BasicAliasAnalysis.cpp revision 199989
1//===- BasicAliasAnalysis.cpp - Local Alias Analysis Impl -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the default implementation of the Alias Analysis interface
11// that simply implements a few identities (two different globals cannot alias,
12// etc), but otherwise does no analysis.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Analysis/AliasAnalysis.h"
17#include "llvm/Analysis/Passes.h"
18#include "llvm/Constants.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Function.h"
21#include "llvm/GlobalVariable.h"
22#include "llvm/Instructions.h"
23#include "llvm/IntrinsicInst.h"
24#include "llvm/Operator.h"
25#include "llvm/Pass.h"
26#include "llvm/Analysis/CaptureTracking.h"
27#include "llvm/Analysis/MemoryBuiltins.h"
28#include "llvm/Analysis/ValueTracking.h"
29#include "llvm/Target/TargetData.h"
30#include "llvm/ADT/SmallPtrSet.h"
31#include "llvm/ADT/SmallVector.h"
32#include "llvm/Support/ErrorHandling.h"
33#include <algorithm>
34using namespace llvm;
35
36//===----------------------------------------------------------------------===//
37// Useful predicates
38//===----------------------------------------------------------------------===//
39
40/// isKnownNonNull - Return true if we know that the specified value is never
41/// null.
42static bool isKnownNonNull(const Value *V) {
43  // Alloca never returns null, malloc might.
44  if (isa<AllocaInst>(V)) return true;
45
46  // A byval argument is never null.
47  if (const Argument *A = dyn_cast<Argument>(V))
48    return A->hasByValAttr();
49
50  // Global values are not null unless extern weak.
51  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
52    return !GV->hasExternalWeakLinkage();
53  return false;
54}
55
56/// isNonEscapingLocalObject - Return true if the pointer is to a function-local
57/// object that never escapes from the function.
58static bool isNonEscapingLocalObject(const Value *V) {
59  // If this is a local allocation, check to see if it escapes.
60  if (isa<AllocaInst>(V) || isNoAliasCall(V))
61    // Set StoreCaptures to True so that we can assume in our callers that the
62    // pointer is not the result of a load instruction. Currently
63    // PointerMayBeCaptured doesn't have any special analysis for the
64    // StoreCaptures=false case; if it did, our callers could be refined to be
65    // more precise.
66    return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
67
68  // If this is an argument that corresponds to a byval or noalias argument,
69  // then it has not escaped before entering the function.  Check if it escapes
70  // inside the function.
71  if (const Argument *A = dyn_cast<Argument>(V))
72    if (A->hasByValAttr() || A->hasNoAliasAttr()) {
73      // Don't bother analyzing arguments already known not to escape.
74      if (A->hasNoCaptureAttr())
75        return true;
76      return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
77    }
78  return false;
79}
80
81
82/// isObjectSmallerThan - Return true if we can prove that the object specified
83/// by V is smaller than Size.
84static bool isObjectSmallerThan(const Value *V, unsigned Size,
85                                const TargetData &TD) {
86  const Type *AccessTy;
87  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
88    AccessTy = GV->getType()->getElementType();
89  } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
90    if (!AI->isArrayAllocation())
91      AccessTy = AI->getType()->getElementType();
92    else
93      return false;
94  } else if (const CallInst* CI = extractMallocCall(V)) {
95    if (!isArrayMalloc(V, &TD))
96      // The size is the argument to the malloc call.
97      if (const ConstantInt* C = dyn_cast<ConstantInt>(CI->getOperand(1)))
98        return (C->getZExtValue() < Size);
99    return false;
100  } else if (const Argument *A = dyn_cast<Argument>(V)) {
101    if (A->hasByValAttr())
102      AccessTy = cast<PointerType>(A->getType())->getElementType();
103    else
104      return false;
105  } else {
106    return false;
107  }
108
109  if (AccessTy->isSized())
110    return TD.getTypeAllocSize(AccessTy) < Size;
111  return false;
112}
113
114//===----------------------------------------------------------------------===//
115// NoAA Pass
116//===----------------------------------------------------------------------===//
117
118namespace {
119  /// NoAA - This class implements the -no-aa pass, which always returns "I
120  /// don't know" for alias queries.  NoAA is unlike other alias analysis
121  /// implementations, in that it does not chain to a previous analysis.  As
122  /// such it doesn't follow many of the rules that other alias analyses must.
123  ///
124  struct NoAA : public ImmutablePass, public AliasAnalysis {
125    static char ID; // Class identification, replacement for typeinfo
126    NoAA() : ImmutablePass(&ID) {}
127    explicit NoAA(void *PID) : ImmutablePass(PID) { }
128
129    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
130    }
131
132    virtual void initializePass() {
133      TD = getAnalysisIfAvailable<TargetData>();
134    }
135
136    virtual AliasResult alias(const Value *V1, unsigned V1Size,
137                              const Value *V2, unsigned V2Size) {
138      return MayAlias;
139    }
140
141    virtual void getArgumentAccesses(Function *F, CallSite CS,
142                                     std::vector<PointerAccessInfo> &Info) {
143      llvm_unreachable("This method may not be called on this function!");
144    }
145
146    virtual bool pointsToConstantMemory(const Value *P) { return false; }
147    virtual ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size) {
148      return ModRef;
149    }
150    virtual ModRefResult getModRefInfo(CallSite CS1, CallSite CS2) {
151      return ModRef;
152    }
153
154    virtual void deleteValue(Value *V) {}
155    virtual void copyValue(Value *From, Value *To) {}
156  };
157}  // End of anonymous namespace
158
159// Register this pass...
160char NoAA::ID = 0;
161static RegisterPass<NoAA>
162U("no-aa", "No Alias Analysis (always returns 'may' alias)", true, true);
163
164// Declare that we implement the AliasAnalysis interface
165static RegisterAnalysisGroup<AliasAnalysis> V(U);
166
167ImmutablePass *llvm::createNoAAPass() { return new NoAA(); }
168
169//===----------------------------------------------------------------------===//
170// BasicAA Pass
171//===----------------------------------------------------------------------===//
172
173namespace {
174  /// BasicAliasAnalysis - This is the default alias analysis implementation.
175  /// Because it doesn't chain to a previous alias analysis (like -no-aa), it
176  /// derives from the NoAA class.
177  struct BasicAliasAnalysis : public NoAA {
178    static char ID; // Class identification, replacement for typeinfo
179    BasicAliasAnalysis() : NoAA(&ID) {}
180    AliasResult alias(const Value *V1, unsigned V1Size,
181                      const Value *V2, unsigned V2Size) {
182      assert(VisitedPHIs.empty() && "VisitedPHIs must be cleared after use!");
183      AliasResult Alias = aliasCheck(V1, V1Size, V2, V2Size);
184      VisitedPHIs.clear();
185      return Alias;
186    }
187
188    ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size);
189    ModRefResult getModRefInfo(CallSite CS1, CallSite CS2);
190
191    /// pointsToConstantMemory - Chase pointers until we find a (constant
192    /// global) or not.
193    bool pointsToConstantMemory(const Value *P);
194
195  private:
196    // VisitedPHIs - Track PHI nodes visited by a aliasCheck() call.
197    SmallPtrSet<const Value*, 16> VisitedPHIs;
198
199    // aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP
200    // instruction against another.
201    AliasResult aliasGEP(const GEPOperator *V1, unsigned V1Size,
202                         const Value *V2, unsigned V2Size,
203                         const Value *UnderlyingV1, const Value *UnderlyingV2);
204
205    // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI
206    // instruction against another.
207    AliasResult aliasPHI(const PHINode *PN, unsigned PNSize,
208                         const Value *V2, unsigned V2Size);
209
210    /// aliasSelect - Disambiguate a Select instruction against another value.
211    AliasResult aliasSelect(const SelectInst *SI, unsigned SISize,
212                            const Value *V2, unsigned V2Size);
213
214    AliasResult aliasCheck(const Value *V1, unsigned V1Size,
215                           const Value *V2, unsigned V2Size);
216  };
217}  // End of anonymous namespace
218
219// Register this pass...
220char BasicAliasAnalysis::ID = 0;
221static RegisterPass<BasicAliasAnalysis>
222X("basicaa", "Basic Alias Analysis (default AA impl)", false, true);
223
224// Declare that we implement the AliasAnalysis interface
225static RegisterAnalysisGroup<AliasAnalysis, true> Y(X);
226
227ImmutablePass *llvm::createBasicAliasAnalysisPass() {
228  return new BasicAliasAnalysis();
229}
230
231
232/// pointsToConstantMemory - Chase pointers until we find a (constant
233/// global) or not.
234bool BasicAliasAnalysis::pointsToConstantMemory(const Value *P) {
235  if (const GlobalVariable *GV =
236        dyn_cast<GlobalVariable>(P->getUnderlyingObject()))
237    // Note: this doesn't require GV to be "ODR" because it isn't legal for a
238    // global to be marked constant in some modules and non-constant in others.
239    // GV may even be a declaration, not a definition.
240    return GV->isConstant();
241  return false;
242}
243
244
245/// getModRefInfo - Check to see if the specified callsite can clobber the
246/// specified memory object.  Since we only look at local properties of this
247/// function, we really can't say much about this query.  We do, however, use
248/// simple "address taken" analysis on local objects.
249AliasAnalysis::ModRefResult
250BasicAliasAnalysis::getModRefInfo(CallSite CS, Value *P, unsigned Size) {
251  const Value *Object = P->getUnderlyingObject();
252
253  // If this is a tail call and P points to a stack location, we know that
254  // the tail call cannot access or modify the local stack.
255  // We cannot exclude byval arguments here; these belong to the caller of
256  // the current function not to the current function, and a tail callee
257  // may reference them.
258  if (isa<AllocaInst>(Object))
259    if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
260      if (CI->isTailCall())
261        return NoModRef;
262
263  // If the pointer is to a locally allocated object that does not escape,
264  // then the call can not mod/ref the pointer unless the call takes the pointer
265  // as an argument, and itself doesn't capture it.
266  if (!isa<Constant>(Object) && CS.getInstruction() != Object &&
267      isNonEscapingLocalObject(Object)) {
268    bool PassedAsArg = false;
269    unsigned ArgNo = 0;
270    for (CallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
271         CI != CE; ++CI, ++ArgNo) {
272      // Only look at the no-capture pointer arguments.
273      if (!isa<PointerType>((*CI)->getType()) ||
274          !CS.paramHasAttr(ArgNo+1, Attribute::NoCapture))
275        continue;
276
277      // If  this is a no-capture pointer argument, see if we can tell that it
278      // is impossible to alias the pointer we're checking.  If not, we have to
279      // assume that the call could touch the pointer, even though it doesn't
280      // escape.
281      if (!isNoAlias(cast<Value>(CI), ~0U, P, ~0U)) {
282        PassedAsArg = true;
283        break;
284      }
285    }
286
287    if (!PassedAsArg)
288      return NoModRef;
289  }
290
291  // Finally, handle specific knowledge of intrinsics.
292  IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction());
293  if (II == 0)
294    return AliasAnalysis::getModRefInfo(CS, P, Size);
295
296  switch (II->getIntrinsicID()) {
297  default: break;
298  case Intrinsic::memcpy:
299  case Intrinsic::memmove: {
300    unsigned Len = ~0U;
301    if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getOperand(3)))
302      Len = LenCI->getZExtValue();
303    Value *Dest = II->getOperand(1);
304    Value *Src = II->getOperand(2);
305    if (isNoAlias(Dest, Len, P, Size)) {
306      if (isNoAlias(Src, Len, P, Size))
307        return NoModRef;
308      return Ref;
309    }
310    break;
311  }
312  case Intrinsic::memset:
313    // Since memset is 'accesses arguments' only, the AliasAnalysis base class
314    // will handle it for the variable length case.
315    if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getOperand(3))) {
316      unsigned Len = LenCI->getZExtValue();
317      Value *Dest = II->getOperand(1);
318      if (isNoAlias(Dest, Len, P, Size))
319        return NoModRef;
320    }
321    break;
322  case Intrinsic::atomic_cmp_swap:
323  case Intrinsic::atomic_swap:
324  case Intrinsic::atomic_load_add:
325  case Intrinsic::atomic_load_sub:
326  case Intrinsic::atomic_load_and:
327  case Intrinsic::atomic_load_nand:
328  case Intrinsic::atomic_load_or:
329  case Intrinsic::atomic_load_xor:
330  case Intrinsic::atomic_load_max:
331  case Intrinsic::atomic_load_min:
332  case Intrinsic::atomic_load_umax:
333  case Intrinsic::atomic_load_umin:
334    if (TD) {
335      Value *Op1 = II->getOperand(1);
336      unsigned Op1Size = TD->getTypeStoreSize(Op1->getType());
337      if (isNoAlias(Op1, Op1Size, P, Size))
338        return NoModRef;
339    }
340    break;
341  case Intrinsic::lifetime_start:
342  case Intrinsic::lifetime_end:
343  case Intrinsic::invariant_start: {
344    unsigned PtrSize = cast<ConstantInt>(II->getOperand(1))->getZExtValue();
345    if (isNoAlias(II->getOperand(2), PtrSize, P, Size))
346      return NoModRef;
347    break;
348  }
349  case Intrinsic::invariant_end: {
350    unsigned PtrSize = cast<ConstantInt>(II->getOperand(2))->getZExtValue();
351    if (isNoAlias(II->getOperand(3), PtrSize, P, Size))
352      return NoModRef;
353    break;
354  }
355  }
356
357  // The AliasAnalysis base class has some smarts, lets use them.
358  return AliasAnalysis::getModRefInfo(CS, P, Size);
359}
360
361
362AliasAnalysis::ModRefResult
363BasicAliasAnalysis::getModRefInfo(CallSite CS1, CallSite CS2) {
364  // If CS1 or CS2 are readnone, they don't interact.
365  ModRefBehavior CS1B = AliasAnalysis::getModRefBehavior(CS1);
366  if (CS1B == DoesNotAccessMemory) return NoModRef;
367
368  ModRefBehavior CS2B = AliasAnalysis::getModRefBehavior(CS2);
369  if (CS2B == DoesNotAccessMemory) return NoModRef;
370
371  // If they both only read from memory, just return ref.
372  if (CS1B == OnlyReadsMemory && CS2B == OnlyReadsMemory)
373    return Ref;
374
375  // Otherwise, fall back to NoAA (mod+ref).
376  return NoAA::getModRefInfo(CS1, CS2);
377}
378
379/// GetIndiceDifference - Dest and Src are the variable indices from two
380/// decomposed GetElementPtr instructions GEP1 and GEP2 which have common base
381/// pointers.  Subtract the GEP2 indices from GEP1 to find the symbolic
382/// difference between the two pointers.
383static void GetIndiceDifference(
384                      SmallVectorImpl<std::pair<const Value*, int64_t> > &Dest,
385                const SmallVectorImpl<std::pair<const Value*, int64_t> > &Src) {
386  if (Src.empty()) return;
387
388  for (unsigned i = 0, e = Src.size(); i != e; ++i) {
389    const Value *V = Src[i].first;
390    int64_t Scale = Src[i].second;
391
392    // Find V in Dest.  This is N^2, but pointer indices almost never have more
393    // than a few variable indexes.
394    for (unsigned j = 0, e = Dest.size(); j != e; ++j) {
395      if (Dest[j].first != V) continue;
396
397      // If we found it, subtract off Scale V's from the entry in Dest.  If it
398      // goes to zero, remove the entry.
399      if (Dest[j].second != Scale)
400        Dest[j].second -= Scale;
401      else
402        Dest.erase(Dest.begin()+j);
403      Scale = 0;
404      break;
405    }
406
407    // If we didn't consume this entry, add it to the end of the Dest list.
408    if (Scale)
409      Dest.push_back(std::make_pair(V, -Scale));
410  }
411}
412
413/// aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP instruction
414/// against another pointer.  We know that V1 is a GEP, but we don't know
415/// anything about V2.  UnderlyingV1 is GEP1->getUnderlyingObject(),
416/// UnderlyingV2 is the same for V2.
417///
418AliasAnalysis::AliasResult
419BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, unsigned V1Size,
420                             const Value *V2, unsigned V2Size,
421                             const Value *UnderlyingV1,
422                             const Value *UnderlyingV2) {
423  int64_t GEP1BaseOffset;
424  SmallVector<std::pair<const Value*, int64_t>, 4> GEP1VariableIndices;
425
426  // If we have two gep instructions with must-alias'ing base pointers, figure
427  // out if the indexes to the GEP tell us anything about the derived pointer.
428  if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) {
429    // Do the base pointers alias?
430    AliasResult BaseAlias = aliasCheck(UnderlyingV1, ~0U, UnderlyingV2, ~0U);
431
432    // If we get a No or May, then return it immediately, no amount of analysis
433    // will improve this situation.
434    if (BaseAlias != MustAlias) return BaseAlias;
435
436    // Otherwise, we have a MustAlias.  Since the base pointers alias each other
437    // exactly, see if the computed offset from the common pointer tells us
438    // about the relation of the resulting pointer.
439    const Value *GEP1BasePtr =
440      DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD);
441
442    int64_t GEP2BaseOffset;
443    SmallVector<std::pair<const Value*, int64_t>, 4> GEP2VariableIndices;
444    const Value *GEP2BasePtr =
445      DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, TD);
446
447    // If DecomposeGEPExpression isn't able to look all the way through the
448    // addressing operation, we must not have TD and this is too complex for us
449    // to handle without it.
450    if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) {
451      assert(TD == 0 &&
452             "DecomposeGEPExpression and getUnderlyingObject disagree!");
453      return MayAlias;
454    }
455
456    // Subtract the GEP2 pointer from the GEP1 pointer to find out their
457    // symbolic difference.
458    GEP1BaseOffset -= GEP2BaseOffset;
459    GetIndiceDifference(GEP1VariableIndices, GEP2VariableIndices);
460
461  } else {
462    // Check to see if these two pointers are related by the getelementptr
463    // instruction.  If one pointer is a GEP with a non-zero index of the other
464    // pointer, we know they cannot alias.
465
466    // If both accesses are unknown size, we can't do anything useful here.
467    if (V1Size == ~0U && V2Size == ~0U)
468      return MayAlias;
469
470    AliasResult R = aliasCheck(UnderlyingV1, ~0U, V2, V2Size);
471    if (R != MustAlias)
472      // If V2 may alias GEP base pointer, conservatively returns MayAlias.
473      // If V2 is known not to alias GEP base pointer, then the two values
474      // cannot alias per GEP semantics: "A pointer value formed from a
475      // getelementptr instruction is associated with the addresses associated
476      // with the first operand of the getelementptr".
477      return R;
478
479    const Value *GEP1BasePtr =
480      DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD);
481
482    // If DecomposeGEPExpression isn't able to look all the way through the
483    // addressing operation, we must not have TD and this is too complex for us
484    // to handle without it.
485    if (GEP1BasePtr != UnderlyingV1) {
486      assert(TD == 0 &&
487             "DecomposeGEPExpression and getUnderlyingObject disagree!");
488      return MayAlias;
489    }
490  }
491
492  // In the two GEP Case, if there is no difference in the offsets of the
493  // computed pointers, the resultant pointers are a must alias.  This
494  // hapens when we have two lexically identical GEP's (for example).
495  //
496  // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2
497  // must aliases the GEP, the end result is a must alias also.
498  if (GEP1BaseOffset == 0 && GEP1VariableIndices.empty())
499    return MustAlias;
500
501  // If we have a known constant offset, see if this offset is larger than the
502  // access size being queried.  If so, and if no variable indices can remove
503  // pieces of this constant, then we know we have a no-alias.  For example,
504  //   &A[100] != &A.
505
506  // In order to handle cases like &A[100][i] where i is an out of range
507  // subscript, we have to ignore all constant offset pieces that are a multiple
508  // of a scaled index.  Do this by removing constant offsets that are a
509  // multiple of any of our variable indices.  This allows us to transform
510  // things like &A[i][1] because i has a stride of (e.g.) 8 bytes but the 1
511  // provides an offset of 4 bytes (assuming a <= 4 byte access).
512  for (unsigned i = 0, e = GEP1VariableIndices.size();
513       i != e && GEP1BaseOffset;++i)
514    if (int64_t RemovedOffset = GEP1BaseOffset/GEP1VariableIndices[i].second)
515      GEP1BaseOffset -= RemovedOffset*GEP1VariableIndices[i].second;
516
517  // If our known offset is bigger than the access size, we know we don't have
518  // an alias.
519  if (GEP1BaseOffset) {
520    if (GEP1BaseOffset >= (int64_t)V2Size ||
521        GEP1BaseOffset <= -(int64_t)V1Size)
522      return NoAlias;
523  }
524
525  return MayAlias;
526}
527
528/// aliasSelect - Provide a bunch of ad-hoc rules to disambiguate a Select
529/// instruction against another.
530AliasAnalysis::AliasResult
531BasicAliasAnalysis::aliasSelect(const SelectInst *SI, unsigned SISize,
532                                const Value *V2, unsigned V2Size) {
533  // If the values are Selects with the same condition, we can do a more precise
534  // check: just check for aliases between the values on corresponding arms.
535  if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
536    if (SI->getCondition() == SI2->getCondition()) {
537      AliasResult Alias =
538        aliasCheck(SI->getTrueValue(), SISize,
539                   SI2->getTrueValue(), V2Size);
540      if (Alias == MayAlias)
541        return MayAlias;
542      AliasResult ThisAlias =
543        aliasCheck(SI->getFalseValue(), SISize,
544                   SI2->getFalseValue(), V2Size);
545      if (ThisAlias != Alias)
546        return MayAlias;
547      return Alias;
548    }
549
550  // If both arms of the Select node NoAlias or MustAlias V2, then returns
551  // NoAlias / MustAlias. Otherwise, returns MayAlias.
552  AliasResult Alias =
553    aliasCheck(SI->getTrueValue(), SISize, V2, V2Size);
554  if (Alias == MayAlias)
555    return MayAlias;
556  AliasResult ThisAlias =
557    aliasCheck(SI->getFalseValue(), SISize, V2, V2Size);
558  if (ThisAlias != Alias)
559    return MayAlias;
560  return Alias;
561}
562
563// aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI instruction
564// against another.
565AliasAnalysis::AliasResult
566BasicAliasAnalysis::aliasPHI(const PHINode *PN, unsigned PNSize,
567                             const Value *V2, unsigned V2Size) {
568  // The PHI node has already been visited, avoid recursion any further.
569  if (!VisitedPHIs.insert(PN))
570    return MayAlias;
571
572  // If the values are PHIs in the same block, we can do a more precise
573  // as well as efficient check: just check for aliases between the values
574  // on corresponding edges.
575  if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
576    if (PN2->getParent() == PN->getParent()) {
577      AliasResult Alias =
578        aliasCheck(PN->getIncomingValue(0), PNSize,
579                   PN2->getIncomingValueForBlock(PN->getIncomingBlock(0)),
580                   V2Size);
581      if (Alias == MayAlias)
582        return MayAlias;
583      for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
584        AliasResult ThisAlias =
585          aliasCheck(PN->getIncomingValue(i), PNSize,
586                     PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)),
587                     V2Size);
588        if (ThisAlias != Alias)
589          return MayAlias;
590      }
591      return Alias;
592    }
593
594  SmallPtrSet<Value*, 4> UniqueSrc;
595  SmallVector<Value*, 4> V1Srcs;
596  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
597    Value *PV1 = PN->getIncomingValue(i);
598    if (isa<PHINode>(PV1))
599      // If any of the source itself is a PHI, return MayAlias conservatively
600      // to avoid compile time explosion. The worst possible case is if both
601      // sides are PHI nodes. In which case, this is O(m x n) time where 'm'
602      // and 'n' are the number of PHI sources.
603      return MayAlias;
604    if (UniqueSrc.insert(PV1))
605      V1Srcs.push_back(PV1);
606  }
607
608  AliasResult Alias = aliasCheck(V2, V2Size, V1Srcs[0], PNSize);
609  // Early exit if the check of the first PHI source against V2 is MayAlias.
610  // Other results are not possible.
611  if (Alias == MayAlias)
612    return MayAlias;
613
614  // If all sources of the PHI node NoAlias or MustAlias V2, then returns
615  // NoAlias / MustAlias. Otherwise, returns MayAlias.
616  for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
617    Value *V = V1Srcs[i];
618
619    // If V2 is a PHI, the recursive case will have been caught in the
620    // above aliasCheck call, so these subsequent calls to aliasCheck
621    // don't need to assume that V2 is being visited recursively.
622    VisitedPHIs.erase(V2);
623
624    AliasResult ThisAlias = aliasCheck(V2, V2Size, V, PNSize);
625    if (ThisAlias != Alias || ThisAlias == MayAlias)
626      return MayAlias;
627  }
628
629  return Alias;
630}
631
632// aliasCheck - Provide a bunch of ad-hoc rules to disambiguate in common cases,
633// such as array references.
634//
635AliasAnalysis::AliasResult
636BasicAliasAnalysis::aliasCheck(const Value *V1, unsigned V1Size,
637                               const Value *V2, unsigned V2Size) {
638  // Strip off any casts if they exist.
639  V1 = V1->stripPointerCasts();
640  V2 = V2->stripPointerCasts();
641
642  // Are we checking for alias of the same value?
643  if (V1 == V2) return MustAlias;
644
645  if (!isa<PointerType>(V1->getType()) || !isa<PointerType>(V2->getType()))
646    return NoAlias;  // Scalars cannot alias each other
647
648  // Figure out what objects these things are pointing to if we can.
649  const Value *O1 = V1->getUnderlyingObject();
650  const Value *O2 = V2->getUnderlyingObject();
651
652  // Null values in the default address space don't point to any object, so they
653  // don't alias any other pointer.
654  if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
655    if (CPN->getType()->getAddressSpace() == 0)
656      return NoAlias;
657  if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
658    if (CPN->getType()->getAddressSpace() == 0)
659      return NoAlias;
660
661  if (O1 != O2) {
662    // If V1/V2 point to two different objects we know that we have no alias.
663    if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
664      return NoAlias;
665
666    // Constant pointers can't alias with non-const isIdentifiedObject objects.
667    if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) ||
668        (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1)))
669      return NoAlias;
670
671    // Arguments can't alias with local allocations or noalias calls.
672    if ((isa<Argument>(O1) && (isa<AllocaInst>(O2) || isNoAliasCall(O2))) ||
673        (isa<Argument>(O2) && (isa<AllocaInst>(O1) || isNoAliasCall(O1))))
674      return NoAlias;
675
676    // Most objects can't alias null.
677    if ((isa<ConstantPointerNull>(V2) && isKnownNonNull(O1)) ||
678        (isa<ConstantPointerNull>(V1) && isKnownNonNull(O2)))
679      return NoAlias;
680  }
681
682  // If the size of one access is larger than the entire object on the other
683  // side, then we know such behavior is undefined and can assume no alias.
684  if (TD)
685    if ((V1Size != ~0U && isObjectSmallerThan(O2, V1Size, *TD)) ||
686        (V2Size != ~0U && isObjectSmallerThan(O1, V2Size, *TD)))
687      return NoAlias;
688
689  // If one pointer is the result of a call/invoke or load and the other is a
690  // non-escaping local object, then we know the object couldn't escape to a
691  // point where the call could return it. The load case works because
692  // isNonEscapingLocalObject considers all stores to be escapes (it
693  // passes true for the StoreCaptures argument to PointerMayBeCaptured).
694  if (O1 != O2) {
695    if ((isa<CallInst>(O1) || isa<InvokeInst>(O1) || isa<LoadInst>(O1) ||
696         isa<Argument>(O1)) &&
697        isNonEscapingLocalObject(O2))
698      return NoAlias;
699    if ((isa<CallInst>(O2) || isa<InvokeInst>(O2) || isa<LoadInst>(O2) ||
700         isa<Argument>(O2)) &&
701        isNonEscapingLocalObject(O1))
702      return NoAlias;
703  }
704
705  // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the
706  // GEP can't simplify, we don't even look at the PHI cases.
707  if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) {
708    std::swap(V1, V2);
709    std::swap(V1Size, V2Size);
710    std::swap(O1, O2);
711  }
712  if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1))
713    return aliasGEP(GV1, V1Size, V2, V2Size, O1, O2);
714
715  if (isa<PHINode>(V2) && !isa<PHINode>(V1)) {
716    std::swap(V1, V2);
717    std::swap(V1Size, V2Size);
718  }
719  if (const PHINode *PN = dyn_cast<PHINode>(V1))
720    return aliasPHI(PN, V1Size, V2, V2Size);
721
722  if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) {
723    std::swap(V1, V2);
724    std::swap(V1Size, V2Size);
725  }
726  if (const SelectInst *S1 = dyn_cast<SelectInst>(V1))
727    return aliasSelect(S1, V1Size, V2, V2Size);
728
729  return MayAlias;
730}
731
732// Make sure that anything that uses AliasAnalysis pulls in this file.
733DEFINING_FILE_FOR(BasicAliasAnalysis)
734