stmt.c revision 56385
1/* Expands front end tree to back end RTL for GNU C-Compiler
2   Copyright (C) 1987, 88, 89, 92-98, 1999 Free Software Foundation, Inc.
3
4This file is part of GNU CC.
5
6GNU CC is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2, or (at your option)
9any later version.
10
11GNU CC is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with GNU CC; see the file COPYING.  If not, write to
18the Free Software Foundation, 59 Temple Place - Suite 330,
19Boston, MA 02111-1307, USA.  */
20
21
22/* This file handles the generation of rtl code from tree structure
23   above the level of expressions, using subroutines in exp*.c and emit-rtl.c.
24   It also creates the rtl expressions for parameters and auto variables
25   and has full responsibility for allocating stack slots.
26
27   The functions whose names start with `expand_' are called by the
28   parser to generate RTL instructions for various kinds of constructs.
29
30   Some control and binding constructs require calling several such
31   functions at different times.  For example, a simple if-then
32   is expanded by calling `expand_start_cond' (with the condition-expression
33   as argument) before parsing the then-clause and calling `expand_end_cond'
34   after parsing the then-clause.  */
35
36#include "config.h"
37#include "system.h"
38
39#include "rtl.h"
40#include "tree.h"
41#include "flags.h"
42#include "except.h"
43#include "function.h"
44#include "insn-flags.h"
45#include "insn-config.h"
46#include "insn-codes.h"
47#include "expr.h"
48#include "hard-reg-set.h"
49#include "obstack.h"
50#include "loop.h"
51#include "recog.h"
52#include "machmode.h"
53#include "toplev.h"
54#include "output.h"
55
56#define obstack_chunk_alloc xmalloc
57#define obstack_chunk_free free
58struct obstack stmt_obstack;
59
60/* Assume that case vectors are not pc-relative.  */
61#ifndef CASE_VECTOR_PC_RELATIVE
62#define CASE_VECTOR_PC_RELATIVE 0
63#endif
64
65/* Filename and line number of last line-number note,
66   whether we actually emitted it or not.  */
67char *emit_filename;
68int emit_lineno;
69
70/* Nonzero if within a ({...}) grouping, in which case we must
71   always compute a value for each expr-stmt in case it is the last one.  */
72
73int expr_stmts_for_value;
74
75/* Each time we expand an expression-statement,
76   record the expr's type and its RTL value here.  */
77
78static tree last_expr_type;
79static rtx last_expr_value;
80
81/* Each time we expand the end of a binding contour (in `expand_end_bindings')
82   and we emit a new NOTE_INSN_BLOCK_END note, we save a pointer to it here.
83   This is used by the `remember_end_note' function to record the endpoint
84   of each generated block in its associated BLOCK node.  */
85
86static rtx last_block_end_note;
87
88/* Number of binding contours started so far in this function.  */
89
90int block_start_count;
91
92/* Functions and data structures for expanding case statements.  */
93
94/* Case label structure, used to hold info on labels within case
95   statements.  We handle "range" labels; for a single-value label
96   as in C, the high and low limits are the same.
97
98   An AVL tree of case nodes is initially created, and later transformed
99   to a list linked via the RIGHT fields in the nodes.  Nodes with
100   higher case values are later in the list.
101
102   Switch statements can be output in one of two forms.  A branch table
103   is used if there are more than a few labels and the labels are dense
104   within the range between the smallest and largest case value.  If a
105   branch table is used, no further manipulations are done with the case
106   node chain.
107
108   The alternative to the use of a branch table is to generate a series
109   of compare and jump insns.  When that is done, we use the LEFT, RIGHT,
110   and PARENT fields to hold a binary tree.  Initially the tree is
111   totally unbalanced, with everything on the right.  We balance the tree
112   with nodes on the left having lower case values than the parent
113   and nodes on the right having higher values.  We then output the tree
114   in order.  */
115
116struct case_node
117{
118  struct case_node	*left;	/* Left son in binary tree */
119  struct case_node	*right;	/* Right son in binary tree; also node chain */
120  struct case_node	*parent; /* Parent of node in binary tree */
121  tree			low;	/* Lowest index value for this label */
122  tree			high;	/* Highest index value for this label */
123  tree			code_label; /* Label to jump to when node matches */
124  int			balance;
125};
126
127typedef struct case_node case_node;
128typedef struct case_node *case_node_ptr;
129
130/* These are used by estimate_case_costs and balance_case_nodes.  */
131
132/* This must be a signed type, and non-ANSI compilers lack signed char.  */
133static short *cost_table;
134static int use_cost_table;
135
136/* Stack of control and binding constructs we are currently inside.
137
138   These constructs begin when you call `expand_start_WHATEVER'
139   and end when you call `expand_end_WHATEVER'.  This stack records
140   info about how the construct began that tells the end-function
141   what to do.  It also may provide information about the construct
142   to alter the behavior of other constructs within the body.
143   For example, they may affect the behavior of C `break' and `continue'.
144
145   Each construct gets one `struct nesting' object.
146   All of these objects are chained through the `all' field.
147   `nesting_stack' points to the first object (innermost construct).
148   The position of an entry on `nesting_stack' is in its `depth' field.
149
150   Each type of construct has its own individual stack.
151   For example, loops have `loop_stack'.  Each object points to the
152   next object of the same type through the `next' field.
153
154   Some constructs are visible to `break' exit-statements and others
155   are not.  Which constructs are visible depends on the language.
156   Therefore, the data structure allows each construct to be visible
157   or not, according to the args given when the construct is started.
158   The construct is visible if the `exit_label' field is non-null.
159   In that case, the value should be a CODE_LABEL rtx.  */
160
161struct nesting
162{
163  struct nesting *all;
164  struct nesting *next;
165  int depth;
166  rtx exit_label;
167  union
168    {
169      /* For conds (if-then and if-then-else statements).  */
170      struct
171	{
172	  /* Label for the end of the if construct.
173	     There is none if EXITFLAG was not set
174	     and no `else' has been seen yet.  */
175	  rtx endif_label;
176	  /* Label for the end of this alternative.
177	     This may be the end of the if or the next else/elseif.  */
178	  rtx next_label;
179	} cond;
180      /* For loops.  */
181      struct
182	{
183	  /* Label at the top of the loop; place to loop back to.  */
184	  rtx start_label;
185	  /* Label at the end of the whole construct.  */
186	  rtx end_label;
187	  /* Label before a jump that branches to the end of the whole
188	     construct.  This is where destructors go if any.  */
189	  rtx alt_end_label;
190	  /* Label for `continue' statement to jump to;
191	     this is in front of the stepper of the loop.  */
192	  rtx continue_label;
193	} loop;
194      /* For variable binding contours.  */
195      struct
196	{
197	  /* Sequence number of this binding contour within the function,
198	     in order of entry.  */
199	  int block_start_count;
200	  /* Nonzero => value to restore stack to on exit.  */
201	  rtx stack_level;
202	  /* The NOTE that starts this contour.
203	     Used by expand_goto to check whether the destination
204	     is within each contour or not.  */
205	  rtx first_insn;
206	  /* Innermost containing binding contour that has a stack level.  */
207	  struct nesting *innermost_stack_block;
208	  /* List of cleanups to be run on exit from this contour.
209	     This is a list of expressions to be evaluated.
210	     The TREE_PURPOSE of each link is the ..._DECL node
211	     which the cleanup pertains to.  */
212	  tree cleanups;
213	  /* List of cleanup-lists of blocks containing this block,
214	     as they were at the locus where this block appears.
215	     There is an element for each containing block,
216	     ordered innermost containing block first.
217	     The tail of this list can be 0,
218	     if all remaining elements would be empty lists.
219	     The element's TREE_VALUE is the cleanup-list of that block,
220	     which may be null.  */
221	  tree outer_cleanups;
222	  /* Chain of labels defined inside this binding contour.
223	     For contours that have stack levels or cleanups.  */
224	  struct label_chain *label_chain;
225	  /* Number of function calls seen, as of start of this block.  */
226	  int function_call_count;
227	  /* Nonzero if this is associated with a EH region.  */
228	  int exception_region;
229	  /* The saved target_temp_slot_level from our outer block.
230	     We may reset target_temp_slot_level to be the level of
231	     this block, if that is done, target_temp_slot_level
232	     reverts to the saved target_temp_slot_level at the very
233	     end of the block.  */
234	  int target_temp_slot_level;
235	  /* True if we are currently emitting insns in an area of
236	     output code that is controlled by a conditional
237	     expression.  This is used by the cleanup handling code to
238	     generate conditional cleanup actions.  */
239	  int conditional_code;
240	  /* A place to move the start of the exception region for any
241	     of the conditional cleanups, must be at the end or after
242	     the start of the last unconditional cleanup, and before any
243	     conditional branch points.  */
244	  rtx last_unconditional_cleanup;
245	  /* When in a conditional context, this is the specific
246	     cleanup list associated with last_unconditional_cleanup,
247	     where we place the conditionalized cleanups.  */
248	  tree *cleanup_ptr;
249	} block;
250      /* For switch (C) or case (Pascal) statements,
251	 and also for dummies (see `expand_start_case_dummy').  */
252      struct
253	{
254	  /* The insn after which the case dispatch should finally
255	     be emitted.  Zero for a dummy.  */
256	  rtx start;
257	  /* A list of case labels; it is first built as an AVL tree.
258	     During expand_end_case, this is converted to a list, and may be
259	     rearranged into a nearly balanced binary tree.  */
260	  struct case_node *case_list;
261	  /* Label to jump to if no case matches.  */
262	  tree default_label;
263	  /* The expression to be dispatched on.  */
264	  tree index_expr;
265	  /* Type that INDEX_EXPR should be converted to.  */
266	  tree nominal_type;
267	  /* Number of range exprs in case statement.  */
268	  int num_ranges;
269	  /* Name of this kind of statement, for warnings.  */
270	  const char *printname;
271	  /* Used to save no_line_numbers till we see the first case label.
272	     We set this to -1 when we see the first case label in this
273	     case statement.  */
274	  int line_number_status;
275	} case_stmt;
276    } data;
277};
278
279/* Chain of all pending binding contours.  */
280struct nesting *block_stack;
281
282/* If any new stacks are added here, add them to POPSTACKS too.  */
283
284/* Chain of all pending binding contours that restore stack levels
285   or have cleanups.  */
286struct nesting *stack_block_stack;
287
288/* Chain of all pending conditional statements.  */
289struct nesting *cond_stack;
290
291/* Chain of all pending loops.  */
292struct nesting *loop_stack;
293
294/* Chain of all pending case or switch statements.  */
295struct nesting *case_stack;
296
297/* Separate chain including all of the above,
298   chained through the `all' field.  */
299struct nesting *nesting_stack;
300
301/* Number of entries on nesting_stack now.  */
302int nesting_depth;
303
304/* Allocate and return a new `struct nesting'.  */
305
306#define ALLOC_NESTING() \
307 (struct nesting *) obstack_alloc (&stmt_obstack, sizeof (struct nesting))
308
309/* Pop the nesting stack element by element until we pop off
310   the element which is at the top of STACK.
311   Update all the other stacks, popping off elements from them
312   as we pop them from nesting_stack.  */
313
314#define POPSTACK(STACK)					\
315do { struct nesting *target = STACK;			\
316     struct nesting *this;				\
317     do { this = nesting_stack;				\
318	  if (loop_stack == this)			\
319	    loop_stack = loop_stack->next;		\
320	  if (cond_stack == this)			\
321	    cond_stack = cond_stack->next;		\
322	  if (block_stack == this)			\
323	    block_stack = block_stack->next;		\
324	  if (stack_block_stack == this)		\
325	    stack_block_stack = stack_block_stack->next; \
326	  if (case_stack == this)			\
327	    case_stack = case_stack->next;		\
328	  nesting_depth = nesting_stack->depth - 1;	\
329	  nesting_stack = this->all;			\
330	  obstack_free (&stmt_obstack, this); }		\
331     while (this != target); } while (0)
332
333/* In some cases it is impossible to generate code for a forward goto
334   until the label definition is seen.  This happens when it may be necessary
335   for the goto to reset the stack pointer: we don't yet know how to do that.
336   So expand_goto puts an entry on this fixup list.
337   Each time a binding contour that resets the stack is exited,
338   we check each fixup.
339   If the target label has now been defined, we can insert the proper code.  */
340
341struct goto_fixup
342{
343  /* Points to following fixup.  */
344  struct goto_fixup *next;
345  /* Points to the insn before the jump insn.
346     If more code must be inserted, it goes after this insn.  */
347  rtx before_jump;
348  /* The LABEL_DECL that this jump is jumping to, or 0
349     for break, continue or return.  */
350  tree target;
351  /* The BLOCK for the place where this goto was found.  */
352  tree context;
353  /* The CODE_LABEL rtx that this is jumping to.  */
354  rtx target_rtl;
355  /* Number of binding contours started in current function
356     before the label reference.  */
357  int block_start_count;
358  /* The outermost stack level that should be restored for this jump.
359     Each time a binding contour that resets the stack is exited,
360     if the target label is *not* yet defined, this slot is updated.  */
361  rtx stack_level;
362  /* List of lists of cleanup expressions to be run by this goto.
363     There is one element for each block that this goto is within.
364     The tail of this list can be 0,
365     if all remaining elements would be empty.
366     The TREE_VALUE contains the cleanup list of that block as of the
367     time this goto was seen.
368     The TREE_ADDRESSABLE flag is 1 for a block that has been exited.  */
369  tree cleanup_list_list;
370};
371
372static struct goto_fixup *goto_fixup_chain;
373
374/* Within any binding contour that must restore a stack level,
375   all labels are recorded with a chain of these structures.  */
376
377struct label_chain
378{
379  /* Points to following fixup.  */
380  struct label_chain *next;
381  tree label;
382};
383
384
385/* Non-zero if we are using EH to handle cleanus.  */
386static int using_eh_for_cleanups_p = 0;
387
388
389static int n_occurrences		PROTO((int, const char *));
390static void expand_goto_internal	PROTO((tree, rtx, rtx));
391static int expand_fixup			PROTO((tree, rtx, rtx));
392static rtx expand_nl_handler_label	PROTO((rtx, rtx));
393static void expand_nl_goto_receiver	PROTO((void));
394static void expand_nl_goto_receivers	PROTO((struct nesting *));
395static void fixup_gotos			PROTO((struct nesting *, rtx, tree,
396					       rtx, int));
397static void expand_null_return_1	PROTO((rtx, int));
398static void expand_value_return		PROTO((rtx));
399static int tail_recursion_args		PROTO((tree, tree));
400static void expand_cleanups		PROTO((tree, tree, int, int));
401static void check_seenlabel		PROTO((void));
402static void do_jump_if_equal		PROTO((rtx, rtx, rtx, int));
403static int estimate_case_costs		PROTO((case_node_ptr));
404static void group_case_nodes		PROTO((case_node_ptr));
405static void balance_case_nodes		PROTO((case_node_ptr *,
406					       case_node_ptr));
407static int node_has_low_bound		PROTO((case_node_ptr, tree));
408static int node_has_high_bound		PROTO((case_node_ptr, tree));
409static int node_is_bounded		PROTO((case_node_ptr, tree));
410static void emit_jump_if_reachable	PROTO((rtx));
411static void emit_case_nodes		PROTO((rtx, case_node_ptr, rtx, tree));
412static int add_case_node		PROTO((tree, tree, tree, tree *));
413static struct case_node *case_tree2list	PROTO((case_node *, case_node *));
414
415void
416using_eh_for_cleanups ()
417{
418  using_eh_for_cleanups_p = 1;
419}
420
421void
422init_stmt ()
423{
424  gcc_obstack_init (&stmt_obstack);
425  init_eh ();
426}
427
428void
429init_stmt_for_function ()
430{
431  /* We are not currently within any block, conditional, loop or case.  */
432  block_stack = 0;
433  stack_block_stack = 0;
434  loop_stack = 0;
435  case_stack = 0;
436  cond_stack = 0;
437  nesting_stack = 0;
438  nesting_depth = 0;
439
440  block_start_count = 0;
441
442  /* No gotos have been expanded yet.  */
443  goto_fixup_chain = 0;
444
445  /* We are not processing a ({...}) grouping.  */
446  expr_stmts_for_value = 0;
447  last_expr_type = 0;
448
449  init_eh_for_function ();
450}
451
452void
453save_stmt_status (p)
454     struct function *p;
455{
456  p->block_stack = block_stack;
457  p->stack_block_stack = stack_block_stack;
458  p->cond_stack = cond_stack;
459  p->loop_stack = loop_stack;
460  p->case_stack = case_stack;
461  p->nesting_stack = nesting_stack;
462  p->nesting_depth = nesting_depth;
463  p->block_start_count = block_start_count;
464  p->last_expr_type = last_expr_type;
465  p->last_expr_value = last_expr_value;
466  p->expr_stmts_for_value = expr_stmts_for_value;
467  p->emit_filename = emit_filename;
468  p->emit_lineno = emit_lineno;
469  p->goto_fixup_chain = goto_fixup_chain;
470  save_eh_status (p);
471}
472
473void
474restore_stmt_status (p)
475     struct function *p;
476{
477  block_stack = p->block_stack;
478  stack_block_stack = p->stack_block_stack;
479  cond_stack = p->cond_stack;
480  loop_stack = p->loop_stack;
481  case_stack = p->case_stack;
482  nesting_stack = p->nesting_stack;
483  nesting_depth = p->nesting_depth;
484  block_start_count = p->block_start_count;
485  last_expr_type = p->last_expr_type;
486  last_expr_value = p->last_expr_value;
487  expr_stmts_for_value = p->expr_stmts_for_value;
488  emit_filename = p->emit_filename;
489  emit_lineno = p->emit_lineno;
490  goto_fixup_chain = p->goto_fixup_chain;
491  restore_eh_status (p);
492}
493
494/* Emit a no-op instruction.  */
495
496void
497emit_nop ()
498{
499  rtx last_insn;
500
501  last_insn = get_last_insn ();
502  if (!optimize
503      && (GET_CODE (last_insn) == CODE_LABEL
504	  || (GET_CODE (last_insn) == NOTE
505	      && prev_real_insn (last_insn) == 0)))
506    emit_insn (gen_nop ());
507}
508
509/* Return the rtx-label that corresponds to a LABEL_DECL,
510   creating it if necessary.  */
511
512rtx
513label_rtx (label)
514     tree label;
515{
516  if (TREE_CODE (label) != LABEL_DECL)
517    abort ();
518
519  if (DECL_RTL (label))
520    return DECL_RTL (label);
521
522  return DECL_RTL (label) = gen_label_rtx ();
523}
524
525/* Add an unconditional jump to LABEL as the next sequential instruction.  */
526
527void
528emit_jump (label)
529     rtx label;
530{
531  do_pending_stack_adjust ();
532  emit_jump_insn (gen_jump (label));
533  emit_barrier ();
534}
535
536/* Emit code to jump to the address
537   specified by the pointer expression EXP.  */
538
539void
540expand_computed_goto (exp)
541     tree exp;
542{
543  rtx x = expand_expr (exp, NULL_RTX, VOIDmode, 0);
544
545#ifdef POINTERS_EXTEND_UNSIGNED
546  x = convert_memory_address (Pmode, x);
547#endif
548
549  emit_queue ();
550  /* Be sure the function is executable.  */
551  if (current_function_check_memory_usage)
552    emit_library_call (chkr_check_exec_libfunc, 1,
553		       VOIDmode, 1, x, ptr_mode);
554
555  do_pending_stack_adjust ();
556  emit_indirect_jump (x);
557
558  current_function_has_computed_jump = 1;
559}
560
561/* Handle goto statements and the labels that they can go to.  */
562
563/* Specify the location in the RTL code of a label LABEL,
564   which is a LABEL_DECL tree node.
565
566   This is used for the kind of label that the user can jump to with a
567   goto statement, and for alternatives of a switch or case statement.
568   RTL labels generated for loops and conditionals don't go through here;
569   they are generated directly at the RTL level, by other functions below.
570
571   Note that this has nothing to do with defining label *names*.
572   Languages vary in how they do that and what that even means.  */
573
574void
575expand_label (label)
576     tree label;
577{
578  struct label_chain *p;
579
580  do_pending_stack_adjust ();
581  emit_label (label_rtx (label));
582  if (DECL_NAME (label))
583    LABEL_NAME (DECL_RTL (label)) = IDENTIFIER_POINTER (DECL_NAME (label));
584
585  if (stack_block_stack != 0)
586    {
587      p = (struct label_chain *) oballoc (sizeof (struct label_chain));
588      p->next = stack_block_stack->data.block.label_chain;
589      stack_block_stack->data.block.label_chain = p;
590      p->label = label;
591    }
592}
593
594/* Declare that LABEL (a LABEL_DECL) may be used for nonlocal gotos
595   from nested functions.  */
596
597void
598declare_nonlocal_label (label)
599     tree label;
600{
601  rtx slot = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
602
603  nonlocal_labels = tree_cons (NULL_TREE, label, nonlocal_labels);
604  LABEL_PRESERVE_P (label_rtx (label)) = 1;
605  if (nonlocal_goto_handler_slots == 0)
606    {
607      emit_stack_save (SAVE_NONLOCAL,
608		       &nonlocal_goto_stack_level,
609		       PREV_INSN (tail_recursion_reentry));
610    }
611  nonlocal_goto_handler_slots
612    = gen_rtx_EXPR_LIST (VOIDmode, slot, nonlocal_goto_handler_slots);
613}
614
615/* Generate RTL code for a `goto' statement with target label LABEL.
616   LABEL should be a LABEL_DECL tree node that was or will later be
617   defined with `expand_label'.  */
618
619void
620expand_goto (label)
621     tree label;
622{
623  tree context;
624
625  /* Check for a nonlocal goto to a containing function.  */
626  context = decl_function_context (label);
627  if (context != 0 && context != current_function_decl)
628    {
629      struct function *p = find_function_data (context);
630      rtx label_ref = gen_rtx_LABEL_REF (Pmode, label_rtx (label));
631      rtx temp, handler_slot;
632      tree link;
633
634      /* Find the corresponding handler slot for this label.  */
635      handler_slot = p->nonlocal_goto_handler_slots;
636      for (link = p->nonlocal_labels; TREE_VALUE (link) != label;
637	   link = TREE_CHAIN (link))
638	handler_slot = XEXP (handler_slot, 1);
639      handler_slot = XEXP (handler_slot, 0);
640
641      p->has_nonlocal_label = 1;
642      current_function_has_nonlocal_goto = 1;
643      LABEL_REF_NONLOCAL_P (label_ref) = 1;
644
645      /* Copy the rtl for the slots so that they won't be shared in
646	 case the virtual stack vars register gets instantiated differently
647	 in the parent than in the child.  */
648
649#if HAVE_nonlocal_goto
650      if (HAVE_nonlocal_goto)
651	emit_insn (gen_nonlocal_goto (lookup_static_chain (label),
652				      copy_rtx (handler_slot),
653				      copy_rtx (p->nonlocal_goto_stack_level),
654				      label_ref));
655      else
656#endif
657	{
658	  rtx addr;
659
660	  /* Restore frame pointer for containing function.
661	     This sets the actual hard register used for the frame pointer
662	     to the location of the function's incoming static chain info.
663	     The non-local goto handler will then adjust it to contain the
664	     proper value and reload the argument pointer, if needed.  */
665	  emit_move_insn (hard_frame_pointer_rtx, lookup_static_chain (label));
666
667	  /* We have now loaded the frame pointer hardware register with
668	     the address of that corresponds to the start of the virtual
669	     stack vars.  So replace virtual_stack_vars_rtx in all
670	     addresses we use with stack_pointer_rtx.  */
671
672	  /* Get addr of containing function's current nonlocal goto handler,
673	     which will do any cleanups and then jump to the label.  */
674	  addr = copy_rtx (handler_slot);
675	  temp = copy_to_reg (replace_rtx (addr, virtual_stack_vars_rtx,
676					   hard_frame_pointer_rtx));
677
678	  /* Restore the stack pointer.  Note this uses fp just restored.  */
679	  addr = p->nonlocal_goto_stack_level;
680	  if (addr)
681	    addr = replace_rtx (copy_rtx (addr),
682				virtual_stack_vars_rtx,
683				hard_frame_pointer_rtx);
684
685	  emit_stack_restore (SAVE_NONLOCAL, addr, NULL_RTX);
686
687	  /* USE of hard_frame_pointer_rtx added for consistency; not clear if
688	     really needed.  */
689	  emit_insn (gen_rtx_USE (VOIDmode, hard_frame_pointer_rtx));
690	  emit_insn (gen_rtx_USE (VOIDmode, stack_pointer_rtx));
691	  emit_indirect_jump (temp);
692	}
693     }
694  else
695    expand_goto_internal (label, label_rtx (label), NULL_RTX);
696}
697
698/* Generate RTL code for a `goto' statement with target label BODY.
699   LABEL should be a LABEL_REF.
700   LAST_INSN, if non-0, is the rtx we should consider as the last
701   insn emitted (for the purposes of cleaning up a return).  */
702
703static void
704expand_goto_internal (body, label, last_insn)
705     tree body;
706     rtx label;
707     rtx last_insn;
708{
709  struct nesting *block;
710  rtx stack_level = 0;
711
712  if (GET_CODE (label) != CODE_LABEL)
713    abort ();
714
715  /* If label has already been defined, we can tell now
716     whether and how we must alter the stack level.  */
717
718  if (PREV_INSN (label) != 0)
719    {
720      /* Find the innermost pending block that contains the label.
721	 (Check containment by comparing insn-uids.)
722	 Then restore the outermost stack level within that block,
723	 and do cleanups of all blocks contained in it.  */
724      for (block = block_stack; block; block = block->next)
725	{
726	  if (INSN_UID (block->data.block.first_insn) < INSN_UID (label))
727	    break;
728	  if (block->data.block.stack_level != 0)
729	    stack_level = block->data.block.stack_level;
730	  /* Execute the cleanups for blocks we are exiting.  */
731	  if (block->data.block.cleanups != 0)
732	    {
733	      expand_cleanups (block->data.block.cleanups, NULL_TREE, 1, 1);
734	      do_pending_stack_adjust ();
735	    }
736	}
737
738      if (stack_level)
739	{
740	  /* Ensure stack adjust isn't done by emit_jump, as this
741	     would clobber the stack pointer.  This one should be
742	     deleted as dead by flow.  */
743	  clear_pending_stack_adjust ();
744	  do_pending_stack_adjust ();
745	  emit_stack_restore (SAVE_BLOCK, stack_level, NULL_RTX);
746	}
747
748      if (body != 0 && DECL_TOO_LATE (body))
749	error ("jump to `%s' invalidly jumps into binding contour",
750	       IDENTIFIER_POINTER (DECL_NAME (body)));
751    }
752  /* Label not yet defined: may need to put this goto
753     on the fixup list.  */
754  else if (! expand_fixup (body, label, last_insn))
755    {
756      /* No fixup needed.  Record that the label is the target
757	 of at least one goto that has no fixup.  */
758      if (body != 0)
759	TREE_ADDRESSABLE (body) = 1;
760    }
761
762  emit_jump (label);
763}
764
765/* Generate if necessary a fixup for a goto
766   whose target label in tree structure (if any) is TREE_LABEL
767   and whose target in rtl is RTL_LABEL.
768
769   If LAST_INSN is nonzero, we pretend that the jump appears
770   after insn LAST_INSN instead of at the current point in the insn stream.
771
772   The fixup will be used later to insert insns just before the goto.
773   Those insns will restore the stack level as appropriate for the
774   target label, and will (in the case of C++) also invoke any object
775   destructors which have to be invoked when we exit the scopes which
776   are exited by the goto.
777
778   Value is nonzero if a fixup is made.  */
779
780static int
781expand_fixup (tree_label, rtl_label, last_insn)
782     tree tree_label;
783     rtx rtl_label;
784     rtx last_insn;
785{
786  struct nesting *block, *end_block;
787
788  /* See if we can recognize which block the label will be output in.
789     This is possible in some very common cases.
790     If we succeed, set END_BLOCK to that block.
791     Otherwise, set it to 0.  */
792
793  if (cond_stack
794      && (rtl_label == cond_stack->data.cond.endif_label
795	  || rtl_label == cond_stack->data.cond.next_label))
796    end_block = cond_stack;
797  /* If we are in a loop, recognize certain labels which
798     are likely targets.  This reduces the number of fixups
799     we need to create.  */
800  else if (loop_stack
801      && (rtl_label == loop_stack->data.loop.start_label
802	  || rtl_label == loop_stack->data.loop.end_label
803	  || rtl_label == loop_stack->data.loop.continue_label))
804    end_block = loop_stack;
805  else
806    end_block = 0;
807
808  /* Now set END_BLOCK to the binding level to which we will return.  */
809
810  if (end_block)
811    {
812      struct nesting *next_block = end_block->all;
813      block = block_stack;
814
815      /* First see if the END_BLOCK is inside the innermost binding level.
816	 If so, then no cleanups or stack levels are relevant.  */
817      while (next_block && next_block != block)
818	next_block = next_block->all;
819
820      if (next_block)
821	return 0;
822
823      /* Otherwise, set END_BLOCK to the innermost binding level
824	 which is outside the relevant control-structure nesting.  */
825      next_block = block_stack->next;
826      for (block = block_stack; block != end_block; block = block->all)
827	if (block == next_block)
828	  next_block = next_block->next;
829      end_block = next_block;
830    }
831
832  /* Does any containing block have a stack level or cleanups?
833     If not, no fixup is needed, and that is the normal case
834     (the only case, for standard C).  */
835  for (block = block_stack; block != end_block; block = block->next)
836    if (block->data.block.stack_level != 0
837	|| block->data.block.cleanups != 0)
838      break;
839
840  if (block != end_block)
841    {
842      /* Ok, a fixup is needed.  Add a fixup to the list of such.  */
843      struct goto_fixup *fixup
844	= (struct goto_fixup *) oballoc (sizeof (struct goto_fixup));
845      /* In case an old stack level is restored, make sure that comes
846	 after any pending stack adjust.  */
847      /* ?? If the fixup isn't to come at the present position,
848	 doing the stack adjust here isn't useful.  Doing it with our
849	 settings at that location isn't useful either.  Let's hope
850	 someone does it!  */
851      if (last_insn == 0)
852	do_pending_stack_adjust ();
853      fixup->target = tree_label;
854      fixup->target_rtl = rtl_label;
855
856      /* Create a BLOCK node and a corresponding matched set of
857	 NOTE_INSN_BEGIN_BLOCK and NOTE_INSN_END_BLOCK notes at
858	 this point.  The notes will encapsulate any and all fixup
859	 code which we might later insert at this point in the insn
860	 stream.  Also, the BLOCK node will be the parent (i.e. the
861	 `SUPERBLOCK') of any other BLOCK nodes which we might create
862	 later on when we are expanding the fixup code.
863
864	 Note that optimization passes (including expand_end_loop)
865	 might move the *_BLOCK notes away, so we use a NOTE_INSN_DELETED
866	 as a placeholder.  */
867
868      {
869        register rtx original_before_jump
870          = last_insn ? last_insn : get_last_insn ();
871	rtx start;
872
873        start_sequence ();
874        pushlevel (0);
875        start = emit_note (NULL_PTR, NOTE_INSN_BLOCK_BEG);
876	fixup->before_jump = emit_note (NULL_PTR, NOTE_INSN_DELETED);
877        last_block_end_note = emit_note (NULL_PTR, NOTE_INSN_BLOCK_END);
878        fixup->context = poplevel (1, 0, 0);  /* Create the BLOCK node now! */
879        end_sequence ();
880        emit_insns_after (start, original_before_jump);
881      }
882
883      fixup->block_start_count = block_start_count;
884      fixup->stack_level = 0;
885      fixup->cleanup_list_list
886	= ((block->data.block.outer_cleanups
887	    || block->data.block.cleanups)
888	   ? tree_cons (NULL_TREE, block->data.block.cleanups,
889			block->data.block.outer_cleanups)
890	   : 0);
891      fixup->next = goto_fixup_chain;
892      goto_fixup_chain = fixup;
893    }
894
895  return block != 0;
896}
897
898
899
900/* Expand any needed fixups in the outputmost binding level of the
901   function.  FIRST_INSN is the first insn in the function.  */
902
903void
904expand_fixups (first_insn)
905     rtx first_insn;
906{
907  fixup_gotos (NULL_PTR, NULL_RTX, NULL_TREE, first_insn, 0);
908}
909
910/* When exiting a binding contour, process all pending gotos requiring fixups.
911   THISBLOCK is the structure that describes the block being exited.
912   STACK_LEVEL is the rtx for the stack level to restore exiting this contour.
913   CLEANUP_LIST is a list of expressions to evaluate on exiting this contour.
914   FIRST_INSN is the insn that began this contour.
915
916   Gotos that jump out of this contour must restore the
917   stack level and do the cleanups before actually jumping.
918
919   DONT_JUMP_IN nonzero means report error there is a jump into this
920   contour from before the beginning of the contour.
921   This is also done if STACK_LEVEL is nonzero.  */
922
923static void
924fixup_gotos (thisblock, stack_level, cleanup_list, first_insn, dont_jump_in)
925     struct nesting *thisblock;
926     rtx stack_level;
927     tree cleanup_list;
928     rtx first_insn;
929     int dont_jump_in;
930{
931  register struct goto_fixup *f, *prev;
932
933  /* F is the fixup we are considering; PREV is the previous one.  */
934  /* We run this loop in two passes so that cleanups of exited blocks
935     are run first, and blocks that are exited are marked so
936     afterwards.  */
937
938  for (prev = 0, f = goto_fixup_chain; f; prev = f, f = f->next)
939    {
940      /* Test for a fixup that is inactive because it is already handled.  */
941      if (f->before_jump == 0)
942	{
943	  /* Delete inactive fixup from the chain, if that is easy to do.  */
944	  if (prev != 0)
945	    prev->next = f->next;
946	}
947      /* Has this fixup's target label been defined?
948	 If so, we can finalize it.  */
949      else if (PREV_INSN (f->target_rtl) != 0)
950	{
951	  register rtx cleanup_insns;
952
953	  /* Get the first non-label after the label
954	     this goto jumps to.  If that's before this scope begins,
955	     we don't have a jump into the scope.  */
956	  rtx after_label = f->target_rtl;
957	  while (after_label != 0 && GET_CODE (after_label) == CODE_LABEL)
958	    after_label = NEXT_INSN (after_label);
959
960	  /* If this fixup jumped into this contour from before the beginning
961	     of this contour, report an error.  */
962	  /* ??? Bug: this does not detect jumping in through intermediate
963	     blocks that have stack levels or cleanups.
964	     It detects only a problem with the innermost block
965	     around the label.  */
966	  if (f->target != 0
967	      && (dont_jump_in || stack_level || cleanup_list)
968	      /* If AFTER_LABEL is 0, it means the jump goes to the end
969		 of the rtl, which means it jumps into this scope.  */
970	      && (after_label == 0
971		  || INSN_UID (first_insn) < INSN_UID (after_label))
972	      && INSN_UID (first_insn) > INSN_UID (f->before_jump)
973	      && ! DECL_ERROR_ISSUED (f->target))
974	    {
975	      error_with_decl (f->target,
976			       "label `%s' used before containing binding contour");
977	      /* Prevent multiple errors for one label.  */
978	      DECL_ERROR_ISSUED (f->target) = 1;
979	    }
980
981	  /* We will expand the cleanups into a sequence of their own and
982	     then later on we will attach this new sequence to the insn
983	     stream just ahead of the actual jump insn.  */
984
985	  start_sequence ();
986
987	  /* Temporarily restore the lexical context where we will
988	     logically be inserting the fixup code.  We do this for the
989	     sake of getting the debugging information right.  */
990
991	  pushlevel (0);
992	  set_block (f->context);
993
994	  /* Expand the cleanups for blocks this jump exits.  */
995	  if (f->cleanup_list_list)
996	    {
997	      tree lists;
998	      for (lists = f->cleanup_list_list; lists; lists = TREE_CHAIN (lists))
999		/* Marked elements correspond to blocks that have been closed.
1000		   Do their cleanups.  */
1001		if (TREE_ADDRESSABLE (lists)
1002		    && TREE_VALUE (lists) != 0)
1003		  {
1004		    expand_cleanups (TREE_VALUE (lists), NULL_TREE, 1, 1);
1005		    /* Pop any pushes done in the cleanups,
1006		       in case function is about to return.  */
1007		    do_pending_stack_adjust ();
1008		  }
1009	    }
1010
1011	  /* Restore stack level for the biggest contour that this
1012	     jump jumps out of.  */
1013	  if (f->stack_level)
1014	    emit_stack_restore (SAVE_BLOCK, f->stack_level, f->before_jump);
1015
1016	  /* Finish up the sequence containing the insns which implement the
1017	     necessary cleanups, and then attach that whole sequence to the
1018	     insn stream just ahead of the actual jump insn.  Attaching it
1019	     at that point insures that any cleanups which are in fact
1020	     implicit C++ object destructions (which must be executed upon
1021	     leaving the block) appear (to the debugger) to be taking place
1022	     in an area of the generated code where the object(s) being
1023	     destructed are still "in scope".  */
1024
1025	  cleanup_insns = get_insns ();
1026	  poplevel (1, 0, 0);
1027
1028	  end_sequence ();
1029	  emit_insns_after (cleanup_insns, f->before_jump);
1030
1031
1032	  f->before_jump = 0;
1033	}
1034    }
1035
1036  /* For any still-undefined labels, do the cleanups for this block now.
1037     We must do this now since items in the cleanup list may go out
1038     of scope when the block ends.  */
1039  for (prev = 0, f = goto_fixup_chain; f; prev = f, f = f->next)
1040    if (f->before_jump != 0
1041	&& PREV_INSN (f->target_rtl) == 0
1042	/* Label has still not appeared.  If we are exiting a block with
1043	   a stack level to restore, that started before the fixup,
1044	   mark this stack level as needing restoration
1045	   when the fixup is later finalized.   */
1046	&& thisblock != 0
1047	/* Note: if THISBLOCK == 0 and we have a label that hasn't appeared, it
1048	   means the label is undefined.  That's erroneous, but possible.  */
1049	&& (thisblock->data.block.block_start_count
1050	    <= f->block_start_count))
1051      {
1052	tree lists = f->cleanup_list_list;
1053	rtx cleanup_insns;
1054
1055	for (; lists; lists = TREE_CHAIN (lists))
1056	  /* If the following elt. corresponds to our containing block
1057	     then the elt. must be for this block.  */
1058	  if (TREE_CHAIN (lists) == thisblock->data.block.outer_cleanups)
1059	    {
1060	      start_sequence ();
1061	      pushlevel (0);
1062	      set_block (f->context);
1063	      expand_cleanups (TREE_VALUE (lists), NULL_TREE, 1, 1);
1064	      do_pending_stack_adjust ();
1065	      cleanup_insns = get_insns ();
1066	      poplevel (1, 0, 0);
1067	      end_sequence ();
1068	      if (cleanup_insns != 0)
1069		f->before_jump
1070		  = emit_insns_after (cleanup_insns, f->before_jump);
1071
1072	      f->cleanup_list_list = TREE_CHAIN (lists);
1073	    }
1074
1075	if (stack_level)
1076	  f->stack_level = stack_level;
1077      }
1078}
1079
1080/* Return the number of times character C occurs in string S.  */
1081static int
1082n_occurrences (c, s)
1083     int c;
1084     const char *s;
1085{
1086  int n = 0;
1087  while (*s)
1088    n += (*s++ == c);
1089  return n;
1090}
1091
1092/* Generate RTL for an asm statement (explicit assembler code).
1093   BODY is a STRING_CST node containing the assembler code text,
1094   or an ADDR_EXPR containing a STRING_CST.  */
1095
1096void
1097expand_asm (body)
1098     tree body;
1099{
1100  if (current_function_check_memory_usage)
1101    {
1102      error ("`asm' cannot be used with `-fcheck-memory-usage'");
1103      return;
1104    }
1105
1106  if (TREE_CODE (body) == ADDR_EXPR)
1107    body = TREE_OPERAND (body, 0);
1108
1109  emit_insn (gen_rtx_ASM_INPUT (VOIDmode,
1110				TREE_STRING_POINTER (body)));
1111  last_expr_type = 0;
1112}
1113
1114/* Generate RTL for an asm statement with arguments.
1115   STRING is the instruction template.
1116   OUTPUTS is a list of output arguments (lvalues); INPUTS a list of inputs.
1117   Each output or input has an expression in the TREE_VALUE and
1118   a constraint-string in the TREE_PURPOSE.
1119   CLOBBERS is a list of STRING_CST nodes each naming a hard register
1120   that is clobbered by this insn.
1121
1122   Not all kinds of lvalue that may appear in OUTPUTS can be stored directly.
1123   Some elements of OUTPUTS may be replaced with trees representing temporary
1124   values.  The caller should copy those temporary values to the originally
1125   specified lvalues.
1126
1127   VOL nonzero means the insn is volatile; don't optimize it.  */
1128
1129void
1130expand_asm_operands (string, outputs, inputs, clobbers, vol, filename, line)
1131     tree string, outputs, inputs, clobbers;
1132     int vol;
1133     char *filename;
1134     int line;
1135{
1136  rtvec argvec, constraints;
1137  rtx body;
1138  int ninputs = list_length (inputs);
1139  int noutputs = list_length (outputs);
1140  int ninout = 0;
1141  int nclobbers;
1142  tree tail;
1143  register int i;
1144  /* Vector of RTX's of evaluated output operands.  */
1145  rtx *output_rtx = (rtx *) alloca (noutputs * sizeof (rtx));
1146  int *inout_opnum = (int *) alloca (noutputs * sizeof (int));
1147  rtx *real_output_rtx = (rtx *) alloca (noutputs * sizeof (rtx));
1148  enum machine_mode *inout_mode
1149    = (enum machine_mode *) alloca (noutputs * sizeof (enum machine_mode));
1150  /* The insn we have emitted.  */
1151  rtx insn;
1152
1153  /* An ASM with no outputs needs to be treated as volatile, for now.  */
1154  if (noutputs == 0)
1155    vol = 1;
1156
1157  if (current_function_check_memory_usage)
1158    {
1159      error ("`asm' cannot be used with `-fcheck-memory-usage'");
1160      return;
1161    }
1162
1163  /* Count the number of meaningful clobbered registers, ignoring what
1164     we would ignore later.  */
1165  nclobbers = 0;
1166  for (tail = clobbers; tail; tail = TREE_CHAIN (tail))
1167    {
1168      char *regname = TREE_STRING_POINTER (TREE_VALUE (tail));
1169      i = decode_reg_name (regname);
1170      if (i >= 0 || i == -4)
1171	++nclobbers;
1172      else if (i == -2)
1173	error ("unknown register name `%s' in `asm'", regname);
1174    }
1175
1176  last_expr_type = 0;
1177
1178  /* Check that the number of alternatives is constant across all
1179     operands.  */
1180  if (outputs || inputs)
1181    {
1182      tree tmp = TREE_PURPOSE (outputs ? outputs : inputs);
1183      int nalternatives = n_occurrences (',', TREE_STRING_POINTER (tmp));
1184      tree next = inputs;
1185
1186      if (nalternatives + 1 > MAX_RECOG_ALTERNATIVES)
1187	{
1188	  error ("too many alternatives in `asm'");
1189	  return;
1190	}
1191
1192      tmp = outputs;
1193      while (tmp)
1194	{
1195	  char *constraint = TREE_STRING_POINTER (TREE_PURPOSE (tmp));
1196	  if (n_occurrences (',', constraint) != nalternatives)
1197	    {
1198	      error ("operand constraints for `asm' differ in number of alternatives");
1199	      return;
1200	    }
1201	  if (TREE_CHAIN (tmp))
1202	    tmp = TREE_CHAIN (tmp);
1203	  else
1204	    tmp = next, next = 0;
1205	}
1206    }
1207
1208  for (i = 0, tail = outputs; tail; tail = TREE_CHAIN (tail), i++)
1209    {
1210      tree val = TREE_VALUE (tail);
1211      tree type = TREE_TYPE (val);
1212      char *constraint;
1213      char *p;
1214      int c_len;
1215      int j;
1216      int is_inout = 0;
1217      int allows_reg = 0;
1218      int allows_mem = 0;
1219
1220      /* If there's an erroneous arg, emit no insn.  */
1221      if (TREE_TYPE (val) == error_mark_node)
1222	return;
1223
1224      /* Make sure constraint has `=' and does not have `+'.  Also, see
1225	 if it allows any register.  Be liberal on the latter test, since
1226	 the worst that happens if we get it wrong is we issue an error
1227	 message.  */
1228
1229      c_len = TREE_STRING_LENGTH (TREE_PURPOSE (tail)) - 1;
1230      constraint = TREE_STRING_POINTER (TREE_PURPOSE (tail));
1231
1232      /* Allow the `=' or `+' to not be at the beginning of the string,
1233	 since it wasn't explicitly documented that way, and there is a
1234	 large body of code that puts it last.  Swap the character to
1235	 the front, so as not to uglify any place else.  */
1236      switch (c_len)
1237	{
1238	default:
1239	  if ((p = strchr (constraint, '=')) != NULL)
1240	    break;
1241	  if ((p = strchr (constraint, '+')) != NULL)
1242	    break;
1243	case 0:
1244	  error ("output operand constraint lacks `='");
1245	  return;
1246	}
1247
1248      if (p != constraint)
1249	{
1250	  j = *p;
1251	  bcopy (constraint, constraint+1, p-constraint);
1252	  *constraint = j;
1253
1254	  warning ("output constraint `%c' for operand %d is not at the beginning", j, i);
1255	}
1256
1257      is_inout = constraint[0] == '+';
1258      /* Replace '+' with '='.  */
1259      constraint[0] = '=';
1260      /* Make sure we can specify the matching operand.  */
1261      if (is_inout && i > 9)
1262	{
1263	  error ("output operand constraint %d contains `+'", i);
1264	  return;
1265	}
1266
1267      for (j = 1; j < c_len; j++)
1268	switch (constraint[j])
1269	  {
1270	  case '+':
1271	  case '=':
1272	    error ("operand constraint contains '+' or '=' at illegal position.");
1273	    return;
1274
1275	  case '%':
1276	    if (i + 1 == ninputs + noutputs)
1277	      {
1278		error ("`%%' constraint used with last operand");
1279		return;
1280	      }
1281	    break;
1282
1283	  case '?':  case '!':  case '*':  case '&':
1284	  case 'E':  case 'F':  case 'G':  case 'H':
1285	  case 's':  case 'i':  case 'n':
1286	  case 'I':  case 'J':  case 'K':  case 'L':  case 'M':
1287	  case 'N':  case 'O':  case 'P':  case ',':
1288#ifdef EXTRA_CONSTRAINT
1289	  case 'Q':  case 'R':  case 'S':  case 'T':  case 'U':
1290#endif
1291	    break;
1292
1293	  case '0':  case '1':  case '2':  case '3':  case '4':
1294	  case '5':  case '6':  case '7':  case '8':  case '9':
1295	    error ("matching constraint not valid in output operand");
1296	    break;
1297
1298	  case 'V':  case 'm':  case 'o':
1299	    allows_mem = 1;
1300	    break;
1301
1302	  case '<':  case '>':
1303          /* ??? Before flow, auto inc/dec insns are not supposed to exist,
1304             excepting those that expand_call created.  So match memory
1305	     and hope.  */
1306	    allows_mem = 1;
1307	    break;
1308
1309	  case 'g':  case 'X':
1310	    allows_reg = 1;
1311	    allows_mem = 1;
1312	    break;
1313
1314	  case 'p': case 'r':
1315	  default:
1316	    allows_reg = 1;
1317	    break;
1318	  }
1319
1320      /* If an output operand is not a decl or indirect ref and our constraint
1321	 allows a register, make a temporary to act as an intermediate.
1322	 Make the asm insn write into that, then our caller will copy it to
1323	 the real output operand.  Likewise for promoted variables.  */
1324
1325      real_output_rtx[i] = NULL_RTX;
1326      if ((TREE_CODE (val) == INDIRECT_REF
1327	   && allows_mem)
1328	  || (TREE_CODE_CLASS (TREE_CODE (val)) == 'd'
1329	      && (allows_mem || GET_CODE (DECL_RTL (val)) == REG)
1330	      && ! (GET_CODE (DECL_RTL (val)) == REG
1331		    && GET_MODE (DECL_RTL (val)) != TYPE_MODE (type)))
1332	  || ! allows_reg
1333	  || is_inout)
1334	{
1335	  if (! allows_reg)
1336	    mark_addressable (TREE_VALUE (tail));
1337
1338	  output_rtx[i]
1339	    = expand_expr (TREE_VALUE (tail), NULL_RTX, VOIDmode,
1340			   EXPAND_MEMORY_USE_WO);
1341
1342	  if (! allows_reg && GET_CODE (output_rtx[i]) != MEM)
1343	    error ("output number %d not directly addressable", i);
1344	  if (! allows_mem && GET_CODE (output_rtx[i]) == MEM)
1345	    {
1346    	      real_output_rtx[i] = protect_from_queue (output_rtx[i], 1);
1347	      output_rtx[i] = gen_reg_rtx (GET_MODE (output_rtx[i]));
1348	      if (is_inout)
1349		emit_move_insn (output_rtx[i], real_output_rtx[i]);
1350	    }
1351	}
1352      else
1353	{
1354	  output_rtx[i] = assign_temp (type, 0, 0, 0);
1355	  TREE_VALUE (tail) = make_tree (type, output_rtx[i]);
1356	}
1357
1358      if (is_inout)
1359	{
1360	  inout_mode[ninout] = TYPE_MODE (TREE_TYPE (TREE_VALUE (tail)));
1361	  inout_opnum[ninout++] = i;
1362	}
1363    }
1364
1365  ninputs += ninout;
1366  if (ninputs + noutputs > MAX_RECOG_OPERANDS)
1367    {
1368      error ("more than %d operands in `asm'", MAX_RECOG_OPERANDS);
1369      return;
1370    }
1371
1372  /* Make vectors for the expression-rtx and constraint strings.  */
1373
1374  argvec = rtvec_alloc (ninputs);
1375  constraints = rtvec_alloc (ninputs);
1376
1377  body = gen_rtx_ASM_OPERANDS (VOIDmode,
1378			       TREE_STRING_POINTER (string), "", 0, argvec,
1379			       constraints, filename, line);
1380
1381  MEM_VOLATILE_P (body) = vol;
1382
1383  /* Eval the inputs and put them into ARGVEC.
1384     Put their constraints into ASM_INPUTs and store in CONSTRAINTS.  */
1385
1386  i = 0;
1387  for (tail = inputs; tail; tail = TREE_CHAIN (tail))
1388    {
1389      int j;
1390      int allows_reg = 0, allows_mem = 0;
1391      char *constraint, *orig_constraint;
1392      int c_len;
1393      rtx op;
1394
1395      /* If there's an erroneous arg, emit no insn,
1396	 because the ASM_INPUT would get VOIDmode
1397	 and that could cause a crash in reload.  */
1398      if (TREE_TYPE (TREE_VALUE (tail)) == error_mark_node)
1399	return;
1400
1401      /* ??? Can this happen, and does the error message make any sense? */
1402      if (TREE_PURPOSE (tail) == NULL_TREE)
1403	{
1404	  error ("hard register `%s' listed as input operand to `asm'",
1405		 TREE_STRING_POINTER (TREE_VALUE (tail)) );
1406	  return;
1407	}
1408
1409      c_len = TREE_STRING_LENGTH (TREE_PURPOSE (tail)) - 1;
1410      constraint = TREE_STRING_POINTER (TREE_PURPOSE (tail));
1411      orig_constraint = constraint;
1412
1413      /* Make sure constraint has neither `=', `+', nor '&'.  */
1414
1415      for (j = 0; j < c_len; j++)
1416	switch (constraint[j])
1417	  {
1418	  case '+':  case '=':  case '&':
1419	    if (constraint == orig_constraint)
1420	      {
1421	        error ("input operand constraint contains `%c'", constraint[j]);
1422	        return;
1423	      }
1424	    break;
1425
1426	  case '%':
1427	    if (constraint == orig_constraint
1428		&& i + 1 == ninputs - ninout)
1429	      {
1430		error ("`%%' constraint used with last operand");
1431		return;
1432	      }
1433	    break;
1434
1435	  case 'V':  case 'm':  case 'o':
1436	    allows_mem = 1;
1437	    break;
1438
1439	  case '<':  case '>':
1440	  case '?':  case '!':  case '*':
1441	  case 'E':  case 'F':  case 'G':  case 'H':  case 'X':
1442	  case 's':  case 'i':  case 'n':
1443	  case 'I':  case 'J':  case 'K':  case 'L':  case 'M':
1444	  case 'N':  case 'O':  case 'P':  case ',':
1445#ifdef EXTRA_CONSTRAINT
1446	  case 'Q':  case 'R':  case 'S':  case 'T':  case 'U':
1447#endif
1448	    break;
1449
1450	    /* Whether or not a numeric constraint allows a register is
1451	       decided by the matching constraint, and so there is no need
1452	       to do anything special with them.  We must handle them in
1453	       the default case, so that we don't unnecessarily force
1454	       operands to memory.  */
1455	  case '0':  case '1':  case '2':  case '3':  case '4':
1456	  case '5':  case '6':  case '7':  case '8':  case '9':
1457	    if (constraint[j] >= '0' + noutputs)
1458	      {
1459		error
1460		  ("matching constraint references invalid operand number");
1461		return;
1462	      }
1463
1464	    /* Try and find the real constraint for this dup.  */
1465	    if ((j == 0 && c_len == 1)
1466		|| (j == 1 && c_len == 2 && constraint[0] == '%'))
1467	      {
1468		tree o = outputs;
1469		for (j = constraint[j] - '0'; j > 0; --j)
1470		  o = TREE_CHAIN (o);
1471
1472		c_len = TREE_STRING_LENGTH (TREE_PURPOSE (o)) - 1;
1473		constraint = TREE_STRING_POINTER (TREE_PURPOSE (o));
1474		j = 0;
1475		break;
1476	      }
1477
1478	    /* ... fall through ... */
1479
1480	  case 'p':  case 'r':
1481	  default:
1482	    allows_reg = 1;
1483	    break;
1484
1485	  case 'g':
1486	    allows_reg = 1;
1487	    allows_mem = 1;
1488	    break;
1489	  }
1490
1491      if (! allows_reg && allows_mem)
1492	mark_addressable (TREE_VALUE (tail));
1493
1494      op = expand_expr (TREE_VALUE (tail), NULL_RTX, VOIDmode, 0);
1495
1496      if (asm_operand_ok (op, constraint) <= 0)
1497	{
1498	  if (allows_reg)
1499	    op = force_reg (TYPE_MODE (TREE_TYPE (TREE_VALUE (tail))), op);
1500	  else if (!allows_mem)
1501	    warning ("asm operand %d probably doesn't match constraints", i);
1502	  else if (CONSTANT_P (op))
1503	    op = force_const_mem (TYPE_MODE (TREE_TYPE (TREE_VALUE (tail))),
1504				  op);
1505	  else if (GET_CODE (op) == REG
1506		   || GET_CODE (op) == SUBREG
1507		   || GET_CODE (op) == CONCAT)
1508	    {
1509	      tree type = TREE_TYPE (TREE_VALUE (tail));
1510	      rtx memloc = assign_temp (type, 1, 1, 1);
1511
1512	      emit_move_insn (memloc, op);
1513	      op = memloc;
1514	    }
1515	  else if (GET_CODE (op) == MEM && MEM_VOLATILE_P (op))
1516	    /* We won't recognize volatile memory as available a
1517	       memory_operand at this point.  Ignore it.  */
1518	    ;
1519	  else if (queued_subexp_p (op))
1520	    ;
1521	  else
1522	    /* ??? Leave this only until we have experience with what
1523	       happens in combine and elsewhere when constraints are
1524	       not satisfied.  */
1525	    warning ("asm operand %d probably doesn't match constraints", i);
1526	}
1527      XVECEXP (body, 3, i) = op;
1528
1529      XVECEXP (body, 4, i)      /* constraints */
1530	= gen_rtx_ASM_INPUT (TYPE_MODE (TREE_TYPE (TREE_VALUE (tail))),
1531			     orig_constraint);
1532      i++;
1533    }
1534
1535  /* Protect all the operands from the queue,
1536     now that they have all been evaluated.  */
1537
1538  for (i = 0; i < ninputs - ninout; i++)
1539    XVECEXP (body, 3, i) = protect_from_queue (XVECEXP (body, 3, i), 0);
1540
1541  for (i = 0; i < noutputs; i++)
1542    output_rtx[i] = protect_from_queue (output_rtx[i], 1);
1543
1544  /* For in-out operands, copy output rtx to input rtx. */
1545  for (i = 0; i < ninout; i++)
1546    {
1547      static char match[9+1][2]
1548	= {"0", "1", "2", "3", "4", "5", "6", "7", "8", "9"};
1549      int j = inout_opnum[i];
1550
1551      XVECEXP (body, 3, ninputs - ninout + i)      /* argvec */
1552	= output_rtx[j];
1553      XVECEXP (body, 4, ninputs - ninout + i)      /* constraints */
1554	= gen_rtx_ASM_INPUT (inout_mode[j], match[j]);
1555    }
1556
1557  /* Now, for each output, construct an rtx
1558     (set OUTPUT (asm_operands INSN OUTPUTNUMBER OUTPUTCONSTRAINT
1559			       ARGVEC CONSTRAINTS))
1560     If there is more than one, put them inside a PARALLEL.  */
1561
1562  if (noutputs == 1 && nclobbers == 0)
1563    {
1564      XSTR (body, 1) = TREE_STRING_POINTER (TREE_PURPOSE (outputs));
1565      insn = emit_insn (gen_rtx_SET (VOIDmode, output_rtx[0], body));
1566    }
1567  else if (noutputs == 0 && nclobbers == 0)
1568    {
1569      /* No output operands: put in a raw ASM_OPERANDS rtx.  */
1570      insn = emit_insn (body);
1571    }
1572  else
1573    {
1574      rtx obody = body;
1575      int num = noutputs;
1576      if (num == 0) num = 1;
1577      body = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (num + nclobbers));
1578
1579      /* For each output operand, store a SET.  */
1580
1581      for (i = 0, tail = outputs; tail; tail = TREE_CHAIN (tail), i++)
1582	{
1583	  XVECEXP (body, 0, i)
1584	    = gen_rtx_SET (VOIDmode,
1585			   output_rtx[i],
1586			   gen_rtx_ASM_OPERANDS (VOIDmode,
1587						 TREE_STRING_POINTER (string),
1588						 TREE_STRING_POINTER (TREE_PURPOSE (tail)),
1589						 i, argvec, constraints,
1590						 filename, line));
1591	  MEM_VOLATILE_P (SET_SRC (XVECEXP (body, 0, i))) = vol;
1592	}
1593
1594      /* If there are no outputs (but there are some clobbers)
1595	 store the bare ASM_OPERANDS into the PARALLEL.  */
1596
1597      if (i == 0)
1598	XVECEXP (body, 0, i++) = obody;
1599
1600      /* Store (clobber REG) for each clobbered register specified.  */
1601
1602      for (tail = clobbers; tail; tail = TREE_CHAIN (tail))
1603	{
1604	  char *regname = TREE_STRING_POINTER (TREE_VALUE (tail));
1605	  int j = decode_reg_name (regname);
1606
1607	  if (j < 0)
1608	    {
1609	      if (j == -3)	/* `cc', which is not a register */
1610		continue;
1611
1612	      if (j == -4)	/* `memory', don't cache memory across asm */
1613		{
1614		  XVECEXP (body, 0, i++)
1615		    = gen_rtx_CLOBBER (VOIDmode,
1616				       gen_rtx_MEM (BLKmode,
1617						    gen_rtx_SCRATCH (VOIDmode)));
1618		  continue;
1619		}
1620
1621	      /* Ignore unknown register, error already signaled.  */
1622	      continue;
1623	    }
1624
1625	  /* Use QImode since that's guaranteed to clobber just one reg.  */
1626	  XVECEXP (body, 0, i++)
1627	    = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (QImode, j));
1628	}
1629
1630      insn = emit_insn (body);
1631    }
1632
1633  /* For any outputs that needed reloading into registers, spill them
1634     back to where they belong.  */
1635  for (i = 0; i < noutputs; ++i)
1636    if (real_output_rtx[i])
1637      emit_move_insn (real_output_rtx[i], output_rtx[i]);
1638
1639  free_temp_slots ();
1640}
1641
1642/* Generate RTL to evaluate the expression EXP
1643   and remember it in case this is the VALUE in a ({... VALUE; }) constr.  */
1644
1645void
1646expand_expr_stmt (exp)
1647     tree exp;
1648{
1649  /* If -W, warn about statements with no side effects,
1650     except for an explicit cast to void (e.g. for assert()), and
1651     except inside a ({...}) where they may be useful.  */
1652  if (expr_stmts_for_value == 0 && exp != error_mark_node)
1653    {
1654      if (! TREE_SIDE_EFFECTS (exp) && (extra_warnings || warn_unused)
1655	  && !(TREE_CODE (exp) == CONVERT_EXPR
1656	       && TREE_TYPE (exp) == void_type_node))
1657	warning_with_file_and_line (emit_filename, emit_lineno,
1658				    "statement with no effect");
1659      else if (warn_unused)
1660	warn_if_unused_value (exp);
1661    }
1662
1663  /* If EXP is of function type and we are expanding statements for
1664     value, convert it to pointer-to-function.  */
1665  if (expr_stmts_for_value && TREE_CODE (TREE_TYPE (exp)) == FUNCTION_TYPE)
1666    exp = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (exp)), exp);
1667
1668  last_expr_type = TREE_TYPE (exp);
1669  last_expr_value = expand_expr (exp,
1670				 (expr_stmts_for_value
1671				  ? NULL_RTX : const0_rtx),
1672				 VOIDmode, 0);
1673
1674  /* If all we do is reference a volatile value in memory,
1675     copy it to a register to be sure it is actually touched.  */
1676  if (last_expr_value != 0 && GET_CODE (last_expr_value) == MEM
1677      && TREE_THIS_VOLATILE (exp))
1678    {
1679      if (TYPE_MODE (TREE_TYPE (exp)) == VOIDmode)
1680	;
1681      else if (TYPE_MODE (TREE_TYPE (exp)) != BLKmode)
1682	copy_to_reg (last_expr_value);
1683      else
1684	{
1685	  rtx lab = gen_label_rtx ();
1686
1687	  /* Compare the value with itself to reference it.  */
1688	  emit_cmp_and_jump_insns (last_expr_value, last_expr_value, EQ,
1689				   expand_expr (TYPE_SIZE (last_expr_type),
1690						NULL_RTX, VOIDmode, 0),
1691				   BLKmode, 0,
1692				   TYPE_ALIGN (last_expr_type) / BITS_PER_UNIT,
1693				   lab);
1694	  emit_label (lab);
1695	}
1696    }
1697
1698  /* If this expression is part of a ({...}) and is in memory, we may have
1699     to preserve temporaries.  */
1700  preserve_temp_slots (last_expr_value);
1701
1702  /* Free any temporaries used to evaluate this expression.  Any temporary
1703     used as a result of this expression will already have been preserved
1704     above.  */
1705  free_temp_slots ();
1706
1707  emit_queue ();
1708}
1709
1710/* Warn if EXP contains any computations whose results are not used.
1711   Return 1 if a warning is printed; 0 otherwise.  */
1712
1713int
1714warn_if_unused_value (exp)
1715     tree exp;
1716{
1717  if (TREE_USED (exp))
1718    return 0;
1719
1720  switch (TREE_CODE (exp))
1721    {
1722    case PREINCREMENT_EXPR:
1723    case POSTINCREMENT_EXPR:
1724    case PREDECREMENT_EXPR:
1725    case POSTDECREMENT_EXPR:
1726    case MODIFY_EXPR:
1727    case INIT_EXPR:
1728    case TARGET_EXPR:
1729    case CALL_EXPR:
1730    case METHOD_CALL_EXPR:
1731    case RTL_EXPR:
1732    case TRY_CATCH_EXPR:
1733    case WITH_CLEANUP_EXPR:
1734    case EXIT_EXPR:
1735      /* We don't warn about COND_EXPR because it may be a useful
1736	 construct if either arm contains a side effect.  */
1737    case COND_EXPR:
1738      return 0;
1739
1740    case BIND_EXPR:
1741      /* For a binding, warn if no side effect within it.  */
1742      return warn_if_unused_value (TREE_OPERAND (exp, 1));
1743
1744    case SAVE_EXPR:
1745      return warn_if_unused_value (TREE_OPERAND (exp, 1));
1746
1747    case TRUTH_ORIF_EXPR:
1748    case TRUTH_ANDIF_EXPR:
1749      /* In && or ||, warn if 2nd operand has no side effect.  */
1750      return warn_if_unused_value (TREE_OPERAND (exp, 1));
1751
1752    case COMPOUND_EXPR:
1753      if (TREE_NO_UNUSED_WARNING (exp))
1754	return 0;
1755      if (warn_if_unused_value (TREE_OPERAND (exp, 0)))
1756	return 1;
1757      /* Let people do `(foo (), 0)' without a warning.  */
1758      if (TREE_CONSTANT (TREE_OPERAND (exp, 1)))
1759	return 0;
1760      return warn_if_unused_value (TREE_OPERAND (exp, 1));
1761
1762    case NOP_EXPR:
1763    case CONVERT_EXPR:
1764    case NON_LVALUE_EXPR:
1765      /* Don't warn about values cast to void.  */
1766      if (TREE_TYPE (exp) == void_type_node)
1767	return 0;
1768      /* Don't warn about conversions not explicit in the user's program.  */
1769      if (TREE_NO_UNUSED_WARNING (exp))
1770	return 0;
1771      /* Assignment to a cast usually results in a cast of a modify.
1772	 Don't complain about that.  There can be an arbitrary number of
1773	 casts before the modify, so we must loop until we find the first
1774	 non-cast expression and then test to see if that is a modify.  */
1775      {
1776	tree tem = TREE_OPERAND (exp, 0);
1777
1778	while (TREE_CODE (tem) == CONVERT_EXPR || TREE_CODE (tem) == NOP_EXPR)
1779	  tem = TREE_OPERAND (tem, 0);
1780
1781	if (TREE_CODE (tem) == MODIFY_EXPR || TREE_CODE (tem) == INIT_EXPR
1782	    || TREE_CODE (tem) == CALL_EXPR)
1783	  return 0;
1784      }
1785      goto warn;
1786
1787    case INDIRECT_REF:
1788      /* Don't warn about automatic dereferencing of references, since
1789	 the user cannot control it.  */
1790      if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == REFERENCE_TYPE)
1791	return warn_if_unused_value (TREE_OPERAND (exp, 0));
1792      /* ... fall through ...  */
1793
1794    default:
1795      /* Referencing a volatile value is a side effect, so don't warn.  */
1796      if ((TREE_CODE_CLASS (TREE_CODE (exp)) == 'd'
1797	   || TREE_CODE_CLASS (TREE_CODE (exp)) == 'r')
1798	  && TREE_THIS_VOLATILE (exp))
1799	return 0;
1800    warn:
1801      warning_with_file_and_line (emit_filename, emit_lineno,
1802				  "value computed is not used");
1803      return 1;
1804    }
1805}
1806
1807/* Clear out the memory of the last expression evaluated.  */
1808
1809void
1810clear_last_expr ()
1811{
1812  last_expr_type = 0;
1813}
1814
1815/* Begin a statement which will return a value.
1816   Return the RTL_EXPR for this statement expr.
1817   The caller must save that value and pass it to expand_end_stmt_expr.  */
1818
1819tree
1820expand_start_stmt_expr ()
1821{
1822  int momentary;
1823  tree t;
1824
1825  /* Make the RTL_EXPR node temporary, not momentary,
1826     so that rtl_expr_chain doesn't become garbage.  */
1827  momentary = suspend_momentary ();
1828  t = make_node (RTL_EXPR);
1829  resume_momentary (momentary);
1830  do_pending_stack_adjust ();
1831  start_sequence_for_rtl_expr (t);
1832  NO_DEFER_POP;
1833  expr_stmts_for_value++;
1834  return t;
1835}
1836
1837/* Restore the previous state at the end of a statement that returns a value.
1838   Returns a tree node representing the statement's value and the
1839   insns to compute the value.
1840
1841   The nodes of that expression have been freed by now, so we cannot use them.
1842   But we don't want to do that anyway; the expression has already been
1843   evaluated and now we just want to use the value.  So generate a RTL_EXPR
1844   with the proper type and RTL value.
1845
1846   If the last substatement was not an expression,
1847   return something with type `void'.  */
1848
1849tree
1850expand_end_stmt_expr (t)
1851     tree t;
1852{
1853  OK_DEFER_POP;
1854
1855  if (last_expr_type == 0)
1856    {
1857      last_expr_type = void_type_node;
1858      last_expr_value = const0_rtx;
1859    }
1860  else if (last_expr_value == 0)
1861    /* There are some cases where this can happen, such as when the
1862       statement is void type.  */
1863    last_expr_value = const0_rtx;
1864  else if (GET_CODE (last_expr_value) != REG && ! CONSTANT_P (last_expr_value))
1865    /* Remove any possible QUEUED.  */
1866    last_expr_value = protect_from_queue (last_expr_value, 0);
1867
1868  emit_queue ();
1869
1870  TREE_TYPE (t) = last_expr_type;
1871  RTL_EXPR_RTL (t) = last_expr_value;
1872  RTL_EXPR_SEQUENCE (t) = get_insns ();
1873
1874  rtl_expr_chain = tree_cons (NULL_TREE, t, rtl_expr_chain);
1875
1876  end_sequence ();
1877
1878  /* Don't consider deleting this expr or containing exprs at tree level.  */
1879  TREE_SIDE_EFFECTS (t) = 1;
1880  /* Propagate volatility of the actual RTL expr.  */
1881  TREE_THIS_VOLATILE (t) = volatile_refs_p (last_expr_value);
1882
1883  last_expr_type = 0;
1884  expr_stmts_for_value--;
1885
1886  return t;
1887}
1888
1889/* Generate RTL for the start of an if-then.  COND is the expression
1890   whose truth should be tested.
1891
1892   If EXITFLAG is nonzero, this conditional is visible to
1893   `exit_something'.  */
1894
1895void
1896expand_start_cond (cond, exitflag)
1897     tree cond;
1898     int exitflag;
1899{
1900  struct nesting *thiscond = ALLOC_NESTING ();
1901
1902  /* Make an entry on cond_stack for the cond we are entering.  */
1903
1904  thiscond->next = cond_stack;
1905  thiscond->all = nesting_stack;
1906  thiscond->depth = ++nesting_depth;
1907  thiscond->data.cond.next_label = gen_label_rtx ();
1908  /* Before we encounter an `else', we don't need a separate exit label
1909     unless there are supposed to be exit statements
1910     to exit this conditional.  */
1911  thiscond->exit_label = exitflag ? gen_label_rtx () : 0;
1912  thiscond->data.cond.endif_label = thiscond->exit_label;
1913  cond_stack = thiscond;
1914  nesting_stack = thiscond;
1915
1916  do_jump (cond, thiscond->data.cond.next_label, NULL_RTX);
1917}
1918
1919/* Generate RTL between then-clause and the elseif-clause
1920   of an if-then-elseif-....  */
1921
1922void
1923expand_start_elseif (cond)
1924     tree cond;
1925{
1926  if (cond_stack->data.cond.endif_label == 0)
1927    cond_stack->data.cond.endif_label = gen_label_rtx ();
1928  emit_jump (cond_stack->data.cond.endif_label);
1929  emit_label (cond_stack->data.cond.next_label);
1930  cond_stack->data.cond.next_label = gen_label_rtx ();
1931  do_jump (cond, cond_stack->data.cond.next_label, NULL_RTX);
1932}
1933
1934/* Generate RTL between the then-clause and the else-clause
1935   of an if-then-else.  */
1936
1937void
1938expand_start_else ()
1939{
1940  if (cond_stack->data.cond.endif_label == 0)
1941    cond_stack->data.cond.endif_label = gen_label_rtx ();
1942
1943  emit_jump (cond_stack->data.cond.endif_label);
1944  emit_label (cond_stack->data.cond.next_label);
1945  cond_stack->data.cond.next_label = 0;  /* No more _else or _elseif calls.  */
1946}
1947
1948/* After calling expand_start_else, turn this "else" into an "else if"
1949   by providing another condition.  */
1950
1951void
1952expand_elseif (cond)
1953     tree cond;
1954{
1955  cond_stack->data.cond.next_label = gen_label_rtx ();
1956  do_jump (cond, cond_stack->data.cond.next_label, NULL_RTX);
1957}
1958
1959/* Generate RTL for the end of an if-then.
1960   Pop the record for it off of cond_stack.  */
1961
1962void
1963expand_end_cond ()
1964{
1965  struct nesting *thiscond = cond_stack;
1966
1967  do_pending_stack_adjust ();
1968  if (thiscond->data.cond.next_label)
1969    emit_label (thiscond->data.cond.next_label);
1970  if (thiscond->data.cond.endif_label)
1971    emit_label (thiscond->data.cond.endif_label);
1972
1973  POPSTACK (cond_stack);
1974  last_expr_type = 0;
1975}
1976
1977
1978
1979/* Generate RTL for the start of a loop.  EXIT_FLAG is nonzero if this
1980   loop should be exited by `exit_something'.  This is a loop for which
1981   `expand_continue' will jump to the top of the loop.
1982
1983   Make an entry on loop_stack to record the labels associated with
1984   this loop.  */
1985
1986struct nesting *
1987expand_start_loop (exit_flag)
1988     int exit_flag;
1989{
1990  register struct nesting *thisloop = ALLOC_NESTING ();
1991
1992  /* Make an entry on loop_stack for the loop we are entering.  */
1993
1994  thisloop->next = loop_stack;
1995  thisloop->all = nesting_stack;
1996  thisloop->depth = ++nesting_depth;
1997  thisloop->data.loop.start_label = gen_label_rtx ();
1998  thisloop->data.loop.end_label = gen_label_rtx ();
1999  thisloop->data.loop.alt_end_label = 0;
2000  thisloop->data.loop.continue_label = thisloop->data.loop.start_label;
2001  thisloop->exit_label = exit_flag ? thisloop->data.loop.end_label : 0;
2002  loop_stack = thisloop;
2003  nesting_stack = thisloop;
2004
2005  do_pending_stack_adjust ();
2006  emit_queue ();
2007  emit_note (NULL_PTR, NOTE_INSN_LOOP_BEG);
2008  emit_label (thisloop->data.loop.start_label);
2009
2010  return thisloop;
2011}
2012
2013/* Like expand_start_loop but for a loop where the continuation point
2014   (for expand_continue_loop) will be specified explicitly.  */
2015
2016struct nesting *
2017expand_start_loop_continue_elsewhere (exit_flag)
2018     int exit_flag;
2019{
2020  struct nesting *thisloop = expand_start_loop (exit_flag);
2021  loop_stack->data.loop.continue_label = gen_label_rtx ();
2022  return thisloop;
2023}
2024
2025/* Specify the continuation point for a loop started with
2026   expand_start_loop_continue_elsewhere.
2027   Use this at the point in the code to which a continue statement
2028   should jump.  */
2029
2030void
2031expand_loop_continue_here ()
2032{
2033  do_pending_stack_adjust ();
2034  emit_note (NULL_PTR, NOTE_INSN_LOOP_CONT);
2035  emit_label (loop_stack->data.loop.continue_label);
2036}
2037
2038/* Finish a loop.  Generate a jump back to the top and the loop-exit label.
2039   Pop the block off of loop_stack.  */
2040
2041void
2042expand_end_loop ()
2043{
2044  rtx start_label = loop_stack->data.loop.start_label;
2045  rtx insn = get_last_insn ();
2046  int needs_end_jump = 1;
2047
2048  /* Mark the continue-point at the top of the loop if none elsewhere.  */
2049  if (start_label == loop_stack->data.loop.continue_label)
2050    emit_note_before (NOTE_INSN_LOOP_CONT, start_label);
2051
2052  do_pending_stack_adjust ();
2053
2054  /* If optimizing, perhaps reorder the loop.
2055     First, try to use a condjump near the end.
2056     expand_exit_loop_if_false ends loops with unconditional jumps,
2057     like this:
2058
2059     if (test) goto label;
2060     optional: cleanup
2061     goto loop_stack->data.loop.end_label
2062     barrier
2063     label:
2064
2065     If we find such a pattern, we can end the loop earlier.  */
2066
2067  if (optimize
2068      && GET_CODE (insn) == CODE_LABEL
2069      && LABEL_NAME (insn) == NULL
2070      && GET_CODE (PREV_INSN (insn)) == BARRIER)
2071    {
2072      rtx label = insn;
2073      rtx jump = PREV_INSN (PREV_INSN (label));
2074
2075      if (GET_CODE (jump) == JUMP_INSN
2076	  && GET_CODE (PATTERN (jump)) == SET
2077	  && SET_DEST (PATTERN (jump)) == pc_rtx
2078	  && GET_CODE (SET_SRC (PATTERN (jump))) == LABEL_REF
2079	  && (XEXP (SET_SRC (PATTERN (jump)), 0)
2080	      == loop_stack->data.loop.end_label))
2081	{
2082	  rtx prev;
2083
2084	  /* The test might be complex and reference LABEL multiple times,
2085	     like the loop in loop_iterations to set vtop.  To handle this,
2086	     we move LABEL.  */
2087	  insn = PREV_INSN (label);
2088	  reorder_insns (label, label, start_label);
2089
2090	  for (prev = PREV_INSN (jump); ; prev = PREV_INSN (prev))
2091	   {
2092	      /* We ignore line number notes, but if we see any other note,
2093		 in particular NOTE_INSN_BLOCK_*, NOTE_INSN_EH_REGION_*,
2094		 NOTE_INSN_LOOP_*, we disable this optimization.  */
2095	      if (GET_CODE (prev) == NOTE)
2096		{
2097		  if (NOTE_LINE_NUMBER (prev) < 0)
2098		    break;
2099		  continue;
2100		}
2101	      if (GET_CODE (prev) == CODE_LABEL)
2102		break;
2103	      if (GET_CODE (prev) == JUMP_INSN)
2104		{
2105		  if (GET_CODE (PATTERN (prev)) == SET
2106		      && SET_DEST (PATTERN (prev)) == pc_rtx
2107		      && GET_CODE (SET_SRC (PATTERN (prev))) == IF_THEN_ELSE
2108		      && (GET_CODE (XEXP (SET_SRC (PATTERN (prev)), 1))
2109			  == LABEL_REF)
2110		      && XEXP (XEXP (SET_SRC (PATTERN (prev)), 1), 0) == label)
2111		    {
2112		      XEXP (XEXP (SET_SRC (PATTERN (prev)), 1), 0)
2113			= start_label;
2114		      emit_note_after (NOTE_INSN_LOOP_END, prev);
2115		      needs_end_jump = 0;
2116		    }
2117		  break;
2118		}
2119	   }
2120	}
2121    }
2122
2123     /* If the loop starts with a loop exit, roll that to the end where
2124     it will optimize together with the jump back.
2125
2126     We look for the conditional branch to the exit, except that once
2127     we find such a branch, we don't look past 30 instructions.
2128
2129     In more detail, if the loop presently looks like this (in pseudo-C):
2130
2131         start_label:
2132         if (test) goto end_label;
2133	 body;
2134	 goto start_label;
2135	 end_label:
2136
2137     transform it to look like:
2138
2139         goto start_label;
2140         newstart_label:
2141	 body;
2142	 start_label:
2143	 if (test) goto end_label;
2144	 goto newstart_label;
2145	 end_label:
2146
2147     Here, the `test' may actually consist of some reasonably complex
2148     code, terminating in a test.  */
2149
2150  if (optimize
2151      && needs_end_jump
2152      &&
2153      ! (GET_CODE (insn) == JUMP_INSN
2154	 && GET_CODE (PATTERN (insn)) == SET
2155	 && SET_DEST (PATTERN (insn)) == pc_rtx
2156	 && GET_CODE (SET_SRC (PATTERN (insn))) == IF_THEN_ELSE))
2157    {
2158      int eh_regions = 0;
2159      int num_insns = 0;
2160      rtx last_test_insn = NULL_RTX;
2161
2162      /* Scan insns from the top of the loop looking for a qualified
2163	 conditional exit.  */
2164      for (insn = NEXT_INSN (loop_stack->data.loop.start_label); insn;
2165	   insn = NEXT_INSN (insn))
2166	{
2167	  if (GET_CODE (insn) == NOTE)
2168	    {
2169	      if (optimize < 2
2170		  && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG
2171		      || NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END))
2172		/* The code that actually moves the exit test will
2173		   carefully leave BLOCK notes in their original
2174		   location.  That means, however, that we can't debug
2175		   the exit test itself.  So, we refuse to move code
2176		   containing BLOCK notes at low optimization levels.  */
2177		break;
2178
2179	      if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
2180		++eh_regions;
2181	      else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END)
2182		{
2183		  --eh_regions;
2184		  if (eh_regions < 0)
2185		    /* We've come to the end of an EH region, but
2186		       never saw the beginning of that region.  That
2187		       means that an EH region begins before the top
2188		       of the loop, and ends in the middle of it.  The
2189		       existence of such a situation violates a basic
2190		       assumption in this code, since that would imply
2191		       that even when EH_REGIONS is zero, we might
2192		       move code out of an exception region.  */
2193		    abort ();
2194		}
2195
2196	      /* We must not walk into a nested loop.  */
2197	      if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
2198		break;
2199
2200	      /* We already know this INSN is a NOTE, so there's no
2201		 point in looking at it to see if it's a JUMP.  */
2202	      continue;
2203	    }
2204
2205	  if (GET_CODE (insn) == JUMP_INSN || GET_CODE (insn) == INSN)
2206	    num_insns++;
2207
2208	  if (last_test_insn && num_insns > 30)
2209	    break;
2210
2211	  if (eh_regions > 0)
2212	    /* We don't want to move a partial EH region.  Consider:
2213
2214		  while ( ( { try {
2215				if (cond ()) 0;
2216				else {
2217				  bar();
2218				  1;
2219				}
2220			      } catch (...) {
2221				1;
2222			      } )) {
2223		     body;
2224		  }
2225
2226	        This isn't legal C++, but here's what it's supposed to
2227	        mean: if cond() is true, stop looping.  Otherwise,
2228	        call bar, and keep looping.  In addition, if cond
2229	        throws an exception, catch it and keep looping. Such
2230	        constructs are certainy legal in LISP.
2231
2232		We should not move the `if (cond()) 0' test since then
2233		the EH-region for the try-block would be broken up.
2234		(In this case we would the EH_BEG note for the `try'
2235		and `if cond()' but not the call to bar() or the
2236		EH_END note.)
2237
2238	        So we don't look for tests within an EH region.  */
2239	    continue;
2240
2241	  if (GET_CODE (insn) == JUMP_INSN
2242	      && GET_CODE (PATTERN (insn)) == SET
2243	      && SET_DEST (PATTERN (insn)) == pc_rtx)
2244	    {
2245	      /* This is indeed a jump.  */
2246	      rtx dest1 = NULL_RTX;
2247	      rtx dest2 = NULL_RTX;
2248	      rtx potential_last_test;
2249	      if (GET_CODE (SET_SRC (PATTERN (insn))) == IF_THEN_ELSE)
2250		{
2251		  /* A conditional jump.  */
2252		  dest1 = XEXP (SET_SRC (PATTERN (insn)), 1);
2253		  dest2 = XEXP (SET_SRC (PATTERN (insn)), 2);
2254		  potential_last_test = insn;
2255		}
2256	      else
2257		{
2258		  /* An unconditional jump.  */
2259		  dest1 = SET_SRC (PATTERN (insn));
2260		  /* Include the BARRIER after the JUMP.  */
2261		  potential_last_test = NEXT_INSN (insn);
2262		}
2263
2264	      do {
2265		if (dest1 && GET_CODE (dest1) == LABEL_REF
2266		    && ((XEXP (dest1, 0)
2267			 == loop_stack->data.loop.alt_end_label)
2268			|| (XEXP (dest1, 0)
2269			    == loop_stack->data.loop.end_label)))
2270		  {
2271		    last_test_insn = potential_last_test;
2272		    break;
2273		  }
2274
2275		/* If this was a conditional jump, there may be
2276		   another label at which we should look.  */
2277		dest1 = dest2;
2278		dest2 = NULL_RTX;
2279	      } while (dest1);
2280	    }
2281	}
2282
2283      if (last_test_insn != 0 && last_test_insn != get_last_insn ())
2284	{
2285	  /* We found one.  Move everything from there up
2286	     to the end of the loop, and add a jump into the loop
2287	     to jump to there.  */
2288	  register rtx newstart_label = gen_label_rtx ();
2289	  register rtx start_move = start_label;
2290	  rtx next_insn;
2291
2292	  /* If the start label is preceded by a NOTE_INSN_LOOP_CONT note,
2293	     then we want to move this note also.  */
2294	  if (GET_CODE (PREV_INSN (start_move)) == NOTE
2295	      && (NOTE_LINE_NUMBER (PREV_INSN (start_move))
2296		  == NOTE_INSN_LOOP_CONT))
2297	    start_move = PREV_INSN (start_move);
2298
2299	  emit_label_after (newstart_label, PREV_INSN (start_move));
2300
2301	  /* Actually move the insns.  Start at the beginning, and
2302	     keep copying insns until we've copied the
2303	     last_test_insn.  */
2304	  for (insn = start_move; insn; insn = next_insn)
2305	    {
2306	      /* Figure out which insn comes after this one.  We have
2307		 to do this before we move INSN.  */
2308	      if (insn == last_test_insn)
2309		/* We've moved all the insns.  */
2310		next_insn = NULL_RTX;
2311	      else
2312		next_insn = NEXT_INSN (insn);
2313
2314	      if (GET_CODE (insn) == NOTE
2315		  && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG
2316		      || NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END))
2317		/* We don't want to move NOTE_INSN_BLOCK_BEGs or
2318		   NOTE_INSN_BLOCK_ENDs because the correct generation
2319		   of debugging information depends on these appearing
2320		   in the same order in the RTL and in the tree
2321		   structure, where they are represented as BLOCKs.
2322		   So, we don't move block notes.  Of course, moving
2323		   the code inside the block is likely to make it
2324		   impossible to debug the instructions in the exit
2325		   test, but such is the price of optimization.  */
2326		continue;
2327
2328	      /* Move the INSN.  */
2329	      reorder_insns (insn, insn, get_last_insn ());
2330	    }
2331
2332	  emit_jump_insn_after (gen_jump (start_label),
2333				PREV_INSN (newstart_label));
2334	  emit_barrier_after (PREV_INSN (newstart_label));
2335	  start_label = newstart_label;
2336	}
2337    }
2338
2339  if (needs_end_jump)
2340    {
2341      emit_jump (start_label);
2342      emit_note (NULL_PTR, NOTE_INSN_LOOP_END);
2343    }
2344  emit_label (loop_stack->data.loop.end_label);
2345
2346  POPSTACK (loop_stack);
2347
2348  last_expr_type = 0;
2349}
2350
2351/* Generate a jump to the current loop's continue-point.
2352   This is usually the top of the loop, but may be specified
2353   explicitly elsewhere.  If not currently inside a loop,
2354   return 0 and do nothing; caller will print an error message.  */
2355
2356int
2357expand_continue_loop (whichloop)
2358     struct nesting *whichloop;
2359{
2360  last_expr_type = 0;
2361  if (whichloop == 0)
2362    whichloop = loop_stack;
2363  if (whichloop == 0)
2364    return 0;
2365  expand_goto_internal (NULL_TREE, whichloop->data.loop.continue_label,
2366			NULL_RTX);
2367  return 1;
2368}
2369
2370/* Generate a jump to exit the current loop.  If not currently inside a loop,
2371   return 0 and do nothing; caller will print an error message.  */
2372
2373int
2374expand_exit_loop (whichloop)
2375     struct nesting *whichloop;
2376{
2377  last_expr_type = 0;
2378  if (whichloop == 0)
2379    whichloop = loop_stack;
2380  if (whichloop == 0)
2381    return 0;
2382  expand_goto_internal (NULL_TREE, whichloop->data.loop.end_label, NULL_RTX);
2383  return 1;
2384}
2385
2386/* Generate a conditional jump to exit the current loop if COND
2387   evaluates to zero.  If not currently inside a loop,
2388   return 0 and do nothing; caller will print an error message.  */
2389
2390int
2391expand_exit_loop_if_false (whichloop, cond)
2392     struct nesting *whichloop;
2393     tree cond;
2394{
2395  rtx label = gen_label_rtx ();
2396  rtx last_insn;
2397  last_expr_type = 0;
2398
2399  if (whichloop == 0)
2400    whichloop = loop_stack;
2401  if (whichloop == 0)
2402    return 0;
2403  /* In order to handle fixups, we actually create a conditional jump
2404     around a unconditional branch to exit the loop.  If fixups are
2405     necessary, they go before the unconditional branch.  */
2406
2407
2408  do_jump (cond, NULL_RTX, label);
2409  last_insn = get_last_insn ();
2410  if (GET_CODE (last_insn) == CODE_LABEL)
2411    whichloop->data.loop.alt_end_label = last_insn;
2412  expand_goto_internal (NULL_TREE, whichloop->data.loop.end_label,
2413			NULL_RTX);
2414  emit_label (label);
2415
2416  return 1;
2417}
2418
2419/* Return nonzero if the loop nest is empty.  Else return zero.  */
2420
2421int
2422stmt_loop_nest_empty ()
2423{
2424  return (loop_stack == NULL);
2425}
2426
2427/* Return non-zero if we should preserve sub-expressions as separate
2428   pseudos.  We never do so if we aren't optimizing.  We always do so
2429   if -fexpensive-optimizations.
2430
2431   Otherwise, we only do so if we are in the "early" part of a loop.  I.e.,
2432   the loop may still be a small one.  */
2433
2434int
2435preserve_subexpressions_p ()
2436{
2437  rtx insn;
2438
2439  if (flag_expensive_optimizations)
2440    return 1;
2441
2442  if (optimize == 0 || loop_stack == 0)
2443    return 0;
2444
2445  insn = get_last_insn_anywhere ();
2446
2447  return (insn
2448	  && (INSN_UID (insn) - INSN_UID (loop_stack->data.loop.start_label)
2449	      < n_non_fixed_regs * 3));
2450
2451}
2452
2453/* Generate a jump to exit the current loop, conditional, binding contour
2454   or case statement.  Not all such constructs are visible to this function,
2455   only those started with EXIT_FLAG nonzero.  Individual languages use
2456   the EXIT_FLAG parameter to control which kinds of constructs you can
2457   exit this way.
2458
2459   If not currently inside anything that can be exited,
2460   return 0 and do nothing; caller will print an error message.  */
2461
2462int
2463expand_exit_something ()
2464{
2465  struct nesting *n;
2466  last_expr_type = 0;
2467  for (n = nesting_stack; n; n = n->all)
2468    if (n->exit_label != 0)
2469      {
2470	expand_goto_internal (NULL_TREE, n->exit_label, NULL_RTX);
2471	return 1;
2472      }
2473
2474  return 0;
2475}
2476
2477/* Generate RTL to return from the current function, with no value.
2478   (That is, we do not do anything about returning any value.)  */
2479
2480void
2481expand_null_return ()
2482{
2483  struct nesting *block = block_stack;
2484  rtx last_insn = 0;
2485
2486  /* Does any pending block have cleanups?  */
2487
2488  while (block && block->data.block.cleanups == 0)
2489    block = block->next;
2490
2491  /* If yes, use a goto to return, since that runs cleanups.  */
2492
2493  expand_null_return_1 (last_insn, block != 0);
2494}
2495
2496/* Generate RTL to return from the current function, with value VAL.  */
2497
2498static void
2499expand_value_return (val)
2500     rtx val;
2501{
2502  struct nesting *block = block_stack;
2503  rtx last_insn = get_last_insn ();
2504  rtx return_reg = DECL_RTL (DECL_RESULT (current_function_decl));
2505
2506  /* Copy the value to the return location
2507     unless it's already there.  */
2508
2509  if (return_reg != val)
2510    {
2511#ifdef PROMOTE_FUNCTION_RETURN
2512      tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
2513      int unsignedp = TREE_UNSIGNED (type);
2514      enum machine_mode old_mode
2515	= DECL_MODE (DECL_RESULT (current_function_decl));
2516      enum machine_mode mode
2517	= promote_mode (type, old_mode, &unsignedp, 1);
2518
2519      if (mode != old_mode)
2520	val = convert_modes (mode, old_mode, val, unsignedp);
2521#endif
2522      emit_move_insn (return_reg, val);
2523    }
2524  if (GET_CODE (return_reg) == REG
2525      && REGNO (return_reg) < FIRST_PSEUDO_REGISTER)
2526    emit_insn (gen_rtx_USE (VOIDmode, return_reg));
2527  /* Handle calls that return values in multiple non-contiguous locations.
2528     The Irix 6 ABI has examples of this.  */
2529  else if (GET_CODE (return_reg) == PARALLEL)
2530    {
2531      int i;
2532
2533      for (i = 0; i < XVECLEN (return_reg, 0); i++)
2534	{
2535	  rtx x = XEXP (XVECEXP (return_reg, 0, i), 0);
2536
2537	  if (GET_CODE (x) == REG
2538	      && REGNO (x) < FIRST_PSEUDO_REGISTER)
2539	    emit_insn (gen_rtx_USE (VOIDmode, x));
2540	}
2541    }
2542
2543  /* Does any pending block have cleanups?  */
2544
2545  while (block && block->data.block.cleanups == 0)
2546    block = block->next;
2547
2548  /* If yes, use a goto to return, since that runs cleanups.
2549     Use LAST_INSN to put cleanups *before* the move insn emitted above.  */
2550
2551  expand_null_return_1 (last_insn, block != 0);
2552}
2553
2554/* Output a return with no value.  If LAST_INSN is nonzero,
2555   pretend that the return takes place after LAST_INSN.
2556   If USE_GOTO is nonzero then don't use a return instruction;
2557   go to the return label instead.  This causes any cleanups
2558   of pending blocks to be executed normally.  */
2559
2560static void
2561expand_null_return_1 (last_insn, use_goto)
2562     rtx last_insn;
2563     int use_goto;
2564{
2565  rtx end_label = cleanup_label ? cleanup_label : return_label;
2566
2567  clear_pending_stack_adjust ();
2568  do_pending_stack_adjust ();
2569  last_expr_type = 0;
2570
2571  /* PCC-struct return always uses an epilogue.  */
2572  if (current_function_returns_pcc_struct || use_goto)
2573    {
2574      if (end_label == 0)
2575	end_label = return_label = gen_label_rtx ();
2576      expand_goto_internal (NULL_TREE, end_label, last_insn);
2577      return;
2578    }
2579
2580  /* Otherwise output a simple return-insn if one is available,
2581     unless it won't do the job.  */
2582#ifdef HAVE_return
2583  if (HAVE_return && use_goto == 0 && cleanup_label == 0)
2584    {
2585      emit_jump_insn (gen_return ());
2586      emit_barrier ();
2587      return;
2588    }
2589#endif
2590
2591  /* Otherwise jump to the epilogue.  */
2592  expand_goto_internal (NULL_TREE, end_label, last_insn);
2593}
2594
2595/* Generate RTL to evaluate the expression RETVAL and return it
2596   from the current function.  */
2597
2598void
2599expand_return (retval)
2600     tree retval;
2601{
2602  /* If there are any cleanups to be performed, then they will
2603     be inserted following LAST_INSN.  It is desirable
2604     that the last_insn, for such purposes, should be the
2605     last insn before computing the return value.  Otherwise, cleanups
2606     which call functions can clobber the return value.  */
2607  /* ??? rms: I think that is erroneous, because in C++ it would
2608     run destructors on variables that might be used in the subsequent
2609     computation of the return value.  */
2610  rtx last_insn = 0;
2611  register rtx val = 0;
2612  register rtx op0;
2613  tree retval_rhs;
2614  int cleanups;
2615
2616  /* If function wants no value, give it none.  */
2617  if (TREE_CODE (TREE_TYPE (TREE_TYPE (current_function_decl))) == VOID_TYPE)
2618    {
2619      expand_expr (retval, NULL_RTX, VOIDmode, 0);
2620      emit_queue ();
2621      expand_null_return ();
2622      return;
2623    }
2624
2625  /* Are any cleanups needed?  E.g. C++ destructors to be run?  */
2626  /* This is not sufficient.  We also need to watch for cleanups of the
2627     expression we are about to expand.  Unfortunately, we cannot know
2628     if it has cleanups until we expand it, and we want to change how we
2629     expand it depending upon if we need cleanups.  We can't win.  */
2630#if 0
2631  cleanups = any_pending_cleanups (1);
2632#else
2633  cleanups = 1;
2634#endif
2635
2636  if (TREE_CODE (retval) == RESULT_DECL)
2637    retval_rhs = retval;
2638  else if ((TREE_CODE (retval) == MODIFY_EXPR || TREE_CODE (retval) == INIT_EXPR)
2639	   && TREE_CODE (TREE_OPERAND (retval, 0)) == RESULT_DECL)
2640    retval_rhs = TREE_OPERAND (retval, 1);
2641  else if (TREE_TYPE (retval) == void_type_node)
2642    /* Recognize tail-recursive call to void function.  */
2643    retval_rhs = retval;
2644  else
2645    retval_rhs = NULL_TREE;
2646
2647  /* Only use `last_insn' if there are cleanups which must be run.  */
2648  if (cleanups || cleanup_label != 0)
2649    last_insn = get_last_insn ();
2650
2651  /* Distribute return down conditional expr if either of the sides
2652     may involve tail recursion (see test below).  This enhances the number
2653     of tail recursions we see.  Don't do this always since it can produce
2654     sub-optimal code in some cases and we distribute assignments into
2655     conditional expressions when it would help.  */
2656
2657  if (optimize && retval_rhs != 0
2658      && frame_offset == 0
2659      && TREE_CODE (retval_rhs) == COND_EXPR
2660      && (TREE_CODE (TREE_OPERAND (retval_rhs, 1)) == CALL_EXPR
2661	  || TREE_CODE (TREE_OPERAND (retval_rhs, 2)) == CALL_EXPR))
2662    {
2663      rtx label = gen_label_rtx ();
2664      tree expr;
2665
2666      do_jump (TREE_OPERAND (retval_rhs, 0), label, NULL_RTX);
2667      start_cleanup_deferral ();
2668      expr = build (MODIFY_EXPR, TREE_TYPE (TREE_TYPE (current_function_decl)),
2669		    DECL_RESULT (current_function_decl),
2670		    TREE_OPERAND (retval_rhs, 1));
2671      TREE_SIDE_EFFECTS (expr) = 1;
2672      expand_return (expr);
2673      emit_label (label);
2674
2675      expr = build (MODIFY_EXPR, TREE_TYPE (TREE_TYPE (current_function_decl)),
2676		    DECL_RESULT (current_function_decl),
2677		    TREE_OPERAND (retval_rhs, 2));
2678      TREE_SIDE_EFFECTS (expr) = 1;
2679      expand_return (expr);
2680      end_cleanup_deferral ();
2681      return;
2682    }
2683
2684  /* Attempt to optimize the call if it is tail recursive.  */
2685  if (optimize_tail_recursion (retval_rhs, last_insn))
2686    return;
2687
2688#ifdef HAVE_return
2689  /* This optimization is safe if there are local cleanups
2690     because expand_null_return takes care of them.
2691     ??? I think it should also be safe when there is a cleanup label,
2692     because expand_null_return takes care of them, too.
2693     Any reason why not?  */
2694  if (HAVE_return && cleanup_label == 0
2695      && ! current_function_returns_pcc_struct
2696      && BRANCH_COST <= 1)
2697    {
2698      /* If this is  return x == y;  then generate
2699	 if (x == y) return 1; else return 0;
2700	 if we can do it with explicit return insns and branches are cheap,
2701	 but not if we have the corresponding scc insn.  */
2702      int has_scc = 0;
2703      if (retval_rhs)
2704	switch (TREE_CODE (retval_rhs))
2705	  {
2706	  case EQ_EXPR:
2707#ifdef HAVE_seq
2708	    has_scc = HAVE_seq;
2709#endif
2710	  case NE_EXPR:
2711#ifdef HAVE_sne
2712	    has_scc = HAVE_sne;
2713#endif
2714	  case GT_EXPR:
2715#ifdef HAVE_sgt
2716	    has_scc = HAVE_sgt;
2717#endif
2718	  case GE_EXPR:
2719#ifdef HAVE_sge
2720	    has_scc = HAVE_sge;
2721#endif
2722	  case LT_EXPR:
2723#ifdef HAVE_slt
2724	    has_scc = HAVE_slt;
2725#endif
2726	  case LE_EXPR:
2727#ifdef HAVE_sle
2728	    has_scc = HAVE_sle;
2729#endif
2730	  case TRUTH_ANDIF_EXPR:
2731	  case TRUTH_ORIF_EXPR:
2732	  case TRUTH_AND_EXPR:
2733	  case TRUTH_OR_EXPR:
2734	  case TRUTH_NOT_EXPR:
2735	  case TRUTH_XOR_EXPR:
2736	    if (! has_scc)
2737	      {
2738		op0 = gen_label_rtx ();
2739		jumpifnot (retval_rhs, op0);
2740		expand_value_return (const1_rtx);
2741		emit_label (op0);
2742		expand_value_return (const0_rtx);
2743		return;
2744	      }
2745	    break;
2746
2747	  default:
2748	    break;
2749	  }
2750    }
2751#endif /* HAVE_return */
2752
2753  /* If the result is an aggregate that is being returned in one (or more)
2754     registers, load the registers here.  The compiler currently can't handle
2755     copying a BLKmode value into registers.  We could put this code in a
2756     more general area (for use by everyone instead of just function
2757     call/return), but until this feature is generally usable it is kept here
2758     (and in expand_call).  The value must go into a pseudo in case there
2759     are cleanups that will clobber the real return register.  */
2760
2761  if (retval_rhs != 0
2762      && TYPE_MODE (TREE_TYPE (retval_rhs)) == BLKmode
2763      && GET_CODE (DECL_RTL (DECL_RESULT (current_function_decl))) == REG)
2764    {
2765      int i, bitpos, xbitpos;
2766      int big_endian_correction = 0;
2767      int bytes = int_size_in_bytes (TREE_TYPE (retval_rhs));
2768      int n_regs = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
2769      int bitsize = MIN (TYPE_ALIGN (TREE_TYPE (retval_rhs)),
2770			 (unsigned int)BITS_PER_WORD);
2771      rtx *result_pseudos = (rtx *) alloca (sizeof (rtx) * n_regs);
2772      rtx result_reg, src = NULL_RTX, dst = NULL_RTX;
2773      rtx result_val = expand_expr (retval_rhs, NULL_RTX, VOIDmode, 0);
2774      enum machine_mode tmpmode, result_reg_mode;
2775
2776      /* Structures whose size is not a multiple of a word are aligned
2777	 to the least significant byte (to the right).  On a BYTES_BIG_ENDIAN
2778	 machine, this means we must skip the empty high order bytes when
2779	 calculating the bit offset.  */
2780      if (BYTES_BIG_ENDIAN && bytes % UNITS_PER_WORD)
2781	big_endian_correction = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD)
2782						  * BITS_PER_UNIT));
2783
2784      /* Copy the structure BITSIZE bits at a time.  */
2785      for (bitpos = 0, xbitpos = big_endian_correction;
2786	   bitpos < bytes * BITS_PER_UNIT;
2787	   bitpos += bitsize, xbitpos += bitsize)
2788	{
2789	  /* We need a new destination pseudo each time xbitpos is
2790	     on a word boundary and when xbitpos == big_endian_correction
2791	     (the first time through).  */
2792	  if (xbitpos % BITS_PER_WORD == 0
2793	      || xbitpos == big_endian_correction)
2794	    {
2795	      /* Generate an appropriate register.  */
2796	      dst = gen_reg_rtx (word_mode);
2797	      result_pseudos[xbitpos / BITS_PER_WORD] = dst;
2798
2799	      /* Clobber the destination before we move anything into it.  */
2800	      emit_insn (gen_rtx_CLOBBER (VOIDmode, dst));
2801	    }
2802
2803	  /* We need a new source operand each time bitpos is on a word
2804	     boundary.  */
2805	  if (bitpos % BITS_PER_WORD == 0)
2806	    src = operand_subword_force (result_val,
2807					 bitpos / BITS_PER_WORD,
2808					 BLKmode);
2809
2810	  /* Use bitpos for the source extraction (left justified) and
2811	     xbitpos for the destination store (right justified).  */
2812	  store_bit_field (dst, bitsize, xbitpos % BITS_PER_WORD, word_mode,
2813			   extract_bit_field (src, bitsize,
2814					      bitpos % BITS_PER_WORD, 1,
2815					      NULL_RTX, word_mode,
2816					      word_mode,
2817					      bitsize / BITS_PER_UNIT,
2818					      BITS_PER_WORD),
2819			   bitsize / BITS_PER_UNIT, BITS_PER_WORD);
2820	}
2821
2822      /* Find the smallest integer mode large enough to hold the
2823	 entire structure and use that mode instead of BLKmode
2824	 on the USE insn for the return register.   */
2825      bytes = int_size_in_bytes (TREE_TYPE (retval_rhs));
2826      for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2827	   tmpmode != MAX_MACHINE_MODE;
2828	   tmpmode = GET_MODE_WIDER_MODE (tmpmode))
2829	{
2830	  /* Have we found a large enough mode?  */
2831	  if (GET_MODE_SIZE (tmpmode) >= bytes)
2832	    break;
2833	}
2834
2835      /* No suitable mode found.  */
2836      if (tmpmode == MAX_MACHINE_MODE)
2837	abort ();
2838
2839      PUT_MODE (DECL_RTL (DECL_RESULT (current_function_decl)), tmpmode);
2840
2841      if (GET_MODE_SIZE (tmpmode) < GET_MODE_SIZE (word_mode))
2842	result_reg_mode = word_mode;
2843      else
2844	result_reg_mode = tmpmode;
2845      result_reg = gen_reg_rtx (result_reg_mode);
2846
2847      emit_queue ();
2848      for (i = 0; i < n_regs; i++)
2849	emit_move_insn (operand_subword (result_reg, i, 0, result_reg_mode),
2850			result_pseudos[i]);
2851
2852      if (tmpmode != result_reg_mode)
2853	result_reg = gen_lowpart (tmpmode, result_reg);
2854
2855      expand_value_return (result_reg);
2856    }
2857  else if (cleanups
2858      && retval_rhs != 0
2859      && TREE_TYPE (retval_rhs) != void_type_node
2860      && GET_CODE (DECL_RTL (DECL_RESULT (current_function_decl))) == REG)
2861    {
2862      /* Calculate the return value into a pseudo reg.  */
2863      val = gen_reg_rtx (DECL_MODE (DECL_RESULT (current_function_decl)));
2864      val = expand_expr (retval_rhs, val, GET_MODE (val), 0);
2865      val = force_not_mem (val);
2866      emit_queue ();
2867      /* Return the calculated value, doing cleanups first.  */
2868      expand_value_return (val);
2869    }
2870  else
2871    {
2872      /* No cleanups or no hard reg used;
2873	 calculate value into hard return reg.  */
2874      expand_expr (retval, const0_rtx, VOIDmode, 0);
2875      emit_queue ();
2876      expand_value_return (DECL_RTL (DECL_RESULT (current_function_decl)));
2877    }
2878}
2879
2880/* Return 1 if the end of the generated RTX is not a barrier.
2881   This means code already compiled can drop through.  */
2882
2883int
2884drop_through_at_end_p ()
2885{
2886  rtx insn = get_last_insn ();
2887  while (insn && GET_CODE (insn) == NOTE)
2888    insn = PREV_INSN (insn);
2889  return insn && GET_CODE (insn) != BARRIER;
2890}
2891
2892/* Test CALL_EXPR to determine if it is a potential tail recursion call
2893   and emit code to optimize the tail recursion.  LAST_INSN indicates where
2894   to place the jump to the tail recursion label.  Return TRUE if the
2895   call was optimized into a goto.
2896
2897   This is only used by expand_return, but expand_call is expected to
2898   use it soon.  */
2899
2900int
2901optimize_tail_recursion (call_expr, last_insn)
2902     tree call_expr;
2903     rtx last_insn;
2904{
2905  /* For tail-recursive call to current function,
2906     just jump back to the beginning.
2907     It's unsafe if any auto variable in this function
2908     has its address taken; for simplicity,
2909     require stack frame to be empty.  */
2910  if (optimize && call_expr != 0
2911      && frame_offset == 0
2912      && TREE_CODE (call_expr) == CALL_EXPR
2913      && TREE_CODE (TREE_OPERAND (call_expr, 0)) == ADDR_EXPR
2914      && TREE_OPERAND (TREE_OPERAND (call_expr, 0), 0) == current_function_decl
2915      /* Finish checking validity, and if valid emit code
2916	 to set the argument variables for the new call.  */
2917      && tail_recursion_args (TREE_OPERAND (call_expr, 1),
2918			      DECL_ARGUMENTS (current_function_decl)))
2919    {
2920      if (tail_recursion_label == 0)
2921	{
2922	  tail_recursion_label = gen_label_rtx ();
2923	  emit_label_after (tail_recursion_label,
2924			    tail_recursion_reentry);
2925	}
2926      emit_queue ();
2927      expand_goto_internal (NULL_TREE, tail_recursion_label, last_insn);
2928      emit_barrier ();
2929      return 1;
2930    }
2931
2932  return 0;
2933}
2934
2935/* Emit code to alter this function's formal parms for a tail-recursive call.
2936   ACTUALS is a list of actual parameter expressions (chain of TREE_LISTs).
2937   FORMALS is the chain of decls of formals.
2938   Return 1 if this can be done;
2939   otherwise return 0 and do not emit any code.  */
2940
2941static int
2942tail_recursion_args (actuals, formals)
2943     tree actuals, formals;
2944{
2945  register tree a = actuals, f = formals;
2946  register int i;
2947  register rtx *argvec;
2948
2949  /* Check that number and types of actuals are compatible
2950     with the formals.  This is not always true in valid C code.
2951     Also check that no formal needs to be addressable
2952     and that all formals are scalars.  */
2953
2954  /* Also count the args.  */
2955
2956  for (a = actuals, f = formals, i = 0; a && f; a = TREE_CHAIN (a), f = TREE_CHAIN (f), i++)
2957    {
2958      if (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_VALUE (a)))
2959	  != TYPE_MAIN_VARIANT (TREE_TYPE (f)))
2960	return 0;
2961      if (GET_CODE (DECL_RTL (f)) != REG || DECL_MODE (f) == BLKmode)
2962	return 0;
2963    }
2964  if (a != 0 || f != 0)
2965    return 0;
2966
2967  /* Compute all the actuals.  */
2968
2969  argvec = (rtx *) alloca (i * sizeof (rtx));
2970
2971  for (a = actuals, i = 0; a; a = TREE_CHAIN (a), i++)
2972    argvec[i] = expand_expr (TREE_VALUE (a), NULL_RTX, VOIDmode, 0);
2973
2974  /* Find which actual values refer to current values of previous formals.
2975     Copy each of them now, before any formal is changed.  */
2976
2977  for (a = actuals, i = 0; a; a = TREE_CHAIN (a), i++)
2978    {
2979      int copy = 0;
2980      register int j;
2981      for (f = formals, j = 0; j < i; f = TREE_CHAIN (f), j++)
2982	if (reg_mentioned_p (DECL_RTL (f), argvec[i]))
2983	  { copy = 1; break; }
2984      if (copy)
2985	argvec[i] = copy_to_reg (argvec[i]);
2986    }
2987
2988  /* Store the values of the actuals into the formals.  */
2989
2990  for (f = formals, a = actuals, i = 0; f;
2991       f = TREE_CHAIN (f), a = TREE_CHAIN (a), i++)
2992    {
2993      if (GET_MODE (DECL_RTL (f)) == GET_MODE (argvec[i]))
2994	emit_move_insn (DECL_RTL (f), argvec[i]);
2995      else
2996	convert_move (DECL_RTL (f), argvec[i],
2997		      TREE_UNSIGNED (TREE_TYPE (TREE_VALUE (a))));
2998    }
2999
3000  free_temp_slots ();
3001  return 1;
3002}
3003
3004/* Generate the RTL code for entering a binding contour.
3005   The variables are declared one by one, by calls to `expand_decl'.
3006
3007   EXIT_FLAG is nonzero if this construct should be visible to
3008   `exit_something'.  */
3009
3010void
3011expand_start_bindings (exit_flag)
3012     int exit_flag;
3013{
3014  struct nesting *thisblock = ALLOC_NESTING ();
3015  rtx note = emit_note (NULL_PTR, NOTE_INSN_BLOCK_BEG);
3016
3017  /* Make an entry on block_stack for the block we are entering.  */
3018
3019  thisblock->next = block_stack;
3020  thisblock->all = nesting_stack;
3021  thisblock->depth = ++nesting_depth;
3022  thisblock->data.block.stack_level = 0;
3023  thisblock->data.block.cleanups = 0;
3024  thisblock->data.block.function_call_count = 0;
3025  thisblock->data.block.exception_region = 0;
3026  thisblock->data.block.target_temp_slot_level = target_temp_slot_level;
3027
3028  thisblock->data.block.conditional_code = 0;
3029  thisblock->data.block.last_unconditional_cleanup = note;
3030  thisblock->data.block.cleanup_ptr = &thisblock->data.block.cleanups;
3031
3032  if (block_stack
3033      && !(block_stack->data.block.cleanups == NULL_TREE
3034	   && block_stack->data.block.outer_cleanups == NULL_TREE))
3035    thisblock->data.block.outer_cleanups
3036      = tree_cons (NULL_TREE, block_stack->data.block.cleanups,
3037		   block_stack->data.block.outer_cleanups);
3038  else
3039    thisblock->data.block.outer_cleanups = 0;
3040  thisblock->data.block.label_chain = 0;
3041  thisblock->data.block.innermost_stack_block = stack_block_stack;
3042  thisblock->data.block.first_insn = note;
3043  thisblock->data.block.block_start_count = ++block_start_count;
3044  thisblock->exit_label = exit_flag ? gen_label_rtx () : 0;
3045  block_stack = thisblock;
3046  nesting_stack = thisblock;
3047
3048  /* Make a new level for allocating stack slots.  */
3049  push_temp_slots ();
3050}
3051
3052/* Specify the scope of temporaries created by TARGET_EXPRs.  Similar
3053   to CLEANUP_POINT_EXPR, but handles cases when a series of calls to
3054   expand_expr are made.  After we end the region, we know that all
3055   space for all temporaries that were created by TARGET_EXPRs will be
3056   destroyed and their space freed for reuse.  */
3057
3058void
3059expand_start_target_temps ()
3060{
3061  /* This is so that even if the result is preserved, the space
3062     allocated will be freed, as we know that it is no longer in use.  */
3063  push_temp_slots ();
3064
3065  /* Start a new binding layer that will keep track of all cleanup
3066     actions to be performed.  */
3067  expand_start_bindings (0);
3068
3069  target_temp_slot_level = temp_slot_level;
3070}
3071
3072void
3073expand_end_target_temps ()
3074{
3075  expand_end_bindings (NULL_TREE, 0, 0);
3076
3077  /* This is so that even if the result is preserved, the space
3078     allocated will be freed, as we know that it is no longer in use.  */
3079  pop_temp_slots ();
3080}
3081
3082/* Mark top block of block_stack as an implicit binding for an
3083   exception region.  This is used to prevent infinite recursion when
3084   ending a binding with expand_end_bindings.  It is only ever called
3085   by expand_eh_region_start, as that it the only way to create a
3086   block stack for a exception region.  */
3087
3088void
3089mark_block_as_eh_region ()
3090{
3091  block_stack->data.block.exception_region = 1;
3092  if (block_stack->next
3093      && block_stack->next->data.block.conditional_code)
3094    {
3095      block_stack->data.block.conditional_code
3096	= block_stack->next->data.block.conditional_code;
3097      block_stack->data.block.last_unconditional_cleanup
3098	= block_stack->next->data.block.last_unconditional_cleanup;
3099      block_stack->data.block.cleanup_ptr
3100	= block_stack->next->data.block.cleanup_ptr;
3101    }
3102}
3103
3104/* True if we are currently emitting insns in an area of output code
3105   that is controlled by a conditional expression.  This is used by
3106   the cleanup handling code to generate conditional cleanup actions.  */
3107
3108int
3109conditional_context ()
3110{
3111  return block_stack && block_stack->data.block.conditional_code;
3112}
3113
3114/* Mark top block of block_stack as not for an implicit binding for an
3115   exception region.  This is only ever done by expand_eh_region_end
3116   to let expand_end_bindings know that it is being called explicitly
3117   to end the binding layer for just the binding layer associated with
3118   the exception region, otherwise expand_end_bindings would try and
3119   end all implicit binding layers for exceptions regions, and then
3120   one normal binding layer.  */
3121
3122void
3123mark_block_as_not_eh_region ()
3124{
3125  block_stack->data.block.exception_region = 0;
3126}
3127
3128/* True if the top block of block_stack was marked as for an exception
3129   region by mark_block_as_eh_region.  */
3130
3131int
3132is_eh_region ()
3133{
3134  return block_stack && block_stack->data.block.exception_region;
3135}
3136
3137/* Given a pointer to a BLOCK node, save a pointer to the most recently
3138   generated NOTE_INSN_BLOCK_END in the BLOCK_END_NOTE field of the given
3139   BLOCK node.  */
3140
3141void
3142remember_end_note (block)
3143     register tree block;
3144{
3145  BLOCK_END_NOTE (block) = last_block_end_note;
3146  last_block_end_note = NULL_RTX;
3147}
3148
3149/* Emit a handler label for a nonlocal goto handler.
3150   Also emit code to store the handler label in SLOT before BEFORE_INSN.  */
3151
3152static rtx
3153expand_nl_handler_label (slot, before_insn)
3154     rtx slot, before_insn;
3155{
3156  rtx insns;
3157  rtx handler_label = gen_label_rtx ();
3158
3159  /* Don't let jump_optimize delete the handler.  */
3160  LABEL_PRESERVE_P (handler_label) = 1;
3161
3162  start_sequence ();
3163  emit_move_insn (slot, gen_rtx_LABEL_REF (Pmode, handler_label));
3164  insns = get_insns ();
3165  end_sequence ();
3166  emit_insns_before (insns, before_insn);
3167
3168  emit_label (handler_label);
3169
3170  return handler_label;
3171}
3172
3173/* Emit code to restore vital registers at the beginning of a nonlocal goto
3174   handler.  */
3175static void
3176expand_nl_goto_receiver ()
3177{
3178#ifdef HAVE_nonlocal_goto
3179  if (! HAVE_nonlocal_goto)
3180#endif
3181    /* First adjust our frame pointer to its actual value.  It was
3182       previously set to the start of the virtual area corresponding to
3183       the stacked variables when we branched here and now needs to be
3184       adjusted to the actual hardware fp value.
3185
3186       Assignments are to virtual registers are converted by
3187       instantiate_virtual_regs into the corresponding assignment
3188       to the underlying register (fp in this case) that makes
3189       the original assignment true.
3190       So the following insn will actually be
3191       decrementing fp by STARTING_FRAME_OFFSET.  */
3192    emit_move_insn (virtual_stack_vars_rtx, hard_frame_pointer_rtx);
3193
3194#if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
3195  if (fixed_regs[ARG_POINTER_REGNUM])
3196    {
3197#ifdef ELIMINABLE_REGS
3198      /* If the argument pointer can be eliminated in favor of the
3199	 frame pointer, we don't need to restore it.  We assume here
3200	 that if such an elimination is present, it can always be used.
3201	 This is the case on all known machines; if we don't make this
3202	 assumption, we do unnecessary saving on many machines.  */
3203      static struct elims {int from, to;} elim_regs[] = ELIMINABLE_REGS;
3204      size_t i;
3205
3206      for (i = 0; i < sizeof elim_regs / sizeof elim_regs[0]; i++)
3207	if (elim_regs[i].from == ARG_POINTER_REGNUM
3208	    && elim_regs[i].to == HARD_FRAME_POINTER_REGNUM)
3209	  break;
3210
3211      if (i == sizeof elim_regs / sizeof elim_regs [0])
3212#endif
3213	{
3214	  /* Now restore our arg pointer from the address at which it
3215	     was saved in our stack frame.
3216	     If there hasn't be space allocated for it yet, make
3217	     some now.  */
3218	  if (arg_pointer_save_area == 0)
3219	    arg_pointer_save_area
3220	      = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
3221	  emit_move_insn (virtual_incoming_args_rtx,
3222			  /* We need a pseudo here, or else
3223			     instantiate_virtual_regs_1 complains.  */
3224			  copy_to_reg (arg_pointer_save_area));
3225	}
3226    }
3227#endif
3228
3229#ifdef HAVE_nonlocal_goto_receiver
3230  if (HAVE_nonlocal_goto_receiver)
3231    emit_insn (gen_nonlocal_goto_receiver ());
3232#endif
3233}
3234
3235/* Make handlers for nonlocal gotos taking place in the function calls in
3236   block THISBLOCK.  */
3237
3238static void
3239expand_nl_goto_receivers (thisblock)
3240     struct nesting *thisblock;
3241{
3242  tree link;
3243  rtx afterward = gen_label_rtx ();
3244  rtx insns, slot;
3245  rtx label_list;
3246  int any_invalid;
3247
3248  /* Record the handler address in the stack slot for that purpose,
3249     during this block, saving and restoring the outer value.  */
3250  if (thisblock->next != 0)
3251    for (slot = nonlocal_goto_handler_slots; slot; slot = XEXP (slot, 1))
3252      {
3253	rtx save_receiver = gen_reg_rtx (Pmode);
3254	emit_move_insn (XEXP (slot, 0), save_receiver);
3255
3256	start_sequence ();
3257	emit_move_insn (save_receiver, XEXP (slot, 0));
3258	insns = get_insns ();
3259	end_sequence ();
3260	emit_insns_before (insns, thisblock->data.block.first_insn);
3261      }
3262
3263  /* Jump around the handlers; they run only when specially invoked.  */
3264  emit_jump (afterward);
3265
3266  /* Make a separate handler for each label.  */
3267  link = nonlocal_labels;
3268  slot = nonlocal_goto_handler_slots;
3269  label_list = NULL_RTX;
3270  for (; link; link = TREE_CHAIN (link), slot = XEXP (slot, 1))
3271    /* Skip any labels we shouldn't be able to jump to from here,
3272       we generate one special handler for all of them below which just calls
3273       abort.  */
3274    if (! DECL_TOO_LATE (TREE_VALUE (link)))
3275      {
3276	rtx lab;
3277	lab = expand_nl_handler_label (XEXP (slot, 0),
3278				       thisblock->data.block.first_insn);
3279	label_list = gen_rtx_EXPR_LIST (VOIDmode, lab, label_list);
3280
3281	expand_nl_goto_receiver ();
3282
3283	/* Jump to the "real" nonlocal label.  */
3284	expand_goto (TREE_VALUE (link));
3285      }
3286
3287  /* A second pass over all nonlocal labels; this time we handle those
3288     we should not be able to jump to at this point.  */
3289  link = nonlocal_labels;
3290  slot = nonlocal_goto_handler_slots;
3291  any_invalid = 0;
3292  for (; link; link = TREE_CHAIN (link), slot = XEXP (slot, 1))
3293    if (DECL_TOO_LATE (TREE_VALUE (link)))
3294      {
3295	rtx lab;
3296	lab = expand_nl_handler_label (XEXP (slot, 0),
3297				       thisblock->data.block.first_insn);
3298	label_list = gen_rtx_EXPR_LIST (VOIDmode, lab, label_list);
3299	any_invalid = 1;
3300      }
3301
3302  if (any_invalid)
3303    {
3304      expand_nl_goto_receiver ();
3305      emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "abort"), 0,
3306			 VOIDmode, 0);
3307      emit_barrier ();
3308    }
3309
3310  nonlocal_goto_handler_labels = label_list;
3311  emit_label (afterward);
3312}
3313
3314/* Generate RTL code to terminate a binding contour.
3315
3316   VARS is the chain of VAR_DECL nodes for the variables bound in this
3317   contour.  There may actually be other nodes in this chain, but any
3318   nodes other than VAR_DECLS are ignored.
3319
3320   MARK_ENDS is nonzero if we should put a note at the beginning
3321   and end of this binding contour.
3322
3323   DONT_JUMP_IN is nonzero if it is not valid to jump into this contour.
3324   (That is true automatically if the contour has a saved stack level.)  */
3325
3326void
3327expand_end_bindings (vars, mark_ends, dont_jump_in)
3328     tree vars;
3329     int mark_ends;
3330     int dont_jump_in;
3331{
3332  register struct nesting *thisblock;
3333  register tree decl;
3334
3335  while (block_stack->data.block.exception_region)
3336    {
3337      /* Because we don't need or want a new temporary level and
3338	 because we didn't create one in expand_eh_region_start,
3339	 create a fake one now to avoid removing one in
3340	 expand_end_bindings.  */
3341      push_temp_slots ();
3342
3343      block_stack->data.block.exception_region = 0;
3344
3345      expand_end_bindings (NULL_TREE, 0, 0);
3346    }
3347
3348  /* Since expand_eh_region_start does an expand_start_bindings, we
3349     have to first end all the bindings that were created by
3350     expand_eh_region_start.  */
3351
3352  thisblock = block_stack;
3353
3354  if (warn_unused)
3355    for (decl = vars; decl; decl = TREE_CHAIN (decl))
3356      if (TREE_CODE (decl) == VAR_DECL
3357	  && ! TREE_USED (decl)
3358	  && ! DECL_IN_SYSTEM_HEADER (decl)
3359	  && DECL_NAME (decl) && ! DECL_ARTIFICIAL (decl))
3360	warning_with_decl (decl, "unused variable `%s'");
3361
3362  if (thisblock->exit_label)
3363    {
3364      do_pending_stack_adjust ();
3365      emit_label (thisblock->exit_label);
3366    }
3367
3368  /* If necessary, make handlers for nonlocal gotos taking
3369     place in the function calls in this block.  */
3370  if (function_call_count != thisblock->data.block.function_call_count
3371      && nonlocal_labels
3372      /* Make handler for outermost block
3373	 if there were any nonlocal gotos to this function.  */
3374      && (thisblock->next == 0 ? current_function_has_nonlocal_label
3375	  /* Make handler for inner block if it has something
3376	     special to do when you jump out of it.  */
3377	  : (thisblock->data.block.cleanups != 0
3378	     || thisblock->data.block.stack_level != 0)))
3379    expand_nl_goto_receivers (thisblock);
3380
3381  /* Don't allow jumping into a block that has a stack level.
3382     Cleanups are allowed, though.  */
3383  if (dont_jump_in
3384      || thisblock->data.block.stack_level != 0)
3385    {
3386      struct label_chain *chain;
3387
3388      /* Any labels in this block are no longer valid to go to.
3389	 Mark them to cause an error message.  */
3390      for (chain = thisblock->data.block.label_chain; chain; chain = chain->next)
3391	{
3392	  DECL_TOO_LATE (chain->label) = 1;
3393	  /* If any goto without a fixup came to this label,
3394	     that must be an error, because gotos without fixups
3395	     come from outside all saved stack-levels.  */
3396	  if (TREE_ADDRESSABLE (chain->label))
3397	    error_with_decl (chain->label,
3398			     "label `%s' used before containing binding contour");
3399	}
3400    }
3401
3402  /* Restore stack level in effect before the block
3403     (only if variable-size objects allocated).  */
3404  /* Perform any cleanups associated with the block.  */
3405
3406  if (thisblock->data.block.stack_level != 0
3407      || thisblock->data.block.cleanups != 0)
3408    {
3409      /* Only clean up here if this point can actually be reached.  */
3410      int reachable = GET_CODE (get_last_insn ()) != BARRIER;
3411
3412      /* Don't let cleanups affect ({...}) constructs.  */
3413      int old_expr_stmts_for_value = expr_stmts_for_value;
3414      rtx old_last_expr_value = last_expr_value;
3415      tree old_last_expr_type = last_expr_type;
3416      expr_stmts_for_value = 0;
3417
3418      /* Do the cleanups.  */
3419      expand_cleanups (thisblock->data.block.cleanups, NULL_TREE, 0, reachable);
3420      if (reachable)
3421	do_pending_stack_adjust ();
3422
3423      expr_stmts_for_value = old_expr_stmts_for_value;
3424      last_expr_value = old_last_expr_value;
3425      last_expr_type = old_last_expr_type;
3426
3427      /* Restore the stack level.  */
3428
3429      if (reachable && thisblock->data.block.stack_level != 0)
3430	{
3431	  emit_stack_restore (thisblock->next ? SAVE_BLOCK : SAVE_FUNCTION,
3432			      thisblock->data.block.stack_level, NULL_RTX);
3433	  if (nonlocal_goto_handler_slots != 0)
3434	    emit_stack_save (SAVE_NONLOCAL, &nonlocal_goto_stack_level,
3435			     NULL_RTX);
3436	}
3437
3438      /* Any gotos out of this block must also do these things.
3439	 Also report any gotos with fixups that came to labels in this
3440	 level.  */
3441      fixup_gotos (thisblock,
3442		   thisblock->data.block.stack_level,
3443		   thisblock->data.block.cleanups,
3444		   thisblock->data.block.first_insn,
3445		   dont_jump_in);
3446    }
3447
3448  /* Mark the beginning and end of the scope if requested.
3449     We do this now, after running cleanups on the variables
3450     just going out of scope, so they are in scope for their cleanups.  */
3451
3452  if (mark_ends)
3453    last_block_end_note = emit_note (NULL_PTR, NOTE_INSN_BLOCK_END);
3454  else
3455    /* Get rid of the beginning-mark if we don't make an end-mark.  */
3456    NOTE_LINE_NUMBER (thisblock->data.block.first_insn) = NOTE_INSN_DELETED;
3457
3458  /* If doing stupid register allocation, make sure lives of all
3459     register variables declared here extend thru end of scope.  */
3460
3461  if (obey_regdecls)
3462    for (decl = vars; decl; decl = TREE_CHAIN (decl))
3463      if (TREE_CODE (decl) == VAR_DECL && DECL_RTL (decl))
3464	use_variable (DECL_RTL (decl));
3465
3466  /* Restore the temporary level of TARGET_EXPRs.  */
3467  target_temp_slot_level = thisblock->data.block.target_temp_slot_level;
3468
3469  /* Restore block_stack level for containing block.  */
3470
3471  stack_block_stack = thisblock->data.block.innermost_stack_block;
3472  POPSTACK (block_stack);
3473
3474  /* Pop the stack slot nesting and free any slots at this level.  */
3475  pop_temp_slots ();
3476}
3477
3478/* Generate RTL for the automatic variable declaration DECL.
3479   (Other kinds of declarations are simply ignored if seen here.)  */
3480
3481void
3482expand_decl (decl)
3483     register tree decl;
3484{
3485  struct nesting *thisblock = block_stack;
3486  tree type;
3487
3488  type = TREE_TYPE (decl);
3489
3490  /* Only automatic variables need any expansion done.
3491     Static and external variables, and external functions,
3492     will be handled by `assemble_variable' (called from finish_decl).
3493     TYPE_DECL and CONST_DECL require nothing.
3494     PARM_DECLs are handled in `assign_parms'.  */
3495
3496  if (TREE_CODE (decl) != VAR_DECL)
3497    return;
3498  if (TREE_STATIC (decl) || DECL_EXTERNAL (decl))
3499    return;
3500
3501  /* Create the RTL representation for the variable.  */
3502
3503  if (type == error_mark_node)
3504    DECL_RTL (decl) = gen_rtx_MEM (BLKmode, const0_rtx);
3505  else if (DECL_SIZE (decl) == 0)
3506    /* Variable with incomplete type.  */
3507    {
3508      if (DECL_INITIAL (decl) == 0)
3509	/* Error message was already done; now avoid a crash.  */
3510	DECL_RTL (decl) = assign_stack_temp (DECL_MODE (decl), 0, 1);
3511      else
3512	/* An initializer is going to decide the size of this array.
3513	   Until we know the size, represent its address with a reg.  */
3514	DECL_RTL (decl) = gen_rtx_MEM (BLKmode, gen_reg_rtx (Pmode));
3515      MEM_SET_IN_STRUCT_P (DECL_RTL (decl), AGGREGATE_TYPE_P (type));
3516    }
3517  else if (DECL_MODE (decl) != BLKmode
3518	   /* If -ffloat-store, don't put explicit float vars
3519	      into regs.  */
3520	   && !(flag_float_store
3521		&& TREE_CODE (type) == REAL_TYPE)
3522	   && ! TREE_THIS_VOLATILE (decl)
3523	   && ! TREE_ADDRESSABLE (decl)
3524	   && (DECL_REGISTER (decl) || ! obey_regdecls)
3525	   /* if -fcheck-memory-usage, check all variables.  */
3526	   && ! current_function_check_memory_usage)
3527    {
3528      /* Automatic variable that can go in a register.  */
3529      int unsignedp = TREE_UNSIGNED (type);
3530      enum machine_mode reg_mode
3531	= promote_mode (type, DECL_MODE (decl), &unsignedp, 0);
3532
3533      DECL_RTL (decl) = gen_reg_rtx (reg_mode);
3534      mark_user_reg (DECL_RTL (decl));
3535
3536      if (POINTER_TYPE_P (type))
3537	mark_reg_pointer (DECL_RTL (decl),
3538			  (TYPE_ALIGN (TREE_TYPE (TREE_TYPE (decl)))
3539			   / BITS_PER_UNIT));
3540    }
3541
3542  else if (TREE_CODE (DECL_SIZE (decl)) == INTEGER_CST
3543	   && ! (flag_stack_check && ! STACK_CHECK_BUILTIN
3544		 && (TREE_INT_CST_HIGH (DECL_SIZE (decl)) != 0
3545		     || (TREE_INT_CST_LOW (DECL_SIZE (decl))
3546			 > STACK_CHECK_MAX_VAR_SIZE * BITS_PER_UNIT))))
3547    {
3548      /* Variable of fixed size that goes on the stack.  */
3549      rtx oldaddr = 0;
3550      rtx addr;
3551
3552      /* If we previously made RTL for this decl, it must be an array
3553	 whose size was determined by the initializer.
3554	 The old address was a register; set that register now
3555	 to the proper address.  */
3556      if (DECL_RTL (decl) != 0)
3557	{
3558	  if (GET_CODE (DECL_RTL (decl)) != MEM
3559	      || GET_CODE (XEXP (DECL_RTL (decl), 0)) != REG)
3560	    abort ();
3561	  oldaddr = XEXP (DECL_RTL (decl), 0);
3562	}
3563
3564      DECL_RTL (decl) = assign_temp (TREE_TYPE (decl), 1, 1, 1);
3565      MEM_SET_IN_STRUCT_P (DECL_RTL (decl),
3566			   AGGREGATE_TYPE_P (TREE_TYPE (decl)));
3567
3568      /* Set alignment we actually gave this decl.  */
3569      DECL_ALIGN (decl) = (DECL_MODE (decl) == BLKmode ? BIGGEST_ALIGNMENT
3570			   : GET_MODE_BITSIZE (DECL_MODE (decl)));
3571
3572      if (oldaddr)
3573	{
3574	  addr = force_operand (XEXP (DECL_RTL (decl), 0), oldaddr);
3575	  if (addr != oldaddr)
3576	    emit_move_insn (oldaddr, addr);
3577	}
3578
3579      /* If this is a memory ref that contains aggregate components,
3580	 mark it as such for cse and loop optimize.  */
3581      MEM_SET_IN_STRUCT_P (DECL_RTL (decl),
3582			   AGGREGATE_TYPE_P (TREE_TYPE (decl)));
3583#if 0
3584      /* If this is in memory because of -ffloat-store,
3585	 set the volatile bit, to prevent optimizations from
3586	 undoing the effects.  */
3587      if (flag_float_store && TREE_CODE (type) == REAL_TYPE)
3588	MEM_VOLATILE_P (DECL_RTL (decl)) = 1;
3589#endif
3590
3591      MEM_ALIAS_SET (DECL_RTL (decl)) = get_alias_set (decl);
3592    }
3593  else
3594    /* Dynamic-size object: must push space on the stack.  */
3595    {
3596      rtx address, size;
3597
3598      /* Record the stack pointer on entry to block, if have
3599	 not already done so.  */
3600      if (thisblock->data.block.stack_level == 0)
3601	{
3602	  do_pending_stack_adjust ();
3603	  emit_stack_save (thisblock->next ? SAVE_BLOCK : SAVE_FUNCTION,
3604			   &thisblock->data.block.stack_level,
3605			   thisblock->data.block.first_insn);
3606	  stack_block_stack = thisblock;
3607	}
3608
3609      /* Compute the variable's size, in bytes.  */
3610      size = expand_expr (size_binop (CEIL_DIV_EXPR,
3611				      DECL_SIZE (decl),
3612				      size_int (BITS_PER_UNIT)),
3613			  NULL_RTX, VOIDmode, 0);
3614      free_temp_slots ();
3615
3616      /* Allocate space on the stack for the variable.  Note that
3617	 DECL_ALIGN says how the variable is to be aligned and we
3618	 cannot use it to conclude anything about the alignment of
3619	 the size.  */
3620      address = allocate_dynamic_stack_space (size, NULL_RTX,
3621					      TYPE_ALIGN (TREE_TYPE (decl)));
3622
3623      /* Reference the variable indirect through that rtx.  */
3624      DECL_RTL (decl) = gen_rtx_MEM (DECL_MODE (decl), address);
3625
3626      /* If this is a memory ref that contains aggregate components,
3627	 mark it as such for cse and loop optimize.  */
3628      MEM_SET_IN_STRUCT_P (DECL_RTL (decl),
3629			   AGGREGATE_TYPE_P (TREE_TYPE (decl)));
3630
3631      /* Indicate the alignment we actually gave this variable.  */
3632#ifdef STACK_BOUNDARY
3633      DECL_ALIGN (decl) = STACK_BOUNDARY;
3634#else
3635      DECL_ALIGN (decl) = BIGGEST_ALIGNMENT;
3636#endif
3637    }
3638
3639  if (TREE_THIS_VOLATILE (decl))
3640    MEM_VOLATILE_P (DECL_RTL (decl)) = 1;
3641#if 0 /* A variable is not necessarily unchanging
3642	 just because it is const.  RTX_UNCHANGING_P
3643	 means no change in the function,
3644	 not merely no change in the variable's scope.
3645	 It is correct to set RTX_UNCHANGING_P if the variable's scope
3646	 is the whole function.  There's no convenient way to test that.  */
3647  if (TREE_READONLY (decl))
3648    RTX_UNCHANGING_P (DECL_RTL (decl)) = 1;
3649#endif
3650
3651  /* If doing stupid register allocation, make sure life of any
3652     register variable starts here, at the start of its scope.  */
3653
3654  if (obey_regdecls)
3655    use_variable (DECL_RTL (decl));
3656}
3657
3658
3659
3660/* Emit code to perform the initialization of a declaration DECL.  */
3661
3662void
3663expand_decl_init (decl)
3664     tree decl;
3665{
3666  int was_used = TREE_USED (decl);
3667
3668  /* If this is a CONST_DECL, we don't have to generate any code, but
3669     if DECL_INITIAL is a constant, call expand_expr to force TREE_CST_RTL
3670     to be set while in the obstack containing the constant.  If we don't
3671     do this, we can lose if we have functions nested three deep and the middle
3672     function makes a CONST_DECL whose DECL_INITIAL is a STRING_CST while
3673     the innermost function is the first to expand that STRING_CST.  */
3674  if (TREE_CODE (decl) == CONST_DECL)
3675    {
3676      if (DECL_INITIAL (decl) && TREE_CONSTANT (DECL_INITIAL (decl)))
3677	expand_expr (DECL_INITIAL (decl), NULL_RTX, VOIDmode,
3678		     EXPAND_INITIALIZER);
3679      return;
3680    }
3681
3682  if (TREE_STATIC (decl))
3683    return;
3684
3685  /* Compute and store the initial value now.  */
3686
3687  if (DECL_INITIAL (decl) == error_mark_node)
3688    {
3689      enum tree_code code = TREE_CODE (TREE_TYPE (decl));
3690
3691      if (code == INTEGER_TYPE || code == REAL_TYPE || code == ENUMERAL_TYPE
3692	  || code == POINTER_TYPE || code == REFERENCE_TYPE)
3693	expand_assignment (decl, convert (TREE_TYPE (decl), integer_zero_node),
3694			   0, 0);
3695      emit_queue ();
3696    }
3697  else if (DECL_INITIAL (decl) && TREE_CODE (DECL_INITIAL (decl)) != TREE_LIST)
3698    {
3699      emit_line_note (DECL_SOURCE_FILE (decl), DECL_SOURCE_LINE (decl));
3700      expand_assignment (decl, DECL_INITIAL (decl), 0, 0);
3701      emit_queue ();
3702    }
3703
3704  /* Don't let the initialization count as "using" the variable.  */
3705  TREE_USED (decl) = was_used;
3706
3707  /* Free any temporaries we made while initializing the decl.  */
3708  preserve_temp_slots (NULL_RTX);
3709  free_temp_slots ();
3710}
3711
3712/* CLEANUP is an expression to be executed at exit from this binding contour;
3713   for example, in C++, it might call the destructor for this variable.
3714
3715   We wrap CLEANUP in an UNSAVE_EXPR node, so that we can expand the
3716   CLEANUP multiple times, and have the correct semantics.  This
3717   happens in exception handling, for gotos, returns, breaks that
3718   leave the current scope.
3719
3720   If CLEANUP is nonzero and DECL is zero, we record a cleanup
3721   that is not associated with any particular variable.   */
3722
3723int
3724expand_decl_cleanup (decl, cleanup)
3725     tree decl, cleanup;
3726{
3727  struct nesting *thisblock = block_stack;
3728
3729  /* Error if we are not in any block.  */
3730  if (thisblock == 0)
3731    return 0;
3732
3733  /* Record the cleanup if there is one.  */
3734
3735  if (cleanup != 0)
3736    {
3737      tree t;
3738      rtx seq;
3739      tree *cleanups = &thisblock->data.block.cleanups;
3740      int cond_context = conditional_context ();
3741
3742      if (cond_context)
3743	{
3744	  rtx flag = gen_reg_rtx (word_mode);
3745	  rtx set_flag_0;
3746	  tree cond;
3747
3748	  start_sequence ();
3749	  emit_move_insn (flag, const0_rtx);
3750	  set_flag_0 = get_insns ();
3751	  end_sequence ();
3752
3753	  thisblock->data.block.last_unconditional_cleanup
3754	    = emit_insns_after (set_flag_0,
3755				thisblock->data.block.last_unconditional_cleanup);
3756
3757	  emit_move_insn (flag, const1_rtx);
3758
3759	  /* All cleanups must be on the function_obstack.  */
3760	  push_obstacks_nochange ();
3761	  resume_temporary_allocation ();
3762
3763	  cond = build_decl (VAR_DECL, NULL_TREE, type_for_mode (word_mode, 1));
3764	  DECL_RTL (cond) = flag;
3765
3766	  /* Conditionalize the cleanup.  */
3767	  cleanup = build (COND_EXPR, void_type_node,
3768			   truthvalue_conversion (cond),
3769			   cleanup, integer_zero_node);
3770	  cleanup = fold (cleanup);
3771
3772	  pop_obstacks ();
3773
3774	  cleanups = thisblock->data.block.cleanup_ptr;
3775	}
3776
3777      /* All cleanups must be on the function_obstack.  */
3778      push_obstacks_nochange ();
3779      resume_temporary_allocation ();
3780      cleanup = unsave_expr (cleanup);
3781      pop_obstacks ();
3782
3783      t = *cleanups = temp_tree_cons (decl, cleanup, *cleanups);
3784
3785      if (! cond_context)
3786	/* If this block has a cleanup, it belongs in stack_block_stack.  */
3787	stack_block_stack = thisblock;
3788
3789      if (cond_context)
3790	{
3791	  start_sequence ();
3792	}
3793
3794      /* If this was optimized so that there is no exception region for the
3795	 cleanup, then mark the TREE_LIST node, so that we can later tell
3796	 if we need to call expand_eh_region_end.  */
3797      if (! using_eh_for_cleanups_p
3798	  || expand_eh_region_start_tree (decl, cleanup))
3799	TREE_ADDRESSABLE (t) = 1;
3800      /* If that started a new EH region, we're in a new block.  */
3801      thisblock = block_stack;
3802
3803      if (cond_context)
3804	{
3805	  seq = get_insns ();
3806	  end_sequence ();
3807	  if (seq)
3808	    thisblock->data.block.last_unconditional_cleanup
3809	      = emit_insns_after (seq,
3810				  thisblock->data.block.last_unconditional_cleanup);
3811	}
3812      else
3813	{
3814	  thisblock->data.block.last_unconditional_cleanup
3815	    = get_last_insn ();
3816	  thisblock->data.block.cleanup_ptr = &thisblock->data.block.cleanups;
3817	}
3818    }
3819  return 1;
3820}
3821
3822/* Like expand_decl_cleanup, but suppress generating an exception handler
3823   to perform the cleanup.  */
3824
3825int
3826expand_decl_cleanup_no_eh (decl, cleanup)
3827     tree decl, cleanup;
3828{
3829  int save_eh = using_eh_for_cleanups_p;
3830  int result;
3831
3832  using_eh_for_cleanups_p = 0;
3833  result = expand_decl_cleanup (decl, cleanup);
3834  using_eh_for_cleanups_p = save_eh;
3835
3836  return result;
3837}
3838
3839/* Arrange for the top element of the dynamic cleanup chain to be
3840   popped if we exit the current binding contour.  DECL is the
3841   associated declaration, if any, otherwise NULL_TREE.  If the
3842   current contour is left via an exception, then __sjthrow will pop
3843   the top element off the dynamic cleanup chain.  The code that
3844   avoids doing the action we push into the cleanup chain in the
3845   exceptional case is contained in expand_cleanups.
3846
3847   This routine is only used by expand_eh_region_start, and that is
3848   the only way in which an exception region should be started.  This
3849   routine is only used when using the setjmp/longjmp codegen method
3850   for exception handling.  */
3851
3852int
3853expand_dcc_cleanup (decl)
3854     tree decl;
3855{
3856  struct nesting *thisblock = block_stack;
3857  tree cleanup;
3858
3859  /* Error if we are not in any block.  */
3860  if (thisblock == 0)
3861    return 0;
3862
3863  /* Record the cleanup for the dynamic handler chain.  */
3864
3865  /* All cleanups must be on the function_obstack.  */
3866  push_obstacks_nochange ();
3867  resume_temporary_allocation ();
3868  cleanup = make_node (POPDCC_EXPR);
3869  pop_obstacks ();
3870
3871  /* Add the cleanup in a manner similar to expand_decl_cleanup.  */
3872  thisblock->data.block.cleanups
3873    = temp_tree_cons (decl, cleanup, thisblock->data.block.cleanups);
3874
3875  /* If this block has a cleanup, it belongs in stack_block_stack.  */
3876  stack_block_stack = thisblock;
3877  return 1;
3878}
3879
3880/* Arrange for the top element of the dynamic handler chain to be
3881   popped if we exit the current binding contour.  DECL is the
3882   associated declaration, if any, otherwise NULL_TREE.  If the current
3883   contour is left via an exception, then __sjthrow will pop the top
3884   element off the dynamic handler chain.  The code that avoids doing
3885   the action we push into the handler chain in the exceptional case
3886   is contained in expand_cleanups.
3887
3888   This routine is only used by expand_eh_region_start, and that is
3889   the only way in which an exception region should be started.  This
3890   routine is only used when using the setjmp/longjmp codegen method
3891   for exception handling.  */
3892
3893int
3894expand_dhc_cleanup (decl)
3895     tree decl;
3896{
3897  struct nesting *thisblock = block_stack;
3898  tree cleanup;
3899
3900  /* Error if we are not in any block.  */
3901  if (thisblock == 0)
3902    return 0;
3903
3904  /* Record the cleanup for the dynamic handler chain.  */
3905
3906  /* All cleanups must be on the function_obstack.  */
3907  push_obstacks_nochange ();
3908  resume_temporary_allocation ();
3909  cleanup = make_node (POPDHC_EXPR);
3910  pop_obstacks ();
3911
3912  /* Add the cleanup in a manner similar to expand_decl_cleanup.  */
3913  thisblock->data.block.cleanups
3914    = temp_tree_cons (decl, cleanup, thisblock->data.block.cleanups);
3915
3916  /* If this block has a cleanup, it belongs in stack_block_stack.  */
3917  stack_block_stack = thisblock;
3918  return 1;
3919}
3920
3921/* DECL is an anonymous union.  CLEANUP is a cleanup for DECL.
3922   DECL_ELTS is the list of elements that belong to DECL's type.
3923   In each, the TREE_VALUE is a VAR_DECL, and the TREE_PURPOSE a cleanup.  */
3924
3925void
3926expand_anon_union_decl (decl, cleanup, decl_elts)
3927     tree decl, cleanup, decl_elts;
3928{
3929  struct nesting *thisblock = block_stack;
3930  rtx x;
3931
3932  expand_decl (decl);
3933  expand_decl_cleanup (decl, cleanup);
3934  x = DECL_RTL (decl);
3935
3936  while (decl_elts)
3937    {
3938      tree decl_elt = TREE_VALUE (decl_elts);
3939      tree cleanup_elt = TREE_PURPOSE (decl_elts);
3940      enum machine_mode mode = TYPE_MODE (TREE_TYPE (decl_elt));
3941
3942      /* Propagate the union's alignment to the elements.  */
3943      DECL_ALIGN (decl_elt) = DECL_ALIGN (decl);
3944
3945      /* If the element has BLKmode and the union doesn't, the union is
3946         aligned such that the element doesn't need to have BLKmode, so
3947         change the element's mode to the appropriate one for its size.  */
3948      if (mode == BLKmode && DECL_MODE (decl) != BLKmode)
3949	DECL_MODE (decl_elt) = mode
3950	  = mode_for_size (TREE_INT_CST_LOW (DECL_SIZE (decl_elt)),
3951			   MODE_INT, 1);
3952
3953      /* (SUBREG (MEM ...)) at RTL generation time is invalid, so we
3954         instead create a new MEM rtx with the proper mode.  */
3955      if (GET_CODE (x) == MEM)
3956	{
3957	  if (mode == GET_MODE (x))
3958	    DECL_RTL (decl_elt) = x;
3959	  else
3960	    {
3961	      DECL_RTL (decl_elt) = gen_rtx_MEM (mode, copy_rtx (XEXP (x, 0)));
3962	      MEM_COPY_ATTRIBUTES (DECL_RTL (decl_elt), x);
3963	      RTX_UNCHANGING_P (DECL_RTL (decl_elt)) = RTX_UNCHANGING_P (x);
3964	    }
3965	}
3966      else if (GET_CODE (x) == REG)
3967	{
3968	  if (mode == GET_MODE (x))
3969	    DECL_RTL (decl_elt) = x;
3970	  else
3971	    DECL_RTL (decl_elt) = gen_rtx_SUBREG (mode, x, 0);
3972	}
3973      else
3974	abort ();
3975
3976      /* Record the cleanup if there is one.  */
3977
3978      if (cleanup != 0)
3979	thisblock->data.block.cleanups
3980	  = temp_tree_cons (decl_elt, cleanup_elt,
3981			    thisblock->data.block.cleanups);
3982
3983      decl_elts = TREE_CHAIN (decl_elts);
3984    }
3985}
3986
3987/* Expand a list of cleanups LIST.
3988   Elements may be expressions or may be nested lists.
3989
3990   If DONT_DO is nonnull, then any list-element
3991   whose TREE_PURPOSE matches DONT_DO is omitted.
3992   This is sometimes used to avoid a cleanup associated with
3993   a value that is being returned out of the scope.
3994
3995   If IN_FIXUP is non-zero, we are generating this cleanup for a fixup
3996   goto and handle protection regions specially in that case.
3997
3998   If REACHABLE, we emit code, otherwise just inform the exception handling
3999   code about this finalization.  */
4000
4001static void
4002expand_cleanups (list, dont_do, in_fixup, reachable)
4003     tree list;
4004     tree dont_do;
4005     int in_fixup;
4006     int reachable;
4007{
4008  tree tail;
4009  for (tail = list; tail; tail = TREE_CHAIN (tail))
4010    if (dont_do == 0 || TREE_PURPOSE (tail) != dont_do)
4011      {
4012	if (TREE_CODE (TREE_VALUE (tail)) == TREE_LIST)
4013	  expand_cleanups (TREE_VALUE (tail), dont_do, in_fixup, reachable);
4014	else
4015	  {
4016	    if (! in_fixup)
4017	      {
4018		tree cleanup = TREE_VALUE (tail);
4019
4020		/* See expand_d{h,c}c_cleanup for why we avoid this.  */
4021		if (TREE_CODE (cleanup) != POPDHC_EXPR
4022		    && TREE_CODE (cleanup) != POPDCC_EXPR
4023		    /* See expand_eh_region_start_tree for this case.  */
4024		    && ! TREE_ADDRESSABLE (tail))
4025		  {
4026		    cleanup = protect_with_terminate (cleanup);
4027		    expand_eh_region_end (cleanup);
4028		  }
4029	      }
4030
4031	    if (reachable)
4032	      {
4033		/* Cleanups may be run multiple times.  For example,
4034		   when exiting a binding contour, we expand the
4035		   cleanups associated with that contour.  When a goto
4036		   within that binding contour has a target outside that
4037		   contour, it will expand all cleanups from its scope to
4038		   the target.  Though the cleanups are expanded multiple
4039		   times, the control paths are non-overlapping so the
4040		   cleanups will not be executed twice.  */
4041
4042		/* We may need to protect fixups with rethrow regions.  */
4043		int protect = (in_fixup && ! TREE_ADDRESSABLE (tail));
4044
4045		if (protect)
4046		  expand_fixup_region_start ();
4047
4048		expand_expr (TREE_VALUE (tail), const0_rtx, VOIDmode, 0);
4049		if (protect)
4050		  expand_fixup_region_end (TREE_VALUE (tail));
4051		free_temp_slots ();
4052	      }
4053	  }
4054      }
4055}
4056
4057/* Mark when the context we are emitting RTL for as a conditional
4058   context, so that any cleanup actions we register with
4059   expand_decl_init will be properly conditionalized when those
4060   cleanup actions are later performed.  Must be called before any
4061   expression (tree) is expanded that is within a conditional context.  */
4062
4063void
4064start_cleanup_deferral ()
4065{
4066  /* block_stack can be NULL if we are inside the parameter list.  It is
4067     OK to do nothing, because cleanups aren't possible here.  */
4068  if (block_stack)
4069    ++block_stack->data.block.conditional_code;
4070}
4071
4072/* Mark the end of a conditional region of code.  Because cleanup
4073   deferrals may be nested, we may still be in a conditional region
4074   after we end the currently deferred cleanups, only after we end all
4075   deferred cleanups, are we back in unconditional code.  */
4076
4077void
4078end_cleanup_deferral ()
4079{
4080  /* block_stack can be NULL if we are inside the parameter list.  It is
4081     OK to do nothing, because cleanups aren't possible here.  */
4082  if (block_stack)
4083    --block_stack->data.block.conditional_code;
4084}
4085
4086/* Move all cleanups from the current block_stack
4087   to the containing block_stack, where they are assumed to
4088   have been created.  If anything can cause a temporary to
4089   be created, but not expanded for more than one level of
4090   block_stacks, then this code will have to change.  */
4091
4092void
4093move_cleanups_up ()
4094{
4095  struct nesting *block = block_stack;
4096  struct nesting *outer = block->next;
4097
4098  outer->data.block.cleanups
4099    = chainon (block->data.block.cleanups,
4100	       outer->data.block.cleanups);
4101  block->data.block.cleanups = 0;
4102}
4103
4104tree
4105last_cleanup_this_contour ()
4106{
4107  if (block_stack == 0)
4108    return 0;
4109
4110  return block_stack->data.block.cleanups;
4111}
4112
4113/* Return 1 if there are any pending cleanups at this point.
4114   If THIS_CONTOUR is nonzero, check the current contour as well.
4115   Otherwise, look only at the contours that enclose this one.  */
4116
4117int
4118any_pending_cleanups (this_contour)
4119     int this_contour;
4120{
4121  struct nesting *block;
4122
4123  if (block_stack == 0)
4124    return 0;
4125
4126  if (this_contour && block_stack->data.block.cleanups != NULL)
4127    return 1;
4128  if (block_stack->data.block.cleanups == 0
4129      && block_stack->data.block.outer_cleanups == 0)
4130    return 0;
4131
4132  for (block = block_stack->next; block; block = block->next)
4133    if (block->data.block.cleanups != 0)
4134      return 1;
4135
4136  return 0;
4137}
4138
4139/* Enter a case (Pascal) or switch (C) statement.
4140   Push a block onto case_stack and nesting_stack
4141   to accumulate the case-labels that are seen
4142   and to record the labels generated for the statement.
4143
4144   EXIT_FLAG is nonzero if `exit_something' should exit this case stmt.
4145   Otherwise, this construct is transparent for `exit_something'.
4146
4147   EXPR is the index-expression to be dispatched on.
4148   TYPE is its nominal type.  We could simply convert EXPR to this type,
4149   but instead we take short cuts.  */
4150
4151void
4152expand_start_case (exit_flag, expr, type, printname)
4153     int exit_flag;
4154     tree expr;
4155     tree type;
4156     const char *printname;
4157{
4158  register struct nesting *thiscase = ALLOC_NESTING ();
4159
4160  /* Make an entry on case_stack for the case we are entering.  */
4161
4162  thiscase->next = case_stack;
4163  thiscase->all = nesting_stack;
4164  thiscase->depth = ++nesting_depth;
4165  thiscase->exit_label = exit_flag ? gen_label_rtx () : 0;
4166  thiscase->data.case_stmt.case_list = 0;
4167  thiscase->data.case_stmt.index_expr = expr;
4168  thiscase->data.case_stmt.nominal_type = type;
4169  thiscase->data.case_stmt.default_label = 0;
4170  thiscase->data.case_stmt.num_ranges = 0;
4171  thiscase->data.case_stmt.printname = printname;
4172  thiscase->data.case_stmt.line_number_status = force_line_numbers ();
4173  case_stack = thiscase;
4174  nesting_stack = thiscase;
4175
4176  do_pending_stack_adjust ();
4177
4178  /* Make sure case_stmt.start points to something that won't
4179     need any transformation before expand_end_case.  */
4180  if (GET_CODE (get_last_insn ()) != NOTE)
4181    emit_note (NULL_PTR, NOTE_INSN_DELETED);
4182
4183  thiscase->data.case_stmt.start = get_last_insn ();
4184
4185  start_cleanup_deferral ();
4186}
4187
4188
4189/* Start a "dummy case statement" within which case labels are invalid
4190   and are not connected to any larger real case statement.
4191   This can be used if you don't want to let a case statement jump
4192   into the middle of certain kinds of constructs.  */
4193
4194void
4195expand_start_case_dummy ()
4196{
4197  register struct nesting *thiscase = ALLOC_NESTING ();
4198
4199  /* Make an entry on case_stack for the dummy.  */
4200
4201  thiscase->next = case_stack;
4202  thiscase->all = nesting_stack;
4203  thiscase->depth = ++nesting_depth;
4204  thiscase->exit_label = 0;
4205  thiscase->data.case_stmt.case_list = 0;
4206  thiscase->data.case_stmt.start = 0;
4207  thiscase->data.case_stmt.nominal_type = 0;
4208  thiscase->data.case_stmt.default_label = 0;
4209  thiscase->data.case_stmt.num_ranges = 0;
4210  case_stack = thiscase;
4211  nesting_stack = thiscase;
4212  start_cleanup_deferral ();
4213}
4214
4215/* End a dummy case statement.  */
4216
4217void
4218expand_end_case_dummy ()
4219{
4220  end_cleanup_deferral ();
4221  POPSTACK (case_stack);
4222}
4223
4224/* Return the data type of the index-expression
4225   of the innermost case statement, or null if none.  */
4226
4227tree
4228case_index_expr_type ()
4229{
4230  if (case_stack)
4231    return TREE_TYPE (case_stack->data.case_stmt.index_expr);
4232  return 0;
4233}
4234
4235static void
4236check_seenlabel ()
4237{
4238  /* If this is the first label, warn if any insns have been emitted.  */
4239  if (case_stack->data.case_stmt.line_number_status >= 0)
4240    {
4241      rtx insn;
4242
4243      restore_line_number_status
4244	(case_stack->data.case_stmt.line_number_status);
4245      case_stack->data.case_stmt.line_number_status = -1;
4246
4247      for (insn = case_stack->data.case_stmt.start;
4248	   insn;
4249	   insn = NEXT_INSN (insn))
4250	{
4251	  if (GET_CODE (insn) == CODE_LABEL)
4252	    break;
4253	  if (GET_CODE (insn) != NOTE
4254	      && (GET_CODE (insn) != INSN || GET_CODE (PATTERN (insn)) != USE))
4255	    {
4256	      do
4257		insn = PREV_INSN (insn);
4258	      while (insn && (GET_CODE (insn) != NOTE || NOTE_LINE_NUMBER (insn) < 0));
4259
4260	      /* If insn is zero, then there must have been a syntax error.  */
4261	      if (insn)
4262		warning_with_file_and_line (NOTE_SOURCE_FILE(insn),
4263					    NOTE_LINE_NUMBER(insn),
4264					    "unreachable code at beginning of %s",
4265					    case_stack->data.case_stmt.printname);
4266	      break;
4267	    }
4268	}
4269    }
4270}
4271
4272/* Accumulate one case or default label inside a case or switch statement.
4273   VALUE is the value of the case (a null pointer, for a default label).
4274   The function CONVERTER, when applied to arguments T and V,
4275   converts the value V to the type T.
4276
4277   If not currently inside a case or switch statement, return 1 and do
4278   nothing.  The caller will print a language-specific error message.
4279   If VALUE is a duplicate or overlaps, return 2 and do nothing
4280   except store the (first) duplicate node in *DUPLICATE.
4281   If VALUE is out of range, return 3 and do nothing.
4282   If we are jumping into the scope of a cleanup or var-sized array, return 5.
4283   Return 0 on success.
4284
4285   Extended to handle range statements.  */
4286
4287int
4288pushcase (value, converter, label, duplicate)
4289     register tree value;
4290     tree (*converter) PROTO((tree, tree));
4291     register tree label;
4292     tree *duplicate;
4293{
4294  tree index_type;
4295  tree nominal_type;
4296
4297  /* Fail if not inside a real case statement.  */
4298  if (! (case_stack && case_stack->data.case_stmt.start))
4299    return 1;
4300
4301  if (stack_block_stack
4302      && stack_block_stack->depth > case_stack->depth)
4303    return 5;
4304
4305  index_type = TREE_TYPE (case_stack->data.case_stmt.index_expr);
4306  nominal_type = case_stack->data.case_stmt.nominal_type;
4307
4308  /* If the index is erroneous, avoid more problems: pretend to succeed.  */
4309  if (index_type == error_mark_node)
4310    return 0;
4311
4312  /* Convert VALUE to the type in which the comparisons are nominally done.  */
4313  if (value != 0)
4314    value = (*converter) (nominal_type, value);
4315
4316  check_seenlabel ();
4317
4318  /* Fail if this value is out of range for the actual type of the index
4319     (which may be narrower than NOMINAL_TYPE).  */
4320  if (value != 0 && ! int_fits_type_p (value, index_type))
4321    return 3;
4322
4323  /* Fail if this is a duplicate or overlaps another entry.  */
4324  if (value == 0)
4325    {
4326      if (case_stack->data.case_stmt.default_label != 0)
4327	{
4328	  *duplicate = case_stack->data.case_stmt.default_label;
4329	  return 2;
4330	}
4331      case_stack->data.case_stmt.default_label = label;
4332    }
4333  else
4334    return add_case_node (value, value, label, duplicate);
4335
4336  expand_label (label);
4337  return 0;
4338}
4339
4340/* Like pushcase but this case applies to all values between VALUE1 and
4341   VALUE2 (inclusive).  If VALUE1 is NULL, the range starts at the lowest
4342   value of the index type and ends at VALUE2.  If VALUE2 is NULL, the range
4343   starts at VALUE1 and ends at the highest value of the index type.
4344   If both are NULL, this case applies to all values.
4345
4346   The return value is the same as that of pushcase but there is one
4347   additional error code: 4 means the specified range was empty.  */
4348
4349int
4350pushcase_range (value1, value2, converter, label, duplicate)
4351     register tree value1, value2;
4352     tree (*converter) PROTO((tree, tree));
4353     register tree label;
4354     tree *duplicate;
4355{
4356  tree index_type;
4357  tree nominal_type;
4358
4359  /* Fail if not inside a real case statement.  */
4360  if (! (case_stack && case_stack->data.case_stmt.start))
4361    return 1;
4362
4363  if (stack_block_stack
4364      && stack_block_stack->depth > case_stack->depth)
4365    return 5;
4366
4367  index_type = TREE_TYPE (case_stack->data.case_stmt.index_expr);
4368  nominal_type = case_stack->data.case_stmt.nominal_type;
4369
4370  /* If the index is erroneous, avoid more problems: pretend to succeed.  */
4371  if (index_type == error_mark_node)
4372    return 0;
4373
4374  check_seenlabel ();
4375
4376  /* Convert VALUEs to type in which the comparisons are nominally done
4377     and replace any unspecified value with the corresponding bound.  */
4378  if (value1 == 0)
4379    value1 = TYPE_MIN_VALUE (index_type);
4380  if (value2 == 0)
4381    value2 = TYPE_MAX_VALUE (index_type);
4382
4383  /* Fail if the range is empty.  Do this before any conversion since
4384     we want to allow out-of-range empty ranges.  */
4385  if (value2 && tree_int_cst_lt (value2, value1))
4386    return 4;
4387
4388  value1 = (*converter) (nominal_type, value1);
4389
4390  /* If the max was unbounded, use the max of the nominal_type we are
4391     converting to.  Do this after the < check above to suppress false
4392     positives.  */
4393  if (!value2)
4394    value2 = TYPE_MAX_VALUE (nominal_type);
4395  value2 = (*converter) (nominal_type, value2);
4396
4397  /* Fail if these values are out of range.  */
4398  if (TREE_CONSTANT_OVERFLOW (value1)
4399      || ! int_fits_type_p (value1, index_type))
4400    return 3;
4401
4402  if (TREE_CONSTANT_OVERFLOW (value2)
4403      || ! int_fits_type_p (value2, index_type))
4404    return 3;
4405
4406  return add_case_node (value1, value2, label, duplicate);
4407}
4408
4409/* Do the actual insertion of a case label for pushcase and pushcase_range
4410   into case_stack->data.case_stmt.case_list.  Use an AVL tree to avoid
4411   slowdown for large switch statements.  */
4412
4413static int
4414add_case_node (low, high, label, duplicate)
4415     tree low, high;
4416     tree label;
4417     tree *duplicate;
4418{
4419  struct case_node *p, **q, *r;
4420
4421  q = &case_stack->data.case_stmt.case_list;
4422  p = *q;
4423
4424  while ((r = *q))
4425    {
4426      p = r;
4427
4428      /* Keep going past elements distinctly greater than HIGH.  */
4429      if (tree_int_cst_lt (high, p->low))
4430	q = &p->left;
4431
4432      /* or distinctly less than LOW.  */
4433      else if (tree_int_cst_lt (p->high, low))
4434	q = &p->right;
4435
4436      else
4437	{
4438	  /* We have an overlap; this is an error.  */
4439	  *duplicate = p->code_label;
4440	  return 2;
4441	}
4442    }
4443
4444  /* Add this label to the chain, and succeed.
4445     Copy LOW, HIGH so they are on temporary rather than momentary
4446     obstack and will thus survive till the end of the case statement.  */
4447
4448  r = (struct case_node *) oballoc (sizeof (struct case_node));
4449  r->low = copy_node (low);
4450
4451  /* If the bounds are equal, turn this into the one-value case.  */
4452
4453  if (tree_int_cst_equal (low, high))
4454    r->high = r->low;
4455  else
4456    {
4457      r->high = copy_node (high);
4458      case_stack->data.case_stmt.num_ranges++;
4459    }
4460
4461  r->code_label = label;
4462  expand_label (label);
4463
4464  *q = r;
4465  r->parent = p;
4466  r->left = 0;
4467  r->right = 0;
4468  r->balance = 0;
4469
4470  while (p)
4471    {
4472      struct case_node *s;
4473
4474      if (r == p->left)
4475	{
4476	  int b;
4477
4478	  if (! (b = p->balance))
4479	    /* Growth propagation from left side.  */
4480	    p->balance = -1;
4481	  else if (b < 0)
4482	    {
4483	      if (r->balance < 0)
4484		{
4485		  /* R-Rotation */
4486		  if ((p->left = s = r->right))
4487		    s->parent = p;
4488
4489		  r->right = p;
4490		  p->balance = 0;
4491		  r->balance = 0;
4492		  s = p->parent;
4493		  p->parent = r;
4494
4495		  if ((r->parent = s))
4496		    {
4497		      if (s->left == p)
4498			s->left = r;
4499		      else
4500			s->right = r;
4501		    }
4502		  else
4503		    case_stack->data.case_stmt.case_list = r;
4504		}
4505	      else
4506		/* r->balance == +1 */
4507		{
4508		  /* LR-Rotation */
4509
4510		  int b2;
4511		  struct case_node *t = r->right;
4512
4513		  if ((p->left = s = t->right))
4514		    s->parent = p;
4515
4516		  t->right = p;
4517		  if ((r->right = s = t->left))
4518		    s->parent = r;
4519
4520		  t->left = r;
4521		  b = t->balance;
4522		  b2 = b < 0;
4523		  p->balance = b2;
4524		  b2 = -b2 - b;
4525		  r->balance = b2;
4526		  t->balance = 0;
4527		  s = p->parent;
4528		  p->parent = t;
4529		  r->parent = t;
4530
4531		  if ((t->parent = s))
4532		    {
4533		      if (s->left == p)
4534			s->left = t;
4535		      else
4536			s->right = t;
4537		    }
4538		  else
4539		    case_stack->data.case_stmt.case_list = t;
4540		}
4541	      break;
4542	    }
4543
4544	  else
4545	    {
4546	      /* p->balance == +1; growth of left side balances the node.  */
4547	      p->balance = 0;
4548	      break;
4549	    }
4550	}
4551      else
4552	/* r == p->right */
4553	{
4554	  int b;
4555
4556	  if (! (b = p->balance))
4557	    /* Growth propagation from right side.  */
4558	    p->balance++;
4559	  else if (b > 0)
4560	    {
4561	      if (r->balance > 0)
4562		{
4563		  /* L-Rotation */
4564
4565		  if ((p->right = s = r->left))
4566		    s->parent = p;
4567
4568		  r->left = p;
4569		  p->balance = 0;
4570		  r->balance = 0;
4571		  s = p->parent;
4572		  p->parent = r;
4573		  if ((r->parent = s))
4574		    {
4575		      if (s->left == p)
4576			s->left = r;
4577		      else
4578			s->right = r;
4579		    }
4580
4581		  else
4582		    case_stack->data.case_stmt.case_list = r;
4583		}
4584
4585	      else
4586		/* r->balance == -1 */
4587		{
4588		  /* RL-Rotation */
4589		  int b2;
4590		  struct case_node *t = r->left;
4591
4592		  if ((p->right = s = t->left))
4593		    s->parent = p;
4594
4595		  t->left = p;
4596
4597		  if ((r->left = s = t->right))
4598		    s->parent = r;
4599
4600		  t->right = r;
4601		  b = t->balance;
4602		  b2 = b < 0;
4603		  r->balance = b2;
4604		  b2 = -b2 - b;
4605		  p->balance = b2;
4606		  t->balance = 0;
4607		  s = p->parent;
4608		  p->parent = t;
4609		  r->parent = t;
4610
4611		  if ((t->parent = s))
4612		    {
4613		      if (s->left == p)
4614			s->left = t;
4615		      else
4616			s->right = t;
4617		    }
4618
4619		  else
4620		    case_stack->data.case_stmt.case_list = t;
4621		}
4622	      break;
4623	    }
4624	  else
4625	    {
4626	      /* p->balance == -1; growth of right side balances the node.  */
4627	      p->balance = 0;
4628	      break;
4629	    }
4630	}
4631
4632      r = p;
4633      p = p->parent;
4634    }
4635
4636  return 0;
4637}
4638
4639
4640/* Returns the number of possible values of TYPE.
4641   Returns -1 if the number is unknown or variable.
4642   Returns -2 if the number does not fit in a HOST_WIDE_INT.
4643   Sets *SPARENESS to 2 if TYPE is an ENUMERAL_TYPE whose values
4644   do not increase monotonically (there may be duplicates);
4645   to 1 if the values increase monotonically, but not always by 1;
4646   otherwise sets it to 0.  */
4647
4648HOST_WIDE_INT
4649all_cases_count (type, spareness)
4650     tree type;
4651     int *spareness;
4652{
4653  HOST_WIDE_INT count;
4654  *spareness = 0;
4655
4656  switch (TREE_CODE (type))
4657    {
4658      tree t;
4659    case BOOLEAN_TYPE:
4660      count = 2;
4661      break;
4662    case CHAR_TYPE:
4663      count = 1 << BITS_PER_UNIT;
4664      break;
4665    default:
4666    case INTEGER_TYPE:
4667      if (TREE_CODE (TYPE_MIN_VALUE (type)) != INTEGER_CST
4668	  || TYPE_MAX_VALUE (type) == NULL
4669	  || TREE_CODE (TYPE_MAX_VALUE (type)) != INTEGER_CST)
4670	return -1;
4671      else
4672	{
4673	  /* count
4674	     = TREE_INT_CST_LOW (TYPE_MAX_VALUE (type))
4675	     - TREE_INT_CST_LOW (TYPE_MIN_VALUE (type)) + 1
4676	     but with overflow checking.  */
4677	  tree mint = TYPE_MIN_VALUE (type);
4678	  tree maxt = TYPE_MAX_VALUE (type);
4679	  HOST_WIDE_INT lo, hi;
4680	  neg_double(TREE_INT_CST_LOW (mint), TREE_INT_CST_HIGH (mint),
4681		     &lo, &hi);
4682	  add_double(TREE_INT_CST_LOW (maxt), TREE_INT_CST_HIGH (maxt),
4683		     lo, hi, &lo, &hi);
4684	  add_double (lo, hi, 1, 0, &lo, &hi);
4685	  if (hi != 0 || lo < 0)
4686	    return -2;
4687	  count = lo;
4688	}
4689      break;
4690    case ENUMERAL_TYPE:
4691      count = 0;
4692      for (t = TYPE_VALUES (type); t != NULL_TREE; t = TREE_CHAIN (t))
4693	{
4694	  if (TREE_CODE (TYPE_MIN_VALUE (type)) != INTEGER_CST
4695	      || TREE_CODE (TREE_VALUE (t)) != INTEGER_CST
4696	      || TREE_INT_CST_LOW (TYPE_MIN_VALUE (type)) + count
4697	      != TREE_INT_CST_LOW (TREE_VALUE (t)))
4698	    *spareness = 1;
4699	  count++;
4700	}
4701      if (*spareness == 1)
4702	{
4703	  tree prev = TREE_VALUE (TYPE_VALUES (type));
4704	  for (t = TYPE_VALUES (type); t = TREE_CHAIN (t), t != NULL_TREE; )
4705	    {
4706	      if (! tree_int_cst_lt (prev, TREE_VALUE (t)))
4707		{
4708		  *spareness = 2;
4709		  break;
4710		}
4711	      prev = TREE_VALUE (t);
4712	    }
4713
4714	}
4715    }
4716  return count;
4717}
4718
4719
4720#define BITARRAY_TEST(ARRAY, INDEX) \
4721  ((ARRAY)[(unsigned) (INDEX) / HOST_BITS_PER_CHAR]\
4722			  & (1 << ((unsigned) (INDEX) % HOST_BITS_PER_CHAR)))
4723#define BITARRAY_SET(ARRAY, INDEX) \
4724  ((ARRAY)[(unsigned) (INDEX) / HOST_BITS_PER_CHAR]\
4725			  |= 1 << ((unsigned) (INDEX) % HOST_BITS_PER_CHAR))
4726
4727/* Set the elements of the bitstring CASES_SEEN (which has length COUNT),
4728   with the case values we have seen, assuming the case expression
4729   has the given TYPE.
4730   SPARSENESS is as determined by all_cases_count.
4731
4732   The time needed is proportional to COUNT, unless
4733   SPARSENESS is 2, in which case quadratic time is needed.  */
4734
4735void
4736mark_seen_cases (type, cases_seen, count, sparseness)
4737     tree type;
4738     unsigned char *cases_seen;
4739     long count;
4740     int sparseness;
4741{
4742  tree next_node_to_try = NULL_TREE;
4743  long next_node_offset = 0;
4744
4745  register struct case_node *n, *root = case_stack->data.case_stmt.case_list;
4746  tree val = make_node (INTEGER_CST);
4747  TREE_TYPE (val) = type;
4748  if (! root)
4749    ; /* Do nothing */
4750  else if (sparseness == 2)
4751    {
4752      tree t;
4753      HOST_WIDE_INT xlo;
4754
4755      /* This less efficient loop is only needed to handle
4756	 duplicate case values (multiple enum constants
4757	 with the same value).  */
4758      TREE_TYPE (val) = TREE_TYPE (root->low);
4759      for (t = TYPE_VALUES (type), xlo = 0;  t != NULL_TREE;
4760	   t = TREE_CHAIN (t), xlo++)
4761	{
4762	  TREE_INT_CST_LOW (val) = TREE_INT_CST_LOW (TREE_VALUE (t));
4763	  TREE_INT_CST_HIGH (val) = TREE_INT_CST_HIGH (TREE_VALUE (t));
4764	  n = root;
4765	  do
4766	    {
4767	      /* Keep going past elements distinctly greater than VAL.  */
4768	      if (tree_int_cst_lt (val, n->low))
4769		n = n->left;
4770
4771	      /* or distinctly less than VAL.  */
4772	      else if (tree_int_cst_lt (n->high, val))
4773		n = n->right;
4774
4775	      else
4776		{
4777		  /* We have found a matching range.  */
4778		  BITARRAY_SET (cases_seen, xlo);
4779		  break;
4780		}
4781	    }
4782	  while (n);
4783	}
4784    }
4785  else
4786    {
4787      if (root->left)
4788	case_stack->data.case_stmt.case_list = root = case_tree2list (root, 0);
4789      for (n = root; n; n = n->right)
4790	{
4791	  TREE_INT_CST_LOW (val) = TREE_INT_CST_LOW (n->low);
4792	  TREE_INT_CST_HIGH (val) = TREE_INT_CST_HIGH (n->low);
4793	  while ( ! tree_int_cst_lt (n->high, val))
4794	    {
4795	      /* Calculate (into xlo) the "offset" of the integer (val).
4796		 The element with lowest value has offset 0, the next smallest
4797		 element has offset 1, etc.  */
4798
4799	      HOST_WIDE_INT xlo, xhi;
4800	      tree t;
4801	      if (sparseness && TYPE_VALUES (type) != NULL_TREE)
4802		{
4803		  /* The TYPE_VALUES will be in increasing order, so
4804		     starting searching where we last ended.  */
4805		  t = next_node_to_try;
4806		  xlo = next_node_offset;
4807		  xhi = 0;
4808		  for (;;)
4809		    {
4810		      if (t == NULL_TREE)
4811			{
4812			  t = TYPE_VALUES (type);
4813			  xlo = 0;
4814			}
4815		      if (tree_int_cst_equal (val, TREE_VALUE (t)))
4816			{
4817			  next_node_to_try = TREE_CHAIN (t);
4818			  next_node_offset = xlo + 1;
4819			  break;
4820			}
4821		      xlo++;
4822		      t = TREE_CHAIN (t);
4823		      if (t == next_node_to_try)
4824			{
4825			  xlo = -1;
4826			  break;
4827			}
4828		    }
4829		}
4830	      else
4831		{
4832		  t = TYPE_MIN_VALUE (type);
4833		  if (t)
4834		    neg_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t),
4835				&xlo, &xhi);
4836		  else
4837		    xlo = xhi = 0;
4838		  add_double (xlo, xhi,
4839			      TREE_INT_CST_LOW (val), TREE_INT_CST_HIGH (val),
4840			      &xlo, &xhi);
4841		}
4842
4843	      if (xhi == 0 && xlo >= 0 && xlo < count)
4844		BITARRAY_SET (cases_seen, xlo);
4845	      add_double (TREE_INT_CST_LOW (val), TREE_INT_CST_HIGH (val),
4846			  1, 0,
4847			  &TREE_INT_CST_LOW (val), &TREE_INT_CST_HIGH (val));
4848	    }
4849	}
4850    }
4851}
4852
4853/* Called when the index of a switch statement is an enumerated type
4854   and there is no default label.
4855
4856   Checks that all enumeration literals are covered by the case
4857   expressions of a switch.  Also, warn if there are any extra
4858   switch cases that are *not* elements of the enumerated type.
4859
4860   If all enumeration literals were covered by the case expressions,
4861   turn one of the expressions into the default expression since it should
4862   not be possible to fall through such a switch.  */
4863
4864void
4865check_for_full_enumeration_handling (type)
4866     tree type;
4867{
4868  register struct case_node *n;
4869  register tree chain;
4870#if 0  /* variable used by 'if 0'ed  code below. */
4871  register struct case_node **l;
4872  int all_values = 1;
4873#endif
4874
4875  /* True iff the selector type is a numbered set mode.  */
4876  int sparseness = 0;
4877
4878  /* The number of possible selector values.  */
4879  HOST_WIDE_INT size;
4880
4881  /* For each possible selector value. a one iff it has been matched
4882     by a case value alternative.  */
4883  unsigned char *cases_seen;
4884
4885  /* The allocated size of cases_seen, in chars.  */
4886  long bytes_needed;
4887
4888  if (! warn_switch)
4889    return;
4890
4891  size = all_cases_count (type, &sparseness);
4892  bytes_needed = (size + HOST_BITS_PER_CHAR) / HOST_BITS_PER_CHAR;
4893
4894  if (size > 0 && size < 600000
4895      /* We deliberately use malloc here - not xmalloc.  */
4896      && (cases_seen = (unsigned char *) malloc (bytes_needed)) != NULL)
4897    {
4898      long i;
4899      tree v = TYPE_VALUES (type);
4900      bzero (cases_seen, bytes_needed);
4901
4902      /* The time complexity of this code is normally O(N), where
4903	 N being the number of members in the enumerated type.
4904	 However, if type is a ENUMERAL_TYPE whose values do not
4905	 increase monotonically, O(N*log(N)) time may be needed.  */
4906
4907      mark_seen_cases (type, cases_seen, size, sparseness);
4908
4909      for (i = 0;  v != NULL_TREE && i < size; i++, v = TREE_CHAIN (v))
4910	{
4911	  if (BITARRAY_TEST(cases_seen, i) == 0)
4912	    warning ("enumeration value `%s' not handled in switch",
4913		     IDENTIFIER_POINTER (TREE_PURPOSE (v)));
4914	}
4915
4916      free (cases_seen);
4917    }
4918
4919  /* Now we go the other way around; we warn if there are case
4920     expressions that don't correspond to enumerators.  This can
4921     occur since C and C++ don't enforce type-checking of
4922     assignments to enumeration variables.  */
4923
4924  if (case_stack->data.case_stmt.case_list
4925      && case_stack->data.case_stmt.case_list->left)
4926    case_stack->data.case_stmt.case_list
4927      = case_tree2list (case_stack->data.case_stmt.case_list, 0);
4928  if (warn_switch)
4929    for (n = case_stack->data.case_stmt.case_list; n; n = n->right)
4930      {
4931	for (chain = TYPE_VALUES (type);
4932	     chain && !tree_int_cst_equal (n->low, TREE_VALUE (chain));
4933	     chain = TREE_CHAIN (chain))
4934	  ;
4935
4936	if (!chain)
4937	  {
4938	    if (TYPE_NAME (type) == 0)
4939	      warning ("case value `%ld' not in enumerated type",
4940		       (long) TREE_INT_CST_LOW (n->low));
4941	    else
4942	      warning ("case value `%ld' not in enumerated type `%s'",
4943		       (long) TREE_INT_CST_LOW (n->low),
4944		       IDENTIFIER_POINTER ((TREE_CODE (TYPE_NAME (type))
4945					    == IDENTIFIER_NODE)
4946					   ? TYPE_NAME (type)
4947					   : DECL_NAME (TYPE_NAME (type))));
4948	  }
4949	if (!tree_int_cst_equal (n->low, n->high))
4950	  {
4951	    for (chain = TYPE_VALUES (type);
4952		 chain && !tree_int_cst_equal (n->high, TREE_VALUE (chain));
4953		 chain = TREE_CHAIN (chain))
4954	      ;
4955
4956	    if (!chain)
4957	      {
4958		if (TYPE_NAME (type) == 0)
4959		  warning ("case value `%ld' not in enumerated type",
4960			   (long) TREE_INT_CST_LOW (n->high));
4961		else
4962		  warning ("case value `%ld' not in enumerated type `%s'",
4963			   (long) TREE_INT_CST_LOW (n->high),
4964			   IDENTIFIER_POINTER ((TREE_CODE (TYPE_NAME (type))
4965						== IDENTIFIER_NODE)
4966					       ? TYPE_NAME (type)
4967					       : DECL_NAME (TYPE_NAME (type))));
4968	      }
4969	  }
4970      }
4971
4972#if 0
4973  /* ??? This optimization is disabled because it causes valid programs to
4974     fail.  ANSI C does not guarantee that an expression with enum type
4975     will have a value that is the same as one of the enumeration literals.  */
4976
4977  /* If all values were found as case labels, make one of them the default
4978     label.  Thus, this switch will never fall through.  We arbitrarily pick
4979     the last one to make the default since this is likely the most
4980     efficient choice.  */
4981
4982  if (all_values)
4983    {
4984      for (l = &case_stack->data.case_stmt.case_list;
4985	   (*l)->right != 0;
4986	   l = &(*l)->right)
4987	;
4988
4989      case_stack->data.case_stmt.default_label = (*l)->code_label;
4990      *l = 0;
4991    }
4992#endif /* 0 */
4993}
4994
4995
4996/* Terminate a case (Pascal) or switch (C) statement
4997   in which ORIG_INDEX is the expression to be tested.
4998   Generate the code to test it and jump to the right place.  */
4999
5000void
5001expand_end_case (orig_index)
5002     tree orig_index;
5003{
5004  tree minval = NULL_TREE, maxval = NULL_TREE, range, orig_minval;
5005  rtx default_label = 0;
5006  register struct case_node *n;
5007  unsigned int count;
5008  rtx index;
5009  rtx table_label;
5010  int ncases;
5011  rtx *labelvec;
5012  register int i;
5013  rtx before_case;
5014  register struct nesting *thiscase = case_stack;
5015  tree index_expr, index_type;
5016  int unsignedp;
5017
5018  table_label = gen_label_rtx ();
5019  index_expr = thiscase->data.case_stmt.index_expr;
5020  index_type = TREE_TYPE (index_expr);
5021  unsignedp = TREE_UNSIGNED (index_type);
5022
5023  do_pending_stack_adjust ();
5024
5025  /* This might get an spurious warning in the presence of a syntax error;
5026     it could be fixed by moving the call to check_seenlabel after the
5027     check for error_mark_node, and copying the code of check_seenlabel that
5028     deals with case_stack->data.case_stmt.line_number_status /
5029     restore_line_number_status in front of the call to end_cleanup_deferral;
5030     However, this might miss some useful warnings in the presence of
5031     non-syntax errors.  */
5032  check_seenlabel ();
5033
5034  /* An ERROR_MARK occurs for various reasons including invalid data type.  */
5035  if (index_type != error_mark_node)
5036    {
5037      /* If switch expression was an enumerated type, check that all
5038	 enumeration literals are covered by the cases.
5039	 No sense trying this if there's a default case, however.  */
5040
5041      if (!thiscase->data.case_stmt.default_label
5042	  && TREE_CODE (TREE_TYPE (orig_index)) == ENUMERAL_TYPE
5043	  && TREE_CODE (index_expr) != INTEGER_CST)
5044	check_for_full_enumeration_handling (TREE_TYPE (orig_index));
5045
5046      /* If we don't have a default-label, create one here,
5047	 after the body of the switch.  */
5048      if (thiscase->data.case_stmt.default_label == 0)
5049	{
5050	  thiscase->data.case_stmt.default_label
5051	    = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE);
5052	  expand_label (thiscase->data.case_stmt.default_label);
5053	}
5054      default_label = label_rtx (thiscase->data.case_stmt.default_label);
5055
5056      before_case = get_last_insn ();
5057
5058      if (thiscase->data.case_stmt.case_list
5059	  && thiscase->data.case_stmt.case_list->left)
5060	thiscase->data.case_stmt.case_list
5061	  = case_tree2list(thiscase->data.case_stmt.case_list, 0);
5062
5063      /* Simplify the case-list before we count it.  */
5064      group_case_nodes (thiscase->data.case_stmt.case_list);
5065
5066      /* Get upper and lower bounds of case values.
5067	 Also convert all the case values to the index expr's data type.  */
5068
5069      count = 0;
5070      for (n = thiscase->data.case_stmt.case_list; n; n = n->right)
5071	{
5072	  /* Check low and high label values are integers.  */
5073	  if (TREE_CODE (n->low) != INTEGER_CST)
5074	    abort ();
5075	  if (TREE_CODE (n->high) != INTEGER_CST)
5076	    abort ();
5077
5078	  n->low = convert (index_type, n->low);
5079	  n->high = convert (index_type, n->high);
5080
5081	  /* Count the elements and track the largest and smallest
5082	     of them (treating them as signed even if they are not).  */
5083	  if (count++ == 0)
5084	    {
5085	      minval = n->low;
5086	      maxval = n->high;
5087	    }
5088	  else
5089	    {
5090	      if (INT_CST_LT (n->low, minval))
5091		minval = n->low;
5092	      if (INT_CST_LT (maxval, n->high))
5093		maxval = n->high;
5094	    }
5095	  /* A range counts double, since it requires two compares.  */
5096	  if (! tree_int_cst_equal (n->low, n->high))
5097	    count++;
5098	}
5099
5100      orig_minval = minval;
5101
5102      /* Compute span of values.  */
5103      if (count != 0)
5104	range = fold (build (MINUS_EXPR, index_type, maxval, minval));
5105
5106      end_cleanup_deferral ();
5107
5108      if (count == 0)
5109	{
5110	  expand_expr (index_expr, const0_rtx, VOIDmode, 0);
5111	  emit_queue ();
5112	  emit_jump (default_label);
5113	}
5114
5115      /* If range of values is much bigger than number of values,
5116	 make a sequence of conditional branches instead of a dispatch.
5117	 If the switch-index is a constant, do it this way
5118	 because we can optimize it.  */
5119
5120#ifndef CASE_VALUES_THRESHOLD
5121#ifdef HAVE_casesi
5122#define CASE_VALUES_THRESHOLD (HAVE_casesi ? 4 : 5)
5123#else
5124      /* If machine does not have a case insn that compares the
5125	 bounds, this means extra overhead for dispatch tables
5126	 which raises the threshold for using them.  */
5127#define CASE_VALUES_THRESHOLD 5
5128#endif /* HAVE_casesi */
5129#endif /* CASE_VALUES_THRESHOLD */
5130
5131      else if (TREE_INT_CST_HIGH (range) != 0
5132	       || count < (unsigned int) CASE_VALUES_THRESHOLD
5133	       || ((unsigned HOST_WIDE_INT) (TREE_INT_CST_LOW (range))
5134		   > 10 * count)
5135#ifndef ASM_OUTPUT_ADDR_DIFF_ELT
5136	       || flag_pic
5137#endif
5138	       || TREE_CODE (index_expr) == INTEGER_CST
5139	       /* These will reduce to a constant.  */
5140	       || (TREE_CODE (index_expr) == CALL_EXPR
5141		   && TREE_CODE (TREE_OPERAND (index_expr, 0)) == ADDR_EXPR
5142		   && TREE_CODE (TREE_OPERAND (TREE_OPERAND (index_expr, 0), 0)) == FUNCTION_DECL
5143		   && DECL_FUNCTION_CODE (TREE_OPERAND (TREE_OPERAND (index_expr, 0), 0)) == BUILT_IN_CLASSIFY_TYPE)
5144	       || (TREE_CODE (index_expr) == COMPOUND_EXPR
5145		   && TREE_CODE (TREE_OPERAND (index_expr, 1)) == INTEGER_CST))
5146	{
5147	  index = expand_expr (index_expr, NULL_RTX, VOIDmode, 0);
5148
5149	  /* If the index is a short or char that we do not have
5150	     an insn to handle comparisons directly, convert it to
5151	     a full integer now, rather than letting each comparison
5152	     generate the conversion.  */
5153
5154	  if (GET_MODE_CLASS (GET_MODE (index)) == MODE_INT
5155	      && (cmp_optab->handlers[(int) GET_MODE(index)].insn_code
5156		  == CODE_FOR_nothing))
5157	    {
5158	      enum machine_mode wider_mode;
5159	      for (wider_mode = GET_MODE (index); wider_mode != VOIDmode;
5160		   wider_mode = GET_MODE_WIDER_MODE (wider_mode))
5161		if (cmp_optab->handlers[(int) wider_mode].insn_code
5162		    != CODE_FOR_nothing)
5163		  {
5164		    index = convert_to_mode (wider_mode, index, unsignedp);
5165		    break;
5166		  }
5167	    }
5168
5169	  emit_queue ();
5170	  do_pending_stack_adjust ();
5171
5172	  index = protect_from_queue (index, 0);
5173	  if (GET_CODE (index) == MEM)
5174	    index = copy_to_reg (index);
5175	  if (GET_CODE (index) == CONST_INT
5176	      || TREE_CODE (index_expr) == INTEGER_CST)
5177	    {
5178	      /* Make a tree node with the proper constant value
5179		 if we don't already have one.  */
5180	      if (TREE_CODE (index_expr) != INTEGER_CST)
5181		{
5182		  index_expr
5183		    = build_int_2 (INTVAL (index),
5184				   unsignedp || INTVAL (index) >= 0 ? 0 : -1);
5185		  index_expr = convert (index_type, index_expr);
5186		}
5187
5188	      /* For constant index expressions we need only
5189		 issue a unconditional branch to the appropriate
5190		 target code.  The job of removing any unreachable
5191		 code is left to the optimisation phase if the
5192		 "-O" option is specified.  */
5193	      for (n = thiscase->data.case_stmt.case_list; n; n = n->right)
5194		if (! tree_int_cst_lt (index_expr, n->low)
5195		    && ! tree_int_cst_lt (n->high, index_expr))
5196		  break;
5197
5198	      if (n)
5199		emit_jump (label_rtx (n->code_label));
5200	      else
5201		emit_jump (default_label);
5202	    }
5203	  else
5204	    {
5205	      /* If the index expression is not constant we generate
5206		 a binary decision tree to select the appropriate
5207		 target code.  This is done as follows:
5208
5209		 The list of cases is rearranged into a binary tree,
5210		 nearly optimal assuming equal probability for each case.
5211
5212		 The tree is transformed into RTL, eliminating
5213		 redundant test conditions at the same time.
5214
5215		 If program flow could reach the end of the
5216		 decision tree an unconditional jump to the
5217		 default code is emitted.  */
5218
5219	      use_cost_table
5220		= (TREE_CODE (TREE_TYPE (orig_index)) != ENUMERAL_TYPE
5221		   && estimate_case_costs (thiscase->data.case_stmt.case_list));
5222	      balance_case_nodes (&thiscase->data.case_stmt.case_list,
5223				  NULL_PTR);
5224	      emit_case_nodes (index, thiscase->data.case_stmt.case_list,
5225			       default_label, index_type);
5226	      emit_jump_if_reachable (default_label);
5227	    }
5228	}
5229      else
5230	{
5231	  int win = 0;
5232#ifdef HAVE_casesi
5233	  if (HAVE_casesi)
5234	    {
5235	      enum machine_mode index_mode = SImode;
5236	      int index_bits = GET_MODE_BITSIZE (index_mode);
5237	      rtx op1, op2;
5238	      enum machine_mode op_mode;
5239
5240	      /* Convert the index to SImode.  */
5241	      if (GET_MODE_BITSIZE (TYPE_MODE (index_type))
5242		  > GET_MODE_BITSIZE (index_mode))
5243		{
5244		  enum machine_mode omode = TYPE_MODE (index_type);
5245		  rtx rangertx = expand_expr (range, NULL_RTX, VOIDmode, 0);
5246
5247		  /* We must handle the endpoints in the original mode.  */
5248		  index_expr = build (MINUS_EXPR, index_type,
5249				      index_expr, minval);
5250		  minval = integer_zero_node;
5251		  index = expand_expr (index_expr, NULL_RTX, VOIDmode, 0);
5252		  emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX,
5253					   omode, 1, 0, default_label);
5254		  /* Now we can safely truncate.  */
5255		  index = convert_to_mode (index_mode, index, 0);
5256		}
5257	      else
5258		{
5259		  if (TYPE_MODE (index_type) != index_mode)
5260		    {
5261		      index_expr = convert (type_for_size (index_bits, 0),
5262					    index_expr);
5263		      index_type = TREE_TYPE (index_expr);
5264		    }
5265
5266		  index = expand_expr (index_expr, NULL_RTX, VOIDmode, 0);
5267		}
5268	      emit_queue ();
5269	      index = protect_from_queue (index, 0);
5270	      do_pending_stack_adjust ();
5271
5272	      op_mode = insn_operand_mode[(int)CODE_FOR_casesi][0];
5273	      if (! (*insn_operand_predicate[(int)CODE_FOR_casesi][0])
5274		  (index, op_mode))
5275		index = copy_to_mode_reg (op_mode, index);
5276
5277	      op1 = expand_expr (minval, NULL_RTX, VOIDmode, 0);
5278
5279	      op_mode = insn_operand_mode[(int)CODE_FOR_casesi][1];
5280	      if (! (*insn_operand_predicate[(int)CODE_FOR_casesi][1])
5281		  (op1, op_mode))
5282		op1 = copy_to_mode_reg (op_mode, op1);
5283
5284	      op2 = expand_expr (range, NULL_RTX, VOIDmode, 0);
5285
5286	      op_mode = insn_operand_mode[(int)CODE_FOR_casesi][2];
5287	      if (! (*insn_operand_predicate[(int)CODE_FOR_casesi][2])
5288		  (op2, op_mode))
5289		op2 = copy_to_mode_reg (op_mode, op2);
5290
5291	      emit_jump_insn (gen_casesi (index, op1, op2,
5292					  table_label, default_label));
5293	      win = 1;
5294	    }
5295#endif
5296#ifdef HAVE_tablejump
5297	  if (! win && HAVE_tablejump)
5298	    {
5299	      index_expr = convert (thiscase->data.case_stmt.nominal_type,
5300				    fold (build (MINUS_EXPR, index_type,
5301						 index_expr, minval)));
5302	      index_type = TREE_TYPE (index_expr);
5303	      index = expand_expr (index_expr, NULL_RTX, VOIDmode, 0);
5304	      emit_queue ();
5305	      index = protect_from_queue (index, 0);
5306	      do_pending_stack_adjust ();
5307
5308	      do_tablejump (index, TYPE_MODE (index_type),
5309			    expand_expr (range, NULL_RTX, VOIDmode, 0),
5310			    table_label, default_label);
5311	      win = 1;
5312	    }
5313#endif
5314	  if (! win)
5315	    abort ();
5316
5317	  /* Get table of labels to jump to, in order of case index.  */
5318
5319	  ncases = TREE_INT_CST_LOW (range) + 1;
5320	  labelvec = (rtx *) alloca (ncases * sizeof (rtx));
5321	  bzero ((char *) labelvec, ncases * sizeof (rtx));
5322
5323	  for (n = thiscase->data.case_stmt.case_list; n; n = n->right)
5324	    {
5325	      register HOST_WIDE_INT i
5326		= TREE_INT_CST_LOW (n->low) - TREE_INT_CST_LOW (orig_minval);
5327
5328	      while (1)
5329		{
5330		  labelvec[i]
5331		    = gen_rtx_LABEL_REF (Pmode, label_rtx (n->code_label));
5332		  if (i + TREE_INT_CST_LOW (orig_minval)
5333		      == TREE_INT_CST_LOW (n->high))
5334		    break;
5335		  i++;
5336		}
5337	    }
5338
5339	  /* Fill in the gaps with the default.  */
5340	  for (i = 0; i < ncases; i++)
5341	    if (labelvec[i] == 0)
5342	      labelvec[i] = gen_rtx_LABEL_REF (Pmode, default_label);
5343
5344	  /* Output the table */
5345	  emit_label (table_label);
5346
5347	  if (CASE_VECTOR_PC_RELATIVE || flag_pic)
5348	    emit_jump_insn (gen_rtx_ADDR_DIFF_VEC (CASE_VECTOR_MODE,
5349						   gen_rtx_LABEL_REF (Pmode, table_label),
5350						   gen_rtvec_v (ncases, labelvec),
5351						    const0_rtx, const0_rtx, 0));
5352	  else
5353	    emit_jump_insn (gen_rtx_ADDR_VEC (CASE_VECTOR_MODE,
5354					      gen_rtvec_v (ncases, labelvec)));
5355
5356	  /* If the case insn drops through the table,
5357	     after the table we must jump to the default-label.
5358	     Otherwise record no drop-through after the table.  */
5359#ifdef CASE_DROPS_THROUGH
5360	  emit_jump (default_label);
5361#else
5362	  emit_barrier ();
5363#endif
5364	}
5365
5366      before_case = squeeze_notes (NEXT_INSN (before_case), get_last_insn ());
5367      reorder_insns (before_case, get_last_insn (),
5368		     thiscase->data.case_stmt.start);
5369    }
5370  else
5371    end_cleanup_deferral ();
5372
5373  if (thiscase->exit_label)
5374    emit_label (thiscase->exit_label);
5375
5376  POPSTACK (case_stack);
5377
5378  free_temp_slots ();
5379}
5380
5381/* Convert the tree NODE into a list linked by the right field, with the left
5382   field zeroed.  RIGHT is used for recursion; it is a list to be placed
5383   rightmost in the resulting list.  */
5384
5385static struct case_node *
5386case_tree2list (node, right)
5387     struct case_node *node, *right;
5388{
5389  struct case_node *left;
5390
5391  if (node->right)
5392    right = case_tree2list (node->right, right);
5393
5394  node->right = right;
5395  if ((left = node->left))
5396    {
5397      node->left = 0;
5398      return case_tree2list (left, node);
5399    }
5400
5401  return node;
5402}
5403
5404/* Generate code to jump to LABEL if OP1 and OP2 are equal.  */
5405
5406static void
5407do_jump_if_equal (op1, op2, label, unsignedp)
5408     rtx op1, op2, label;
5409     int unsignedp;
5410{
5411  if (GET_CODE (op1) == CONST_INT
5412      && GET_CODE (op2) == CONST_INT)
5413    {
5414      if (INTVAL (op1) == INTVAL (op2))
5415	emit_jump (label);
5416    }
5417  else
5418    {
5419      enum machine_mode mode = GET_MODE (op1);
5420      if (mode == VOIDmode)
5421	mode = GET_MODE (op2);
5422      emit_cmp_and_jump_insns (op1, op2, EQ, NULL_RTX, mode, unsignedp,
5423			       0, label);
5424    }
5425}
5426
5427/* Not all case values are encountered equally.  This function
5428   uses a heuristic to weight case labels, in cases where that
5429   looks like a reasonable thing to do.
5430
5431   Right now, all we try to guess is text, and we establish the
5432   following weights:
5433
5434	chars above space:	16
5435	digits:			16
5436	default:		12
5437	space, punct:		8
5438	tab:			4
5439	newline:		2
5440	other "\" chars:	1
5441	remaining chars:	0
5442
5443   If we find any cases in the switch that are not either -1 or in the range
5444   of valid ASCII characters, or are control characters other than those
5445   commonly used with "\", don't treat this switch scanning text.
5446
5447   Return 1 if these nodes are suitable for cost estimation, otherwise
5448   return 0.  */
5449
5450static int
5451estimate_case_costs (node)
5452     case_node_ptr node;
5453{
5454  tree min_ascii = build_int_2 (-1, -1);
5455  tree max_ascii = convert (TREE_TYPE (node->high), build_int_2 (127, 0));
5456  case_node_ptr n;
5457  int i;
5458
5459  /* If we haven't already made the cost table, make it now.  Note that the
5460     lower bound of the table is -1, not zero.  */
5461
5462  if (cost_table == NULL)
5463    {
5464      cost_table = ((short *) xmalloc (129 * sizeof (short))) + 1;
5465      bzero ((char *) (cost_table - 1), 129 * sizeof (short));
5466
5467      for (i = 0; i < 128; i++)
5468	{
5469	  if (ISALNUM (i))
5470	    cost_table[i] = 16;
5471	  else if (ISPUNCT (i))
5472	    cost_table[i] = 8;
5473	  else if (ISCNTRL (i))
5474	    cost_table[i] = -1;
5475	}
5476
5477      cost_table[' '] = 8;
5478      cost_table['\t'] = 4;
5479      cost_table['\0'] = 4;
5480      cost_table['\n'] = 2;
5481      cost_table['\f'] = 1;
5482      cost_table['\v'] = 1;
5483      cost_table['\b'] = 1;
5484    }
5485
5486  /* See if all the case expressions look like text.  It is text if the
5487     constant is >= -1 and the highest constant is <= 127.  Do all comparisons
5488     as signed arithmetic since we don't want to ever access cost_table with a
5489     value less than -1.  Also check that none of the constants in a range
5490     are strange control characters.  */
5491
5492  for (n = node; n; n = n->right)
5493    {
5494      if ((INT_CST_LT (n->low, min_ascii)) || INT_CST_LT (max_ascii, n->high))
5495	return 0;
5496
5497      for (i = TREE_INT_CST_LOW (n->low); i <= TREE_INT_CST_LOW (n->high); i++)
5498	if (cost_table[i] < 0)
5499	  return 0;
5500    }
5501
5502  /* All interesting values are within the range of interesting
5503     ASCII characters.  */
5504  return 1;
5505}
5506
5507/* Scan an ordered list of case nodes
5508   combining those with consecutive values or ranges.
5509
5510   Eg. three separate entries 1: 2: 3: become one entry 1..3:  */
5511
5512static void
5513group_case_nodes (head)
5514     case_node_ptr head;
5515{
5516  case_node_ptr node = head;
5517
5518  while (node)
5519    {
5520      rtx lb = next_real_insn (label_rtx (node->code_label));
5521      rtx lb2;
5522      case_node_ptr np = node;
5523
5524      /* Try to group the successors of NODE with NODE.  */
5525      while (((np = np->right) != 0)
5526	     /* Do they jump to the same place?  */
5527	     && ((lb2 = next_real_insn (label_rtx (np->code_label))) == lb
5528		 || (lb != 0 && lb2 != 0
5529		     && simplejump_p (lb)
5530		     && simplejump_p (lb2)
5531		     && rtx_equal_p (SET_SRC (PATTERN (lb)),
5532				     SET_SRC (PATTERN (lb2)))))
5533	     /* Are their ranges consecutive?  */
5534	     && tree_int_cst_equal (np->low,
5535				    fold (build (PLUS_EXPR,
5536						 TREE_TYPE (node->high),
5537						 node->high,
5538						 integer_one_node)))
5539	     /* An overflow is not consecutive.  */
5540	     && tree_int_cst_lt (node->high,
5541				 fold (build (PLUS_EXPR,
5542					      TREE_TYPE (node->high),
5543					      node->high,
5544					      integer_one_node))))
5545	{
5546	  node->high = np->high;
5547	}
5548      /* NP is the first node after NODE which can't be grouped with it.
5549	 Delete the nodes in between, and move on to that node.  */
5550      node->right = np;
5551      node = np;
5552    }
5553}
5554
5555/* Take an ordered list of case nodes
5556   and transform them into a near optimal binary tree,
5557   on the assumption that any target code selection value is as
5558   likely as any other.
5559
5560   The transformation is performed by splitting the ordered
5561   list into two equal sections plus a pivot.  The parts are
5562   then attached to the pivot as left and right branches.  Each
5563   branch is then transformed recursively.  */
5564
5565static void
5566balance_case_nodes (head, parent)
5567     case_node_ptr *head;
5568     case_node_ptr parent;
5569{
5570  register case_node_ptr np;
5571
5572  np = *head;
5573  if (np)
5574    {
5575      int cost = 0;
5576      int i = 0;
5577      int ranges = 0;
5578      register case_node_ptr *npp;
5579      case_node_ptr left;
5580
5581      /* Count the number of entries on branch.  Also count the ranges.  */
5582
5583      while (np)
5584	{
5585	  if (!tree_int_cst_equal (np->low, np->high))
5586	    {
5587	      ranges++;
5588	      if (use_cost_table)
5589		cost += cost_table[TREE_INT_CST_LOW (np->high)];
5590	    }
5591
5592	  if (use_cost_table)
5593	    cost += cost_table[TREE_INT_CST_LOW (np->low)];
5594
5595	  i++;
5596	  np = np->right;
5597	}
5598
5599      if (i > 2)
5600	{
5601	  /* Split this list if it is long enough for that to help.  */
5602	  npp = head;
5603	  left = *npp;
5604	  if (use_cost_table)
5605	    {
5606	      /* Find the place in the list that bisects the list's total cost,
5607		 Here I gets half the total cost.  */
5608	      int n_moved = 0;
5609	      i = (cost + 1) / 2;
5610	      while (1)
5611		{
5612		  /* Skip nodes while their cost does not reach that amount.  */
5613		  if (!tree_int_cst_equal ((*npp)->low, (*npp)->high))
5614		    i -= cost_table[TREE_INT_CST_LOW ((*npp)->high)];
5615		  i -= cost_table[TREE_INT_CST_LOW ((*npp)->low)];
5616		  if (i <= 0)
5617		    break;
5618		  npp = &(*npp)->right;
5619		  n_moved += 1;
5620		}
5621	      if (n_moved == 0)
5622		{
5623		  /* Leave this branch lopsided, but optimize left-hand
5624		     side and fill in `parent' fields for right-hand side.  */
5625		  np = *head;
5626		  np->parent = parent;
5627		  balance_case_nodes (&np->left, np);
5628		  for (; np->right; np = np->right)
5629		    np->right->parent = np;
5630		  return;
5631		}
5632	    }
5633	  /* If there are just three nodes, split at the middle one.  */
5634	  else if (i == 3)
5635	    npp = &(*npp)->right;
5636	  else
5637	    {
5638	      /* Find the place in the list that bisects the list's total cost,
5639		 where ranges count as 2.
5640		 Here I gets half the total cost.  */
5641	      i = (i + ranges + 1) / 2;
5642	      while (1)
5643		{
5644		  /* Skip nodes while their cost does not reach that amount.  */
5645		  if (!tree_int_cst_equal ((*npp)->low, (*npp)->high))
5646		    i--;
5647		  i--;
5648		  if (i <= 0)
5649		    break;
5650		  npp = &(*npp)->right;
5651		}
5652	    }
5653	  *head = np = *npp;
5654	  *npp = 0;
5655	  np->parent = parent;
5656	  np->left = left;
5657
5658	  /* Optimize each of the two split parts.  */
5659	  balance_case_nodes (&np->left, np);
5660	  balance_case_nodes (&np->right, np);
5661	}
5662      else
5663	{
5664	  /* Else leave this branch as one level,
5665	     but fill in `parent' fields.  */
5666	  np = *head;
5667	  np->parent = parent;
5668	  for (; np->right; np = np->right)
5669	    np->right->parent = np;
5670	}
5671    }
5672}
5673
5674/* Search the parent sections of the case node tree
5675   to see if a test for the lower bound of NODE would be redundant.
5676   INDEX_TYPE is the type of the index expression.
5677
5678   The instructions to generate the case decision tree are
5679   output in the same order as nodes are processed so it is
5680   known that if a parent node checks the range of the current
5681   node minus one that the current node is bounded at its lower
5682   span.  Thus the test would be redundant.  */
5683
5684static int
5685node_has_low_bound (node, index_type)
5686     case_node_ptr node;
5687     tree index_type;
5688{
5689  tree low_minus_one;
5690  case_node_ptr pnode;
5691
5692  /* If the lower bound of this node is the lowest value in the index type,
5693     we need not test it.  */
5694
5695  if (tree_int_cst_equal (node->low, TYPE_MIN_VALUE (index_type)))
5696    return 1;
5697
5698  /* If this node has a left branch, the value at the left must be less
5699     than that at this node, so it cannot be bounded at the bottom and
5700     we need not bother testing any further.  */
5701
5702  if (node->left)
5703    return 0;
5704
5705  low_minus_one = fold (build (MINUS_EXPR, TREE_TYPE (node->low),
5706			       node->low, integer_one_node));
5707
5708  /* If the subtraction above overflowed, we can't verify anything.
5709     Otherwise, look for a parent that tests our value - 1.  */
5710
5711  if (! tree_int_cst_lt (low_minus_one, node->low))
5712    return 0;
5713
5714  for (pnode = node->parent; pnode; pnode = pnode->parent)
5715    if (tree_int_cst_equal (low_minus_one, pnode->high))
5716      return 1;
5717
5718  return 0;
5719}
5720
5721/* Search the parent sections of the case node tree
5722   to see if a test for the upper bound of NODE would be redundant.
5723   INDEX_TYPE is the type of the index expression.
5724
5725   The instructions to generate the case decision tree are
5726   output in the same order as nodes are processed so it is
5727   known that if a parent node checks the range of the current
5728   node plus one that the current node is bounded at its upper
5729   span.  Thus the test would be redundant.  */
5730
5731static int
5732node_has_high_bound (node, index_type)
5733     case_node_ptr node;
5734     tree index_type;
5735{
5736  tree high_plus_one;
5737  case_node_ptr pnode;
5738
5739  /* If there is no upper bound, obviously no test is needed.  */
5740
5741  if (TYPE_MAX_VALUE (index_type) == NULL)
5742    return 1;
5743
5744  /* If the upper bound of this node is the highest value in the type
5745     of the index expression, we need not test against it.  */
5746
5747  if (tree_int_cst_equal (node->high, TYPE_MAX_VALUE (index_type)))
5748    return 1;
5749
5750  /* If this node has a right branch, the value at the right must be greater
5751     than that at this node, so it cannot be bounded at the top and
5752     we need not bother testing any further.  */
5753
5754  if (node->right)
5755    return 0;
5756
5757  high_plus_one = fold (build (PLUS_EXPR, TREE_TYPE (node->high),
5758			       node->high, integer_one_node));
5759
5760  /* If the addition above overflowed, we can't verify anything.
5761     Otherwise, look for a parent that tests our value + 1.  */
5762
5763  if (! tree_int_cst_lt (node->high, high_plus_one))
5764    return 0;
5765
5766  for (pnode = node->parent; pnode; pnode = pnode->parent)
5767    if (tree_int_cst_equal (high_plus_one, pnode->low))
5768      return 1;
5769
5770  return 0;
5771}
5772
5773/* Search the parent sections of the
5774   case node tree to see if both tests for the upper and lower
5775   bounds of NODE would be redundant.  */
5776
5777static int
5778node_is_bounded (node, index_type)
5779     case_node_ptr node;
5780     tree index_type;
5781{
5782  return (node_has_low_bound (node, index_type)
5783	  && node_has_high_bound (node, index_type));
5784}
5785
5786/*  Emit an unconditional jump to LABEL unless it would be dead code.  */
5787
5788static void
5789emit_jump_if_reachable (label)
5790     rtx label;
5791{
5792  if (GET_CODE (get_last_insn ()) != BARRIER)
5793    emit_jump (label);
5794}
5795
5796/* Emit step-by-step code to select a case for the value of INDEX.
5797   The thus generated decision tree follows the form of the
5798   case-node binary tree NODE, whose nodes represent test conditions.
5799   INDEX_TYPE is the type of the index of the switch.
5800
5801   Care is taken to prune redundant tests from the decision tree
5802   by detecting any boundary conditions already checked by
5803   emitted rtx.  (See node_has_high_bound, node_has_low_bound
5804   and node_is_bounded, above.)
5805
5806   Where the test conditions can be shown to be redundant we emit
5807   an unconditional jump to the target code.  As a further
5808   optimization, the subordinates of a tree node are examined to
5809   check for bounded nodes.  In this case conditional and/or
5810   unconditional jumps as a result of the boundary check for the
5811   current node are arranged to target the subordinates associated
5812   code for out of bound conditions on the current node.
5813
5814   We can assume that when control reaches the code generated here,
5815   the index value has already been compared with the parents
5816   of this node, and determined to be on the same side of each parent
5817   as this node is.  Thus, if this node tests for the value 51,
5818   and a parent tested for 52, we don't need to consider
5819   the possibility of a value greater than 51.  If another parent
5820   tests for the value 50, then this node need not test anything.  */
5821
5822static void
5823emit_case_nodes (index, node, default_label, index_type)
5824     rtx index;
5825     case_node_ptr node;
5826     rtx default_label;
5827     tree index_type;
5828{
5829  /* If INDEX has an unsigned type, we must make unsigned branches.  */
5830  int unsignedp = TREE_UNSIGNED (index_type);
5831  typedef rtx rtx_fn ();
5832  enum machine_mode mode = GET_MODE (index);
5833
5834  /* See if our parents have already tested everything for us.
5835     If they have, emit an unconditional jump for this node.  */
5836  if (node_is_bounded (node, index_type))
5837    emit_jump (label_rtx (node->code_label));
5838
5839  else if (tree_int_cst_equal (node->low, node->high))
5840    {
5841      /* Node is single valued.  First see if the index expression matches
5842	 this node and then check our children, if any.  */
5843
5844      do_jump_if_equal (index, expand_expr (node->low, NULL_RTX, VOIDmode, 0),
5845			label_rtx (node->code_label), unsignedp);
5846
5847      if (node->right != 0 && node->left != 0)
5848	{
5849	  /* This node has children on both sides.
5850	     Dispatch to one side or the other
5851	     by comparing the index value with this node's value.
5852	     If one subtree is bounded, check that one first,
5853	     so we can avoid real branches in the tree.  */
5854
5855	  if (node_is_bounded (node->right, index_type))
5856	    {
5857	      emit_cmp_and_jump_insns (index, expand_expr (node->high, NULL_RTX,
5858							   VOIDmode, 0),
5859				        GT, NULL_RTX, mode, unsignedp, 0,
5860					label_rtx (node->right->code_label));
5861	      emit_case_nodes (index, node->left, default_label, index_type);
5862	    }
5863
5864	  else if (node_is_bounded (node->left, index_type))
5865	    {
5866	      emit_cmp_and_jump_insns (index, expand_expr (node->high, NULL_RTX,
5867							   VOIDmode, 0),
5868				       LT, NULL_RTX, mode, unsignedp, 0,
5869				       label_rtx (node->left->code_label));
5870	      emit_case_nodes (index, node->right, default_label, index_type);
5871	    }
5872
5873	  else
5874	    {
5875	      /* Neither node is bounded.  First distinguish the two sides;
5876		 then emit the code for one side at a time.  */
5877
5878	      tree test_label
5879		= build_decl (LABEL_DECL, NULL_TREE, NULL_TREE);
5880
5881	      /* See if the value is on the right.  */
5882	      emit_cmp_and_jump_insns (index, expand_expr (node->high, NULL_RTX,
5883							   VOIDmode, 0),
5884				       GT, NULL_RTX, mode, unsignedp, 0,
5885				       label_rtx (test_label));
5886
5887	      /* Value must be on the left.
5888		 Handle the left-hand subtree.  */
5889	      emit_case_nodes (index, node->left, default_label, index_type);
5890	      /* If left-hand subtree does nothing,
5891		 go to default.  */
5892	      emit_jump_if_reachable (default_label);
5893
5894	      /* Code branches here for the right-hand subtree.  */
5895	      expand_label (test_label);
5896	      emit_case_nodes (index, node->right, default_label, index_type);
5897	    }
5898	}
5899
5900      else if (node->right != 0 && node->left == 0)
5901	{
5902	  /* Here we have a right child but no left so we issue conditional
5903	     branch to default and process the right child.
5904
5905	     Omit the conditional branch to default if we it avoid only one
5906	     right child; it costs too much space to save so little time.  */
5907
5908	  if (node->right->right || node->right->left
5909	      || !tree_int_cst_equal (node->right->low, node->right->high))
5910	    {
5911	      if (!node_has_low_bound (node, index_type))
5912		{
5913		  emit_cmp_and_jump_insns (index, expand_expr (node->high,
5914							       NULL_RTX,
5915							       VOIDmode, 0),
5916					   LT, NULL_RTX, mode, unsignedp, 0,
5917					   default_label);
5918		}
5919
5920	      emit_case_nodes (index, node->right, default_label, index_type);
5921	    }
5922	  else
5923	    /* We cannot process node->right normally
5924	       since we haven't ruled out the numbers less than
5925	       this node's value.  So handle node->right explicitly.  */
5926	    do_jump_if_equal (index,
5927			      expand_expr (node->right->low, NULL_RTX,
5928					   VOIDmode, 0),
5929			      label_rtx (node->right->code_label), unsignedp);
5930	}
5931
5932      else if (node->right == 0 && node->left != 0)
5933	{
5934	  /* Just one subtree, on the left.  */
5935
5936#if 0 /* The following code and comment were formerly part
5937	 of the condition here, but they didn't work
5938	 and I don't understand what the idea was.  -- rms.  */
5939	  /* If our "most probable entry" is less probable
5940	     than the default label, emit a jump to
5941	     the default label using condition codes
5942	     already lying around.  With no right branch,
5943	     a branch-greater-than will get us to the default
5944	     label correctly.  */
5945	  if (use_cost_table
5946	       && cost_table[TREE_INT_CST_LOW (node->high)] < 12)
5947	    ;
5948#endif /* 0 */
5949 	  if (node->left->left || node->left->right
5950	      || !tree_int_cst_equal (node->left->low, node->left->high))
5951	    {
5952	      if (!node_has_high_bound (node, index_type))
5953		{
5954		  emit_cmp_and_jump_insns (index, expand_expr (node->high,
5955							       NULL_RTX,
5956							       VOIDmode, 0),
5957					   GT, NULL_RTX, mode, unsignedp, 0,
5958					   default_label);
5959		}
5960
5961	      emit_case_nodes (index, node->left, default_label, index_type);
5962	    }
5963	  else
5964	    /* We cannot process node->left normally
5965	       since we haven't ruled out the numbers less than
5966	       this node's value.  So handle node->left explicitly.  */
5967	    do_jump_if_equal (index,
5968			      expand_expr (node->left->low, NULL_RTX,
5969					   VOIDmode, 0),
5970			      label_rtx (node->left->code_label), unsignedp);
5971	}
5972    }
5973  else
5974    {
5975      /* Node is a range.  These cases are very similar to those for a single
5976	 value, except that we do not start by testing whether this node
5977	 is the one to branch to.  */
5978
5979      if (node->right != 0 && node->left != 0)
5980	{
5981	  /* Node has subtrees on both sides.
5982	     If the right-hand subtree is bounded,
5983	     test for it first, since we can go straight there.
5984	     Otherwise, we need to make a branch in the control structure,
5985	     then handle the two subtrees.  */
5986	  tree test_label = 0;
5987
5988
5989	  if (node_is_bounded (node->right, index_type))
5990	    /* Right hand node is fully bounded so we can eliminate any
5991	       testing and branch directly to the target code.  */
5992	    emit_cmp_and_jump_insns (index, expand_expr (node->high, NULL_RTX,
5993							 VOIDmode, 0),
5994				     GT, NULL_RTX, mode, unsignedp, 0,
5995				     label_rtx (node->right->code_label));
5996	  else
5997	    {
5998	      /* Right hand node requires testing.
5999		 Branch to a label where we will handle it later.  */
6000
6001	      test_label = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE);
6002	      emit_cmp_and_jump_insns (index, expand_expr (node->high, NULL_RTX,
6003							   VOIDmode, 0),
6004				       GT, NULL_RTX, mode, unsignedp, 0,
6005				       label_rtx (test_label));
6006	    }
6007
6008	  /* Value belongs to this node or to the left-hand subtree.  */
6009
6010	  emit_cmp_and_jump_insns (index, expand_expr (node->low, NULL_RTX,
6011						       VOIDmode, 0),
6012				   GE, NULL_RTX, mode, unsignedp, 0,
6013				   label_rtx (node->code_label));
6014
6015	  /* Handle the left-hand subtree.  */
6016	  emit_case_nodes (index, node->left, default_label, index_type);
6017
6018	  /* If right node had to be handled later, do that now.  */
6019
6020	  if (test_label)
6021	    {
6022	      /* If the left-hand subtree fell through,
6023		 don't let it fall into the right-hand subtree.  */
6024	      emit_jump_if_reachable (default_label);
6025
6026	      expand_label (test_label);
6027	      emit_case_nodes (index, node->right, default_label, index_type);
6028	    }
6029	}
6030
6031      else if (node->right != 0 && node->left == 0)
6032	{
6033	  /* Deal with values to the left of this node,
6034	     if they are possible.  */
6035	  if (!node_has_low_bound (node, index_type))
6036	    {
6037	      emit_cmp_and_jump_insns (index, expand_expr (node->low, NULL_RTX,
6038							   VOIDmode, 0),
6039				       LT, NULL_RTX, mode, unsignedp, 0,
6040				       default_label);
6041	    }
6042
6043	  /* Value belongs to this node or to the right-hand subtree.  */
6044
6045	  emit_cmp_and_jump_insns (index, expand_expr (node->high, NULL_RTX,
6046						       VOIDmode, 0),
6047				   LE, NULL_RTX, mode, unsignedp, 0,
6048				   label_rtx (node->code_label));
6049
6050	  emit_case_nodes (index, node->right, default_label, index_type);
6051	}
6052
6053      else if (node->right == 0 && node->left != 0)
6054	{
6055	  /* Deal with values to the right of this node,
6056	     if they are possible.  */
6057	  if (!node_has_high_bound (node, index_type))
6058	    {
6059	      emit_cmp_and_jump_insns (index, expand_expr (node->high, NULL_RTX,
6060							   VOIDmode, 0),
6061				       GT, NULL_RTX, mode, unsignedp, 0,
6062				       default_label);
6063	    }
6064
6065	  /* Value belongs to this node or to the left-hand subtree.  */
6066
6067	  emit_cmp_and_jump_insns (index, expand_expr (node->low, NULL_RTX,
6068						       VOIDmode, 0),
6069				   GE, NULL_RTX, mode, unsignedp, 0,
6070				   label_rtx (node->code_label));
6071
6072	  emit_case_nodes (index, node->left, default_label, index_type);
6073	}
6074
6075      else
6076	{
6077	  /* Node has no children so we check low and high bounds to remove
6078	     redundant tests.  Only one of the bounds can exist,
6079	     since otherwise this node is bounded--a case tested already.  */
6080
6081	  if (!node_has_high_bound (node, index_type))
6082	    {
6083	      emit_cmp_and_jump_insns (index, expand_expr (node->high, NULL_RTX,
6084							   VOIDmode, 0),
6085				       GT, NULL_RTX, mode, unsignedp, 0,
6086				       default_label);
6087	    }
6088
6089	  if (!node_has_low_bound (node, index_type))
6090	    {
6091	      emit_cmp_and_jump_insns (index, expand_expr (node->low, NULL_RTX,
6092							   VOIDmode, 0),
6093				       LT, NULL_RTX, mode, unsignedp, 0,
6094				       default_label);
6095	    }
6096
6097	  emit_jump (label_rtx (node->code_label));
6098	}
6099    }
6100}
6101
6102/* These routines are used by the loop unrolling code.  They copy BLOCK trees
6103   so that the debugging info will be correct for the unrolled loop.  */
6104
6105/* Indexed by block number, contains a pointer to the N'th block node.
6106
6107  Allocated by the call to identify_blocks, then released after the call
6108  to reorder_blocks in the function unroll_block_trees.  */
6109
6110static tree *block_vector;
6111
6112void
6113find_loop_tree_blocks ()
6114{
6115  tree block = DECL_INITIAL (current_function_decl);
6116
6117  block_vector = identify_blocks (block, get_insns ());
6118}
6119
6120void
6121unroll_block_trees ()
6122{
6123  tree block = DECL_INITIAL (current_function_decl);
6124
6125  reorder_blocks (block_vector, block, get_insns ());
6126
6127  /* Release any memory allocated by identify_blocks.  */
6128  if (block_vector)
6129    free (block_vector);
6130}
6131