2Size, V2TBAAInfo, SI->getFalseValue(), SISize, SITBAAInfo);
992  return MergeAliasResults(ThisAlias, Alias);
993}
994
995// aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI instruction
996// against another.
997AliasAnalysis::AliasResult
998BasicAliasAnalysis::aliasPHI(const PHINode *PN, uint64_t PNSize,
999                             const MDNode *PNTBAAInfo,
1000                             const Value *V2, uint64_t V2Size,
1001                             const MDNode *V2TBAAInfo) {
1002  // If the values are PHIs in the same block, we can do a more precise
1003  // as well as efficient check: just check for aliases between the values
1004  // on corresponding edges.
1005  if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
1006    if (PN2->getParent() == PN->getParent()) {
1007      AliasResult Alias =
1008        aliasCheck(PN->getIncomingValue(0), PNSize, PNTBAAInfo,
1009                   PN2->getIncomingValueForBlock(PN->getIncomingBlock(0)),
1010                   V2Size, V2TBAAInfo);
1011      if (Alias == MayAlias)
1012        return MayAlias;
1013      for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
1014        AliasResult ThisAlias =
1015          aliasCheck(PN->getIncomingValue(i), PNSize, PNTBAAInfo,
1016                     PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)),
1017                     V2Size, V2TBAAInfo);
1018        Alias = MergeAliasResults(ThisAlias, Alias);
1019        if (Alias == MayAlias)
1020          break;
1021      }
1022      return Alias;
1023    }
1024
1025  SmallPtrSet<Value*, 4> UniqueSrc;
1026  SmallVector<Value*, 4> V1Srcs;
1027  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1028    Value *PV1 = PN->getIncomingValue(i);
1029    if (isa<PHINode>(PV1))
1030      // If any of the source itself is a PHI, return MayAlias conservatively
1031      // to avoid compile time explosion. The worst possible case is if both
1032      // sides are PHI nodes. In which case, this is O(m x n) time where 'm'
1033      // and 'n' are the number of PHI sources.
1034      return MayAlias;
1035    if (UniqueSrc.insert(PV1))
1036      V1Srcs.push_back(PV1);
1037  }
1038
1039  AliasResult Alias = aliasCheck(V2, V2Size, V2TBAAInfo,
1040                                 V1Srcs[0], PNSize, PNTBAAInfo);
1041  // Early exit if the check of the first PHI source against V2 is MayAlias.
1042  // Other results are not possible.
1043  if (Alias == MayAlias)
1044    return MayAlias;
1045
1046  // If all sources of the PHI node NoAlias or MustAlias V2, then returns
1047  // NoAlias / MustAlias. Otherwise, returns MayAlias.
1048  for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
1049    Value *V = V1Srcs[i];
1050
1051    AliasResult ThisAlias = aliasCheck(V2, V2Size, V2TBAAInfo,
1052                                       V, PNSize, PNTBAAInfo);
1053    Alias = MergeAliasResults(ThisAlias, Alias);
1054    if (Alias == MayAlias)
1055      break;
1056  }
1057
1058  return Alias;
1059}
1060
1061// aliasCheck - Provide a bunch of ad-hoc rules to disambiguate in common cases,
1062// such as array references.
1063//
1064AliasAnalysis::AliasResult
1065BasicAliasAnalysis::aliasCheck(const Value *V1, uint64_t V1Size,
1066                               const MDNode *V1TBAAInfo,
1067                               const Value *V2, uint64_t V2Size,
1068                               const MDNode *V2TBAAInfo) {
1069  // If either of the memory references is empty, it doesn't matter what the
1070  // pointer values are.
1071  if (V1Size == 0 || V2Size == 0)
1072    return NoAlias;
1073
1074  // Strip off any casts if they exist.
1075  V1 = V1->stripPointerCasts();
1076  V2 = V2->stripPointerCasts();
1077
1078  // Are we checking for alias of the same value?
1079  if (V1 == V2) return MustAlias;
1080
1081  if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
1082    return NoAlias;  // Scalars cannot alias each other
1083
1084  // Figure out what objects these things are pointing to if we can.
1085  const Value *O1 = GetUnderlyingObject(V1, TD);
1086  const Value *O2 = GetUnderlyingObject(V2, TD);
1087
1088  // Null values in the default address space don't point to any object, so they
1089  // don't alias any other pointer.
1090  if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
1091    if (CPN->getType()->getAddressSpace() == 0)
1092      return NoAlias;
1093  if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
1094    if (CPN->getType()->getAddressSpace() == 0)
1095      return NoAlias;
1096
1097  if (O1 != O2) {
1098    // If V1/V2 point to two different objects we know that we have no alias.
1099    if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
1100      return NoAlias;
1101
1102    // Constant pointers can't alias with non-const isIdentifiedObject objects.
1103    if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) ||
1104        (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1)))
1105      return NoAlias;
1106
1107    // Arguments can't alias with local allocations or noalias calls
1108    // in the same function.
1109    if (((isa<Argument>(O1) && (isa<AllocaInst>(O2) || isNoAliasCall(O2))) ||
1110         (isa<Argument>(O2) && (isa<AllocaInst>(O1) || isNoAliasCall(O1)))))
1111      return NoAlias;
1112
1113    // Most objects can't alias null.
1114    if ((isa<ConstantPointerNull>(O2) && isKnownNonNull(O1)) ||
1115        (isa<ConstantPointerNull>(O1) && isKnownNonNull(O2)))
1116      return NoAlias;
1117
1118    // If one pointer is the result of a call/invoke or load and the other is a
1119    // non-escaping local object within the same function, then we know the
1120    // object couldn't escape to a point where the call could return it.
1121    //
1122    // Note that if the pointers are in different functions, there are a
1123    // variety of complications. A call with a nocapture argument may still
1124    // temporary store the nocapture argument's value in a temporary memory
1125    // location if that memory location doesn't escape. Or it may pass a
1126    // nocapture value to other functions as long as they don't capture it.
1127    if (isEscapeSource(O1) && isNonEscapingLocalObject(O2))
1128      return NoAlias;
1129    if (isEscapeSource(O2) && isNonEscapingLocalObject(O1))
1130      return NoAlias;
1131  }
1132
1133  // If the size of one access is larger than the entire object on the other
1134  // side, then we know such behavior is undefined and can assume no alias.
1135  if (TD)
1136    if ((V1Size != UnknownSize && isObjectSmallerThan(O2, V1Size, *TD)) ||
1137        (V2Size != UnknownSize && isObjectSmallerThan(O1, V2Size, *TD)))
1138      return NoAlias;
1139
1140  // Check the cache before climbing up use-def chains. This also terminates
1141  // otherwise infinitely recursive queries.
1142  LocPair Locs(Location(V1, V1Size, V1TBAAInfo),
1143               Location(V2, V2Size, V2TBAAInfo));
1144  if (V1 > V2)
1145    std::swap(Locs.first, Locs.second);
1146  std::pair<AliasCacheTy::iterator, bool> Pair =
1147    AliasCache.insert(std::make_pair(Locs, MayAlias));
1148  if (!Pair.second)
1149    return Pair.first->second;
1150
1151  // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the
1152  // GEP can't simplify, we don't even look at the PHI cases.
1153  if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) {
1154    std::swap(V1, V2);
1155    std::swap(V1Size, V2Size);
1156    std::swap(O1, O2);
1157  }
1158  if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) {
1159    AliasResult Result = aliasGEP(GV1, V1Size, V2, V2Size, V2TBAAInfo, O1, O2);
1160    if (Result != MayAlias) return AliasCache[Locs] = Result;
1161  }
1162
1163  if (isa<PHINode>(V2) && !isa<PHINode>(V1)) {
1164    std::swap(V1, V2);
1165    std::swap(V1Size, V2Size);
1166  }
1167  if (const PHINode *PN = dyn_cast<PHINode>(V1)) {
1168    AliasResult Result = aliasPHI(PN, V1Size, V1TBAAInfo,
1169                                  V2, V2Size, V2TBAAInfo);
1170    if (Result != MayAlias) return AliasCache[Locs] = Result;
1171  }
1172
1173  if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) {
1174    std::swap(V1, V2);
1175    std::swap(V1Size, V2Size);
1176  }
1177  if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) {
1178    AliasResult Result = aliasSelect(S1, V1Size, V1TBAAInfo,
1179                                     V2, V2Size, V2TBAAInfo);
1180    if (Result != MayAlias) return AliasCache[Locs] = Result;
1181  }
1182
1183  // If both pointers are pointing into the same object and one of them
1184  // accesses is accessing the entire object, then the accesses must
1185  // overlap in some way.
1186  if (TD && O1 == O2)
1187    if ((V1Size != UnknownSize && isObjectSize(O1, V1Size, *TD)) ||
1188        (V2Size != UnknownSize && isObjectSize(O2, V2Size, *TD)))
1189      return AliasCache[Locs] = PartialAlias;
1190
1191  AliasResult Result =
1192    AliasAnalysis::alias(Location(V1, V1Size, V1TBAAInfo),
1193                         Location(V2, V2Size, V2TBAAInfo));
1194  return AliasCache[Locs] = Result;
1195}
1196