pcap-linux.c revision 190225
1/*
2 *  pcap-linux.c: Packet capture interface to the Linux kernel
3 *
4 *  Copyright (c) 2000 Torsten Landschoff <torsten@debian.org>
5 *  		       Sebastian Krahmer  <krahmer@cs.uni-potsdam.de>
6 *
7 *  License: BSD
8 *
9 *  Redistribution and use in source and binary forms, with or without
10 *  modification, are permitted provided that the following conditions
11 *  are met:
12 *
13 *  1. Redistributions of source code must retain the above copyright
14 *     notice, this list of conditions and the following disclaimer.
15 *  2. Redistributions in binary form must reproduce the above copyright
16 *     notice, this list of conditions and the following disclaimer in
17 *     the documentation and/or other materials provided with the
18 *     distribution.
19 *  3. The names of the authors may not be used to endorse or promote
20 *     products derived from this software without specific prior
21 *     written permission.
22 *
23 *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
24 *  IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
25 *  WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
26 *
27 *  Modifications:     Added PACKET_MMAP support
28 *                     Paolo Abeni <paolo.abeni@email.it>
29 *
30 *                     based on previous works of:
31 *                     Simon Patarin <patarin@cs.unibo.it>
32 *                     Phil Wood <cpw@lanl.gov>
33 */
34
35#ifndef lint
36static const char rcsid[] _U_ =
37    "@(#) $Header: /tcpdump/master/libpcap/pcap-linux.c,v 1.129.2.29 2008-10-28 00:50:39 guy Exp $ (LBL)";
38#endif
39
40/*
41 * Known problems with 2.0[.x] kernels:
42 *
43 *   - The loopback device gives every packet twice; on 2.2[.x] kernels,
44 *     if we use PF_PACKET, we can filter out the transmitted version
45 *     of the packet by using data in the "sockaddr_ll" returned by
46 *     "recvfrom()", but, on 2.0[.x] kernels, we have to use
47 *     PF_INET/SOCK_PACKET, which means "recvfrom()" supplies a
48 *     "sockaddr_pkt" which doesn't give us enough information to let
49 *     us do that.
50 *
51 *   - We have to set the interface's IFF_PROMISC flag ourselves, if
52 *     we're to run in promiscuous mode, which means we have to turn
53 *     it off ourselves when we're done; the kernel doesn't keep track
54 *     of how many sockets are listening promiscuously, which means
55 *     it won't get turned off automatically when no sockets are
56 *     listening promiscuously.  We catch "pcap_close()" and, for
57 *     interfaces we put into promiscuous mode, take them out of
58 *     promiscuous mode - which isn't necessarily the right thing to
59 *     do, if another socket also requested promiscuous mode between
60 *     the time when we opened the socket and the time when we close
61 *     the socket.
62 *
63 *   - MSG_TRUNC isn't supported, so you can't specify that "recvfrom()"
64 *     return the amount of data that you could have read, rather than
65 *     the amount that was returned, so we can't just allocate a buffer
66 *     whose size is the snapshot length and pass the snapshot length
67 *     as the byte count, and also pass MSG_TRUNC, so that the return
68 *     value tells us how long the packet was on the wire.
69 *
70 *     This means that, if we want to get the actual size of the packet,
71 *     so we can return it in the "len" field of the packet header,
72 *     we have to read the entire packet, not just the part that fits
73 *     within the snapshot length, and thus waste CPU time copying data
74 *     from the kernel that our caller won't see.
75 *
76 *     We have to get the actual size, and supply it in "len", because
77 *     otherwise, the IP dissector in tcpdump, for example, will complain
78 *     about "truncated-ip", as the packet will appear to have been
79 *     shorter, on the wire, than the IP header said it should have been.
80 */
81
82
83#ifdef HAVE_CONFIG_H
84#include "config.h"
85#endif
86
87#include <errno.h>
88#include <stdlib.h>
89#include <unistd.h>
90#include <fcntl.h>
91#include <string.h>
92#include <sys/socket.h>
93#include <sys/ioctl.h>
94#include <sys/utsname.h>
95#include <sys/mman.h>
96#include <net/if.h>
97#include <netinet/in.h>
98#include <linux/if_ether.h>
99#include <net/if_arp.h>
100#include <poll.h>
101
102/*
103 * Got Wireless Extensions?
104 */
105#ifdef HAVE_LINUX_WIRELESS_H
106#include <linux/wireless.h>
107#endif
108
109#include "pcap-int.h"
110#include "pcap/sll.h"
111#include "pcap/vlan.h"
112
113#ifdef HAVE_DAG_API
114#include "pcap-dag.h"
115#endif /* HAVE_DAG_API */
116
117#ifdef HAVE_SEPTEL_API
118#include "pcap-septel.h"
119#endif /* HAVE_SEPTEL_API */
120
121#ifdef PCAP_SUPPORT_USB
122#include "pcap-usb-linux.h"
123#endif
124
125#ifdef PCAP_SUPPORT_BT
126#include "pcap-bt-linux.h"
127#endif
128
129/*
130 * If PF_PACKET is defined, we can use {SOCK_RAW,SOCK_DGRAM}/PF_PACKET
131 * sockets rather than SOCK_PACKET sockets.
132 *
133 * To use them, we include <linux/if_packet.h> rather than
134 * <netpacket/packet.h>; we do so because
135 *
136 *	some Linux distributions (e.g., Slackware 4.0) have 2.2 or
137 *	later kernels and libc5, and don't provide a <netpacket/packet.h>
138 *	file;
139 *
140 *	not all versions of glibc2 have a <netpacket/packet.h> file
141 *	that defines stuff needed for some of the 2.4-or-later-kernel
142 *	features, so if the system has a 2.4 or later kernel, we
143 *	still can't use those features.
144 *
145 * We're already including a number of other <linux/XXX.h> headers, and
146 * this code is Linux-specific (no other OS has PF_PACKET sockets as
147 * a raw packet capture mechanism), so it's not as if you gain any
148 * useful portability by using <netpacket/packet.h>
149 *
150 * XXX - should we just include <linux/if_packet.h> even if PF_PACKET
151 * isn't defined?  It only defines one data structure in 2.0.x, so
152 * it shouldn't cause any problems.
153 */
154#ifdef PF_PACKET
155# include <linux/if_packet.h>
156
157 /*
158  * On at least some Linux distributions (for example, Red Hat 5.2),
159  * there's no <netpacket/packet.h> file, but PF_PACKET is defined if
160  * you include <sys/socket.h>, but <linux/if_packet.h> doesn't define
161  * any of the PF_PACKET stuff such as "struct sockaddr_ll" or any of
162  * the PACKET_xxx stuff.
163  *
164  * So we check whether PACKET_HOST is defined, and assume that we have
165  * PF_PACKET sockets only if it is defined.
166  */
167# ifdef PACKET_HOST
168#  define HAVE_PF_PACKET_SOCKETS
169#  ifdef PACKET_AUXDATA
170#   define HAVE_PACKET_AUXDATA
171#  endif /* PACKET_AUXDATA */
172# endif /* PACKET_HOST */
173
174
175 /* check for memory mapped access avaibility. We assume every needed
176  * struct is defined if the macro TPACKET_HDRLEN is defined, because it
177  * uses many ring related structs and macros */
178# ifdef TPACKET_HDRLEN
179#  define HAVE_PACKET_RING
180#  ifdef TPACKET2_HDRLEN
181#   define HAVE_TPACKET2
182#  else
183#   define TPACKET_V1	0
184#  endif /* TPACKET2_HDRLEN */
185# endif /* TPACKET_HDRLEN */
186#endif /* PF_PACKET */
187
188#ifdef SO_ATTACH_FILTER
189#include <linux/types.h>
190#include <linux/filter.h>
191#endif
192
193#ifndef HAVE_SOCKLEN_T
194typedef int		socklen_t;
195#endif
196
197#ifndef MSG_TRUNC
198/*
199 * This is being compiled on a system that lacks MSG_TRUNC; define it
200 * with the value it has in the 2.2 and later kernels, so that, on
201 * those kernels, when we pass it in the flags argument to "recvfrom()"
202 * we're passing the right value and thus get the MSG_TRUNC behavior
203 * we want.  (We don't get that behavior on 2.0[.x] kernels, because
204 * they didn't support MSG_TRUNC.)
205 */
206#define MSG_TRUNC	0x20
207#endif
208
209#ifndef SOL_PACKET
210/*
211 * This is being compiled on a system that lacks SOL_PACKET; define it
212 * with the value it has in the 2.2 and later kernels, so that we can
213 * set promiscuous mode in the good modern way rather than the old
214 * 2.0-kernel crappy way.
215 */
216#define SOL_PACKET	263
217#endif
218
219#define MAX_LINKHEADER_SIZE	256
220
221/*
222 * When capturing on all interfaces we use this as the buffer size.
223 * Should be bigger then all MTUs that occur in real life.
224 * 64kB should be enough for now.
225 */
226#define BIGGER_THAN_ALL_MTUS	(64*1024)
227
228/*
229 * Prototypes for internal functions and methods.
230 */
231static void map_arphrd_to_dlt(pcap_t *, int, int);
232#ifdef HAVE_PF_PACKET_SOCKETS
233static short int map_packet_type_to_sll_type(short int);
234#endif
235static int pcap_activate_linux(pcap_t *);
236static int activate_old(pcap_t *);
237static int activate_new(pcap_t *);
238static int activate_mmap(pcap_t *);
239static int pcap_can_set_rfmon_linux(pcap_t *);
240static int pcap_read_linux(pcap_t *, int, pcap_handler, u_char *);
241static int pcap_read_packet(pcap_t *, pcap_handler, u_char *);
242static int pcap_inject_linux(pcap_t *, const void *, size_t);
243static int pcap_stats_linux(pcap_t *, struct pcap_stat *);
244static int pcap_setfilter_linux(pcap_t *, struct bpf_program *);
245static int pcap_setdirection_linux(pcap_t *, pcap_direction_t);
246static void pcap_cleanup_linux(pcap_t *);
247
248union thdr {
249	struct tpacket_hdr	*h1;
250	struct tpacket2_hdr	*h2;
251	void			*raw;
252};
253
254#ifdef HAVE_PACKET_RING
255#define RING_GET_FRAME(h) (((union thdr **)h->buffer)[h->offset])
256
257static void destroy_ring(pcap_t *handle);
258static int create_ring(pcap_t *handle);
259static int prepare_tpacket_socket(pcap_t *handle);
260static void pcap_cleanup_linux_mmap(pcap_t *);
261static int pcap_read_linux_mmap(pcap_t *, int, pcap_handler , u_char *);
262static int pcap_setfilter_linux_mmap(pcap_t *, struct bpf_program *);
263static int pcap_setnonblock_mmap(pcap_t *p, int nonblock, char *errbuf);
264static int pcap_getnonblock_mmap(pcap_t *p, char *errbuf);
265#endif
266
267/*
268 * Wrap some ioctl calls
269 */
270#ifdef HAVE_PF_PACKET_SOCKETS
271static int	iface_get_id(int fd, const char *device, char *ebuf);
272#endif
273static int	iface_get_mtu(int fd, const char *device, char *ebuf);
274static int 	iface_get_arptype(int fd, const char *device, char *ebuf);
275#ifdef HAVE_PF_PACKET_SOCKETS
276static int 	iface_bind(int fd, int ifindex, char *ebuf);
277static int	has_wext(int sock_fd, const char *device, char *ebuf);
278static int	enter_rfmon_mode_wext(pcap_t *handle, int sock_fd,
279    const char *device);
280#endif
281static int 	iface_bind_old(int fd, const char *device, char *ebuf);
282
283#ifdef SO_ATTACH_FILTER
284static int	fix_program(pcap_t *handle, struct sock_fprog *fcode);
285static int	fix_offset(struct bpf_insn *p);
286static int	set_kernel_filter(pcap_t *handle, struct sock_fprog *fcode);
287static int	reset_kernel_filter(pcap_t *handle);
288
289static struct sock_filter	total_insn
290	= BPF_STMT(BPF_RET | BPF_K, 0);
291static struct sock_fprog	total_fcode
292	= { 1, &total_insn };
293#endif
294
295pcap_t *
296pcap_create(const char *device, char *ebuf)
297{
298	pcap_t *handle;
299
300#ifdef HAVE_DAG_API
301	if (strstr(device, "dag")) {
302		return dag_create(device, ebuf);
303	}
304#endif /* HAVE_DAG_API */
305
306#ifdef HAVE_SEPTEL_API
307	if (strstr(device, "septel")) {
308		return septel_create(device, ebuf);
309	}
310#endif /* HAVE_SEPTEL_API */
311
312#ifdef PCAP_SUPPORT_BT
313	if (strstr(device, "bluetooth")) {
314		return bt_create(device, ebuf);
315	}
316#endif
317
318#ifdef PCAP_SUPPORT_USB
319	if (strstr(device, "usb")) {
320		return usb_create(device, ebuf);
321	}
322#endif
323
324	handle = pcap_create_common(device, ebuf);
325	if (handle == NULL)
326		return NULL;
327
328	handle->activate_op = pcap_activate_linux;
329	handle->can_set_rfmon_op = pcap_can_set_rfmon_linux;
330	return handle;
331}
332
333static int
334pcap_can_set_rfmon_linux(pcap_t *p)
335{
336#ifdef IW_MODE_MONITOR
337	int sock_fd;
338	struct iwreq ireq;
339#endif
340
341	if (p->opt.source == NULL) {
342		/*
343		 * This is equivalent to the "any" device, and we don't
344		 * support monitor mode on it.
345		 */
346		return 0;
347	}
348
349#ifdef IW_MODE_MONITOR
350	/*
351	 * Bleah.  There doesn't appear to be an ioctl to use to ask
352	 * whether a device supports monitor mode; we'll just do
353	 * SIOCGIWMODE and, if it succeeds, assume the device supports
354	 * monitor mode.
355	 *
356	 * Open a socket on which to attempt to get the mode.
357	 * (We assume that if we have Wireless Extensions support
358	 * we also have PF_PACKET support.)
359	 */
360	sock_fd = socket(PF_PACKET, SOCK_RAW, htons(ETH_P_ALL));
361	if (sock_fd == -1) {
362		(void)snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
363		    "socket: %s", pcap_strerror(errno));
364		return PCAP_ERROR;
365	}
366
367	/*
368	 * Attempt to get the current mode.
369	 */
370	strncpy(ireq.ifr_ifrn.ifrn_name, p->opt.source,
371	    sizeof ireq.ifr_ifrn.ifrn_name);
372	ireq.ifr_ifrn.ifrn_name[sizeof ireq.ifr_ifrn.ifrn_name - 1] = 0;
373	if (ioctl(sock_fd, SIOCGIWMODE, &ireq) != -1) {
374		/*
375		 * Well, we got the mode; assume we can set it.
376		 */
377		close(sock_fd);
378		return 1;
379	}
380	if (errno == ENODEV) {
381		/* The device doesn't even exist. */
382		close(sock_fd);
383		return PCAP_ERROR_NO_SUCH_DEVICE;
384	}
385	close(sock_fd);
386#endif
387	return 0;
388}
389
390/*
391 * With older kernels promiscuous mode is kind of interesting because we
392 * have to reset the interface before exiting. The problem can't really
393 * be solved without some daemon taking care of managing usage counts.
394 * If we put the interface into promiscuous mode, we set a flag indicating
395 * that we must take it out of that mode when the interface is closed,
396 * and, when closing the interface, if that flag is set we take it out
397 * of promiscuous mode.
398 *
399 * Even with newer kernels, we have the same issue with rfmon mode.
400 */
401
402static void	pcap_cleanup_linux( pcap_t *handle )
403{
404	struct ifreq	ifr;
405#ifdef IW_MODE_MONITOR
406	struct iwreq ireq;
407#endif
408
409	if (handle->md.must_clear != 0) {
410		/*
411		 * There's something we have to do when closing this
412		 * pcap_t.
413		 */
414		if (handle->md.must_clear & MUST_CLEAR_PROMISC) {
415			/*
416			 * We put the interface into promiscuous mode;
417			 * take it out of promiscuous mode.
418			 *
419			 * XXX - if somebody else wants it in promiscuous
420			 * mode, this code cannot know that, so it'll take
421			 * it out of promiscuous mode.  That's not fixable
422			 * in 2.0[.x] kernels.
423			 */
424			memset(&ifr, 0, sizeof(ifr));
425			strncpy(ifr.ifr_name, handle->md.device,
426			    sizeof(ifr.ifr_name));
427			if (ioctl(handle->fd, SIOCGIFFLAGS, &ifr) == -1) {
428				fprintf(stderr,
429				    "Can't restore interface flags (SIOCGIFFLAGS failed: %s).\n"
430				    "Please adjust manually.\n"
431				    "Hint: This can't happen with Linux >= 2.2.0.\n",
432				    strerror(errno));
433			} else {
434				if (ifr.ifr_flags & IFF_PROMISC) {
435					/*
436					 * Promiscuous mode is currently on;
437					 * turn it off.
438					 */
439					ifr.ifr_flags &= ~IFF_PROMISC;
440					if (ioctl(handle->fd, SIOCSIFFLAGS,
441					    &ifr) == -1) {
442						fprintf(stderr,
443						    "Can't restore interface flags (SIOCSIFFLAGS failed: %s).\n"
444						    "Please adjust manually.\n"
445						    "Hint: This can't happen with Linux >= 2.2.0.\n",
446						    strerror(errno));
447					}
448				}
449			}
450		}
451
452#ifdef IW_MODE_MONITOR
453		if (handle->md.must_clear & MUST_CLEAR_RFMON) {
454			/*
455			 * We put the interface into rfmon mode;
456			 * take it out of rfmon mode.
457			 *
458			 * XXX - if somebody else wants it in rfmon
459			 * mode, this code cannot know that, so it'll take
460			 * it out of rfmon mode.
461			 */
462			strncpy(ireq.ifr_ifrn.ifrn_name, handle->md.device,
463			    sizeof ireq.ifr_ifrn.ifrn_name);
464			ireq.ifr_ifrn.ifrn_name[sizeof ireq.ifr_ifrn.ifrn_name - 1]
465			    = 0;
466			ireq.u.mode = handle->md.oldmode;
467			if (ioctl(handle->fd, SIOCSIWMODE, &ireq) == -1) {
468				/*
469				 * Scientist, you've failed.
470				 */
471				fprintf(stderr,
472				    "Can't restore interface wireless mode (SIOCSIWMODE failed: %s).\n"
473				    "Please adjust manually.\n",
474				    strerror(errno));
475			}
476		}
477#endif
478
479		/*
480		 * Take this pcap out of the list of pcaps for which we
481		 * have to take the interface out of some mode.
482		 */
483		pcap_remove_from_pcaps_to_close(handle);
484	}
485
486	if (handle->md.device != NULL) {
487		free(handle->md.device);
488		handle->md.device = NULL;
489	}
490	pcap_cleanup_live_common(handle);
491}
492
493/*
494 *  Get a handle for a live capture from the given device. You can
495 *  pass NULL as device to get all packages (without link level
496 *  information of course). If you pass 1 as promisc the interface
497 *  will be set to promiscous mode (XXX: I think this usage should
498 *  be deprecated and functions be added to select that later allow
499 *  modification of that values -- Torsten).
500 */
501static int
502pcap_activate_linux(pcap_t *handle)
503{
504	const char	*device;
505	int		status = 0;
506	int		activate_ok = 0;
507
508	device = handle->opt.source;
509
510	handle->inject_op = pcap_inject_linux;
511	handle->setfilter_op = pcap_setfilter_linux;
512	handle->setdirection_op = pcap_setdirection_linux;
513	handle->set_datalink_op = NULL;	/* can't change data link type */
514	handle->getnonblock_op = pcap_getnonblock_fd;
515	handle->setnonblock_op = pcap_setnonblock_fd;
516	handle->cleanup_op = pcap_cleanup_linux;
517	handle->read_op = pcap_read_linux;
518	handle->stats_op = pcap_stats_linux;
519
520	/*
521	 * NULL and "any" are special devices which give us the hint to
522	 * monitor all devices.
523	 */
524	if (!device || strcmp(device, "any") == 0) {
525		device			= NULL;
526		handle->md.device	= strdup("any");
527		if (handle->opt.promisc) {
528			handle->opt.promisc = 0;
529			/* Just a warning. */
530			snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
531			    "Promiscuous mode not supported on the \"any\" device");
532			status = PCAP_WARNING_PROMISC_NOTSUP;
533		}
534
535	} else
536		handle->md.device	= strdup(device);
537
538	if (handle->md.device == NULL) {
539		snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, "strdup: %s",
540			 pcap_strerror(errno) );
541		return PCAP_ERROR;
542	}
543
544	/*
545	 * Current Linux kernels use the protocol family PF_PACKET to
546	 * allow direct access to all packets on the network while
547	 * older kernels had a special socket type SOCK_PACKET to
548	 * implement this feature.
549	 * While this old implementation is kind of obsolete we need
550	 * to be compatible with older kernels for a while so we are
551	 * trying both methods with the newer method preferred.
552	 */
553
554	if ((status = activate_new(handle)) == 1) {
555		activate_ok = 1;
556		/*
557		 * Try to use memory-mapped access.
558		 */
559		if (activate_mmap(handle) == 1)
560			return 0;	/* we succeeded; nothing more to do */
561	}
562	else if (status == 0) {
563		/* Non-fatal error; try old way */
564		if ((status = activate_old(handle)) == 1)
565			activate_ok = 1;
566	}
567	if (!activate_ok) {
568		/*
569		 * Both methods to open the packet socket failed. Tidy
570		 * up and report our failure (ebuf is expected to be
571		 * set by the functions above).
572		 */
573		goto fail;
574	}
575
576	if (handle->opt.buffer_size != 0) {
577		/*
578		 * Set the socket buffer size to the specified value.
579		 */
580		if (setsockopt(handle->fd, SOL_SOCKET, SO_RCVBUF,
581		    &handle->opt.buffer_size,
582		    sizeof(handle->opt.buffer_size)) == -1) {
583			snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
584				 "SO_RCVBUF: %s", pcap_strerror(errno));
585			status = PCAP_ERROR;
586			goto fail;
587		}
588	}
589
590	/* Allocate the buffer */
591
592	handle->buffer	 = malloc(handle->bufsize + handle->offset);
593	if (!handle->buffer) {
594		snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
595			 "malloc: %s", pcap_strerror(errno));
596		status = PCAP_ERROR;
597		goto fail;
598	}
599
600	/*
601	 * "handle->fd" is a socket, so "select()" and "poll()"
602	 * should work on it.
603	 */
604	handle->selectable_fd = handle->fd;
605
606	return status;
607
608fail:
609	pcap_cleanup_linux(handle);
610	return status;
611}
612
613/*
614 *  Read at most max_packets from the capture stream and call the callback
615 *  for each of them. Returns the number of packets handled or -1 if an
616 *  error occured.
617 */
618static int
619pcap_read_linux(pcap_t *handle, int max_packets, pcap_handler callback, u_char *user)
620{
621	/*
622	 * Currently, on Linux only one packet is delivered per read,
623	 * so we don't loop.
624	 */
625	return pcap_read_packet(handle, callback, user);
626}
627
628/*
629 *  Read a packet from the socket calling the handler provided by
630 *  the user. Returns the number of packets received or -1 if an
631 *  error occured.
632 */
633static int
634pcap_read_packet(pcap_t *handle, pcap_handler callback, u_char *userdata)
635{
636	u_char			*bp;
637	int			offset;
638#ifdef HAVE_PF_PACKET_SOCKETS
639	struct sockaddr_ll	from;
640	struct sll_header	*hdrp;
641#else
642	struct sockaddr		from;
643#endif
644#if defined(HAVE_PACKET_AUXDATA) && defined(HAVE_LINUX_TPACKET_AUXDATA_TP_VLAN_TCI)
645	struct iovec		iov;
646	struct msghdr		msg;
647	struct cmsghdr		*cmsg;
648	union {
649		struct cmsghdr	cmsg;
650		char		buf[CMSG_SPACE(sizeof(struct tpacket_auxdata))];
651	} cmsg_buf;
652#else /* defined(HAVE_PACKET_AUXDATA) && defined(HAVE_LINUX_TPACKET_AUXDATA_TP_VLAN_TCI) */
653	socklen_t		fromlen;
654#endif /* defined(HAVE_PACKET_AUXDATA) && defined(HAVE_LINUX_TPACKET_AUXDATA_TP_VLAN_TCI) */
655	int			packet_len, caplen;
656	struct pcap_pkthdr	pcap_header;
657
658#ifdef HAVE_PF_PACKET_SOCKETS
659	/*
660	 * If this is a cooked device, leave extra room for a
661	 * fake packet header.
662	 */
663	if (handle->md.cooked)
664		offset = SLL_HDR_LEN;
665	else
666		offset = 0;
667#else
668	/*
669	 * This system doesn't have PF_PACKET sockets, so it doesn't
670	 * support cooked devices.
671	 */
672	offset = 0;
673#endif
674
675	/*
676	 * Receive a single packet from the kernel.
677	 * We ignore EINTR, as that might just be due to a signal
678	 * being delivered - if the signal should interrupt the
679	 * loop, the signal handler should call pcap_breakloop()
680	 * to set handle->break_loop (we ignore it on other
681	 * platforms as well).
682	 * We also ignore ENETDOWN, so that we can continue to
683	 * capture traffic if the interface goes down and comes
684	 * back up again; comments in the kernel indicate that
685	 * we'll just block waiting for packets if we try to
686	 * receive from a socket that delivered ENETDOWN, and,
687	 * if we're using a memory-mapped buffer, we won't even
688	 * get notified of "network down" events.
689	 */
690	bp = handle->buffer + handle->offset;
691
692#if defined(HAVE_PACKET_AUXDATA) && defined(HAVE_LINUX_TPACKET_AUXDATA_TP_VLAN_TCI)
693	msg.msg_name		= &from;
694	msg.msg_namelen		= sizeof(from);
695	msg.msg_iov		= &iov;
696	msg.msg_iovlen		= 1;
697	msg.msg_control		= &cmsg_buf;
698	msg.msg_controllen	= sizeof(cmsg_buf);
699	msg.msg_flags		= 0;
700
701	iov.iov_len		= handle->bufsize - offset;
702	iov.iov_base		= bp + offset;
703#endif /* defined(HAVE_PACKET_AUXDATA) && defined(HAVE_LINUX_TPACKET_AUXDATA_TP_VLAN_TCI) */
704
705	do {
706		/*
707		 * Has "pcap_breakloop()" been called?
708		 */
709		if (handle->break_loop) {
710			/*
711			 * Yes - clear the flag that indicates that it
712			 * has, and return -2 as an indication that we
713			 * were told to break out of the loop.
714			 */
715			handle->break_loop = 0;
716			return -2;
717		}
718
719#if defined(HAVE_PACKET_AUXDATA) && defined(HAVE_LINUX_TPACKET_AUXDATA_TP_VLAN_TCI)
720		packet_len = recvmsg(handle->fd, &msg, MSG_TRUNC);
721#else /* defined(HAVE_PACKET_AUXDATA) && defined(HAVE_LINUX_TPACKET_AUXDATA_TP_VLAN_TCI) */
722		fromlen = sizeof(from);
723		packet_len = recvfrom(
724			handle->fd, bp + offset,
725			handle->bufsize - offset, MSG_TRUNC,
726			(struct sockaddr *) &from, &fromlen);
727#endif /* defined(HAVE_PACKET_AUXDATA) && defined(HAVE_LINUX_TPACKET_AUXDATA_TP_VLAN_TCI) */
728	} while (packet_len == -1 && (errno == EINTR || errno == ENETDOWN));
729
730	/* Check if an error occured */
731
732	if (packet_len == -1) {
733		if (errno == EAGAIN)
734			return 0;	/* no packet there */
735		else {
736			snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
737				 "recvfrom: %s", pcap_strerror(errno));
738			return -1;
739		}
740	}
741
742#ifdef HAVE_PF_PACKET_SOCKETS
743	if (!handle->md.sock_packet) {
744		/*
745		 * Unfortunately, there is a window between socket() and
746		 * bind() where the kernel may queue packets from any
747		 * interface.  If we're bound to a particular interface,
748		 * discard packets not from that interface.
749		 *
750		 * (If socket filters are supported, we could do the
751		 * same thing we do when changing the filter; however,
752		 * that won't handle packet sockets without socket
753		 * filter support, and it's a bit more complicated.
754		 * It would save some instructions per packet, however.)
755		 */
756		if (handle->md.ifindex != -1 &&
757		    from.sll_ifindex != handle->md.ifindex)
758			return 0;
759
760		/*
761		 * Do checks based on packet direction.
762		 * We can only do this if we're using PF_PACKET; the
763		 * address returned for SOCK_PACKET is a "sockaddr_pkt"
764		 * which lacks the relevant packet type information.
765		 */
766		if (from.sll_pkttype == PACKET_OUTGOING) {
767			/*
768			 * Outgoing packet.
769			 * If this is from the loopback device, reject it;
770			 * we'll see the packet as an incoming packet as well,
771			 * and we don't want to see it twice.
772			 */
773			if (from.sll_ifindex == handle->md.lo_ifindex)
774				return 0;
775
776			/*
777			 * If the user only wants incoming packets, reject it.
778			 */
779			if (handle->direction == PCAP_D_IN)
780				return 0;
781		} else {
782			/*
783			 * Incoming packet.
784			 * If the user only wants outgoing packets, reject it.
785			 */
786			if (handle->direction == PCAP_D_OUT)
787				return 0;
788		}
789	}
790#endif
791
792#ifdef HAVE_PF_PACKET_SOCKETS
793	/*
794	 * If this is a cooked device, fill in the fake packet header.
795	 */
796	if (handle->md.cooked) {
797		/*
798		 * Add the length of the fake header to the length
799		 * of packet data we read.
800		 */
801		packet_len += SLL_HDR_LEN;
802
803		hdrp = (struct sll_header *)bp;
804		hdrp->sll_pkttype = map_packet_type_to_sll_type(from.sll_pkttype);
805		hdrp->sll_hatype = htons(from.sll_hatype);
806		hdrp->sll_halen = htons(from.sll_halen);
807		memcpy(hdrp->sll_addr, from.sll_addr,
808		    (from.sll_halen > SLL_ADDRLEN) ?
809		      SLL_ADDRLEN :
810		      from.sll_halen);
811		hdrp->sll_protocol = from.sll_protocol;
812	}
813
814#if defined(HAVE_PACKET_AUXDATA) && defined(HAVE_LINUX_TPACKET_AUXDATA_TP_VLAN_TCI)
815	for (cmsg = CMSG_FIRSTHDR(&msg); cmsg; cmsg = CMSG_NXTHDR(&msg, cmsg)) {
816		struct tpacket_auxdata *aux;
817		unsigned int len;
818		struct vlan_tag *tag;
819
820		if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct tpacket_auxdata)) ||
821		    cmsg->cmsg_level != SOL_PACKET ||
822		    cmsg->cmsg_type != PACKET_AUXDATA)
823			continue;
824
825		aux = (struct tpacket_auxdata *)CMSG_DATA(cmsg);
826		if (aux->tp_vlan_tci == 0)
827			continue;
828
829		len = packet_len > iov.iov_len ? iov.iov_len : packet_len;
830		if (len < 2 * ETH_ALEN)
831			break;
832
833		bp -= VLAN_TAG_LEN;
834		memmove(bp, bp + VLAN_TAG_LEN, 2 * ETH_ALEN);
835
836		tag = (struct vlan_tag *)(bp + 2 * ETH_ALEN);
837		tag->vlan_tpid = htons(ETH_P_8021Q);
838		tag->vlan_tci = htons(aux->tp_vlan_tci);
839
840		packet_len += VLAN_TAG_LEN;
841	}
842#endif /* defined(HAVE_PACKET_AUXDATA) && defined(HAVE_LINUX_TPACKET_AUXDATA_TP_VLAN_TCI) */
843#endif /* HAVE_PF_PACKET_SOCKETS */
844
845	/*
846	 * XXX: According to the kernel source we should get the real
847	 * packet len if calling recvfrom with MSG_TRUNC set. It does
848	 * not seem to work here :(, but it is supported by this code
849	 * anyway.
850	 * To be honest the code RELIES on that feature so this is really
851	 * broken with 2.2.x kernels.
852	 * I spend a day to figure out what's going on and I found out
853	 * that the following is happening:
854	 *
855	 * The packet comes from a random interface and the packet_rcv
856	 * hook is called with a clone of the packet. That code inserts
857	 * the packet into the receive queue of the packet socket.
858	 * If a filter is attached to that socket that filter is run
859	 * first - and there lies the problem. The default filter always
860	 * cuts the packet at the snaplen:
861	 *
862	 * # tcpdump -d
863	 * (000) ret      #68
864	 *
865	 * So the packet filter cuts down the packet. The recvfrom call
866	 * says "hey, it's only 68 bytes, it fits into the buffer" with
867	 * the result that we don't get the real packet length. This
868	 * is valid at least until kernel 2.2.17pre6.
869	 *
870	 * We currently handle this by making a copy of the filter
871	 * program, fixing all "ret" instructions with non-zero
872	 * operands to have an operand of 65535 so that the filter
873	 * doesn't truncate the packet, and supplying that modified
874	 * filter to the kernel.
875	 */
876
877	caplen = packet_len;
878	if (caplen > handle->snapshot)
879		caplen = handle->snapshot;
880
881	/* Run the packet filter if not using kernel filter */
882	if (!handle->md.use_bpf && handle->fcode.bf_insns) {
883		if (bpf_filter(handle->fcode.bf_insns, bp,
884		                packet_len, caplen) == 0)
885		{
886			/* rejected by filter */
887			return 0;
888		}
889	}
890
891	/* Fill in our own header data */
892
893	if (ioctl(handle->fd, SIOCGSTAMP, &pcap_header.ts) == -1) {
894		snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
895			 "SIOCGSTAMP: %s", pcap_strerror(errno));
896		return -1;
897	}
898	pcap_header.caplen	= caplen;
899	pcap_header.len		= packet_len;
900
901	/*
902	 * Count the packet.
903	 *
904	 * Arguably, we should count them before we check the filter,
905	 * as on many other platforms "ps_recv" counts packets
906	 * handed to the filter rather than packets that passed
907	 * the filter, but if filtering is done in the kernel, we
908	 * can't get a count of packets that passed the filter,
909	 * and that would mean the meaning of "ps_recv" wouldn't
910	 * be the same on all Linux systems.
911	 *
912	 * XXX - it's not the same on all systems in any case;
913	 * ideally, we should have a "get the statistics" call
914	 * that supplies more counts and indicates which of them
915	 * it supplies, so that we supply a count of packets
916	 * handed to the filter only on platforms where that
917	 * information is available.
918	 *
919	 * We count them here even if we can get the packet count
920	 * from the kernel, as we can only determine at run time
921	 * whether we'll be able to get it from the kernel (if
922	 * HAVE_TPACKET_STATS isn't defined, we can't get it from
923	 * the kernel, but if it is defined, the library might
924	 * have been built with a 2.4 or later kernel, but we
925	 * might be running on a 2.2[.x] kernel without Alexey
926	 * Kuznetzov's turbopacket patches, and thus the kernel
927	 * might not be able to supply those statistics).  We
928	 * could, I guess, try, when opening the socket, to get
929	 * the statistics, and if we can not increment the count
930	 * here, but it's not clear that always incrementing
931	 * the count is more expensive than always testing a flag
932	 * in memory.
933	 *
934	 * We keep the count in "md.packets_read", and use that for
935	 * "ps_recv" if we can't get the statistics from the kernel.
936	 * We do that because, if we *can* get the statistics from
937	 * the kernel, we use "md.stat.ps_recv" and "md.stat.ps_drop"
938	 * as running counts, as reading the statistics from the
939	 * kernel resets the kernel statistics, and if we directly
940	 * increment "md.stat.ps_recv" here, that means it will
941	 * count packets *twice* on systems where we can get kernel
942	 * statistics - once here, and once in pcap_stats_linux().
943	 */
944	handle->md.packets_read++;
945
946	/* Call the user supplied callback function */
947	callback(userdata, &pcap_header, bp);
948
949	return 1;
950}
951
952static int
953pcap_inject_linux(pcap_t *handle, const void *buf, size_t size)
954{
955	int ret;
956
957#ifdef HAVE_PF_PACKET_SOCKETS
958	if (!handle->md.sock_packet) {
959		/* PF_PACKET socket */
960		if (handle->md.ifindex == -1) {
961			/*
962			 * We don't support sending on the "any" device.
963			 */
964			strlcpy(handle->errbuf,
965			    "Sending packets isn't supported on the \"any\" device",
966			    PCAP_ERRBUF_SIZE);
967			return (-1);
968		}
969
970		if (handle->md.cooked) {
971			/*
972			 * We don't support sending on the "any" device.
973			 *
974			 * XXX - how do you send on a bound cooked-mode
975			 * socket?
976			 * Is a "sendto()" required there?
977			 */
978			strlcpy(handle->errbuf,
979			    "Sending packets isn't supported in cooked mode",
980			    PCAP_ERRBUF_SIZE);
981			return (-1);
982		}
983	}
984#endif
985
986	ret = send(handle->fd, buf, size, 0);
987	if (ret == -1) {
988		snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, "send: %s",
989		    pcap_strerror(errno));
990		return (-1);
991	}
992	return (ret);
993}
994
995/*
996 *  Get the statistics for the given packet capture handle.
997 *  Reports the number of dropped packets iff the kernel supports
998 *  the PACKET_STATISTICS "getsockopt()" argument (2.4 and later
999 *  kernels, and 2.2[.x] kernels with Alexey Kuznetzov's turbopacket
1000 *  patches); otherwise, that information isn't available, and we lie
1001 *  and report 0 as the count of dropped packets.
1002 */
1003static int
1004pcap_stats_linux(pcap_t *handle, struct pcap_stat *stats)
1005{
1006#ifdef HAVE_TPACKET_STATS
1007	struct tpacket_stats kstats;
1008	socklen_t len = sizeof (struct tpacket_stats);
1009#endif
1010
1011#ifdef HAVE_TPACKET_STATS
1012	/*
1013	 * Try to get the packet counts from the kernel.
1014	 */
1015	if (getsockopt(handle->fd, SOL_PACKET, PACKET_STATISTICS,
1016			&kstats, &len) > -1) {
1017		/*
1018		 * On systems where the PACKET_STATISTICS "getsockopt()"
1019		 * argument is supported on PF_PACKET sockets:
1020		 *
1021		 *	"ps_recv" counts only packets that *passed* the
1022		 *	filter, not packets that didn't pass the filter.
1023		 *	This includes packets later dropped because we
1024		 *	ran out of buffer space.
1025		 *
1026		 *	"ps_drop" counts packets dropped because we ran
1027		 *	out of buffer space.  It doesn't count packets
1028		 *	dropped by the interface driver.  It counts only
1029		 *	packets that passed the filter.
1030		 *
1031		 *	Both statistics include packets not yet read from
1032		 *	the kernel by libpcap, and thus not yet seen by
1033		 *	the application.
1034		 *
1035		 * In "linux/net/packet/af_packet.c", at least in the
1036		 * 2.4.9 kernel, "tp_packets" is incremented for every
1037		 * packet that passes the packet filter *and* is
1038		 * successfully queued on the socket; "tp_drops" is
1039		 * incremented for every packet dropped because there's
1040		 * not enough free space in the socket buffer.
1041		 *
1042		 * When the statistics are returned for a PACKET_STATISTICS
1043		 * "getsockopt()" call, "tp_drops" is added to "tp_packets",
1044		 * so that "tp_packets" counts all packets handed to
1045		 * the PF_PACKET socket, including packets dropped because
1046		 * there wasn't room on the socket buffer - but not
1047		 * including packets that didn't pass the filter.
1048		 *
1049		 * In the BSD BPF, the count of received packets is
1050		 * incremented for every packet handed to BPF, regardless
1051		 * of whether it passed the filter.
1052		 *
1053		 * We can't make "pcap_stats()" work the same on both
1054		 * platforms, but the best approximation is to return
1055		 * "tp_packets" as the count of packets and "tp_drops"
1056		 * as the count of drops.
1057		 *
1058		 * Keep a running total because each call to
1059		 *    getsockopt(handle->fd, SOL_PACKET, PACKET_STATISTICS, ....
1060		 * resets the counters to zero.
1061		 */
1062		handle->md.stat.ps_recv += kstats.tp_packets;
1063		handle->md.stat.ps_drop += kstats.tp_drops;
1064		*stats = handle->md.stat;
1065		return 0;
1066	}
1067	else
1068	{
1069		/*
1070		 * If the error was EOPNOTSUPP, fall through, so that
1071		 * if you build the library on a system with
1072		 * "struct tpacket_stats" and run it on a system
1073		 * that doesn't, it works as it does if the library
1074		 * is built on a system without "struct tpacket_stats".
1075		 */
1076		if (errno != EOPNOTSUPP) {
1077			snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
1078			    "pcap_stats: %s", pcap_strerror(errno));
1079			return -1;
1080		}
1081	}
1082#endif
1083	/*
1084	 * On systems where the PACKET_STATISTICS "getsockopt()" argument
1085	 * is not supported on PF_PACKET sockets:
1086	 *
1087	 *	"ps_recv" counts only packets that *passed* the filter,
1088	 *	not packets that didn't pass the filter.  It does not
1089	 *	count packets dropped because we ran out of buffer
1090	 *	space.
1091	 *
1092	 *	"ps_drop" is not supported.
1093	 *
1094	 *	"ps_recv" doesn't include packets not yet read from
1095	 *	the kernel by libpcap.
1096	 *
1097	 * We maintain the count of packets processed by libpcap in
1098	 * "md.packets_read", for reasons described in the comment
1099	 * at the end of pcap_read_packet().  We have no idea how many
1100	 * packets were dropped.
1101	 */
1102	stats->ps_recv = handle->md.packets_read;
1103	stats->ps_drop = 0;
1104	return 0;
1105}
1106
1107/*
1108 * Description string for the "any" device.
1109 */
1110static const char any_descr[] = "Pseudo-device that captures on all interfaces";
1111
1112int
1113pcap_platform_finddevs(pcap_if_t **alldevsp, char *errbuf)
1114{
1115	if (pcap_add_if(alldevsp, "any", 0, any_descr, errbuf) < 0)
1116		return (-1);
1117
1118#ifdef HAVE_DAG_API
1119	if (dag_platform_finddevs(alldevsp, errbuf) < 0)
1120		return (-1);
1121#endif /* HAVE_DAG_API */
1122
1123#ifdef HAVE_SEPTEL_API
1124	if (septel_platform_finddevs(alldevsp, errbuf) < 0)
1125		return (-1);
1126#endif /* HAVE_SEPTEL_API */
1127
1128#ifdef PCAP_SUPPORT_BT
1129	if (bt_platform_finddevs(alldevsp, errbuf) < 0)
1130		return (-1);
1131#endif
1132
1133#ifdef PCAP_SUPPORT_USB
1134	if (usb_platform_finddevs(alldevsp, errbuf) < 0)
1135		return (-1);
1136#endif
1137
1138	return (0);
1139}
1140
1141/*
1142 *  Attach the given BPF code to the packet capture device.
1143 */
1144static int
1145pcap_setfilter_linux(pcap_t *handle, struct bpf_program *filter)
1146{
1147#ifdef SO_ATTACH_FILTER
1148	struct sock_fprog	fcode;
1149	int			can_filter_in_kernel;
1150	int			err = 0;
1151#endif
1152
1153	if (!handle)
1154		return -1;
1155	if (!filter) {
1156	        strncpy(handle->errbuf, "setfilter: No filter specified",
1157			PCAP_ERRBUF_SIZE);
1158		return -1;
1159	}
1160
1161	/* Make our private copy of the filter */
1162
1163	if (install_bpf_program(handle, filter) < 0)
1164		/* install_bpf_program() filled in errbuf */
1165		return -1;
1166
1167	/*
1168	 * Run user level packet filter by default. Will be overriden if
1169	 * installing a kernel filter succeeds.
1170	 */
1171	handle->md.use_bpf = 0;
1172
1173	/* Install kernel level filter if possible */
1174
1175#ifdef SO_ATTACH_FILTER
1176#ifdef USHRT_MAX
1177	if (handle->fcode.bf_len > USHRT_MAX) {
1178		/*
1179		 * fcode.len is an unsigned short for current kernel.
1180		 * I have yet to see BPF-Code with that much
1181		 * instructions but still it is possible. So for the
1182		 * sake of correctness I added this check.
1183		 */
1184		fprintf(stderr, "Warning: Filter too complex for kernel\n");
1185		fcode.len = 0;
1186		fcode.filter = NULL;
1187		can_filter_in_kernel = 0;
1188	} else
1189#endif /* USHRT_MAX */
1190	{
1191		/*
1192		 * Oh joy, the Linux kernel uses struct sock_fprog instead
1193		 * of struct bpf_program and of course the length field is
1194		 * of different size. Pointed out by Sebastian
1195		 *
1196		 * Oh, and we also need to fix it up so that all "ret"
1197		 * instructions with non-zero operands have 65535 as the
1198		 * operand, and so that, if we're in cooked mode, all
1199		 * memory-reference instructions use special magic offsets
1200		 * in references to the link-layer header and assume that
1201		 * the link-layer payload begins at 0; "fix_program()"
1202		 * will do that.
1203		 */
1204		switch (fix_program(handle, &fcode)) {
1205
1206		case -1:
1207		default:
1208			/*
1209			 * Fatal error; just quit.
1210			 * (The "default" case shouldn't happen; we
1211			 * return -1 for that reason.)
1212			 */
1213			return -1;
1214
1215		case 0:
1216			/*
1217			 * The program performed checks that we can't make
1218			 * work in the kernel.
1219			 */
1220			can_filter_in_kernel = 0;
1221			break;
1222
1223		case 1:
1224			/*
1225			 * We have a filter that'll work in the kernel.
1226			 */
1227			can_filter_in_kernel = 1;
1228			break;
1229		}
1230	}
1231
1232	if (can_filter_in_kernel) {
1233		if ((err = set_kernel_filter(handle, &fcode)) == 0)
1234		{
1235			/* Installation succeded - using kernel filter. */
1236			handle->md.use_bpf = 1;
1237		}
1238		else if (err == -1)	/* Non-fatal error */
1239		{
1240			/*
1241			 * Print a warning if we weren't able to install
1242			 * the filter for a reason other than "this kernel
1243			 * isn't configured to support socket filters.
1244			 */
1245			if (errno != ENOPROTOOPT && errno != EOPNOTSUPP) {
1246				fprintf(stderr,
1247				    "Warning: Kernel filter failed: %s\n",
1248					pcap_strerror(errno));
1249			}
1250		}
1251	}
1252
1253	/*
1254	 * If we're not using the kernel filter, get rid of any kernel
1255	 * filter that might've been there before, e.g. because the
1256	 * previous filter could work in the kernel, or because some other
1257	 * code attached a filter to the socket by some means other than
1258	 * calling "pcap_setfilter()".  Otherwise, the kernel filter may
1259	 * filter out packets that would pass the new userland filter.
1260	 */
1261	if (!handle->md.use_bpf)
1262		reset_kernel_filter(handle);
1263
1264	/*
1265	 * Free up the copy of the filter that was made by "fix_program()".
1266	 */
1267	if (fcode.filter != NULL)
1268		free(fcode.filter);
1269
1270	if (err == -2)
1271		/* Fatal error */
1272		return -1;
1273#endif /* SO_ATTACH_FILTER */
1274
1275	return 0;
1276}
1277
1278/*
1279 * Set direction flag: Which packets do we accept on a forwarding
1280 * single device? IN, OUT or both?
1281 */
1282static int
1283pcap_setdirection_linux(pcap_t *handle, pcap_direction_t d)
1284{
1285#ifdef HAVE_PF_PACKET_SOCKETS
1286	if (!handle->md.sock_packet) {
1287		handle->direction = d;
1288		return 0;
1289	}
1290#endif
1291	/*
1292	 * We're not using PF_PACKET sockets, so we can't determine
1293	 * the direction of the packet.
1294	 */
1295	snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
1296	    "Setting direction is not supported on SOCK_PACKET sockets");
1297	return -1;
1298}
1299
1300
1301#ifdef HAVE_PF_PACKET_SOCKETS
1302/*
1303 * Map the PACKET_ value to a LINUX_SLL_ value; we
1304 * want the same numerical value to be used in
1305 * the link-layer header even if the numerical values
1306 * for the PACKET_ #defines change, so that programs
1307 * that look at the packet type field will always be
1308 * able to handle DLT_LINUX_SLL captures.
1309 */
1310static short int
1311map_packet_type_to_sll_type(short int sll_pkttype)
1312{
1313	switch (sll_pkttype) {
1314
1315	case PACKET_HOST:
1316		return htons(LINUX_SLL_HOST);
1317
1318	case PACKET_BROADCAST:
1319		return htons(LINUX_SLL_BROADCAST);
1320
1321	case PACKET_MULTICAST:
1322		return  htons(LINUX_SLL_MULTICAST);
1323
1324	case PACKET_OTHERHOST:
1325		return htons(LINUX_SLL_OTHERHOST);
1326
1327	case PACKET_OUTGOING:
1328		return htons(LINUX_SLL_OUTGOING);
1329
1330	default:
1331		return -1;
1332	}
1333}
1334#endif
1335
1336/*
1337 *  Linux uses the ARP hardware type to identify the type of an
1338 *  interface. pcap uses the DLT_xxx constants for this. This
1339 *  function takes a pointer to a "pcap_t", and an ARPHRD_xxx
1340 *  constant, as arguments, and sets "handle->linktype" to the
1341 *  appropriate DLT_XXX constant and sets "handle->offset" to
1342 *  the appropriate value (to make "handle->offset" plus link-layer
1343 *  header length be a multiple of 4, so that the link-layer payload
1344 *  will be aligned on a 4-byte boundary when capturing packets).
1345 *  (If the offset isn't set here, it'll be 0; add code as appropriate
1346 *  for cases where it shouldn't be 0.)
1347 *
1348 *  If "cooked_ok" is non-zero, we can use DLT_LINUX_SLL and capture
1349 *  in cooked mode; otherwise, we can't use cooked mode, so we have
1350 *  to pick some type that works in raw mode, or fail.
1351 *
1352 *  Sets the link type to -1 if unable to map the type.
1353 */
1354static void map_arphrd_to_dlt(pcap_t *handle, int arptype, int cooked_ok)
1355{
1356	switch (arptype) {
1357
1358	case ARPHRD_ETHER:
1359		/*
1360		 * This is (presumably) a real Ethernet capture; give it a
1361		 * link-layer-type list with DLT_EN10MB and DLT_DOCSIS, so
1362		 * that an application can let you choose it, in case you're
1363		 * capturing DOCSIS traffic that a Cisco Cable Modem
1364		 * Termination System is putting out onto an Ethernet (it
1365		 * doesn't put an Ethernet header onto the wire, it puts raw
1366		 * DOCSIS frames out on the wire inside the low-level
1367		 * Ethernet framing).
1368		 *
1369		 * XXX - are there any sorts of "fake Ethernet" that have
1370		 * ARPHRD_ETHER but that *shouldn't offer DLT_DOCSIS as
1371		 * a Cisco CMTS won't put traffic onto it or get traffic
1372		 * bridged onto it?  ISDN is handled in "activate_new()",
1373		 * as we fall back on cooked mode there; are there any
1374		 * others?
1375		 */
1376		handle->dlt_list = (u_int *) malloc(sizeof(u_int) * 2);
1377		/*
1378		 * If that fails, just leave the list empty.
1379		 */
1380		if (handle->dlt_list != NULL) {
1381			handle->dlt_list[0] = DLT_EN10MB;
1382			handle->dlt_list[1] = DLT_DOCSIS;
1383			handle->dlt_count = 2;
1384		}
1385		/* FALLTHROUGH */
1386
1387	case ARPHRD_METRICOM:
1388	case ARPHRD_LOOPBACK:
1389		handle->linktype = DLT_EN10MB;
1390		handle->offset = 2;
1391		break;
1392
1393	case ARPHRD_EETHER:
1394		handle->linktype = DLT_EN3MB;
1395		break;
1396
1397	case ARPHRD_AX25:
1398		handle->linktype = DLT_AX25_KISS;
1399		break;
1400
1401	case ARPHRD_PRONET:
1402		handle->linktype = DLT_PRONET;
1403		break;
1404
1405	case ARPHRD_CHAOS:
1406		handle->linktype = DLT_CHAOS;
1407		break;
1408
1409#ifndef ARPHRD_IEEE802_TR
1410#define ARPHRD_IEEE802_TR 800	/* From Linux 2.4 */
1411#endif
1412	case ARPHRD_IEEE802_TR:
1413	case ARPHRD_IEEE802:
1414		handle->linktype = DLT_IEEE802;
1415		handle->offset = 2;
1416		break;
1417
1418	case ARPHRD_ARCNET:
1419		handle->linktype = DLT_ARCNET_LINUX;
1420		break;
1421
1422#ifndef ARPHRD_FDDI	/* From Linux 2.2.13 */
1423#define ARPHRD_FDDI	774
1424#endif
1425	case ARPHRD_FDDI:
1426		handle->linktype = DLT_FDDI;
1427		handle->offset = 3;
1428		break;
1429
1430#ifndef ARPHRD_ATM  /* FIXME: How to #include this? */
1431#define ARPHRD_ATM 19
1432#endif
1433	case ARPHRD_ATM:
1434		/*
1435		 * The Classical IP implementation in ATM for Linux
1436		 * supports both what RFC 1483 calls "LLC Encapsulation",
1437		 * in which each packet has an LLC header, possibly
1438		 * with a SNAP header as well, prepended to it, and
1439		 * what RFC 1483 calls "VC Based Multiplexing", in which
1440		 * different virtual circuits carry different network
1441		 * layer protocols, and no header is prepended to packets.
1442		 *
1443		 * They both have an ARPHRD_ type of ARPHRD_ATM, so
1444		 * you can't use the ARPHRD_ type to find out whether
1445		 * captured packets will have an LLC header, and,
1446		 * while there's a socket ioctl to *set* the encapsulation
1447		 * type, there's no ioctl to *get* the encapsulation type.
1448		 *
1449		 * This means that
1450		 *
1451		 *	programs that dissect Linux Classical IP frames
1452		 *	would have to check for an LLC header and,
1453		 *	depending on whether they see one or not, dissect
1454		 *	the frame as LLC-encapsulated or as raw IP (I
1455		 *	don't know whether there's any traffic other than
1456		 *	IP that would show up on the socket, or whether
1457		 *	there's any support for IPv6 in the Linux
1458		 *	Classical IP code);
1459		 *
1460		 *	filter expressions would have to compile into
1461		 *	code that checks for an LLC header and does
1462		 *	the right thing.
1463		 *
1464		 * Both of those are a nuisance - and, at least on systems
1465		 * that support PF_PACKET sockets, we don't have to put
1466		 * up with those nuisances; instead, we can just capture
1467		 * in cooked mode.  That's what we'll do, if we can.
1468		 * Otherwise, we'll just fail.
1469		 */
1470		if (cooked_ok)
1471			handle->linktype = DLT_LINUX_SLL;
1472		else
1473			handle->linktype = -1;
1474		break;
1475
1476#ifndef ARPHRD_IEEE80211  /* From Linux 2.4.6 */
1477#define ARPHRD_IEEE80211 801
1478#endif
1479	case ARPHRD_IEEE80211:
1480		handle->linktype = DLT_IEEE802_11;
1481		break;
1482
1483#ifndef ARPHRD_IEEE80211_PRISM  /* From Linux 2.4.18 */
1484#define ARPHRD_IEEE80211_PRISM 802
1485#endif
1486	case ARPHRD_IEEE80211_PRISM:
1487		handle->linktype = DLT_PRISM_HEADER;
1488		break;
1489
1490#ifndef ARPHRD_IEEE80211_RADIOTAP /* new */
1491#define ARPHRD_IEEE80211_RADIOTAP 803
1492#endif
1493	case ARPHRD_IEEE80211_RADIOTAP:
1494		handle->linktype = DLT_IEEE802_11_RADIO;
1495		break;
1496
1497	case ARPHRD_PPP:
1498		/*
1499		 * Some PPP code in the kernel supplies no link-layer
1500		 * header whatsoever to PF_PACKET sockets; other PPP
1501		 * code supplies PPP link-layer headers ("syncppp.c");
1502		 * some PPP code might supply random link-layer
1503		 * headers (PPP over ISDN - there's code in Ethereal,
1504		 * for example, to cope with PPP-over-ISDN captures
1505		 * with which the Ethereal developers have had to cope,
1506		 * heuristically trying to determine which of the
1507		 * oddball link-layer headers particular packets have).
1508		 *
1509		 * As such, we just punt, and run all PPP interfaces
1510		 * in cooked mode, if we can; otherwise, we just treat
1511		 * it as DLT_RAW, for now - if somebody needs to capture,
1512		 * on a 2.0[.x] kernel, on PPP devices that supply a
1513		 * link-layer header, they'll have to add code here to
1514		 * map to the appropriate DLT_ type (possibly adding a
1515		 * new DLT_ type, if necessary).
1516		 */
1517		if (cooked_ok)
1518			handle->linktype = DLT_LINUX_SLL;
1519		else {
1520			/*
1521			 * XXX - handle ISDN types here?  We can't fall
1522			 * back on cooked sockets, so we'd have to
1523			 * figure out from the device name what type of
1524			 * link-layer encapsulation it's using, and map
1525			 * that to an appropriate DLT_ value, meaning
1526			 * we'd map "isdnN" devices to DLT_RAW (they
1527			 * supply raw IP packets with no link-layer
1528			 * header) and "isdY" devices to a new DLT_I4L_IP
1529			 * type that has only an Ethernet packet type as
1530			 * a link-layer header.
1531			 *
1532			 * But sometimes we seem to get random crap
1533			 * in the link-layer header when capturing on
1534			 * ISDN devices....
1535			 */
1536			handle->linktype = DLT_RAW;
1537		}
1538		break;
1539
1540#ifndef ARPHRD_CISCO
1541#define ARPHRD_CISCO 513 /* previously ARPHRD_HDLC */
1542#endif
1543	case ARPHRD_CISCO:
1544		handle->linktype = DLT_C_HDLC;
1545		break;
1546
1547	/* Not sure if this is correct for all tunnels, but it
1548	 * works for CIPE */
1549	case ARPHRD_TUNNEL:
1550#ifndef ARPHRD_SIT
1551#define ARPHRD_SIT 776	/* From Linux 2.2.13 */
1552#endif
1553	case ARPHRD_SIT:
1554	case ARPHRD_CSLIP:
1555	case ARPHRD_SLIP6:
1556	case ARPHRD_CSLIP6:
1557	case ARPHRD_ADAPT:
1558	case ARPHRD_SLIP:
1559#ifndef ARPHRD_RAWHDLC
1560#define ARPHRD_RAWHDLC 518
1561#endif
1562	case ARPHRD_RAWHDLC:
1563#ifndef ARPHRD_DLCI
1564#define ARPHRD_DLCI 15
1565#endif
1566	case ARPHRD_DLCI:
1567		/*
1568		 * XXX - should some of those be mapped to DLT_LINUX_SLL
1569		 * instead?  Should we just map all of them to DLT_LINUX_SLL?
1570		 */
1571		handle->linktype = DLT_RAW;
1572		break;
1573
1574#ifndef ARPHRD_FRAD
1575#define ARPHRD_FRAD 770
1576#endif
1577	case ARPHRD_FRAD:
1578		handle->linktype = DLT_FRELAY;
1579		break;
1580
1581	case ARPHRD_LOCALTLK:
1582		handle->linktype = DLT_LTALK;
1583		break;
1584
1585#ifndef ARPHRD_FCPP
1586#define ARPHRD_FCPP	784
1587#endif
1588	case ARPHRD_FCPP:
1589#ifndef ARPHRD_FCAL
1590#define ARPHRD_FCAL	785
1591#endif
1592	case ARPHRD_FCAL:
1593#ifndef ARPHRD_FCPL
1594#define ARPHRD_FCPL	786
1595#endif
1596	case ARPHRD_FCPL:
1597#ifndef ARPHRD_FCFABRIC
1598#define ARPHRD_FCFABRIC	787
1599#endif
1600	case ARPHRD_FCFABRIC:
1601		/*
1602		 * We assume that those all mean RFC 2625 IP-over-
1603		 * Fibre Channel, with the RFC 2625 header at
1604		 * the beginning of the packet.
1605		 */
1606		handle->linktype = DLT_IP_OVER_FC;
1607		break;
1608
1609#ifndef ARPHRD_IRDA
1610#define ARPHRD_IRDA	783
1611#endif
1612	case ARPHRD_IRDA:
1613		/* Don't expect IP packet out of this interfaces... */
1614		handle->linktype = DLT_LINUX_IRDA;
1615		/* We need to save packet direction for IrDA decoding,
1616		 * so let's use "Linux-cooked" mode. Jean II */
1617		//handle->md.cooked = 1;
1618		break;
1619
1620	/* ARPHRD_LAPD is unofficial and randomly allocated, if reallocation
1621	 * is needed, please report it to <daniele@orlandi.com> */
1622#ifndef ARPHRD_LAPD
1623#define ARPHRD_LAPD	8445
1624#endif
1625	case ARPHRD_LAPD:
1626		/* Don't expect IP packet out of this interfaces... */
1627		handle->linktype = DLT_LINUX_LAPD;
1628		break;
1629
1630#ifndef ARPHRD_NONE
1631#define ARPHRD_NONE	0xFFFE
1632#endif
1633	case ARPHRD_NONE:
1634		/*
1635		 * No link-layer header; packets are just IP
1636		 * packets, so use DLT_RAW.
1637		 */
1638		handle->linktype = DLT_RAW;
1639		break;
1640
1641	default:
1642		handle->linktype = -1;
1643		break;
1644	}
1645}
1646
1647/* ===== Functions to interface to the newer kernels ================== */
1648
1649/*
1650 * Try to open a packet socket using the new kernel PF_PACKET interface.
1651 * Returns 1 on success, 0 on an error that means the new interface isn't
1652 * present (so the old SOCK_PACKET interface should be tried), and a
1653 * PCAP_ERROR_ value on an error that means that the old mechanism won't
1654 * work either (so it shouldn't be tried).
1655 */
1656static int
1657activate_new(pcap_t *handle)
1658{
1659#ifdef HAVE_PF_PACKET_SOCKETS
1660	int			sock_fd = -1, arptype, val;
1661	int			err = 0;
1662	struct packet_mreq	mr;
1663	const char* device = handle->opt.source;
1664
1665	/*
1666	 * Open a socket with protocol family packet. If a device is
1667	 * given we try to open it in raw mode otherwise we use
1668	 * the cooked interface.
1669	 */
1670	sock_fd = device ?
1671		socket(PF_PACKET, SOCK_RAW, htons(ETH_P_ALL))
1672	      : socket(PF_PACKET, SOCK_DGRAM, htons(ETH_P_ALL));
1673
1674	if (sock_fd == -1) {
1675		snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, "socket: %s",
1676			 pcap_strerror(errno) );
1677		return 0;	/* try old mechanism */
1678	}
1679
1680	/* It seems the kernel supports the new interface. */
1681	handle->md.sock_packet = 0;
1682
1683	/*
1684	 * Get the interface index of the loopback device.
1685	 * If the attempt fails, don't fail, just set the
1686	 * "md.lo_ifindex" to -1.
1687	 *
1688	 * XXX - can there be more than one device that loops
1689	 * packets back, i.e. devices other than "lo"?  If so,
1690	 * we'd need to find them all, and have an array of
1691	 * indices for them, and check all of them in
1692	 * "pcap_read_packet()".
1693	 */
1694	handle->md.lo_ifindex = iface_get_id(sock_fd, "lo", handle->errbuf);
1695
1696	/*
1697	 * Default value for offset to align link-layer payload
1698	 * on a 4-byte boundary.
1699	 */
1700	handle->offset	 = 0;
1701
1702	/*
1703	 * What kind of frames do we have to deal with? Fall back
1704	 * to cooked mode if we have an unknown interface type
1705	 * or a type we know doesn't work well in raw mode.
1706	 */
1707	if (device) {
1708		/* Assume for now we don't need cooked mode. */
1709		handle->md.cooked = 0;
1710
1711		if (handle->opt.rfmon) {
1712			/*
1713			 * We were asked to turn on monitor mode.
1714			 * Do so before we get the link-layer type,
1715			 * because entering monitor mode could change
1716			 * the link-layer type.
1717			 */
1718			err = enter_rfmon_mode_wext(handle, sock_fd, device);
1719			if (err < 0) {
1720				/* Hard failure */
1721				close(sock_fd);
1722				return err;
1723			}
1724			if (err == 0) {
1725				/*
1726				 * Nothing worked for turning monitor mode
1727				 * on.
1728				 */
1729				close(sock_fd);
1730				return PCAP_ERROR_RFMON_NOTSUP;
1731			}
1732		}
1733		arptype	= iface_get_arptype(sock_fd, device, handle->errbuf);
1734		if (arptype < 0) {
1735			close(sock_fd);
1736			return arptype;
1737		}
1738		map_arphrd_to_dlt(handle, arptype, 1);
1739		if (handle->linktype == -1 ||
1740		    handle->linktype == DLT_LINUX_SLL ||
1741		    handle->linktype == DLT_LINUX_IRDA ||
1742		    handle->linktype == DLT_LINUX_LAPD ||
1743		    (handle->linktype == DLT_EN10MB &&
1744		     (strncmp("isdn", device, 4) == 0 ||
1745		      strncmp("isdY", device, 4) == 0))) {
1746			/*
1747			 * Unknown interface type (-1), or a
1748			 * device we explicitly chose to run
1749			 * in cooked mode (e.g., PPP devices),
1750			 * or an ISDN device (whose link-layer
1751			 * type we can only determine by using
1752			 * APIs that may be different on different
1753			 * kernels) - reopen in cooked mode.
1754			 */
1755			if (close(sock_fd) == -1) {
1756				snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
1757					 "close: %s", pcap_strerror(errno));
1758				return PCAP_ERROR;
1759			}
1760			sock_fd = socket(PF_PACKET, SOCK_DGRAM,
1761			    htons(ETH_P_ALL));
1762			if (sock_fd == -1) {
1763				snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
1764				    "socket: %s", pcap_strerror(errno));
1765				return PCAP_ERROR;
1766			}
1767			handle->md.cooked = 1;
1768
1769			/*
1770			 * Get rid of any link-layer type list
1771			 * we allocated - this only supports cooked
1772			 * capture.
1773			 */
1774			if (handle->dlt_list != NULL) {
1775				free(handle->dlt_list);
1776				handle->dlt_list = NULL;
1777				handle->dlt_count = 0;
1778			}
1779
1780			if (handle->linktype == -1) {
1781				/*
1782				 * Warn that we're falling back on
1783				 * cooked mode; we may want to
1784				 * update "map_arphrd_to_dlt()"
1785				 * to handle the new type.
1786				 */
1787				snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
1788					"arptype %d not "
1789					"supported by libpcap - "
1790					"falling back to cooked "
1791					"socket",
1792					arptype);
1793			}
1794
1795			/*
1796			 * IrDA capture is not a real "cooked" capture,
1797			 * it's IrLAP frames, not IP packets.  The
1798			 * same applies to LAPD capture.
1799			 */
1800			if (handle->linktype != DLT_LINUX_IRDA &&
1801			    handle->linktype != DLT_LINUX_LAPD)
1802				handle->linktype = DLT_LINUX_SLL;
1803		}
1804
1805		handle->md.ifindex = iface_get_id(sock_fd, device,
1806		    handle->errbuf);
1807		if (handle->md.ifindex == -1) {
1808			close(sock_fd);
1809			return PCAP_ERROR;
1810		}
1811
1812		if ((err = iface_bind(sock_fd, handle->md.ifindex,
1813		    handle->errbuf)) != 1) {
1814		    	close(sock_fd);
1815			if (err < 0)
1816				return err;
1817			else
1818				return 0;	/* try old mechanism */
1819		}
1820	} else {
1821		/*
1822		 * This is cooked mode.
1823		 */
1824		handle->md.cooked = 1;
1825		handle->linktype = DLT_LINUX_SLL;
1826
1827		/*
1828		 * We're not bound to a device.
1829		 * XXX - true?  Or true only if we're using
1830		 * the "any" device?
1831		 * For now, we're using this as an indication
1832		 * that we can't transmit; stop doing that only
1833		 * if we figure out how to transmit in cooked
1834		 * mode.
1835		 */
1836		handle->md.ifindex = -1;
1837	}
1838
1839	/*
1840	 * Select promiscuous mode on if "promisc" is set.
1841	 *
1842	 * Do not turn allmulti mode on if we don't select
1843	 * promiscuous mode - on some devices (e.g., Orinoco
1844	 * wireless interfaces), allmulti mode isn't supported
1845	 * and the driver implements it by turning promiscuous
1846	 * mode on, and that screws up the operation of the
1847	 * card as a normal networking interface, and on no
1848	 * other platform I know of does starting a non-
1849	 * promiscuous capture affect which multicast packets
1850	 * are received by the interface.
1851	 */
1852
1853	/*
1854	 * Hmm, how can we set promiscuous mode on all interfaces?
1855	 * I am not sure if that is possible at all.
1856	 */
1857
1858	if (device && handle->opt.promisc) {
1859		memset(&mr, 0, sizeof(mr));
1860		mr.mr_ifindex = handle->md.ifindex;
1861		mr.mr_type    = PACKET_MR_PROMISC;
1862		if (setsockopt(sock_fd, SOL_PACKET, PACKET_ADD_MEMBERSHIP,
1863		    &mr, sizeof(mr)) == -1) {
1864			snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
1865				"setsockopt: %s", pcap_strerror(errno));
1866			close(sock_fd);
1867			return PCAP_ERROR;
1868		}
1869	}
1870
1871	/* Enable auxillary data if supported and reserve room for
1872	 * reconstructing VLAN headers. */
1873#ifdef HAVE_PACKET_AUXDATA
1874	val = 1;
1875	if (setsockopt(sock_fd, SOL_PACKET, PACKET_AUXDATA, &val,
1876		       sizeof(val)) == -1 && errno != ENOPROTOOPT) {
1877		snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
1878			 "setsockopt: %s", pcap_strerror(errno));
1879		close(sock_fd);
1880		return PCAP_ERROR;
1881	}
1882	handle->offset += VLAN_TAG_LEN;
1883#endif /* HAVE_PACKET_AUXDATA */
1884
1885	/*
1886	 * This is a 2.2[.x] or later kernel (we know that
1887	 * because we're not using a SOCK_PACKET socket -
1888	 * PF_PACKET is supported only in 2.2 and later
1889	 * kernels).
1890	 *
1891	 * We can safely pass "recvfrom()" a byte count
1892	 * based on the snapshot length.
1893	 *
1894	 * If we're in cooked mode, make the snapshot length
1895	 * large enough to hold a "cooked mode" header plus
1896	 * 1 byte of packet data (so we don't pass a byte
1897	 * count of 0 to "recvfrom()").
1898	 */
1899	if (handle->md.cooked) {
1900		if (handle->snapshot < SLL_HDR_LEN + 1)
1901			handle->snapshot = SLL_HDR_LEN + 1;
1902	}
1903	handle->bufsize = handle->snapshot;
1904
1905	/* Save the socket FD in the pcap structure */
1906	handle->fd = sock_fd;
1907
1908	return 1;
1909#else
1910	strncpy(ebuf,
1911		"New packet capturing interface not supported by build "
1912		"environment", PCAP_ERRBUF_SIZE);
1913	return 0;
1914#endif
1915}
1916
1917static int
1918activate_mmap(pcap_t *handle)
1919{
1920#ifdef HAVE_PACKET_RING
1921	int ret;
1922
1923	if (handle->opt.buffer_size == 0) {
1924		/* by default request 2M for the ring buffer */
1925		handle->opt.buffer_size = 2*1024*1024;
1926	}
1927	ret = prepare_tpacket_socket(handle);
1928	if (ret == 0)
1929		return ret;
1930	ret = create_ring(handle);
1931	if (ret == 0)
1932		return ret;
1933
1934	/* override some defaults and inherit the other fields from
1935	 * activate_new
1936	 * handle->offset is used to get the current position into the rx ring
1937	 * handle->cc is used to store the ring size */
1938	handle->read_op = pcap_read_linux_mmap;
1939	handle->cleanup_op = pcap_cleanup_linux_mmap;
1940	handle->setfilter_op = pcap_setfilter_linux_mmap;
1941	handle->setnonblock_op = pcap_setnonblock_mmap;
1942	handle->getnonblock_op = pcap_getnonblock_mmap;
1943	handle->selectable_fd = handle->fd;
1944	return 1;
1945#else /* HAVE_PACKET_RING */
1946	return 0;
1947#endif /* HAVE_PACKET_RING */
1948}
1949
1950#ifdef HAVE_PACKET_RING
1951static int
1952prepare_tpacket_socket(pcap_t *handle)
1953{
1954#ifdef HAVE_TPACKET2
1955	socklen_t len;
1956	int val;
1957#endif
1958
1959	handle->md.tp_version = TPACKET_V1;
1960	handle->md.tp_hdrlen = sizeof(struct tpacket_hdr);
1961
1962#ifdef HAVE_TPACKET2
1963	/* Probe whether kernel supports TPACKET_V2 */
1964	val = TPACKET_V2;
1965	len = sizeof(val);
1966	if (getsockopt(handle->fd, SOL_PACKET, PACKET_HDRLEN, &val, &len) < 0) {
1967		if (errno == ENOPROTOOPT)
1968			return 1;
1969		snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
1970			 "can't get TPACKET_V2 header len on socket %d: %d-%s",
1971			 handle->fd, errno, pcap_strerror(errno));
1972		return 0;
1973	}
1974	handle->md.tp_hdrlen = val;
1975
1976	val = TPACKET_V2;
1977	if (setsockopt(handle->fd, SOL_PACKET, PACKET_VERSION, &val,
1978		       sizeof(val)) < 0) {
1979		snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
1980			 "can't activate TPACKET_V2 on socket %d: %d-%s",
1981			 handle->fd, errno, pcap_strerror(errno));
1982		return 0;
1983	}
1984	handle->md.tp_version = TPACKET_V2;
1985
1986	/* Reserve space for VLAN tag reconstruction */
1987	val = VLAN_TAG_LEN;
1988	if (setsockopt(handle->fd, SOL_PACKET, PACKET_RESERVE, &val,
1989		       sizeof(val)) < 0) {
1990		snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
1991			 "can't set up reserve on socket %d: %d-%s",
1992			 handle->fd, errno, pcap_strerror(errno));
1993		return 0;
1994	}
1995
1996#endif /* HAVE_TPACKET2 */
1997	return 1;
1998}
1999
2000static void
2001compute_ring_block(int frame_size, unsigned *block_size, unsigned *frames_per_block)
2002{
2003	/* compute the minumum block size that will handle this frame.
2004	 * The block has to be page size aligned.
2005	 * The max block size allowed by the kernel is arch-dependent and
2006	 * it's not explicitly checked here. */
2007	*block_size = getpagesize();
2008	while (*block_size < frame_size)
2009		*block_size <<= 1;
2010
2011	*frames_per_block = *block_size/frame_size;
2012}
2013
2014static int
2015create_ring(pcap_t *handle)
2016{
2017	unsigned i, j, ringsize, frames_per_block;
2018	struct tpacket_req req;
2019
2020	/* Note that with large snapshot (say 64K) only a few frames
2021	 * will be available in the ring even with pretty large ring size
2022	 * (and a lot of memory will be unused).
2023	 * The snap len should be carefully chosen to achive best
2024	 * performance */
2025	req.tp_frame_size = TPACKET_ALIGN(handle->snapshot +
2026					  TPACKET_ALIGN(handle->md.tp_hdrlen) +
2027					  sizeof(struct sockaddr_ll));
2028	req.tp_frame_nr = handle->opt.buffer_size/req.tp_frame_size;
2029	compute_ring_block(req.tp_frame_size, &req.tp_block_size, &frames_per_block);
2030	req.tp_block_nr = req.tp_frame_nr / frames_per_block;
2031
2032	/* req.tp_frame_nr is requested to match frames_per_block*req.tp_block_nr */
2033	req.tp_frame_nr = req.tp_block_nr * frames_per_block;
2034
2035	/* ask the kernel to create the ring */
2036retry:
2037	if (setsockopt(handle->fd, SOL_PACKET, PACKET_RX_RING,
2038					(void *) &req, sizeof(req))) {
2039		/* try to reduce requested ring size to prevent memory failure */
2040		if ((errno == ENOMEM) && (req.tp_block_nr > 1)) {
2041			req.tp_frame_nr >>= 1;
2042			req.tp_block_nr = req.tp_frame_nr/frames_per_block;
2043			goto retry;
2044		}
2045		snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, "can't create rx ring on "
2046				"packet socket %d: %d-%s", handle->fd, errno,
2047				pcap_strerror(errno));
2048		return 0;
2049	}
2050
2051	/* memory map the rx ring */
2052	ringsize = req.tp_block_nr * req.tp_block_size;
2053	handle->bp = mmap(0, ringsize, PROT_READ| PROT_WRITE, MAP_SHARED,
2054					handle->fd, 0);
2055	if (handle->bp == MAP_FAILED) {
2056		snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, "can't mmap rx ring: %d-%s",
2057			errno, pcap_strerror(errno));
2058
2059		/* clear the allocated ring on error*/
2060		destroy_ring(handle);
2061		return 0;
2062	}
2063
2064	/* allocate a ring for each frame header pointer*/
2065	handle->cc = req.tp_frame_nr;
2066	handle->buffer = malloc(handle->cc * sizeof(union thdr *));
2067	if (!handle->buffer) {
2068		destroy_ring(handle);
2069		return 0;
2070	}
2071
2072	/* fill the header ring with proper frame ptr*/
2073	handle->offset = 0;
2074	for (i=0; i<req.tp_block_nr; ++i) {
2075		void *base = &handle->bp[i*req.tp_block_size];
2076		for (j=0; j<frames_per_block; ++j, ++handle->offset) {
2077			RING_GET_FRAME(handle) = base;
2078			base += req.tp_frame_size;
2079		}
2080	}
2081
2082	handle->bufsize = req.tp_frame_size;
2083	handle->offset = 0;
2084	return 1;
2085}
2086
2087/* free all ring related resources*/
2088static void
2089destroy_ring(pcap_t *handle)
2090{
2091	/* tell the kernel to destroy the ring*/
2092	struct tpacket_req req;
2093	memset(&req, 0, sizeof(req));
2094	setsockopt(handle->fd, SOL_PACKET, PACKET_RX_RING,
2095				(void *) &req, sizeof(req));
2096
2097	/* if ring is mapped, unmap it*/
2098	if (handle->bp) {
2099		/* need to re-compute the ring size */
2100		unsigned frames_per_block, block_size;
2101		compute_ring_block(handle->bufsize, &block_size, &frames_per_block);
2102
2103		/* do not perform sanity check here: we can't recover any error */
2104		munmap(handle->bp, block_size * handle->cc / frames_per_block);
2105		handle->bp = 0;
2106	}
2107}
2108
2109static void
2110pcap_cleanup_linux_mmap( pcap_t *handle )
2111{
2112	destroy_ring(handle);
2113	pcap_cleanup_linux(handle);
2114}
2115
2116
2117static int
2118pcap_getnonblock_mmap(pcap_t *p, char *errbuf)
2119{
2120	/* use negative value of timeout to indicate non blocking ops */
2121	return (p->md.timeout<0);
2122}
2123
2124static int
2125pcap_setnonblock_mmap(pcap_t *p, int nonblock, char *errbuf)
2126{
2127	/* map each value to the corresponding 2's complement, to
2128	 * preserve the timeout value provided with pcap_set_timeout */
2129	if (nonblock) {
2130		if (p->md.timeout > 0)
2131			p->md.timeout = p->md.timeout*-1 - 1;
2132	} else
2133		if (p->md.timeout < 0)
2134			p->md.timeout = (p->md.timeout+1)*-1;
2135	return 0;
2136}
2137
2138static inline union thdr *
2139pcap_get_ring_frame(pcap_t *handle, int status)
2140{
2141	union thdr h;
2142
2143	h.raw = RING_GET_FRAME(handle);
2144	switch (handle->md.tp_version) {
2145	case TPACKET_V1:
2146		if (status != (h.h1->tp_status ? TP_STATUS_USER :
2147						TP_STATUS_KERNEL))
2148			return NULL;
2149		break;
2150#ifdef HAVE_TPACKET2
2151	case TPACKET_V2:
2152		if (status != (h.h2->tp_status ? TP_STATUS_USER :
2153						TP_STATUS_KERNEL))
2154			return NULL;
2155		break;
2156#endif
2157	}
2158	return h.raw;
2159}
2160
2161static int
2162pcap_read_linux_mmap(pcap_t *handle, int max_packets, pcap_handler callback,
2163		u_char *user)
2164{
2165	int pkts = 0;
2166
2167	/* wait for frames availability.*/
2168	if ((handle->md.timeout >= 0) &&
2169	    !pcap_get_ring_frame(handle, TP_STATUS_USER)) {
2170		struct pollfd pollinfo;
2171		int ret;
2172
2173		pollinfo.fd = handle->fd;
2174		pollinfo.events = POLLIN;
2175
2176		do {
2177			/* poll() requires a negative timeout to wait forever */
2178			ret = poll(&pollinfo, 1, (handle->md.timeout > 0)?
2179			 			handle->md.timeout: -1);
2180			if ((ret < 0) && (errno != EINTR)) {
2181				snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
2182					 "can't poll on packet socket fd %d: %d-%s",
2183					handle->fd, errno, pcap_strerror(errno));
2184				return -1;
2185			}
2186			/* check for break loop condition on interrupted syscall*/
2187			if (handle->break_loop) {
2188				handle->break_loop = 0;
2189				return -2;
2190			}
2191		} while (ret < 0);
2192	}
2193
2194	/* non-positive values of max_packets are used to require all
2195	 * packets currently available in the ring */
2196	while ((pkts < max_packets) || (max_packets <= 0)) {
2197		int run_bpf;
2198		struct sockaddr_ll *sll;
2199		struct pcap_pkthdr pcaphdr;
2200		unsigned char *bp;
2201		union thdr h;
2202		unsigned int tp_len;
2203		unsigned int tp_mac;
2204		unsigned int tp_snaplen;
2205		unsigned int tp_sec;
2206		unsigned int tp_usec;
2207
2208		h.raw = pcap_get_ring_frame(handle, TP_STATUS_USER);
2209		if (!h.raw)
2210			break;
2211
2212		switch (handle->md.tp_version) {
2213		case TPACKET_V1:
2214			tp_len	   = h.h1->tp_len;
2215			tp_mac	   = h.h1->tp_mac;
2216			tp_snaplen = h.h1->tp_snaplen;
2217			tp_sec	   = h.h1->tp_sec;
2218			tp_usec	   = h.h1->tp_usec;
2219			break;
2220#ifdef HAVE_TPACKET2
2221		case TPACKET_V2:
2222			tp_len	   = h.h2->tp_len;
2223			tp_mac	   = h.h2->tp_mac;
2224			tp_snaplen = h.h2->tp_snaplen;
2225			tp_sec	   = h.h2->tp_sec;
2226			tp_usec	   = h.h2->tp_nsec / 1000;
2227			break;
2228#endif
2229		default:
2230			snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
2231				"unsupported tpacket version %d",
2232				handle->md.tp_version);
2233			return -1;
2234		}
2235		/* perform sanity check on internal offset. */
2236		if (tp_mac + tp_snaplen > handle->bufsize) {
2237			snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
2238				"corrupted frame on kernel ring mac "
2239				"offset %d + caplen %d > frame len %d",
2240				tp_mac, tp_snaplen, handle->bufsize);
2241			return -1;
2242		}
2243
2244		/* run filter on received packet
2245		 * If the kernel filtering is enabled we need to run the
2246		 * filter until all the frames present into the ring
2247		 * at filter creation time are processed.
2248		 * In such case md.use_bpf is used as a counter for the
2249		 * packet we need to filter.
2250		 * Note: alternatively it could be possible to stop applying
2251		 * the filter when the ring became empty, but it can possibly
2252		 * happen a lot later... */
2253		bp = (unsigned char*)h.raw + tp_mac;
2254		run_bpf = (!handle->md.use_bpf) ||
2255			((handle->md.use_bpf>1) && handle->md.use_bpf--);
2256		if (run_bpf && handle->fcode.bf_insns &&
2257				(bpf_filter(handle->fcode.bf_insns, bp,
2258					tp_len, tp_snaplen) == 0))
2259			goto skip;
2260
2261		/* check direction and interface index */
2262		sll = (void *)h.raw + TPACKET_ALIGN(handle->md.tp_hdrlen);
2263		if ((sll->sll_ifindex == handle->md.lo_ifindex) &&
2264					(sll->sll_pkttype == PACKET_OUTGOING))
2265			goto skip;
2266
2267		/* get required packet info from ring header */
2268		pcaphdr.ts.tv_sec = tp_sec;
2269		pcaphdr.ts.tv_usec = tp_usec;
2270		pcaphdr.caplen = tp_snaplen;
2271		pcaphdr.len = tp_len;
2272
2273		/* if required build in place the sll header*/
2274		if (handle->md.cooked) {
2275			struct sll_header *hdrp;
2276
2277			/*
2278			 * The kernel should have left us with enough
2279			 * space for an sll header; back up the packet
2280			 * data pointer into that space, as that'll be
2281			 * the beginning of the packet we pass to the
2282			 * callback.
2283			 */
2284			bp -= SLL_HDR_LEN;
2285
2286			/*
2287			 * Let's make sure that's past the end of
2288			 * the tpacket header, i.e. >=
2289			 * ((u_char *)thdr + TPACKET_HDRLEN), so we
2290			 * don't step on the header when we construct
2291			 * the sll header.
2292			 */
2293			if (bp < (u_char *)h.raw +
2294					   TPACKET_ALIGN(handle->md.tp_hdrlen) +
2295					   sizeof(struct sockaddr_ll)) {
2296				snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
2297					"cooked-mode frame doesn't have room for sll header");
2298				return -1;
2299			}
2300
2301			/*
2302			 * OK, that worked; construct the sll header.
2303			 */
2304			hdrp = (struct sll_header *)bp;
2305			hdrp->sll_pkttype = map_packet_type_to_sll_type(
2306							sll->sll_pkttype);
2307			hdrp->sll_hatype = htons(sll->sll_hatype);
2308			hdrp->sll_halen = htons(sll->sll_halen);
2309			memcpy(hdrp->sll_addr, sll->sll_addr, SLL_ADDRLEN);
2310			hdrp->sll_protocol = sll->sll_protocol;
2311
2312			/* update packet len */
2313			pcaphdr.caplen += SLL_HDR_LEN;
2314			pcaphdr.len += SLL_HDR_LEN;
2315		}
2316
2317#ifdef HAVE_TPACKET2
2318		if (handle->md.tp_version == TPACKET_V2 && h.h2->tp_vlan_tci &&
2319		    tp_snaplen >= 2 * ETH_ALEN) {
2320			struct vlan_tag *tag;
2321
2322			bp -= VLAN_TAG_LEN;
2323			memmove(bp, bp + VLAN_TAG_LEN, 2 * ETH_ALEN);
2324
2325			tag = (struct vlan_tag *)(bp + 2 * ETH_ALEN);
2326			tag->vlan_tpid = htons(ETH_P_8021Q);
2327			tag->vlan_tci = htons(h.h2->tp_vlan_tci);
2328
2329			pcaphdr.caplen += VLAN_TAG_LEN;
2330			pcaphdr.len += VLAN_TAG_LEN;
2331		}
2332#endif
2333
2334		/* pass the packet to the user */
2335		pkts++;
2336		callback(user, &pcaphdr, bp);
2337		handle->md.packets_read++;
2338
2339skip:
2340		/* next packet */
2341		switch (handle->md.tp_version) {
2342		case TPACKET_V1:
2343			h.h1->tp_status = TP_STATUS_KERNEL;
2344			break;
2345#ifdef HAVE_TPACKET2
2346		case TPACKET_V2:
2347			h.h2->tp_status = TP_STATUS_KERNEL;
2348			break;
2349#endif
2350		}
2351		if (++handle->offset >= handle->cc)
2352			handle->offset = 0;
2353
2354		/* check for break loop condition*/
2355		if (handle->break_loop) {
2356			handle->break_loop = 0;
2357			return -2;
2358		}
2359	}
2360	return pkts;
2361}
2362
2363static int
2364pcap_setfilter_linux_mmap(pcap_t *handle, struct bpf_program *filter)
2365{
2366	int n, offset;
2367	int ret = pcap_setfilter_linux(handle, filter);
2368	if (ret < 0)
2369		return ret;
2370
2371	/* if the kernel filter is enabled, we need to apply the filter on
2372	 * all packets present into the ring. Get an upper bound of their number
2373	 */
2374	if (!handle->md.use_bpf)
2375		return ret;
2376
2377	/* walk the ring backward and count the free slot */
2378	offset = handle->offset;
2379	if (--handle->offset < 0)
2380		handle->offset = handle->cc - 1;
2381	for (n=0; n < handle->cc; ++n) {
2382		if (--handle->offset < 0)
2383			handle->offset = handle->cc - 1;
2384		if (!pcap_get_ring_frame(handle, TP_STATUS_KERNEL))
2385			break;
2386	}
2387
2388	/* be careful to not change current ring position */
2389	handle->offset = offset;
2390
2391	/* store the number of packets currently present in the ring */
2392	handle->md.use_bpf = 1 + (handle->cc - n);
2393	return ret;
2394}
2395
2396#endif /* HAVE_PACKET_RING */
2397
2398
2399#ifdef HAVE_PF_PACKET_SOCKETS
2400/*
2401 *  Return the index of the given device name. Fill ebuf and return
2402 *  -1 on failure.
2403 */
2404static int
2405iface_get_id(int fd, const char *device, char *ebuf)
2406{
2407	struct ifreq	ifr;
2408
2409	memset(&ifr, 0, sizeof(ifr));
2410	strncpy(ifr.ifr_name, device, sizeof(ifr.ifr_name));
2411
2412	if (ioctl(fd, SIOCGIFINDEX, &ifr) == -1) {
2413		snprintf(ebuf, PCAP_ERRBUF_SIZE,
2414			 "SIOCGIFINDEX: %s", pcap_strerror(errno));
2415		return -1;
2416	}
2417
2418	return ifr.ifr_ifindex;
2419}
2420
2421/*
2422 *  Bind the socket associated with FD to the given device.
2423 *  Return 1 on success, 0 if we should try a SOCK_PACKET socket,
2424 *  or a PCAP_ERROR_ value on a hard error.
2425 */
2426static int
2427iface_bind(int fd, int ifindex, char *ebuf)
2428{
2429	struct sockaddr_ll	sll;
2430	int			err;
2431	socklen_t		errlen = sizeof(err);
2432
2433	memset(&sll, 0, sizeof(sll));
2434	sll.sll_family		= AF_PACKET;
2435	sll.sll_ifindex		= ifindex;
2436	sll.sll_protocol	= htons(ETH_P_ALL);
2437
2438	if (bind(fd, (struct sockaddr *) &sll, sizeof(sll)) == -1) {
2439		if (errno == ENETDOWN) {
2440			/*
2441			 * Return a "network down" indication, so that
2442			 * the application can report that rather than
2443			 * saying we had a mysterious failure and
2444			 * suggest that they report a problem to the
2445			 * libpcap developers.
2446			 */
2447			return PCAP_ERROR_IFACE_NOT_UP;
2448		} else {
2449			snprintf(ebuf, PCAP_ERRBUF_SIZE,
2450				 "bind: %s", pcap_strerror(errno));
2451			return PCAP_ERROR;
2452		}
2453	}
2454
2455	/* Any pending errors, e.g., network is down? */
2456
2457	if (getsockopt(fd, SOL_SOCKET, SO_ERROR, &err, &errlen) == -1) {
2458		snprintf(ebuf, PCAP_ERRBUF_SIZE,
2459			"getsockopt: %s", pcap_strerror(errno));
2460		return 0;
2461	}
2462
2463	if (err == ENETDOWN) {
2464		/*
2465		 * Return a "network down" indication, so that
2466		 * the application can report that rather than
2467		 * saying we had a mysterious failure and
2468		 * suggest that they report a problem to the
2469		 * libpcap developers.
2470		 */
2471		return PCAP_ERROR_IFACE_NOT_UP;
2472	} else if (err > 0) {
2473		snprintf(ebuf, PCAP_ERRBUF_SIZE,
2474			"bind: %s", pcap_strerror(err));
2475		return 0;
2476	}
2477
2478	return 1;
2479}
2480
2481/*
2482 * Check whether the device supports the Wireless Extensions.
2483 * Returns 1 if it does, 0 if it doesn't, PCAP_ERROR_NO_SUCH_DEVICE
2484 * if the device doesn't even exist.
2485 */
2486static int
2487has_wext(int sock_fd, const char *device, char *ebuf)
2488{
2489#ifdef IW_MODE_MONITOR
2490	struct iwreq ireq;
2491
2492	strncpy(ireq.ifr_ifrn.ifrn_name, device,
2493	    sizeof ireq.ifr_ifrn.ifrn_name);
2494	ireq.ifr_ifrn.ifrn_name[sizeof ireq.ifr_ifrn.ifrn_name - 1] = 0;
2495	if (ioctl(sock_fd, SIOCGIWNAME, &ireq) >= 0)
2496		return 1;	/* yes */
2497	snprintf(ebuf, PCAP_ERRBUF_SIZE,
2498	    "%s: SIOCGIWPRIV: %s", device, pcap_strerror(errno));
2499	if (errno == ENODEV)
2500		return PCAP_ERROR_NO_SUCH_DEVICE;
2501#endif
2502	return 0;
2503}
2504
2505/*
2506 * Per me si va ne la citta dolente,
2507 * Per me si va ne l'etterno dolore,
2508 *	...
2509 * Lasciate ogne speranza, voi ch'intrate.
2510 *
2511 * XXX - airmon-ng does special stuff with the Orinoco driver and the
2512 * wlan-ng driver.
2513 */
2514typedef enum {
2515	MONITOR_WEXT,
2516	MONITOR_HOSTAP,
2517	MONITOR_PRISM,
2518	MONITOR_PRISM54,
2519	MONITOR_ACX100,
2520	MONITOR_RT2500,
2521	MONITOR_RT2570,
2522	MONITOR_RT73,
2523	MONITOR_RTL8XXX
2524} monitor_type;
2525
2526/*
2527 * Use the Wireless Extensions, if we have them, to try to turn monitor mode
2528 * on if it's not already on.
2529 *
2530 * Returns 1 on success, 0 if we don't support the Wireless Extensions
2531 * on this device, or a PCAP_ERROR_ value if we do support them but
2532 * we weren't able to turn monitor mode on.
2533 */
2534static int
2535enter_rfmon_mode_wext(pcap_t *handle, int sock_fd, const char *device)
2536{
2537#ifdef IW_MODE_MONITOR
2538	/*
2539	 * XXX - at least some adapters require non-Wireless Extensions
2540	 * mechanisms to turn monitor mode on.
2541	 *
2542	 * Atheros cards might require that a separate "monitor virtual access
2543	 * point" be created, with later versions of the madwifi driver.
2544	 * airmon-ng does "wlanconfig ath create wlandev {if} wlanmode
2545	 * monitor -bssid", which apparently spits out a line "athN"
2546	 * where "athN" is the monitor mode device.  To leave monitor
2547	 * mode, it destroys the monitor mode device.
2548	 *
2549	 * Some Intel Centrino adapters might require private ioctls to get
2550	 * radio headers; the ipw2200 and ipw3945 drivers allow you to
2551	 * configure a separate "rtapN" interface to capture in monitor
2552	 * mode without preventing the adapter from operating normally.
2553	 * (airmon-ng doesn't appear to use that, though.)
2554	 *
2555	 * It would be Truly Wonderful if mac80211 and nl80211 cleaned this
2556	 * up, and if all drivers were converted to mac80211 drivers.
2557	 *
2558	 * If interface {if} is a mac80211 driver, the file
2559	 * /sys/class/net/{if}/phy80211 is a symlink to
2560	 * /sys/class/ieee80211/{phydev}, for some {phydev}.
2561	 *
2562	 * On Fedora 9, with a 2.6.26.3-29 kernel, my Zydas stick, at
2563	 * least, has a "wmaster0" device and a "wlan0" device; the
2564	 * latter is the one with the IP address.  Both show up in
2565	 * "tcpdump -D" output.  Capturing on the wmaster0 device
2566	 * captures with 802.11 headers.
2567	 *
2568	 * airmon-ng searches through /sys/class/net for devices named
2569	 * monN, starting with mon0; as soon as one *doesn't* exist,
2570	 * it chooses that as the monitor device name.  If the "iw"
2571	 * command exists, it does "iw dev {if} interface add {monif}
2572	 * type monitor", where {monif} is the monitor device.  It
2573	 * then (sigh) sleeps .1 second, and then configures the
2574	 * device up.  Otherwise, if /sys/class/ieee80211/{phydev}/add_iface
2575	 * is a file, it writes {mondev}, without a newline, to that file,
2576	 * and again (sigh) sleeps .1 second, and then iwconfig's that
2577	 * device into monitor mode and configures it up.  Otherwise,
2578	 * you can't do monitor mode.
2579	 *
2580	 * All these devices are "glued" together by having the
2581	 * /sys/class/net/{device}/phy80211 links pointing to the same
2582	 * place, so, given a wmaster, wlan, or mon device, you can
2583	 * find the other devices by looking for devices with
2584	 * the same phy80211 link.
2585	 *
2586	 * To turn monitor mode off, delete the monitor interface,
2587	 * either with "iw dev {monif} interface del" or by sending
2588	 * {monif}, with no NL, down /sys/class/ieee80211/{phydev}/remove_iface
2589	 *
2590	 * Note: if you try to create a monitor device named "monN", and
2591	 * there's already a "monN" device, it fails, as least with
2592	 * the netlink interface (which is what iw uses), with a return
2593	 * value of -ENFILE.  (Return values are negative errnos.)  We
2594	 * could probably use that to find an unused device.
2595	 */
2596	int err;
2597	struct iwreq ireq;
2598	struct iw_priv_args *priv;
2599	monitor_type montype;
2600	int i;
2601	__u32 cmd;
2602	int args[2];
2603	int channel;
2604
2605	/*
2606	 * Does this device *support* the Wireless Extensions?
2607	 */
2608	err = has_wext(sock_fd, device, handle->errbuf);
2609	if (err <= 0)
2610		return err;	/* either it doesn't or the device doesn't even exist */
2611	/*
2612	 * Try to get all the Wireless Extensions private ioctls
2613	 * supported by this device.
2614	 *
2615	 * First, get the size of the buffer we need, by supplying no
2616	 * buffer and a length of 0.  If the device supports private
2617	 * ioctls, it should return E2BIG, with ireq.u.data.length set
2618	 * to the length we need.  If it doesn't support them, it should
2619	 * return EOPNOTSUPP.
2620	 */
2621	memset(&ireq, 0, sizeof ireq);
2622	strncpy(ireq.ifr_ifrn.ifrn_name, device,
2623	    sizeof ireq.ifr_ifrn.ifrn_name);
2624	ireq.ifr_ifrn.ifrn_name[sizeof ireq.ifr_ifrn.ifrn_name - 1] = 0;
2625	ireq.u.data.pointer = args;
2626	ireq.u.data.length = 0;
2627	ireq.u.data.flags = 0;
2628	if (ioctl(sock_fd, SIOCGIWPRIV, &ireq) != -1) {
2629		snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
2630		    "%s: SIOCGIWPRIV with a zero-length buffer didn't fail!",
2631		    device);
2632		return PCAP_ERROR;
2633	}
2634	if (errno == EOPNOTSUPP) {
2635		/*
2636		 * No private ioctls, so we assume that there's only one
2637		 * DLT_ for monitor mode.
2638		 */
2639		return 0;
2640	}
2641	if (errno != E2BIG) {
2642		/*
2643		 * Failed.
2644		 */
2645		snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
2646		    "%s: SIOCGIWPRIV: %s", device, pcap_strerror(errno));
2647		return PCAP_ERROR;
2648	}
2649	priv = malloc(ireq.u.data.length * sizeof (struct iw_priv_args));
2650	if (priv == NULL) {
2651		snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
2652			 "malloc: %s", pcap_strerror(errno));
2653		return PCAP_ERROR;
2654	}
2655	ireq.u.data.pointer = priv;
2656	if (ioctl(sock_fd, SIOCGIWPRIV, &ireq) == -1) {
2657		snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
2658		    "%s: SIOCGIWPRIV: %s", device, pcap_strerror(errno));
2659		free(priv);
2660		return PCAP_ERROR;
2661	}
2662
2663	/*
2664	 * Look for private ioctls to turn monitor mode on or, if
2665	 * monitor mode is on, to set the header type.
2666	 */
2667	montype = MONITOR_WEXT;
2668	cmd = 0;
2669	for (i = 0; i < ireq.u.data.length; i++) {
2670		if (strcmp(priv[i].name, "monitor_type") == 0) {
2671			/*
2672			 * Hostap driver, use this one.
2673			 * Set monitor mode first.
2674			 * You can set it to 0 to get DLT_IEEE80211,
2675			 * 1 to get DLT_PRISM, or 2 to get
2676			 * DLT_IEEE80211_RADIO_AVS.
2677			 */
2678			if ((priv[i].set_args & IW_PRIV_TYPE_MASK) != IW_PRIV_TYPE_INT)
2679				break;
2680			if (!(priv[i].set_args & IW_PRIV_SIZE_FIXED))
2681				break;
2682			if ((priv[i].set_args & IW_PRIV_SIZE_MASK) != 1)
2683				break;
2684			montype = MONITOR_HOSTAP;
2685			cmd = priv[i].cmd;
2686			break;
2687		}
2688		if (strcmp(priv[i].name, "set_prismhdr") == 0) {
2689			/*
2690			 * Prism54 driver, use this one.
2691			 * Set monitor mode first.
2692			 * You can set it to 2 to get DLT_IEEE80211
2693			 * or 3 or get DLT_PRISM.
2694			 */
2695			if ((priv[i].set_args & IW_PRIV_TYPE_MASK) != IW_PRIV_TYPE_INT)
2696				break;
2697			if (!(priv[i].set_args & IW_PRIV_SIZE_FIXED))
2698				break;
2699			if ((priv[i].set_args & IW_PRIV_SIZE_MASK) != 1)
2700				break;
2701			montype = MONITOR_PRISM54;
2702			cmd = priv[i].cmd;
2703			break;
2704		}
2705		if (strcmp(priv[i].name, "forceprismheader") == 0) {
2706			/*
2707			 * RT2570 driver, use this one.
2708			 * Do this after turning monitor mode on.
2709			 * You can set it to 1 to get DLT_PRISM or 2
2710			 * to get DLT_IEEE80211.
2711			 */
2712			if ((priv[i].set_args & IW_PRIV_TYPE_MASK) != IW_PRIV_TYPE_INT)
2713				break;
2714			if (!(priv[i].set_args & IW_PRIV_SIZE_FIXED))
2715				break;
2716			if ((priv[i].set_args & IW_PRIV_SIZE_MASK) != 1)
2717				break;
2718			montype = MONITOR_RT2570;
2719			cmd = priv[i].cmd;
2720			break;
2721		}
2722		if (strcmp(priv[i].name, "forceprism") == 0) {
2723			/*
2724			 * RT73 driver, use this one.
2725			 * Do this after turning monitor mode on.
2726			 * Its argument is a *string*; you can
2727			 * set it to "1" to get DLT_PRISM or "2"
2728			 * to get DLT_IEEE80211.
2729			 */
2730			if ((priv[i].set_args & IW_PRIV_TYPE_MASK) != IW_PRIV_TYPE_CHAR)
2731				break;
2732			if (priv[i].set_args & IW_PRIV_SIZE_FIXED)
2733				break;
2734			montype = MONITOR_RT73;
2735			cmd = priv[i].cmd;
2736			break;
2737		}
2738		if (strcmp(priv[i].name, "prismhdr") == 0) {
2739			/*
2740			 * One of the RTL8xxx drivers, use this one.
2741			 * It can only be done after monitor mode
2742			 * has been turned on.  You can set it to 1
2743			 * to get DLT_PRISM or 0 to get DLT_IEEE80211.
2744			 */
2745			if ((priv[i].set_args & IW_PRIV_TYPE_MASK) != IW_PRIV_TYPE_INT)
2746				break;
2747			if (!(priv[i].set_args & IW_PRIV_SIZE_FIXED))
2748				break;
2749			if ((priv[i].set_args & IW_PRIV_SIZE_MASK) != 1)
2750				break;
2751			montype = MONITOR_RTL8XXX;
2752			cmd = priv[i].cmd;
2753			break;
2754		}
2755		if (strcmp(priv[i].name, "rfmontx") == 0) {
2756			/*
2757			 * RT2500 or RT61 driver, use this one.
2758			 * It has one one-byte parameter; set
2759			 * u.data.length to 1 and u.data.pointer to
2760			 * point to the parameter.
2761			 * It doesn't itself turn monitor mode on.
2762			 * You can set it to 1 to allow transmitting
2763			 * in monitor mode(?) and get DLT_IEEE80211,
2764			 * or set it to 0 to disallow transmitting in
2765			 * monitor mode(?) and get DLT_PRISM.
2766			 */
2767			if ((priv[i].set_args & IW_PRIV_TYPE_MASK) != IW_PRIV_TYPE_INT)
2768				break;
2769			if ((priv[i].set_args & IW_PRIV_SIZE_MASK) != 2)
2770				break;
2771			montype = MONITOR_RT2500;
2772			cmd = priv[i].cmd;
2773			break;
2774		}
2775		if (strcmp(priv[i].name, "monitor") == 0) {
2776			/*
2777			 * Either ACX100 or hostap, use this one.
2778			 * It turns monitor mode on.
2779			 * If it takes two arguments, it's ACX100;
2780			 * the first argument is 1 for DLT_PRISM
2781			 * or 2 for DLT_IEEE80211, and the second
2782			 * argument is the channel on which to
2783			 * run.  If it takes one argument, it's
2784			 * HostAP, and the argument is 2 for
2785			 * DLT_IEEE80211 and 3 for DLT_PRISM.
2786			 *
2787			 * If we see this, we don't quit, as this
2788			 * might be a version of the hostap driver
2789			 * that also supports "monitor_type".
2790			 */
2791			if ((priv[i].set_args & IW_PRIV_TYPE_MASK) != IW_PRIV_TYPE_INT)
2792				break;
2793			if (!(priv[i].set_args & IW_PRIV_SIZE_FIXED))
2794				break;
2795			switch (priv[i].set_args & IW_PRIV_SIZE_MASK) {
2796
2797			case 1:
2798				montype = MONITOR_PRISM;
2799				cmd = priv[i].cmd;
2800				break;
2801
2802			case 2:
2803				montype = MONITOR_ACX100;
2804				cmd = priv[i].cmd;
2805				break;
2806
2807			default:
2808				break;
2809			}
2810		}
2811	}
2812	free(priv);
2813
2814	/*
2815	 * XXX - ipw3945?  islism?
2816	 */
2817
2818	/*
2819	 * Get the old mode.
2820	 */
2821	strncpy(ireq.ifr_ifrn.ifrn_name, device,
2822	    sizeof ireq.ifr_ifrn.ifrn_name);
2823	ireq.ifr_ifrn.ifrn_name[sizeof ireq.ifr_ifrn.ifrn_name - 1] = 0;
2824	if (ioctl(sock_fd, SIOCGIWMODE, &ireq) == -1) {
2825		/*
2826		 * We probably won't be able to set the mode, either.
2827		 */
2828		return PCAP_ERROR_RFMON_NOTSUP;
2829	}
2830
2831	/*
2832	 * Is it currently in monitor mode?
2833	 */
2834	if (ireq.u.mode == IW_MODE_MONITOR) {
2835		/*
2836		 * Yes.  Just leave things as they are.
2837		 * We don't offer multiple link-layer types, as
2838		 * changing the link-layer type out from under
2839		 * somebody else capturing in monitor mode would
2840		 * be considered rude.
2841		 */
2842		return 1;
2843	}
2844	/*
2845	 * No.  We have to put the adapter into rfmon mode.
2846	 */
2847
2848	/*
2849	 * If we haven't already done so, arrange to have
2850	 * "pcap_close_all()" called when we exit.
2851	 */
2852	if (!pcap_do_addexit(handle)) {
2853		/*
2854		 * "atexit()" failed; don't put the interface
2855		 * in rfmon mode, just give up.
2856		 */
2857		return PCAP_ERROR_RFMON_NOTSUP;
2858	}
2859
2860	/*
2861	 * Save the old mode.
2862	 */
2863	handle->md.oldmode = ireq.u.mode;
2864
2865	/*
2866	 * Put the adapter in rfmon mode.  How we do this depends
2867	 * on whether we have a special private ioctl or not.
2868	 */
2869	if (montype == MONITOR_PRISM) {
2870		/*
2871		 * We have the "monitor" private ioctl, but none of
2872		 * the other private ioctls.  Use this, and select
2873		 * the Prism header.
2874		 *
2875		 * If it fails, just fall back on SIOCSIWMODE.
2876		 */
2877		memset(&ireq, 0, sizeof ireq);
2878		strncpy(ireq.ifr_ifrn.ifrn_name, device,
2879		    sizeof ireq.ifr_ifrn.ifrn_name);
2880		ireq.ifr_ifrn.ifrn_name[sizeof ireq.ifr_ifrn.ifrn_name - 1] = 0;
2881		ireq.u.data.length = 1;	/* 1 argument */
2882		args[0] = 3;	/* request Prism header */
2883		memcpy(ireq.u.name, args, IFNAMSIZ);
2884		if (ioctl(sock_fd, cmd, &ireq) != -1) {
2885			/*
2886			 * Success.
2887			 * Note that we have to put the old mode back
2888			 * when we close the device.
2889			 */
2890			handle->md.must_clear |= MUST_CLEAR_RFMON;
2891
2892			/*
2893			 * Add this to the list of pcaps to close
2894			 * when we exit.
2895			 */
2896			pcap_add_to_pcaps_to_close(handle);
2897
2898			return 1;
2899		}
2900
2901		/*
2902		 * Failure.  Fall back on SIOCSIWMODE.
2903		 */
2904	}
2905
2906	/*
2907	 * First, turn monitor mode on.
2908	 */
2909	strncpy(ireq.ifr_ifrn.ifrn_name, device,
2910	    sizeof ireq.ifr_ifrn.ifrn_name);
2911	ireq.ifr_ifrn.ifrn_name[sizeof ireq.ifr_ifrn.ifrn_name - 1] = 0;
2912	ireq.u.mode = IW_MODE_MONITOR;
2913	if (ioctl(sock_fd, SIOCSIWMODE, &ireq) == -1) {
2914		/*
2915		 * Scientist, you've failed.
2916		 */
2917		return PCAP_ERROR_RFMON_NOTSUP;
2918	}
2919
2920	/*
2921	 * XXX - airmon-ng does "iwconfig {if} key off" after setting
2922	 * monitor mode and setting the channel, and then does
2923	 * "iwconfig up".
2924	 */
2925
2926	/*
2927	 * Now select the appropriate radio header.
2928	 */
2929	switch (montype) {
2930
2931	case MONITOR_WEXT:
2932		/*
2933		 * We don't have any private ioctl to set the header.
2934		 */
2935		break;
2936
2937	case MONITOR_HOSTAP:
2938		/*
2939		 * Select the AVS header if we can, otherwise
2940		 * select the Prism header.
2941		 */
2942		memset(&ireq, 0, sizeof ireq);
2943		strncpy(ireq.ifr_ifrn.ifrn_name, device,
2944		    sizeof ireq.ifr_ifrn.ifrn_name);
2945		ireq.ifr_ifrn.ifrn_name[sizeof ireq.ifr_ifrn.ifrn_name - 1] = 0;
2946		args[0] = 2;	/* request AVS header */
2947		memcpy(ireq.u.name, args, sizeof (int));
2948		if (ioctl(sock_fd, cmd, &ireq) == -1) {
2949			/*
2950			 * Failure - try the Prism header.
2951			 */
2952			memset(&ireq, 0, sizeof ireq);
2953			strncpy(ireq.ifr_ifrn.ifrn_name, device,
2954			    sizeof ireq.ifr_ifrn.ifrn_name);
2955			ireq.ifr_ifrn.ifrn_name[sizeof ireq.ifr_ifrn.ifrn_name - 1] = 0;
2956			args[0] = 1;	/* request Prism header */
2957			memcpy(ireq.u.name, args, sizeof (int));
2958			ioctl(sock_fd, cmd, &ireq);
2959		}
2960		break;
2961
2962	case MONITOR_PRISM:
2963		/*
2964		 * The private ioctl failed.
2965		 */
2966		break;
2967
2968	case MONITOR_PRISM54:
2969		/*
2970		 * Select the Prism header.
2971		 */
2972		memset(&ireq, 0, sizeof ireq);
2973		strncpy(ireq.ifr_ifrn.ifrn_name, device,
2974		    sizeof ireq.ifr_ifrn.ifrn_name);
2975		ireq.ifr_ifrn.ifrn_name[sizeof ireq.ifr_ifrn.ifrn_name - 1] = 0;
2976		args[0] = 3;	/* request Prism header */
2977		memcpy(ireq.u.name, args, sizeof (int));
2978		ioctl(sock_fd, cmd, &ireq);
2979		break;
2980
2981	case MONITOR_ACX100:
2982		/*
2983		 * Get the current channel.
2984		 */
2985		memset(&ireq, 0, sizeof ireq);
2986		strncpy(ireq.ifr_ifrn.ifrn_name, device,
2987		    sizeof ireq.ifr_ifrn.ifrn_name);
2988		ireq.ifr_ifrn.ifrn_name[sizeof ireq.ifr_ifrn.ifrn_name - 1] = 0;
2989		if (ioctl(sock_fd, SIOCGIWFREQ, &ireq) == -1) {
2990			snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
2991			    "%s: SIOCGIWFREQ: %s", device,
2992			    pcap_strerror(errno));
2993			return PCAP_ERROR;
2994		}
2995		channel = ireq.u.freq.m;
2996
2997		/*
2998		 * Select the Prism header, and set the channel to the
2999		 * current value.
3000		 */
3001		memset(&ireq, 0, sizeof ireq);
3002		strncpy(ireq.ifr_ifrn.ifrn_name, device,
3003		    sizeof ireq.ifr_ifrn.ifrn_name);
3004		ireq.ifr_ifrn.ifrn_name[sizeof ireq.ifr_ifrn.ifrn_name - 1] = 0;
3005		args[0] = 1;		/* request Prism header */
3006		args[1] = channel;	/* set channel */
3007		memcpy(ireq.u.name, args, 2*sizeof (int));
3008		ioctl(sock_fd, cmd, &ireq);
3009		break;
3010
3011	case MONITOR_RT2500:
3012		/*
3013		 * Disallow transmission - that turns on the
3014		 * Prism header.
3015		 */
3016		memset(&ireq, 0, sizeof ireq);
3017		strncpy(ireq.ifr_ifrn.ifrn_name, device,
3018		    sizeof ireq.ifr_ifrn.ifrn_name);
3019		ireq.ifr_ifrn.ifrn_name[sizeof ireq.ifr_ifrn.ifrn_name - 1] = 0;
3020		args[0] = 0;	/* disallow transmitting */
3021		memcpy(ireq.u.name, args, sizeof (int));
3022		ioctl(sock_fd, cmd, &ireq);
3023		break;
3024
3025	case MONITOR_RT2570:
3026		/*
3027		 * Force the Prism header.
3028		 */
3029		memset(&ireq, 0, sizeof ireq);
3030		strncpy(ireq.ifr_ifrn.ifrn_name, device,
3031		    sizeof ireq.ifr_ifrn.ifrn_name);
3032		ireq.ifr_ifrn.ifrn_name[sizeof ireq.ifr_ifrn.ifrn_name - 1] = 0;
3033		args[0] = 1;	/* request Prism header */
3034		memcpy(ireq.u.name, args, sizeof (int));
3035		ioctl(sock_fd, cmd, &ireq);
3036		break;
3037
3038	case MONITOR_RT73:
3039		/*
3040		 * Force the Prism header.
3041		 */
3042		memset(&ireq, 0, sizeof ireq);
3043		strncpy(ireq.ifr_ifrn.ifrn_name, device,
3044		    sizeof ireq.ifr_ifrn.ifrn_name);
3045		ireq.ifr_ifrn.ifrn_name[sizeof ireq.ifr_ifrn.ifrn_name - 1] = 0;
3046		ireq.u.data.length = 1;	/* 1 argument */
3047		ireq.u.data.pointer = "1";
3048		ireq.u.data.flags = 0;
3049		ioctl(sock_fd, cmd, &ireq);
3050		break;
3051
3052	case MONITOR_RTL8XXX:
3053		/*
3054		 * Force the Prism header.
3055		 */
3056		memset(&ireq, 0, sizeof ireq);
3057		strncpy(ireq.ifr_ifrn.ifrn_name, device,
3058		    sizeof ireq.ifr_ifrn.ifrn_name);
3059		ireq.ifr_ifrn.ifrn_name[sizeof ireq.ifr_ifrn.ifrn_name - 1] = 0;
3060		args[0] = 1;	/* request Prism header */
3061		memcpy(ireq.u.name, args, sizeof (int));
3062		ioctl(sock_fd, cmd, &ireq);
3063		break;
3064	}
3065
3066	/*
3067	 * Note that we have to put the old mode back when we
3068	 * close the device.
3069	 */
3070	handle->md.must_clear |= MUST_CLEAR_RFMON;
3071
3072	/*
3073	 * Add this to the list of pcaps to close when we exit.
3074	 */
3075	pcap_add_to_pcaps_to_close(handle);
3076
3077	return 1;
3078#else
3079	/*
3080	 * We don't have the Wireless Extensions available, so we can't
3081	 * do monitor mode.
3082	 */
3083	return 0;
3084#endif
3085}
3086
3087#endif /* HAVE_PF_PACKET_SOCKETS */
3088
3089/* ===== Functions to interface to the older kernels ================== */
3090
3091/*
3092 * Try to open a packet socket using the old kernel interface.
3093 * Returns 1 on success and a PCAP_ERROR_ value on an error.
3094 */
3095static int
3096activate_old(pcap_t *handle)
3097{
3098	int		arptype;
3099	struct ifreq	ifr;
3100	const char	*device = handle->opt.source;
3101	struct utsname	utsname;
3102	int		mtu;
3103
3104	/* Open the socket */
3105
3106	handle->fd = socket(PF_INET, SOCK_PACKET, htons(ETH_P_ALL));
3107	if (handle->fd == -1) {
3108		snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
3109			 "socket: %s", pcap_strerror(errno));
3110		return PCAP_ERROR_PERM_DENIED;
3111	}
3112
3113	/* It worked - we are using the old interface */
3114	handle->md.sock_packet = 1;
3115
3116	/* ...which means we get the link-layer header. */
3117	handle->md.cooked = 0;
3118
3119	/* Bind to the given device */
3120
3121	if (!device) {
3122		strncpy(handle->errbuf, "pcap_activate: The \"any\" device isn't supported on 2.0[.x]-kernel systems",
3123			PCAP_ERRBUF_SIZE);
3124		return PCAP_ERROR;
3125	}
3126	if (iface_bind_old(handle->fd, device, handle->errbuf) == -1)
3127		return PCAP_ERROR;
3128
3129	/*
3130	 * Try to get the link-layer type.
3131	 */
3132	arptype = iface_get_arptype(handle->fd, device, handle->errbuf);
3133	if (arptype < 0)
3134		return PCAP_ERROR;
3135
3136	/*
3137	 * Try to find the DLT_ type corresponding to that
3138	 * link-layer type.
3139	 */
3140	map_arphrd_to_dlt(handle, arptype, 0);
3141	if (handle->linktype == -1) {
3142		snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
3143			 "unknown arptype %d", arptype);
3144		return PCAP_ERROR;
3145	}
3146
3147	/* Go to promisc mode if requested */
3148
3149	if (handle->opt.promisc) {
3150		memset(&ifr, 0, sizeof(ifr));
3151		strncpy(ifr.ifr_name, device, sizeof(ifr.ifr_name));
3152		if (ioctl(handle->fd, SIOCGIFFLAGS, &ifr) == -1) {
3153			snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
3154				 "SIOCGIFFLAGS: %s", pcap_strerror(errno));
3155			return PCAP_ERROR;
3156		}
3157		if ((ifr.ifr_flags & IFF_PROMISC) == 0) {
3158			/*
3159			 * Promiscuous mode isn't currently on,
3160			 * so turn it on, and remember that
3161			 * we should turn it off when the
3162			 * pcap_t is closed.
3163			 */
3164
3165			/*
3166			 * If we haven't already done so, arrange
3167			 * to have "pcap_close_all()" called when
3168			 * we exit.
3169			 */
3170			if (!pcap_do_addexit(handle)) {
3171				/*
3172				 * "atexit()" failed; don't put
3173				 * the interface in promiscuous
3174				 * mode, just give up.
3175				 */
3176				return PCAP_ERROR;
3177			}
3178
3179			ifr.ifr_flags |= IFF_PROMISC;
3180			if (ioctl(handle->fd, SIOCSIFFLAGS, &ifr) == -1) {
3181			        snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
3182					 "SIOCSIFFLAGS: %s",
3183					 pcap_strerror(errno));
3184				return PCAP_ERROR;
3185			}
3186			handle->md.must_clear |= MUST_CLEAR_PROMISC;
3187
3188			/*
3189			 * Add this to the list of pcaps
3190			 * to close when we exit.
3191			 */
3192			pcap_add_to_pcaps_to_close(handle);
3193		}
3194	}
3195
3196	/*
3197	 * Compute the buffer size.
3198	 *
3199	 * We're using SOCK_PACKET, so this might be a 2.0[.x]
3200	 * kernel, and might require special handling - check.
3201	 */
3202	if (uname(&utsname) < 0 ||
3203	    strncmp(utsname.release, "2.0", 3) == 0) {
3204		/*
3205		 * Either we couldn't find out what kernel release
3206		 * this is, or it's a 2.0[.x] kernel.
3207		 *
3208		 * In the 2.0[.x] kernel, a "recvfrom()" on
3209		 * a SOCK_PACKET socket, with MSG_TRUNC set, will
3210		 * return the number of bytes read, so if we pass
3211		 * a length based on the snapshot length, it'll
3212		 * return the number of bytes from the packet
3213		 * copied to userland, not the actual length
3214		 * of the packet.
3215		 *
3216		 * This means that, for example, the IP dissector
3217		 * in tcpdump will get handed a packet length less
3218		 * than the length in the IP header, and will
3219		 * complain about "truncated-ip".
3220		 *
3221		 * So we don't bother trying to copy from the
3222		 * kernel only the bytes in which we're interested,
3223		 * but instead copy them all, just as the older
3224		 * versions of libpcap for Linux did.
3225		 *
3226		 * The buffer therefore needs to be big enough to
3227		 * hold the largest packet we can get from this
3228		 * device.  Unfortunately, we can't get the MRU
3229		 * of the network; we can only get the MTU.  The
3230		 * MTU may be too small, in which case a packet larger
3231		 * than the buffer size will be truncated *and* we
3232		 * won't get the actual packet size.
3233		 *
3234		 * However, if the snapshot length is larger than
3235		 * the buffer size based on the MTU, we use the
3236		 * snapshot length as the buffer size, instead;
3237		 * this means that with a sufficiently large snapshot
3238		 * length we won't artificially truncate packets
3239		 * to the MTU-based size.
3240		 *
3241		 * This mess just one of many problems with packet
3242		 * capture on 2.0[.x] kernels; you really want a
3243		 * 2.2[.x] or later kernel if you want packet capture
3244		 * to work well.
3245		 */
3246		mtu = iface_get_mtu(handle->fd, device, handle->errbuf);
3247		if (mtu == -1)
3248			return PCAP_ERROR;
3249		handle->bufsize = MAX_LINKHEADER_SIZE + mtu;
3250		if (handle->bufsize < handle->snapshot)
3251			handle->bufsize = handle->snapshot;
3252	} else {
3253		/*
3254		 * This is a 2.2[.x] or later kernel.
3255		 *
3256		 * We can safely pass "recvfrom()" a byte count
3257		 * based on the snapshot length.
3258		 */
3259		handle->bufsize = handle->snapshot;
3260	}
3261
3262	/*
3263	 * Default value for offset to align link-layer payload
3264	 * on a 4-byte boundary.
3265	 */
3266	handle->offset	 = 0;
3267
3268	return 1;
3269}
3270
3271/*
3272 *  Bind the socket associated with FD to the given device using the
3273 *  interface of the old kernels.
3274 */
3275static int
3276iface_bind_old(int fd, const char *device, char *ebuf)
3277{
3278	struct sockaddr	saddr;
3279	int		err;
3280	socklen_t	errlen = sizeof(err);
3281
3282	memset(&saddr, 0, sizeof(saddr));
3283	strncpy(saddr.sa_data, device, sizeof(saddr.sa_data));
3284	if (bind(fd, &saddr, sizeof(saddr)) == -1) {
3285		snprintf(ebuf, PCAP_ERRBUF_SIZE,
3286			 "bind: %s", pcap_strerror(errno));
3287		return -1;
3288	}
3289
3290	/* Any pending errors, e.g., network is down? */
3291
3292	if (getsockopt(fd, SOL_SOCKET, SO_ERROR, &err, &errlen) == -1) {
3293		snprintf(ebuf, PCAP_ERRBUF_SIZE,
3294			"getsockopt: %s", pcap_strerror(errno));
3295		return -1;
3296	}
3297
3298	if (err > 0) {
3299		snprintf(ebuf, PCAP_ERRBUF_SIZE,
3300			"bind: %s", pcap_strerror(err));
3301		return -1;
3302	}
3303
3304	return 0;
3305}
3306
3307
3308/* ===== System calls available on all supported kernels ============== */
3309
3310/*
3311 *  Query the kernel for the MTU of the given interface.
3312 */
3313static int
3314iface_get_mtu(int fd, const char *device, char *ebuf)
3315{
3316	struct ifreq	ifr;
3317
3318	if (!device)
3319		return BIGGER_THAN_ALL_MTUS;
3320
3321	memset(&ifr, 0, sizeof(ifr));
3322	strncpy(ifr.ifr_name, device, sizeof(ifr.ifr_name));
3323
3324	if (ioctl(fd, SIOCGIFMTU, &ifr) == -1) {
3325		snprintf(ebuf, PCAP_ERRBUF_SIZE,
3326			 "SIOCGIFMTU: %s", pcap_strerror(errno));
3327		return -1;
3328	}
3329
3330	return ifr.ifr_mtu;
3331}
3332
3333/*
3334 *  Get the hardware type of the given interface as ARPHRD_xxx constant.
3335 */
3336static int
3337iface_get_arptype(int fd, const char *device, char *ebuf)
3338{
3339	struct ifreq	ifr;
3340
3341	memset(&ifr, 0, sizeof(ifr));
3342	strncpy(ifr.ifr_name, device, sizeof(ifr.ifr_name));
3343
3344	if (ioctl(fd, SIOCGIFHWADDR, &ifr) == -1) {
3345		snprintf(ebuf, PCAP_ERRBUF_SIZE,
3346			 "SIOCGIFHWADDR: %s", pcap_strerror(errno));
3347		if (errno == ENODEV) {
3348			/*
3349			 * No such device.
3350			 */
3351			return PCAP_ERROR_NO_SUCH_DEVICE;
3352		}
3353		return PCAP_ERROR;
3354	}
3355
3356	return ifr.ifr_hwaddr.sa_family;
3357}
3358
3359#ifdef SO_ATTACH_FILTER
3360static int
3361fix_program(pcap_t *handle, struct sock_fprog *fcode)
3362{
3363	size_t prog_size;
3364	register int i;
3365	register struct bpf_insn *p;
3366	struct bpf_insn *f;
3367	int len;
3368
3369	/*
3370	 * Make a copy of the filter, and modify that copy if
3371	 * necessary.
3372	 */
3373	prog_size = sizeof(*handle->fcode.bf_insns) * handle->fcode.bf_len;
3374	len = handle->fcode.bf_len;
3375	f = (struct bpf_insn *)malloc(prog_size);
3376	if (f == NULL) {
3377		snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
3378			 "malloc: %s", pcap_strerror(errno));
3379		return -1;
3380	}
3381	memcpy(f, handle->fcode.bf_insns, prog_size);
3382	fcode->len = len;
3383	fcode->filter = (struct sock_filter *) f;
3384
3385	for (i = 0; i < len; ++i) {
3386		p = &f[i];
3387		/*
3388		 * What type of instruction is this?
3389		 */
3390		switch (BPF_CLASS(p->code)) {
3391
3392		case BPF_RET:
3393			/*
3394			 * It's a return instruction; is the snapshot
3395			 * length a constant, rather than the contents
3396			 * of the accumulator?
3397			 */
3398			if (BPF_MODE(p->code) == BPF_K) {
3399				/*
3400				 * Yes - if the value to be returned,
3401				 * i.e. the snapshot length, is anything
3402				 * other than 0, make it 65535, so that
3403				 * the packet is truncated by "recvfrom()",
3404				 * not by the filter.
3405				 *
3406				 * XXX - there's nothing we can easily do
3407				 * if it's getting the value from the
3408				 * accumulator; we'd have to insert
3409				 * code to force non-zero values to be
3410				 * 65535.
3411				 */
3412				if (p->k != 0)
3413					p->k = 65535;
3414			}
3415			break;
3416
3417		case BPF_LD:
3418		case BPF_LDX:
3419			/*
3420			 * It's a load instruction; is it loading
3421			 * from the packet?
3422			 */
3423			switch (BPF_MODE(p->code)) {
3424
3425			case BPF_ABS:
3426			case BPF_IND:
3427			case BPF_MSH:
3428				/*
3429				 * Yes; are we in cooked mode?
3430				 */
3431				if (handle->md.cooked) {
3432					/*
3433					 * Yes, so we need to fix this
3434					 * instruction.
3435					 */
3436					if (fix_offset(p) < 0) {
3437						/*
3438						 * We failed to do so.
3439						 * Return 0, so our caller
3440						 * knows to punt to userland.
3441						 */
3442						return 0;
3443					}
3444				}
3445				break;
3446			}
3447			break;
3448		}
3449	}
3450	return 1;	/* we succeeded */
3451}
3452
3453static int
3454fix_offset(struct bpf_insn *p)
3455{
3456	/*
3457	 * What's the offset?
3458	 */
3459	if (p->k >= SLL_HDR_LEN) {
3460		/*
3461		 * It's within the link-layer payload; that starts at an
3462		 * offset of 0, as far as the kernel packet filter is
3463		 * concerned, so subtract the length of the link-layer
3464		 * header.
3465		 */
3466		p->k -= SLL_HDR_LEN;
3467	} else if (p->k == 14) {
3468		/*
3469		 * It's the protocol field; map it to the special magic
3470		 * kernel offset for that field.
3471		 */
3472		p->k = SKF_AD_OFF + SKF_AD_PROTOCOL;
3473	} else {
3474		/*
3475		 * It's within the header, but it's not one of those
3476		 * fields; we can't do that in the kernel, so punt
3477		 * to userland.
3478		 */
3479		return -1;
3480	}
3481	return 0;
3482}
3483
3484static int
3485set_kernel_filter(pcap_t *handle, struct sock_fprog *fcode)
3486{
3487	int total_filter_on = 0;
3488	int save_mode;
3489	int ret;
3490	int save_errno;
3491
3492	/*
3493	 * The socket filter code doesn't discard all packets queued
3494	 * up on the socket when the filter is changed; this means
3495	 * that packets that don't match the new filter may show up
3496	 * after the new filter is put onto the socket, if those
3497	 * packets haven't yet been read.
3498	 *
3499	 * This means, for example, that if you do a tcpdump capture
3500	 * with a filter, the first few packets in the capture might
3501	 * be packets that wouldn't have passed the filter.
3502	 *
3503	 * We therefore discard all packets queued up on the socket
3504	 * when setting a kernel filter.  (This isn't an issue for
3505	 * userland filters, as the userland filtering is done after
3506	 * packets are queued up.)
3507	 *
3508	 * To flush those packets, we put the socket in read-only mode,
3509	 * and read packets from the socket until there are no more to
3510	 * read.
3511	 *
3512	 * In order to keep that from being an infinite loop - i.e.,
3513	 * to keep more packets from arriving while we're draining
3514	 * the queue - we put the "total filter", which is a filter
3515	 * that rejects all packets, onto the socket before draining
3516	 * the queue.
3517	 *
3518	 * This code deliberately ignores any errors, so that you may
3519	 * get bogus packets if an error occurs, rather than having
3520	 * the filtering done in userland even if it could have been
3521	 * done in the kernel.
3522	 */
3523	if (setsockopt(handle->fd, SOL_SOCKET, SO_ATTACH_FILTER,
3524		       &total_fcode, sizeof(total_fcode)) == 0) {
3525		char drain[1];
3526
3527		/*
3528		 * Note that we've put the total filter onto the socket.
3529		 */
3530		total_filter_on = 1;
3531
3532		/*
3533		 * Save the socket's current mode, and put it in
3534		 * non-blocking mode; we drain it by reading packets
3535		 * until we get an error (which is normally a
3536		 * "nothing more to be read" error).
3537		 */
3538		save_mode = fcntl(handle->fd, F_GETFL, 0);
3539		if (save_mode != -1 &&
3540		    fcntl(handle->fd, F_SETFL, save_mode | O_NONBLOCK) >= 0) {
3541			while (recv(handle->fd, &drain, sizeof drain,
3542			       MSG_TRUNC) >= 0)
3543				;
3544			save_errno = errno;
3545			fcntl(handle->fd, F_SETFL, save_mode);
3546			if (save_errno != EAGAIN) {
3547				/* Fatal error */
3548				reset_kernel_filter(handle);
3549				snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
3550				 "recv: %s", pcap_strerror(save_errno));
3551				return -2;
3552			}
3553		}
3554	}
3555
3556	/*
3557	 * Now attach the new filter.
3558	 */
3559	ret = setsockopt(handle->fd, SOL_SOCKET, SO_ATTACH_FILTER,
3560			 fcode, sizeof(*fcode));
3561	if (ret == -1 && total_filter_on) {
3562		/*
3563		 * Well, we couldn't set that filter on the socket,
3564		 * but we could set the total filter on the socket.
3565		 *
3566		 * This could, for example, mean that the filter was
3567		 * too big to put into the kernel, so we'll have to
3568		 * filter in userland; in any case, we'll be doing
3569		 * filtering in userland, so we need to remove the
3570		 * total filter so we see packets.
3571		 */
3572		save_errno = errno;
3573
3574		/*
3575		 * XXX - if this fails, we're really screwed;
3576		 * we have the total filter on the socket,
3577		 * and it won't come off.  What do we do then?
3578		 */
3579		reset_kernel_filter(handle);
3580
3581		errno = save_errno;
3582	}
3583	return ret;
3584}
3585
3586static int
3587reset_kernel_filter(pcap_t *handle)
3588{
3589	/*
3590	 * setsockopt() barfs unless it get a dummy parameter.
3591	 * valgrind whines unless the value is initialized,
3592	 * as it has no idea that setsockopt() ignores its
3593	 * parameter.
3594	 */
3595	int dummy = 0;
3596
3597	return setsockopt(handle->fd, SOL_SOCKET, SO_DETACH_FILTER,
3598				   &dummy, sizeof(dummy));
3599}
3600#endif
3601