slist revision 97403
1// Singly-linked list implementation -*- C++ -*-
2
3// Copyright (C) 2001, 2002 Free Software Foundation, Inc.
4//
5// This file is part of the GNU ISO C++ Library.  This library is free
6// software; you can redistribute it and/or modify it under the
7// terms of the GNU General Public License as published by the
8// Free Software Foundation; either version 2, or (at your option)
9// any later version.
10
11// This library is distributed in the hope that it will be useful,
12// but WITHOUT ANY WARRANTY; without even the implied warranty of
13// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14// GNU General Public License for more details.
15
16// You should have received a copy of the GNU General Public License along
17// with this library; see the file COPYING.  If not, write to the Free
18// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
19// USA.
20
21// As a special exception, you may use this file as part of a free software
22// library without restriction.  Specifically, if other files instantiate
23// templates or use macros or inline functions from this file, or you compile
24// this file and link it with other files to produce an executable, this
25// file does not by itself cause the resulting executable to be covered by
26// the GNU General Public License.  This exception does not however
27// invalidate any other reasons why the executable file might be covered by
28// the GNU General Public License.
29
30/*
31 * Copyright (c) 1997
32 * Silicon Graphics Computer Systems, Inc.
33 *
34 * Permission to use, copy, modify, distribute and sell this software
35 * and its documentation for any purpose is hereby granted without fee,
36 * provided that the above copyright notice appear in all copies and
37 * that both that copyright notice and this permission notice appear
38 * in supporting documentation.  Silicon Graphics makes no
39 * representations about the suitability of this software for any
40 * purpose.  It is provided "as is" without express or implied warranty.
41 *
42 */
43
44/** @file ext/slist
45 *  This file is a GNU extension to the Standard C++ Library (possibly
46 *  containing extensions from the HP/SGI STL subset).  You should only
47 *  include this header if you are using GCC 3 or later.
48 */
49
50#ifndef __SGI_STL_INTERNAL_SLIST_H
51#define __SGI_STL_INTERNAL_SLIST_H
52
53#include <bits/stl_algobase.h>
54#include <bits/stl_alloc.h>
55#include <bits/stl_construct.h>
56#include <bits/stl_uninitialized.h>
57#include <bits/concept_check.h>
58
59namespace __gnu_cxx
60{ 
61using std::size_t;
62using std::ptrdiff_t;
63using std::_Alloc_traits;
64using std::_Construct;
65using std::_Destroy;
66using std::allocator;
67
68struct _Slist_node_base
69{
70  _Slist_node_base* _M_next;
71};
72
73inline _Slist_node_base*
74__slist_make_link(_Slist_node_base* __prev_node,
75                  _Slist_node_base* __new_node)
76{
77  __new_node->_M_next = __prev_node->_M_next;
78  __prev_node->_M_next = __new_node;
79  return __new_node;
80}
81
82inline _Slist_node_base* 
83__slist_previous(_Slist_node_base* __head,
84                 const _Slist_node_base* __node)
85{
86  while (__head && __head->_M_next != __node)
87    __head = __head->_M_next;
88  return __head;
89}
90
91inline const _Slist_node_base* 
92__slist_previous(const _Slist_node_base* __head,
93                 const _Slist_node_base* __node)
94{
95  while (__head && __head->_M_next != __node)
96    __head = __head->_M_next;
97  return __head;
98}
99
100inline void __slist_splice_after(_Slist_node_base* __pos,
101                                 _Slist_node_base* __before_first,
102                                 _Slist_node_base* __before_last)
103{
104  if (__pos != __before_first && __pos != __before_last) {
105    _Slist_node_base* __first = __before_first->_M_next;
106    _Slist_node_base* __after = __pos->_M_next;
107    __before_first->_M_next = __before_last->_M_next;
108    __pos->_M_next = __first;
109    __before_last->_M_next = __after;
110  }
111}
112
113inline void
114__slist_splice_after(_Slist_node_base* __pos, _Slist_node_base* __head)
115{
116  _Slist_node_base* __before_last = __slist_previous(__head, 0);
117  if (__before_last != __head) {
118    _Slist_node_base* __after = __pos->_M_next;
119    __pos->_M_next = __head->_M_next;
120    __head->_M_next = 0;
121    __before_last->_M_next = __after;
122  }
123}
124
125inline _Slist_node_base* __slist_reverse(_Slist_node_base* __node)
126{
127  _Slist_node_base* __result = __node;
128  __node = __node->_M_next;
129  __result->_M_next = 0;
130  while(__node) {
131    _Slist_node_base* __next = __node->_M_next;
132    __node->_M_next = __result;
133    __result = __node;
134    __node = __next;
135  }
136  return __result;
137}
138
139inline size_t __slist_size(_Slist_node_base* __node)
140{
141  size_t __result = 0;
142  for ( ; __node != 0; __node = __node->_M_next)
143    ++__result;
144  return __result;
145}
146
147template <class _Tp>
148struct _Slist_node : public _Slist_node_base
149{
150  _Tp _M_data;
151};
152
153struct _Slist_iterator_base
154{
155  typedef size_t                    size_type;
156  typedef ptrdiff_t                 difference_type;
157  typedef std::forward_iterator_tag iterator_category;
158
159  _Slist_node_base* _M_node;
160
161  _Slist_iterator_base(_Slist_node_base* __x) : _M_node(__x) {}
162  void _M_incr() { _M_node = _M_node->_M_next; }
163
164  bool operator==(const _Slist_iterator_base& __x) const {
165    return _M_node == __x._M_node;
166  }
167  bool operator!=(const _Slist_iterator_base& __x) const {
168    return _M_node != __x._M_node;
169  }
170};
171
172template <class _Tp, class _Ref, class _Ptr>
173struct _Slist_iterator : public _Slist_iterator_base
174{
175  typedef _Slist_iterator<_Tp, _Tp&, _Tp*>             iterator;
176  typedef _Slist_iterator<_Tp, const _Tp&, const _Tp*> const_iterator;
177  typedef _Slist_iterator<_Tp, _Ref, _Ptr>             _Self;
178
179  typedef _Tp              value_type;
180  typedef _Ptr             pointer;
181  typedef _Ref             reference;
182  typedef _Slist_node<_Tp> _Node;
183
184  _Slist_iterator(_Node* __x) : _Slist_iterator_base(__x) {}
185  _Slist_iterator() : _Slist_iterator_base(0) {}
186  _Slist_iterator(const iterator& __x) : _Slist_iterator_base(__x._M_node) {}
187
188  reference operator*() const { return ((_Node*) _M_node)->_M_data; }
189  pointer operator->() const { return &(operator*()); }
190
191  _Self& operator++()
192  {
193    _M_incr();
194    return *this;
195  }
196  _Self operator++(int)
197  {
198    _Self __tmp = *this;
199    _M_incr();
200    return __tmp;
201  }
202};
203
204
205// Base class that encapsulates details of allocators.  Three cases:
206// an ordinary standard-conforming allocator, a standard-conforming
207// allocator with no non-static data, and an SGI-style allocator.
208// This complexity is necessary only because we're worrying about backward
209// compatibility and because we want to avoid wasting storage on an 
210// allocator instance if it isn't necessary.
211
212// Base for general standard-conforming allocators.
213template <class _Tp, class _Allocator, bool _IsStatic>
214class _Slist_alloc_base {
215public:
216  typedef typename _Alloc_traits<_Tp,_Allocator>::allocator_type
217          allocator_type;
218  allocator_type get_allocator() const { return _M_node_allocator; }
219
220  _Slist_alloc_base(const allocator_type& __a) : _M_node_allocator(__a) {}
221
222protected:
223  _Slist_node<_Tp>* _M_get_node() 
224    { return _M_node_allocator.allocate(1); }
225  void _M_put_node(_Slist_node<_Tp>* __p) 
226    { _M_node_allocator.deallocate(__p, 1); }
227
228protected:
229  typename _Alloc_traits<_Slist_node<_Tp>,_Allocator>::allocator_type
230           _M_node_allocator;
231  _Slist_node_base _M_head;
232};
233
234// Specialization for instanceless allocators.
235template <class _Tp, class _Allocator>
236class _Slist_alloc_base<_Tp,_Allocator, true> {
237public:
238  typedef typename _Alloc_traits<_Tp,_Allocator>::allocator_type
239          allocator_type;
240  allocator_type get_allocator() const { return allocator_type(); }
241
242  _Slist_alloc_base(const allocator_type&) {}
243
244protected:
245  typedef typename _Alloc_traits<_Slist_node<_Tp>, _Allocator>::_Alloc_type
246          _Alloc_type;
247  _Slist_node<_Tp>* _M_get_node() { return _Alloc_type::allocate(1); }
248  void _M_put_node(_Slist_node<_Tp>* __p) { _Alloc_type::deallocate(__p, 1); }
249
250protected:
251  _Slist_node_base _M_head;
252};
253
254
255template <class _Tp, class _Alloc>
256struct _Slist_base
257  : public _Slist_alloc_base<_Tp, _Alloc,
258                             _Alloc_traits<_Tp, _Alloc>::_S_instanceless>
259{
260  typedef _Slist_alloc_base<_Tp, _Alloc,
261                            _Alloc_traits<_Tp, _Alloc>::_S_instanceless>
262          _Base;
263  typedef typename _Base::allocator_type allocator_type;
264
265  _Slist_base(const allocator_type& __a)
266    : _Base(__a) { this->_M_head._M_next = 0; }
267  ~_Slist_base() { _M_erase_after(&this->_M_head, 0); }
268
269protected:
270
271  _Slist_node_base* _M_erase_after(_Slist_node_base* __pos)
272  {
273    _Slist_node<_Tp>* __next = (_Slist_node<_Tp>*) (__pos->_M_next);
274    _Slist_node_base* __next_next = __next->_M_next;
275    __pos->_M_next = __next_next;
276    _Destroy(&__next->_M_data);
277    _M_put_node(__next);
278    return __next_next;
279  }
280  _Slist_node_base* _M_erase_after(_Slist_node_base*, _Slist_node_base*);
281};
282
283template <class _Tp, class _Alloc> 
284_Slist_node_base*
285_Slist_base<_Tp,_Alloc>::_M_erase_after(_Slist_node_base* __before_first,
286                                        _Slist_node_base* __last_node) {
287  _Slist_node<_Tp>* __cur = (_Slist_node<_Tp>*) (__before_first->_M_next);
288  while (__cur != __last_node) {
289    _Slist_node<_Tp>* __tmp = __cur;
290    __cur = (_Slist_node<_Tp>*) __cur->_M_next;
291    _Destroy(&__tmp->_M_data);
292    _M_put_node(__tmp);
293  }
294  __before_first->_M_next = __last_node;
295  return __last_node;
296}
297
298template <class _Tp, class _Alloc = allocator<_Tp> >
299class slist : private _Slist_base<_Tp,_Alloc>
300{
301  // concept requirements
302  __glibcpp_class_requires(_Tp, _SGIAssignableConcept)
303
304private:
305  typedef _Slist_base<_Tp,_Alloc> _Base;
306public:
307  typedef _Tp               value_type;
308  typedef value_type*       pointer;
309  typedef const value_type* const_pointer;
310  typedef value_type&       reference;
311  typedef const value_type& const_reference;
312  typedef size_t            size_type;
313  typedef ptrdiff_t         difference_type;
314
315  typedef _Slist_iterator<_Tp, _Tp&, _Tp*>             iterator;
316  typedef _Slist_iterator<_Tp, const _Tp&, const _Tp*> const_iterator;
317
318  typedef typename _Base::allocator_type allocator_type;
319  allocator_type get_allocator() const { return _Base::get_allocator(); }
320
321private:
322  typedef _Slist_node<_Tp>      _Node;
323  typedef _Slist_node_base      _Node_base;
324  typedef _Slist_iterator_base  _Iterator_base;
325
326  _Node* _M_create_node(const value_type& __x) {
327    _Node* __node = this->_M_get_node();
328    try {
329      _Construct(&__node->_M_data, __x);
330      __node->_M_next = 0;
331    }
332    catch(...)
333      {
334	this->_M_put_node(__node);
335	__throw_exception_again;
336      }
337    return __node;
338  }
339  
340  _Node* _M_create_node() {
341    _Node* __node = this->_M_get_node();
342    try {
343      _Construct(&__node->_M_data);
344      __node->_M_next = 0;
345    }
346    catch(...)
347      {
348	this->_M_put_node(__node);
349	__throw_exception_again;
350      }
351    return __node;
352  }
353
354public:
355  explicit slist(const allocator_type& __a = allocator_type()) : _Base(__a) {}
356
357  slist(size_type __n, const value_type& __x,
358        const allocator_type& __a =  allocator_type()) : _Base(__a)
359    { _M_insert_after_fill(&this->_M_head, __n, __x); }
360
361  explicit slist(size_type __n) : _Base(allocator_type())
362    { _M_insert_after_fill(&this->_M_head, __n, value_type()); }
363
364  // We don't need any dispatching tricks here, because _M_insert_after_range
365  // already does them.
366  template <class _InputIterator>
367  slist(_InputIterator __first, _InputIterator __last,
368        const allocator_type& __a =  allocator_type()) : _Base(__a)
369    { _M_insert_after_range(&this->_M_head, __first, __last); }
370
371  slist(const slist& __x) : _Base(__x.get_allocator())
372    { _M_insert_after_range(&this->_M_head, __x.begin(), __x.end()); }
373
374  slist& operator= (const slist& __x);
375
376  ~slist() {}
377
378public:
379  // assign(), a generalized assignment member function.  Two
380  // versions: one that takes a count, and one that takes a range.
381  // The range version is a member template, so we dispatch on whether
382  // or not the type is an integer.
383
384  void assign(size_type __n, const _Tp& __val)
385    { _M_fill_assign(__n, __val); }
386
387  void _M_fill_assign(size_type __n, const _Tp& __val);
388
389  template <class _InputIterator>
390  void assign(_InputIterator __first, _InputIterator __last) {
391    typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
392    _M_assign_dispatch(__first, __last, _Integral());
393  }
394
395  template <class _Integer>
396  void _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
397    { _M_fill_assign((size_type) __n, (_Tp) __val); }
398
399  template <class _InputIterator>
400  void _M_assign_dispatch(_InputIterator __first, _InputIterator __last,
401                          __false_type);
402
403public:
404
405  iterator begin() { return iterator((_Node*)this->_M_head._M_next); }
406  const_iterator begin() const 
407    { return const_iterator((_Node*)this->_M_head._M_next);}
408
409  iterator end() { return iterator(0); }
410  const_iterator end() const { return const_iterator(0); }
411
412  // Experimental new feature: before_begin() returns a
413  // non-dereferenceable iterator that, when incremented, yields
414  // begin().  This iterator may be used as the argument to
415  // insert_after, erase_after, etc.  Note that even for an empty 
416  // slist, before_begin() is not the same iterator as end().  It 
417  // is always necessary to increment before_begin() at least once to
418  // obtain end().
419  iterator before_begin() { return iterator((_Node*) &this->_M_head); }
420  const_iterator before_begin() const
421    { return const_iterator((_Node*) &this->_M_head); }
422
423  size_type size() const { return __slist_size(this->_M_head._M_next); }
424  
425  size_type max_size() const { return size_type(-1); }
426
427  bool empty() const { return this->_M_head._M_next == 0; }
428
429  void swap(slist& __x)
430    { std::swap(this->_M_head._M_next, __x._M_head._M_next); }
431
432public:
433
434  reference front() { return ((_Node*) this->_M_head._M_next)->_M_data; }
435  const_reference front() const 
436    { return ((_Node*) this->_M_head._M_next)->_M_data; }
437  void push_front(const value_type& __x)   {
438    __slist_make_link(&this->_M_head, _M_create_node(__x));
439  }
440  void push_front() { __slist_make_link(&this->_M_head, _M_create_node()); }
441  void pop_front() {
442    _Node* __node = (_Node*) this->_M_head._M_next;
443    this->_M_head._M_next = __node->_M_next;
444    _Destroy(&__node->_M_data);
445    this->_M_put_node(__node);
446  }
447
448  iterator previous(const_iterator __pos) {
449    return iterator((_Node*) __slist_previous(&this->_M_head, __pos._M_node));
450  }
451  const_iterator previous(const_iterator __pos) const {
452    return const_iterator((_Node*) __slist_previous(&this->_M_head,
453                                                    __pos._M_node));
454  }
455
456private:
457  _Node* _M_insert_after(_Node_base* __pos, const value_type& __x) {
458    return (_Node*) (__slist_make_link(__pos, _M_create_node(__x)));
459  }
460
461  _Node* _M_insert_after(_Node_base* __pos) {
462    return (_Node*) (__slist_make_link(__pos, _M_create_node()));
463  }
464
465  void _M_insert_after_fill(_Node_base* __pos,
466                            size_type __n, const value_type& __x) {
467    for (size_type __i = 0; __i < __n; ++__i)
468      __pos = __slist_make_link(__pos, _M_create_node(__x));
469  }
470
471  // Check whether it's an integral type.  If so, it's not an iterator.
472  template <class _InIter>
473  void _M_insert_after_range(_Node_base* __pos, 
474                             _InIter __first, _InIter __last) {
475    typedef typename _Is_integer<_InIter>::_Integral _Integral;
476    _M_insert_after_range(__pos, __first, __last, _Integral());
477  }
478
479  template <class _Integer>
480  void _M_insert_after_range(_Node_base* __pos, _Integer __n, _Integer __x,
481                             __true_type) {
482    _M_insert_after_fill(__pos, __n, __x);
483  }
484
485  template <class _InIter>
486  void _M_insert_after_range(_Node_base* __pos,
487                             _InIter __first, _InIter __last,
488                             __false_type) {
489    while (__first != __last) {
490      __pos = __slist_make_link(__pos, _M_create_node(*__first));
491      ++__first;
492    }
493  }
494
495public:
496
497  iterator insert_after(iterator __pos, const value_type& __x) {
498    return iterator(_M_insert_after(__pos._M_node, __x));
499  }
500
501  iterator insert_after(iterator __pos) {
502    return insert_after(__pos, value_type());
503  }
504
505  void insert_after(iterator __pos, size_type __n, const value_type& __x) {
506    _M_insert_after_fill(__pos._M_node, __n, __x);
507  }
508
509  // We don't need any dispatching tricks here, because _M_insert_after_range
510  // already does them.
511  template <class _InIter>
512  void insert_after(iterator __pos, _InIter __first, _InIter __last) {
513    _M_insert_after_range(__pos._M_node, __first, __last);
514  }
515
516  iterator insert(iterator __pos, const value_type& __x) {
517    return iterator(_M_insert_after(__slist_previous(&this->_M_head,
518                                                     __pos._M_node),
519                    __x));
520  }
521
522  iterator insert(iterator __pos) {
523    return iterator(_M_insert_after(__slist_previous(&this->_M_head,
524                                                     __pos._M_node),
525                                    value_type()));
526  }
527
528  void insert(iterator __pos, size_type __n, const value_type& __x) {
529    _M_insert_after_fill(__slist_previous(&this->_M_head, __pos._M_node),
530                         __n, __x);
531  } 
532    
533  // We don't need any dispatching tricks here, because _M_insert_after_range
534  // already does them.
535  template <class _InIter>
536  void insert(iterator __pos, _InIter __first, _InIter __last) {
537    _M_insert_after_range(__slist_previous(&this->_M_head, __pos._M_node), 
538                          __first, __last);
539  }
540
541public:
542  iterator erase_after(iterator __pos) {
543    return iterator((_Node*) this->_M_erase_after(__pos._M_node));
544  }
545  iterator erase_after(iterator __before_first, iterator __last) {
546    return iterator((_Node*) this->_M_erase_after(__before_first._M_node, 
547                                                  __last._M_node));
548  } 
549
550  iterator erase(iterator __pos) {
551    return (_Node*) this->_M_erase_after(__slist_previous(&this->_M_head, 
552                                                          __pos._M_node));
553  }
554  iterator erase(iterator __first, iterator __last) {
555    return (_Node*) this->_M_erase_after(
556      __slist_previous(&this->_M_head, __first._M_node), __last._M_node);
557  }
558
559  void resize(size_type new_size, const _Tp& __x);
560  void resize(size_type new_size) { resize(new_size, _Tp()); }
561  void clear() { this->_M_erase_after(&this->_M_head, 0); }
562
563public:
564  // Moves the range [__before_first + 1, __before_last + 1) to *this,
565  //  inserting it immediately after __pos.  This is constant time.
566  void splice_after(iterator __pos, 
567                    iterator __before_first, iterator __before_last)
568  {
569    if (__before_first != __before_last) 
570      __slist_splice_after(__pos._M_node, __before_first._M_node, 
571                           __before_last._M_node);
572  }
573
574  // Moves the element that follows __prev to *this, inserting it immediately
575  //  after __pos.  This is constant time.
576  void splice_after(iterator __pos, iterator __prev)
577  {
578    __slist_splice_after(__pos._M_node,
579                         __prev._M_node, __prev._M_node->_M_next);
580  }
581
582
583  // Removes all of the elements from the list __x to *this, inserting
584  // them immediately after __pos.  __x must not be *this.  Complexity:
585  // linear in __x.size().
586  void splice_after(iterator __pos, slist& __x)
587  {
588    __slist_splice_after(__pos._M_node, &__x._M_head);
589  }
590
591  // Linear in distance(begin(), __pos), and linear in __x.size().
592  void splice(iterator __pos, slist& __x) {
593    if (__x._M_head._M_next)
594      __slist_splice_after(__slist_previous(&this->_M_head, __pos._M_node),
595                           &__x._M_head, __slist_previous(&__x._M_head, 0));
596  }
597
598  // Linear in distance(begin(), __pos), and in distance(__x.begin(), __i).
599  void splice(iterator __pos, slist& __x, iterator __i) {
600    __slist_splice_after(__slist_previous(&this->_M_head, __pos._M_node),
601                         __slist_previous(&__x._M_head, __i._M_node),
602                         __i._M_node);
603  }
604
605  // Linear in distance(begin(), __pos), in distance(__x.begin(), __first),
606  // and in distance(__first, __last).
607  void splice(iterator __pos, slist& __x, iterator __first, iterator __last)
608  {
609    if (__first != __last)
610      __slist_splice_after(__slist_previous(&this->_M_head, __pos._M_node),
611                           __slist_previous(&__x._M_head, __first._M_node),
612                           __slist_previous(__first._M_node, __last._M_node));
613  }
614
615public:
616  void reverse() { 
617    if (this->_M_head._M_next)
618      this->_M_head._M_next = __slist_reverse(this->_M_head._M_next);
619  }
620
621  void remove(const _Tp& __val); 
622  void unique(); 
623  void merge(slist& __x);
624  void sort();     
625
626  template <class _Predicate> 
627  void remove_if(_Predicate __pred);
628
629  template <class _BinaryPredicate> 
630  void unique(_BinaryPredicate __pred); 
631
632  template <class _StrictWeakOrdering> 
633  void merge(slist&, _StrictWeakOrdering);
634
635  template <class _StrictWeakOrdering> 
636  void sort(_StrictWeakOrdering __comp); 
637};
638
639template <class _Tp, class _Alloc>
640slist<_Tp,_Alloc>& slist<_Tp,_Alloc>::operator=(const slist<_Tp,_Alloc>& __x)
641{
642  if (&__x != this) {
643    _Node_base* __p1 = &this->_M_head;
644    _Node* __n1 = (_Node*) this->_M_head._M_next;
645    const _Node* __n2 = (const _Node*) __x._M_head._M_next;
646    while (__n1 && __n2) {
647      __n1->_M_data = __n2->_M_data;
648      __p1 = __n1;
649      __n1 = (_Node*) __n1->_M_next;
650      __n2 = (const _Node*) __n2->_M_next;
651    }
652    if (__n2 == 0)
653      this->_M_erase_after(__p1, 0);
654    else
655      _M_insert_after_range(__p1, const_iterator((_Node*)__n2), 
656                                  const_iterator(0));
657  }
658  return *this;
659}
660
661template <class _Tp, class _Alloc>
662void slist<_Tp, _Alloc>::_M_fill_assign(size_type __n, const _Tp& __val) {
663  _Node_base* __prev = &this->_M_head;
664  _Node* __node = (_Node*) this->_M_head._M_next;
665  for ( ; __node != 0 && __n > 0 ; --__n) {
666    __node->_M_data = __val;
667    __prev = __node;
668    __node = (_Node*) __node->_M_next;
669  }
670  if (__n > 0)
671    _M_insert_after_fill(__prev, __n, __val);
672  else
673    this->_M_erase_after(__prev, 0);
674}
675
676template <class _Tp, class _Alloc> template <class _InputIter>
677void
678slist<_Tp, _Alloc>::_M_assign_dispatch(_InputIter __first, _InputIter __last,
679                                       __false_type)
680{
681  _Node_base* __prev = &this->_M_head;
682  _Node* __node = (_Node*) this->_M_head._M_next;
683  while (__node != 0 && __first != __last) {
684    __node->_M_data = *__first;
685    __prev = __node;
686    __node = (_Node*) __node->_M_next;
687    ++__first;
688  }
689  if (__first != __last)
690    _M_insert_after_range(__prev, __first, __last);
691  else
692    this->_M_erase_after(__prev, 0);
693}
694
695template <class _Tp, class _Alloc>
696inline bool 
697operator==(const slist<_Tp,_Alloc>& _SL1, const slist<_Tp,_Alloc>& _SL2)
698{
699  typedef typename slist<_Tp,_Alloc>::const_iterator const_iterator;
700  const_iterator __end1 = _SL1.end();
701  const_iterator __end2 = _SL2.end();
702
703  const_iterator __i1 = _SL1.begin();
704  const_iterator __i2 = _SL2.begin();
705  while (__i1 != __end1 && __i2 != __end2 && *__i1 == *__i2) {
706    ++__i1;
707    ++__i2;
708  }
709  return __i1 == __end1 && __i2 == __end2;
710}
711
712
713template <class _Tp, class _Alloc>
714inline bool
715operator<(const slist<_Tp,_Alloc>& _SL1, const slist<_Tp,_Alloc>& _SL2)
716{
717  return std::lexicographical_compare(_SL1.begin(), _SL1.end(), 
718				      _SL2.begin(), _SL2.end());
719}
720
721template <class _Tp, class _Alloc>
722inline bool 
723operator!=(const slist<_Tp,_Alloc>& _SL1, const slist<_Tp,_Alloc>& _SL2) {
724  return !(_SL1 == _SL2);
725}
726
727template <class _Tp, class _Alloc>
728inline bool 
729operator>(const slist<_Tp,_Alloc>& _SL1, const slist<_Tp,_Alloc>& _SL2) {
730  return _SL2 < _SL1;
731}
732
733template <class _Tp, class _Alloc>
734inline bool 
735operator<=(const slist<_Tp,_Alloc>& _SL1, const slist<_Tp,_Alloc>& _SL2) {
736  return !(_SL2 < _SL1);
737}
738
739template <class _Tp, class _Alloc>
740inline bool 
741operator>=(const slist<_Tp,_Alloc>& _SL1, const slist<_Tp,_Alloc>& _SL2) {
742  return !(_SL1 < _SL2);
743}
744
745template <class _Tp, class _Alloc>
746inline void swap(slist<_Tp,_Alloc>& __x, slist<_Tp,_Alloc>& __y) {
747  __x.swap(__y);
748}
749
750
751template <class _Tp, class _Alloc>
752void slist<_Tp,_Alloc>::resize(size_type __len, const _Tp& __x)
753{
754  _Node_base* __cur = &this->_M_head;
755  while (__cur->_M_next != 0 && __len > 0) {
756    --__len;
757    __cur = __cur->_M_next;
758  }
759  if (__cur->_M_next) 
760    this->_M_erase_after(__cur, 0);
761  else
762    _M_insert_after_fill(__cur, __len, __x);
763}
764
765template <class _Tp, class _Alloc>
766void slist<_Tp,_Alloc>::remove(const _Tp& __val)
767{
768  _Node_base* __cur = &this->_M_head;
769  while (__cur && __cur->_M_next) {
770    if (((_Node*) __cur->_M_next)->_M_data == __val)
771      this->_M_erase_after(__cur);
772    else
773      __cur = __cur->_M_next;
774  }
775}
776
777template <class _Tp, class _Alloc> 
778void slist<_Tp,_Alloc>::unique()
779{
780  _Node_base* __cur = this->_M_head._M_next;
781  if (__cur) {
782    while (__cur->_M_next) {
783      if (((_Node*)__cur)->_M_data == 
784          ((_Node*)(__cur->_M_next))->_M_data)
785        this->_M_erase_after(__cur);
786      else
787        __cur = __cur->_M_next;
788    }
789  }
790}
791
792template <class _Tp, class _Alloc>
793void slist<_Tp,_Alloc>::merge(slist<_Tp,_Alloc>& __x)
794{
795  _Node_base* __n1 = &this->_M_head;
796  while (__n1->_M_next && __x._M_head._M_next) {
797    if (((_Node*) __x._M_head._M_next)->_M_data < 
798        ((_Node*)       __n1->_M_next)->_M_data) 
799      __slist_splice_after(__n1, &__x._M_head, __x._M_head._M_next);
800    __n1 = __n1->_M_next;
801  }
802  if (__x._M_head._M_next) {
803    __n1->_M_next = __x._M_head._M_next;
804    __x._M_head._M_next = 0;
805  }
806}
807
808template <class _Tp, class _Alloc>
809void slist<_Tp,_Alloc>::sort()
810{
811  if (this->_M_head._M_next && this->_M_head._M_next->_M_next) {
812    slist __carry;
813    slist __counter[64];
814    int __fill = 0;
815    while (!empty()) {
816      __slist_splice_after(&__carry._M_head,
817                           &this->_M_head, this->_M_head._M_next);
818      int __i = 0;
819      while (__i < __fill && !__counter[__i].empty()) {
820        __counter[__i].merge(__carry);
821        __carry.swap(__counter[__i]);
822        ++__i;
823      }
824      __carry.swap(__counter[__i]);
825      if (__i == __fill)
826        ++__fill;
827    }
828
829    for (int __i = 1; __i < __fill; ++__i)
830      __counter[__i].merge(__counter[__i-1]);
831    this->swap(__counter[__fill-1]);
832  }
833}
834
835template <class _Tp, class _Alloc> 
836template <class _Predicate>
837void slist<_Tp,_Alloc>::remove_if(_Predicate __pred)
838{
839  _Node_base* __cur = &this->_M_head;
840  while (__cur->_M_next) {
841    if (__pred(((_Node*) __cur->_M_next)->_M_data))
842      this->_M_erase_after(__cur);
843    else
844      __cur = __cur->_M_next;
845  }
846}
847
848template <class _Tp, class _Alloc> template <class _BinaryPredicate> 
849void slist<_Tp,_Alloc>::unique(_BinaryPredicate __pred)
850{
851  _Node* __cur = (_Node*) this->_M_head._M_next;
852  if (__cur) {
853    while (__cur->_M_next) {
854      if (__pred(((_Node*)__cur)->_M_data, 
855                 ((_Node*)(__cur->_M_next))->_M_data))
856        this->_M_erase_after(__cur);
857      else
858        __cur = (_Node*) __cur->_M_next;
859    }
860  }
861}
862
863template <class _Tp, class _Alloc> template <class _StrictWeakOrdering>
864void slist<_Tp,_Alloc>::merge(slist<_Tp,_Alloc>& __x,
865                              _StrictWeakOrdering __comp)
866{
867  _Node_base* __n1 = &this->_M_head;
868  while (__n1->_M_next && __x._M_head._M_next) {
869    if (__comp(((_Node*) __x._M_head._M_next)->_M_data,
870               ((_Node*)       __n1->_M_next)->_M_data))
871      __slist_splice_after(__n1, &__x._M_head, __x._M_head._M_next);
872    __n1 = __n1->_M_next;
873  }
874  if (__x._M_head._M_next) {
875    __n1->_M_next = __x._M_head._M_next;
876    __x._M_head._M_next = 0;
877  }
878}
879
880template <class _Tp, class _Alloc> template <class _StrictWeakOrdering> 
881void slist<_Tp,_Alloc>::sort(_StrictWeakOrdering __comp)
882{
883  if (this->_M_head._M_next && this->_M_head._M_next->_M_next) {
884    slist __carry;
885    slist __counter[64];
886    int __fill = 0;
887    while (!empty()) {
888      __slist_splice_after(&__carry._M_head,
889                           &this->_M_head, this->_M_head._M_next);
890      int __i = 0;
891      while (__i < __fill && !__counter[__i].empty()) {
892        __counter[__i].merge(__carry, __comp);
893        __carry.swap(__counter[__i]);
894        ++__i;
895      }
896      __carry.swap(__counter[__i]);
897      if (__i == __fill)
898        ++__fill;
899    }
900
901    for (int __i = 1; __i < __fill; ++__i)
902      __counter[__i].merge(__counter[__i-1], __comp);
903    this->swap(__counter[__fill-1]);
904  }
905}
906
907} // namespace __gnu_cxx
908
909namespace std
910{
911// Specialization of insert_iterator so that insertions will be constant
912// time rather than linear time.
913
914template <class _Tp, class _Alloc>
915class insert_iterator<__gnu_cxx::slist<_Tp, _Alloc> > {
916protected:
917  typedef __gnu_cxx::slist<_Tp, _Alloc> _Container;
918  _Container* container;
919  typename _Container::iterator iter;
920public:
921  typedef _Container          container_type;
922  typedef output_iterator_tag iterator_category;
923  typedef void                value_type;
924  typedef void                difference_type;
925  typedef void                pointer;
926  typedef void                reference;
927
928  insert_iterator(_Container& __x, typename _Container::iterator __i) 
929    : container(&__x) {
930    if (__i == __x.begin())
931      iter = __x.before_begin();
932    else
933      iter = __x.previous(__i);
934  }
935
936  insert_iterator<_Container>&
937  operator=(const typename _Container::value_type& __value) { 
938    iter = container->insert_after(iter, __value);
939    return *this;
940  }
941  insert_iterator<_Container>& operator*() { return *this; }
942  insert_iterator<_Container>& operator++() { return *this; }
943  insert_iterator<_Container>& operator++(int) { return *this; }
944};
945
946} // namespace std
947
948#endif /* __SGI_STL_INTERNAL_SLIST_H */
949
950// Local Variables:
951// mode:C++
952// End:
953