sparc.h revision 132718
1/* Definitions of target machine for GNU compiler, for Sun SPARC.
2   Copyright (C) 1987, 1988, 1989, 1992, 1994, 1995, 1996, 1997, 1998, 1999
3   2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4   Contributed by Michael Tiemann (tiemann@cygnus.com).
5   64-bit SPARC-V9 support by Michael Tiemann, Jim Wilson, and Doug Evans,
6   at Cygnus Support.
7
8This file is part of GCC.
9
10GCC is free software; you can redistribute it and/or modify
11it under the terms of the GNU General Public License as published by
12the Free Software Foundation; either version 2, or (at your option)
13any later version.
14
15GCC is distributed in the hope that it will be useful,
16but WITHOUT ANY WARRANTY; without even the implied warranty of
17MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18GNU General Public License for more details.
19
20You should have received a copy of the GNU General Public License
21along with GCC; see the file COPYING.  If not, write to
22the Free Software Foundation, 59 Temple Place - Suite 330,
23Boston, MA 02111-1307, USA.  */
24
25/* Note that some other tm.h files include this one and then override
26   whatever definitions are necessary.  */
27
28/* Target CPU builtins.  FIXME: Defining sparc is for the benefit of
29   Solaris only; otherwise just define __sparc__.  Sadly the headers
30   are such a mess there is no Solaris-specific header.  */
31#define TARGET_CPU_CPP_BUILTINS()		\
32  do						\
33    {						\
34	builtin_define_std ("sparc");		\
35	if (TARGET_64BIT)			\
36	  { 					\
37	    builtin_assert ("cpu=sparc64");	\
38	    builtin_assert ("machine=sparc64");	\
39	  }					\
40	else					\
41	  { 					\
42	    builtin_assert ("cpu=sparc");	\
43	    builtin_assert ("machine=sparc");	\
44	  }					\
45    }						\
46  while (0)
47
48/* Specify this in a cover file to provide bi-architecture (32/64) support.  */
49/* #define SPARC_BI_ARCH */
50
51/* Macro used later in this file to determine default architecture.  */
52#define DEFAULT_ARCH32_P ((TARGET_DEFAULT & MASK_64BIT) == 0)
53
54/* TARGET_ARCH{32,64} are the main macros to decide which of the two
55   architectures to compile for.  We allow targets to choose compile time or
56   runtime selection.  */
57#ifdef IN_LIBGCC2
58#if defined(__sparcv9) || defined(__arch64__)
59#define TARGET_ARCH32 0
60#else
61#define TARGET_ARCH32 1
62#endif /* sparc64 */
63#else
64#ifdef SPARC_BI_ARCH
65#define TARGET_ARCH32 (! TARGET_64BIT)
66#else
67#define TARGET_ARCH32 (DEFAULT_ARCH32_P)
68#endif /* SPARC_BI_ARCH */
69#endif /* IN_LIBGCC2 */
70#define TARGET_ARCH64 (! TARGET_ARCH32)
71
72/* Code model selection in 64-bit environment.
73
74   The machine mode used for addresses is 32-bit wide:
75
76   TARGET_CM_32:     32-bit address space.
77                     It is the code model used when generating 32-bit code.
78
79   The machine mode used for addresses is 64-bit wide:
80
81   TARGET_CM_MEDLOW: 32-bit address space.
82                     The executable must be in the low 32 bits of memory.
83                     This avoids generating %uhi and %ulo terms.  Programs
84                     can be statically or dynamically linked.
85
86   TARGET_CM_MEDMID: 44-bit address space.
87                     The executable must be in the low 44 bits of memory,
88                     and the %[hml]44 terms are used.  The text and data
89                     segments have a maximum size of 2GB (31-bit span).
90                     The maximum offset from any instruction to the label
91                     _GLOBAL_OFFSET_TABLE_ is 2GB (31-bit span).
92
93   TARGET_CM_MEDANY: 64-bit address space.
94                     The text and data segments have a maximum size of 2GB
95                     (31-bit span) and may be located anywhere in memory.
96                     The maximum offset from any instruction to the label
97                     _GLOBAL_OFFSET_TABLE_ is 2GB (31-bit span).
98
99   TARGET_CM_EMBMEDANY: 64-bit address space.
100                     The text and data segments have a maximum size of 2GB
101                     (31-bit span) and may be located anywhere in memory.
102                     The global register %g4 contains the start address of
103                     the data segment.  Programs are statically linked and
104                     PIC is not supported.
105
106   Different code models are not supported in 32-bit environment.  */
107
108enum cmodel {
109  CM_32,
110  CM_MEDLOW,
111  CM_MEDMID,
112  CM_MEDANY,
113  CM_EMBMEDANY
114};
115
116/* Value of -mcmodel specified by user.  */
117extern const char *sparc_cmodel_string;
118/* One of CM_FOO.  */
119extern enum cmodel sparc_cmodel;
120
121/* V9 code model selection.  */
122#define TARGET_CM_MEDLOW    (sparc_cmodel == CM_MEDLOW)
123#define TARGET_CM_MEDMID    (sparc_cmodel == CM_MEDMID)
124#define TARGET_CM_MEDANY    (sparc_cmodel == CM_MEDANY)
125#define TARGET_CM_EMBMEDANY (sparc_cmodel == CM_EMBMEDANY)
126
127#define SPARC_DEFAULT_CMODEL CM_32
128
129/* This is call-clobbered in the normal ABI, but is reserved in the
130   home grown (aka upward compatible) embedded ABI.  */
131#define EMBMEDANY_BASE_REG "%g4"
132
133/* Values of TARGET_CPU_DEFAULT, set via -D in the Makefile,
134   and specified by the user via --with-cpu=foo.
135   This specifies the cpu implementation, not the architecture size.  */
136/* Note that TARGET_CPU_v9 is assumed to start the list of 64-bit
137   capable cpu's.  */
138#define TARGET_CPU_sparc	0
139#define TARGET_CPU_v7		0	/* alias for previous */
140#define TARGET_CPU_sparclet	1
141#define TARGET_CPU_sparclite	2
142#define TARGET_CPU_v8		3	/* generic v8 implementation */
143#define TARGET_CPU_supersparc	4
144#define TARGET_CPU_hypersparc   5
145#define TARGET_CPU_sparc86x	6
146#define TARGET_CPU_sparclite86x	6
147#define TARGET_CPU_v9		7	/* generic v9 implementation */
148#define TARGET_CPU_sparcv9	7	/* alias */
149#define TARGET_CPU_sparc64	7	/* alias */
150#define TARGET_CPU_ultrasparc	8
151#define TARGET_CPU_ultrasparc3	9
152
153#if TARGET_CPU_DEFAULT == TARGET_CPU_v9 \
154 || TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc \
155 || TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc3
156
157#define CPP_CPU32_DEFAULT_SPEC ""
158#define ASM_CPU32_DEFAULT_SPEC ""
159
160#if TARGET_CPU_DEFAULT == TARGET_CPU_v9
161/* ??? What does Sun's CC pass?  */
162#define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
163/* ??? It's not clear how other assemblers will handle this, so by default
164   use GAS.  Sun's Solaris assembler recognizes -xarch=v8plus, but this case
165   is handled in sol2.h.  */
166#define ASM_CPU64_DEFAULT_SPEC "-Av9"
167#endif
168#if TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc
169#define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
170#define ASM_CPU64_DEFAULT_SPEC "-Av9a"
171#endif
172#if TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc3
173#define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
174#define ASM_CPU64_DEFAULT_SPEC "-Av9b"
175#endif
176
177#else
178
179#define CPP_CPU64_DEFAULT_SPEC ""
180#define ASM_CPU64_DEFAULT_SPEC ""
181
182#if TARGET_CPU_DEFAULT == TARGET_CPU_sparc \
183 || TARGET_CPU_DEFAULT == TARGET_CPU_v8
184#define CPP_CPU32_DEFAULT_SPEC ""
185#define ASM_CPU32_DEFAULT_SPEC ""
186#endif
187
188#if TARGET_CPU_DEFAULT == TARGET_CPU_sparclet
189#define CPP_CPU32_DEFAULT_SPEC "-D__sparclet__"
190#define ASM_CPU32_DEFAULT_SPEC "-Asparclet"
191#endif
192
193#if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite
194#define CPP_CPU32_DEFAULT_SPEC "-D__sparclite__"
195#define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
196#endif
197
198#if TARGET_CPU_DEFAULT == TARGET_CPU_supersparc
199#define CPP_CPU32_DEFAULT_SPEC "-D__supersparc__ -D__sparc_v8__"
200#define ASM_CPU32_DEFAULT_SPEC ""
201#endif
202
203#if TARGET_CPU_DEFAULT == TARGET_CPU_hypersparc
204#define CPP_CPU32_DEFAULT_SPEC "-D__hypersparc__ -D__sparc_v8__"
205#define ASM_CPU32_DEFAULT_SPEC ""
206#endif
207
208#if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite86x
209#define CPP_CPU32_DEFAULT_SPEC "-D__sparclite86x__"
210#define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
211#endif
212
213#endif
214
215#if !defined(CPP_CPU32_DEFAULT_SPEC) || !defined(CPP_CPU64_DEFAULT_SPEC)
216 #error Unrecognized value in TARGET_CPU_DEFAULT.
217#endif
218
219#ifdef SPARC_BI_ARCH
220
221#define CPP_CPU_DEFAULT_SPEC \
222(DEFAULT_ARCH32_P ? "\
223%{m64:" CPP_CPU64_DEFAULT_SPEC "} \
224%{!m64:" CPP_CPU32_DEFAULT_SPEC "} \
225" : "\
226%{m32:" CPP_CPU32_DEFAULT_SPEC "} \
227%{!m32:" CPP_CPU64_DEFAULT_SPEC "} \
228")
229#define ASM_CPU_DEFAULT_SPEC \
230(DEFAULT_ARCH32_P ? "\
231%{m64:" ASM_CPU64_DEFAULT_SPEC "} \
232%{!m64:" ASM_CPU32_DEFAULT_SPEC "} \
233" : "\
234%{m32:" ASM_CPU32_DEFAULT_SPEC "} \
235%{!m32:" ASM_CPU64_DEFAULT_SPEC "} \
236")
237
238#else /* !SPARC_BI_ARCH */
239
240#define CPP_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? CPP_CPU32_DEFAULT_SPEC : CPP_CPU64_DEFAULT_SPEC)
241#define ASM_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? ASM_CPU32_DEFAULT_SPEC : ASM_CPU64_DEFAULT_SPEC)
242
243#endif /* !SPARC_BI_ARCH */
244
245/* Define macros to distinguish architectures.  */
246
247/* Common CPP definitions used by CPP_SPEC amongst the various targets
248   for handling -mcpu=xxx switches.  */
249#define CPP_CPU_SPEC "\
250%{msoft-float:-D_SOFT_FLOAT} \
251%{mcypress:} \
252%{msparclite:-D__sparclite__} \
253%{mf930:-D__sparclite__} %{mf934:-D__sparclite__} \
254%{mv8:-D__sparc_v8__} \
255%{msupersparc:-D__supersparc__ -D__sparc_v8__} \
256%{mcpu=sparclet:-D__sparclet__} %{mcpu=tsc701:-D__sparclet__} \
257%{mcpu=sparclite:-D__sparclite__} \
258%{mcpu=f930:-D__sparclite__} %{mcpu=f934:-D__sparclite__} \
259%{mcpu=v8:-D__sparc_v8__} \
260%{mcpu=supersparc:-D__supersparc__ -D__sparc_v8__} \
261%{mcpu=hypersparc:-D__hypersparc__ -D__sparc_v8__} \
262%{mcpu=sparclite86x:-D__sparclite86x__} \
263%{mcpu=v9:-D__sparc_v9__} \
264%{mcpu=ultrasparc:-D__sparc_v9__} \
265%{mcpu=ultrasparc3:-D__sparc_v9__} \
266%{!mcpu*:%{!mcypress:%{!msparclite:%{!mf930:%{!mf934:%{!mv8:%{!msupersparc:%(cpp_cpu_default)}}}}}}} \
267"
268#define CPP_ARCH32_SPEC ""
269#define CPP_ARCH64_SPEC "-D__arch64__"
270
271#define CPP_ARCH_DEFAULT_SPEC \
272(DEFAULT_ARCH32_P ? CPP_ARCH32_SPEC : CPP_ARCH64_SPEC)
273
274#define CPP_ARCH_SPEC "\
275%{m32:%(cpp_arch32)} \
276%{m64:%(cpp_arch64)} \
277%{!m32:%{!m64:%(cpp_arch_default)}} \
278"
279
280/* Macros to distinguish endianness.  */
281#define CPP_ENDIAN_SPEC "\
282%{mlittle-endian:-D__LITTLE_ENDIAN__} \
283%{mlittle-endian-data:-D__LITTLE_ENDIAN_DATA__}"
284
285/* Macros to distinguish the particular subtarget.  */
286#define CPP_SUBTARGET_SPEC ""
287
288#define CPP_SPEC "%(cpp_cpu) %(cpp_arch) %(cpp_endian) %(cpp_subtarget)"
289
290/* Prevent error on `-sun4' and `-target sun4' options.  */
291/* This used to translate -dalign to -malign, but that is no good
292   because it can't turn off the usual meaning of making debugging dumps.  */
293/* Translate old style -m<cpu> into new style -mcpu=<cpu>.
294   ??? Delete support for -m<cpu> for 2.9.  */
295
296#define CC1_SPEC "\
297%{sun4:} %{target:} \
298%{mcypress:-mcpu=cypress} \
299%{msparclite:-mcpu=sparclite} %{mf930:-mcpu=f930} %{mf934:-mcpu=f934} \
300%{mv8:-mcpu=v8} %{msupersparc:-mcpu=supersparc} \
301"
302
303/* Override in target specific files.  */
304#define ASM_CPU_SPEC "\
305%{mcpu=sparclet:-Asparclet} %{mcpu=tsc701:-Asparclet} \
306%{msparclite:-Asparclite} \
307%{mf930:-Asparclite} %{mf934:-Asparclite} \
308%{mcpu=sparclite:-Asparclite} \
309%{mcpu=sparclite86x:-Asparclite} \
310%{mcpu=f930:-Asparclite} %{mcpu=f934:-Asparclite} \
311%{mv8plus:-Av8plus} \
312%{mcpu=v9:-Av9} \
313%{mcpu=ultrasparc:%{!mv8plus:-Av9a}} \
314%{mcpu=ultrasparc3:%{!mv8plus:-Av9b}} \
315%{!mcpu*:%{!mcypress:%{!msparclite:%{!mf930:%{!mf934:%{!mv8:%{!msupersparc:%(asm_cpu_default)}}}}}}} \
316"
317
318/* Word size selection, among other things.
319   This is what GAS uses.  Add %(asm_arch) to ASM_SPEC to enable.  */
320
321#define ASM_ARCH32_SPEC "-32"
322#ifdef HAVE_AS_REGISTER_PSEUDO_OP
323#define ASM_ARCH64_SPEC "-64 -no-undeclared-regs"
324#else
325#define ASM_ARCH64_SPEC "-64"
326#endif
327#define ASM_ARCH_DEFAULT_SPEC \
328(DEFAULT_ARCH32_P ? ASM_ARCH32_SPEC : ASM_ARCH64_SPEC)
329
330#define ASM_ARCH_SPEC "\
331%{m32:%(asm_arch32)} \
332%{m64:%(asm_arch64)} \
333%{!m32:%{!m64:%(asm_arch_default)}} \
334"
335
336#ifdef HAVE_AS_RELAX_OPTION
337#define ASM_RELAX_SPEC "%{!mno-relax:-relax}"
338#else
339#define ASM_RELAX_SPEC ""
340#endif
341
342/* Special flags to the Sun-4 assembler when using pipe for input.  */
343
344#define ASM_SPEC "\
345%{R} %{!pg:%{!p:%{fpic|fPIC|fpie|fPIE:-k}}} %{keep-local-as-symbols:-L} \
346%(asm_cpu) %(asm_relax)"
347
348#define AS_NEEDS_DASH_FOR_PIPED_INPUT
349
350/* This macro defines names of additional specifications to put in the specs
351   that can be used in various specifications like CC1_SPEC.  Its definition
352   is an initializer with a subgrouping for each command option.
353
354   Each subgrouping contains a string constant, that defines the
355   specification name, and a string constant that used by the GCC driver
356   program.
357
358   Do not define this macro if it does not need to do anything.  */
359
360#define EXTRA_SPECS \
361  { "cpp_cpu",		CPP_CPU_SPEC },		\
362  { "cpp_cpu_default",	CPP_CPU_DEFAULT_SPEC },	\
363  { "cpp_arch32",	CPP_ARCH32_SPEC },	\
364  { "cpp_arch64",	CPP_ARCH64_SPEC },	\
365  { "cpp_arch_default",	CPP_ARCH_DEFAULT_SPEC },\
366  { "cpp_arch",		CPP_ARCH_SPEC },	\
367  { "cpp_endian",	CPP_ENDIAN_SPEC },	\
368  { "cpp_subtarget",	CPP_SUBTARGET_SPEC },	\
369  { "asm_cpu",		ASM_CPU_SPEC },		\
370  { "asm_cpu_default",	ASM_CPU_DEFAULT_SPEC },	\
371  { "asm_arch32",	ASM_ARCH32_SPEC },	\
372  { "asm_arch64",	ASM_ARCH64_SPEC },	\
373  { "asm_relax",	ASM_RELAX_SPEC },	\
374  { "asm_arch_default",	ASM_ARCH_DEFAULT_SPEC },\
375  { "asm_arch",		ASM_ARCH_SPEC },	\
376  SUBTARGET_EXTRA_SPECS
377
378#define SUBTARGET_EXTRA_SPECS
379
380/* Because libgcc can generate references back to libc (via .umul etc.) we have
381   to list libc again after the second libgcc.  */
382#define LINK_GCC_C_SEQUENCE_SPEC "%G %L %G %L"
383
384
385#define PTRDIFF_TYPE (TARGET_ARCH64 ? "long int" : "int")
386#define SIZE_TYPE (TARGET_ARCH64 ? "long unsigned int" : "unsigned int")
387
388/* ??? This should be 32 bits for v9 but what can we do?  */
389#define WCHAR_TYPE "short unsigned int"
390#define WCHAR_TYPE_SIZE 16
391
392/* Show we can debug even without a frame pointer.  */
393#define CAN_DEBUG_WITHOUT_FP
394
395#define OVERRIDE_OPTIONS  sparc_override_options ()
396
397/* Generate DBX debugging information.  */
398
399#define DBX_DEBUGGING_INFO 1
400
401/* Run-time compilation parameters selecting different hardware subsets.  */
402
403extern int target_flags;
404
405/* Nonzero if we should generate code to use the fpu.  */
406#define MASK_FPU 1
407#define TARGET_FPU (target_flags & MASK_FPU)
408
409/* Nonzero if we should assume that double pointers might be unaligned.
410   This can happen when linking gcc compiled code with other compilers,
411   because the ABI only guarantees 4 byte alignment.  */
412#define MASK_UNALIGNED_DOUBLES 4
413#define TARGET_UNALIGNED_DOUBLES (target_flags & MASK_UNALIGNED_DOUBLES)
414
415/* Nonzero means that we should generate code for a v8 sparc.  */
416#define MASK_V8 0x8
417#define TARGET_V8 (target_flags & MASK_V8)
418
419/* Nonzero means that we should generate code for a sparclite.
420   This enables the sparclite specific instructions, but does not affect
421   whether FPU instructions are emitted.  */
422#define MASK_SPARCLITE 0x10
423#define TARGET_SPARCLITE (target_flags & MASK_SPARCLITE)
424
425/* Nonzero if we're compiling for the sparclet.  */
426#define MASK_SPARCLET 0x20
427#define TARGET_SPARCLET (target_flags & MASK_SPARCLET)
428
429/* Nonzero if we're compiling for v9 sparc.
430   Note that v9's can run in 32 bit mode so this doesn't necessarily mean
431   the word size is 64.  */
432#define MASK_V9 0x40
433#define TARGET_V9 (target_flags & MASK_V9)
434
435/* Nonzero to generate code that uses the instructions deprecated in
436   the v9 architecture.  This option only applies to v9 systems.  */
437/* ??? This isn't user selectable yet.  It's used to enable such insns
438   on 32 bit v9 systems and for the moment they're permanently disabled
439   on 64 bit v9 systems.  */
440#define MASK_DEPRECATED_V8_INSNS 0x80
441#define TARGET_DEPRECATED_V8_INSNS (target_flags & MASK_DEPRECATED_V8_INSNS)
442
443/* Mask of all CPU selection flags.  */
444#define MASK_ISA \
445(MASK_V8 + MASK_SPARCLITE + MASK_SPARCLET + MASK_V9 + MASK_DEPRECATED_V8_INSNS)
446
447/* Nonzero means don't pass `-assert pure-text' to the linker.  */
448#define MASK_IMPURE_TEXT 0x100
449#define TARGET_IMPURE_TEXT (target_flags & MASK_IMPURE_TEXT)
450
451/* Nonzero means that we should generate code using a flat register window
452   model, i.e. no save/restore instructions are generated, which is
453   compatible with normal sparc code.
454   The frame pointer is %i7 instead of %fp.  */
455#define MASK_FLAT 0x200
456#define TARGET_FLAT (target_flags & MASK_FLAT)
457
458/* Nonzero means use the registers that the SPARC ABI reserves for
459   application software.  This must be the default to coincide with the
460   setting in FIXED_REGISTERS.  */
461#define MASK_APP_REGS 0x400
462#define TARGET_APP_REGS (target_flags & MASK_APP_REGS)
463
464/* Option to select how quad word floating point is implemented.
465   When TARGET_HARD_QUAD is true, we use the hardware quad instructions.
466   Otherwise, we use the SPARC ABI quad library functions.  */
467#define MASK_HARD_QUAD 0x800
468#define TARGET_HARD_QUAD (target_flags & MASK_HARD_QUAD)
469
470/* Nonzero on little-endian machines.  */
471/* ??? Little endian support currently only exists for sparclet-aout and
472   sparc64-elf configurations.  May eventually want to expand the support
473   to all targets, but for now it's kept local to only those two.  */
474#define MASK_LITTLE_ENDIAN 0x1000
475#define TARGET_LITTLE_ENDIAN (target_flags & MASK_LITTLE_ENDIAN)
476
477/* 0x2000, 0x4000 are unused */
478
479/* Nonzero if pointers are 64 bits.  */
480#define MASK_PTR64 0x8000
481#define TARGET_PTR64 (target_flags & MASK_PTR64)
482
483/* Nonzero if generating code to run in a 64 bit environment.
484   This is intended to only be used by TARGET_ARCH{32,64} as they are the
485   mechanism used to control compile time or run time selection.  */
486#define MASK_64BIT 0x10000
487#define TARGET_64BIT (target_flags & MASK_64BIT)
488
489/* 0x20000,0x40000 unused */
490
491/* Nonzero means use a stack bias of 2047.  Stack offsets are obtained by
492   adding 2047 to %sp.  This option is for v9 only and is the default.  */
493#define MASK_STACK_BIAS 0x80000
494#define TARGET_STACK_BIAS (target_flags & MASK_STACK_BIAS)
495
496/* 0x100000,0x200000 unused */
497
498/* Nonzero means -m{,no-}fpu was passed on the command line.  */
499#define MASK_FPU_SET 0x400000
500#define TARGET_FPU_SET (target_flags & MASK_FPU_SET)
501
502/* Use the UltraSPARC Visual Instruction Set extensions.  */
503#define MASK_VIS 0x1000000
504#define TARGET_VIS (target_flags & MASK_VIS)
505
506/* Compile for Solaris V8+.  32 bit Solaris preserves the high bits of
507   the current out and global registers and Linux 2.2+ as well.  */
508#define MASK_V8PLUS 0x2000000
509#define TARGET_V8PLUS (target_flags & MASK_V8PLUS)
510
511/* Force a the fastest alignment on structures to take advantage of
512   faster copies.  */
513#define MASK_FASTER_STRUCTS 0x4000000
514#define TARGET_FASTER_STRUCTS (target_flags & MASK_FASTER_STRUCTS)
515
516/* Use IEEE quad long double.  */
517#define MASK_LONG_DOUBLE_128 0x8000000
518#define TARGET_LONG_DOUBLE_128 (target_flags & MASK_LONG_DOUBLE_128)
519
520/* TARGET_HARD_MUL: Use hardware multiply instructions but not %y.
521   TARGET_HARD_MUL32: Use hardware multiply instructions with rd %y
522   to get high 32 bits.  False in V8+ or V9 because multiply stores
523   a 64 bit result in a register.  */
524
525#define TARGET_HARD_MUL32				\
526  ((TARGET_V8 || TARGET_SPARCLITE			\
527    || TARGET_SPARCLET || TARGET_DEPRECATED_V8_INSNS)	\
528   && ! TARGET_V8PLUS && TARGET_ARCH32)
529
530#define TARGET_HARD_MUL					\
531  (TARGET_V8 || TARGET_SPARCLITE || TARGET_SPARCLET	\
532   || TARGET_DEPRECATED_V8_INSNS || TARGET_V8PLUS)
533
534
535/* Macro to define tables used to set the flags.
536   This is a list in braces of pairs in braces,
537   each pair being { "NAME", VALUE }
538   where VALUE is the bits to set or minus the bits to clear.
539   An empty string NAME is used to identify the default VALUE.  */
540
541#define TARGET_SWITCHES  \
542  { {"fpu", MASK_FPU | MASK_FPU_SET,					\
543     N_("Use hardware fp") },						\
544    {"no-fpu", -MASK_FPU,						\
545     N_("Do not use hardware fp") },					\
546    {"no-fpu", MASK_FPU_SET,				NULL, },	\
547    {"hard-float", MASK_FPU | MASK_FPU_SET,				\
548     N_("Use hardware fp") },						\
549    {"soft-float", -MASK_FPU,						\
550     N_("Do not use hardware fp") },					\
551    {"soft-float", MASK_FPU_SET,			NULL },		\
552    {"unaligned-doubles", MASK_UNALIGNED_DOUBLES,			\
553     N_("Assume possible double misalignment") },			\
554    {"no-unaligned-doubles", -MASK_UNALIGNED_DOUBLES,			\
555     N_("Assume all doubles are aligned") },				\
556    {"impure-text", MASK_IMPURE_TEXT,					\
557     N_("Pass -assert pure-text to linker") }, 				\
558    {"no-impure-text", -MASK_IMPURE_TEXT,				\
559     N_("Do not pass -assert pure-text to linker") }, 			\
560    {"flat", MASK_FLAT,							\
561     N_("Use flat register window model") }, 				\
562    {"no-flat", -MASK_FLAT,						\
563     N_("Do not use flat register window model") }, 			\
564    {"app-regs", MASK_APP_REGS,						\
565     N_("Use ABI reserved registers") },				\
566    {"no-app-regs", -MASK_APP_REGS,					\
567     N_("Do not use ABI reserved registers") }, 			\
568    {"hard-quad-float", MASK_HARD_QUAD,					\
569     N_("Use hardware quad fp instructions") }, 			\
570    {"soft-quad-float", -MASK_HARD_QUAD,				\
571     N_("Do not use hardware quad fp instructions") }, 			\
572    {"v8plus", MASK_V8PLUS,						\
573     N_("Compile for v8plus ABI") },					\
574    {"no-v8plus", -MASK_V8PLUS,						\
575     N_("Do not compile for v8plus ABI") }, 				\
576    {"vis", MASK_VIS,							\
577     N_("Utilize Visual Instruction Set") }, 				\
578    {"no-vis", -MASK_VIS,						\
579     N_("Do not utilize Visual Instruction Set") }, 			\
580    /* ??? These are deprecated, coerced to -mcpu=.  Delete in 2.9.  */ \
581    {"cypress", 0,							\
582     N_("Optimize for Cypress processors") }, 				\
583    {"sparclite", 0,							\
584     N_("Optimize for SPARCLite processors") }, 			\
585    {"f930", 0,								\
586     N_("Optimize for F930 processors") }, 				\
587    {"f934", 0,								\
588     N_("Optimize for F934 processors") }, 				\
589    {"v8", 0,								\
590     N_("Use V8 SPARC ISA") }, 						\
591    {"supersparc", 0,							\
592     N_("Optimize for SuperSPARC processors") }, 			\
593    /* End of deprecated options.  */					\
594    {"ptr64", MASK_PTR64,						\
595     N_("Pointers are 64-bit") }, 					\
596    {"ptr32", -MASK_PTR64,						\
597     N_("Pointers are 32-bit") }, 					\
598    {"32", -MASK_64BIT,							\
599     N_("Use 32-bit ABI") }, 						\
600    {"64", MASK_64BIT,							\
601     N_("Use 64-bit ABI") }, 						\
602    {"stack-bias", MASK_STACK_BIAS,					\
603     N_("Use stack bias") }, 						\
604    {"no-stack-bias", -MASK_STACK_BIAS,					\
605     N_("Do not use stack bias") }, 					\
606    {"faster-structs", MASK_FASTER_STRUCTS,				\
607     N_("Use structs on stronger alignment for double-word copies") }, 	\
608    {"no-faster-structs", -MASK_FASTER_STRUCTS,				\
609     N_("Do not use structs on stronger alignment for double-word copies") }, \
610    {"relax", 0,							\
611     N_("Optimize tail call instructions in assembler and linker") },	\
612    {"no-relax", 0,							\
613     N_("Do not optimize tail call instructions in assembler or linker") }, \
614    SUBTARGET_SWITCHES			\
615    { "", TARGET_DEFAULT, ""}}
616
617/* MASK_APP_REGS must always be the default because that's what
618   FIXED_REGISTERS is set to and -ffixed- is processed before
619   CONDITIONAL_REGISTER_USAGE is called (where we process -mno-app-regs).  */
620#define TARGET_DEFAULT (MASK_APP_REGS + MASK_FPU)
621
622/* This is meant to be redefined in target specific files.  */
623#define SUBTARGET_SWITCHES
624
625/* Processor type.
626   These must match the values for the cpu attribute in sparc.md.  */
627enum processor_type {
628  PROCESSOR_V7,
629  PROCESSOR_CYPRESS,
630  PROCESSOR_V8,
631  PROCESSOR_SUPERSPARC,
632  PROCESSOR_SPARCLITE,
633  PROCESSOR_F930,
634  PROCESSOR_F934,
635  PROCESSOR_HYPERSPARC,
636  PROCESSOR_SPARCLITE86X,
637  PROCESSOR_SPARCLET,
638  PROCESSOR_TSC701,
639  PROCESSOR_V9,
640  PROCESSOR_ULTRASPARC,
641  PROCESSOR_ULTRASPARC3
642};
643
644/* This is set from -m{cpu,tune}=xxx.  */
645extern enum processor_type sparc_cpu;
646
647/* Recast the cpu class to be the cpu attribute.
648   Every file includes us, but not every file includes insn-attr.h.  */
649#define sparc_cpu_attr ((enum attr_cpu) sparc_cpu)
650
651#define TARGET_OPTIONS \
652{								\
653  { "cpu=",  &sparc_select[1].string,				\
654    N_("Use features of and schedule code for given CPU"), 0},	\
655  { "tune=", &sparc_select[2].string,				\
656    N_("Schedule code for given CPU"), 0},			\
657  { "cmodel=", &sparc_cmodel_string,				\
658    N_("Use given SPARC code model"), 0},			\
659  SUBTARGET_OPTIONS 						\
660}
661
662/* This is meant to be redefined in target specific files.  */
663#define SUBTARGET_OPTIONS
664
665/* Support for a compile-time default CPU, et cetera.  The rules are:
666   --with-cpu is ignored if -mcpu is specified.
667   --with-tune is ignored if -mtune is specified.
668   --with-float is ignored if -mhard-float, -msoft-float, -mfpu, or -mno-fpu
669     are specified.  */
670#define OPTION_DEFAULT_SPECS \
671  {"cpu", "%{!mcpu=*:-mcpu=%(VALUE)}" }, \
672  {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
673  {"float", "%{!msoft-float:%{!mhard-float:%{!fpu:%{!no-fpu:-m%(VALUE)-float}}}}" }
674
675/* sparc_select[0] is reserved for the default cpu.  */
676struct sparc_cpu_select
677{
678  const char *string;
679  const char *const name;
680  const int set_tune_p;
681  const int set_arch_p;
682};
683
684extern struct sparc_cpu_select sparc_select[];
685
686/* target machine storage layout */
687
688/* Define this if most significant bit is lowest numbered
689   in instructions that operate on numbered bit-fields.  */
690#define BITS_BIG_ENDIAN 1
691
692/* Define this if most significant byte of a word is the lowest numbered.  */
693#define BYTES_BIG_ENDIAN 1
694
695/* Define this if most significant word of a multiword number is the lowest
696   numbered.  */
697#define WORDS_BIG_ENDIAN 1
698
699/* Define this to set the endianness to use in libgcc2.c, which can
700   not depend on target_flags.  */
701#if defined (__LITTLE_ENDIAN__) || defined(__LITTLE_ENDIAN_DATA__)
702#define LIBGCC2_WORDS_BIG_ENDIAN 0
703#else
704#define LIBGCC2_WORDS_BIG_ENDIAN 1
705#endif
706
707#define MAX_BITS_PER_WORD	64
708
709/* Width of a word, in units (bytes).  */
710#define UNITS_PER_WORD		(TARGET_ARCH64 ? 8 : 4)
711#ifdef IN_LIBGCC2
712#define MIN_UNITS_PER_WORD	UNITS_PER_WORD
713#else
714#define MIN_UNITS_PER_WORD	4
715#endif
716
717/* Now define the sizes of the C data types.  */
718
719#define SHORT_TYPE_SIZE		16
720#define INT_TYPE_SIZE		32
721#define LONG_TYPE_SIZE		(TARGET_ARCH64 ? 64 : 32)
722#define LONG_LONG_TYPE_SIZE	64
723#define FLOAT_TYPE_SIZE		32
724#define DOUBLE_TYPE_SIZE	64
725
726#ifdef SPARC_BI_ARCH
727#define MAX_LONG_TYPE_SIZE	64
728#endif
729
730#if 0
731/* ??? This does not work in SunOS 4.x, so it is not enabled here.
732   Instead, it is enabled in sol2.h, because it does work under Solaris.  */
733/* Define for support of TFmode long double.
734   SPARC ABI says that long double is 4 words.  */
735#define LONG_DOUBLE_TYPE_SIZE 128
736#endif
737
738/* Width in bits of a pointer.
739   See also the macro `Pmode' defined below.  */
740#define POINTER_SIZE (TARGET_PTR64 ? 64 : 32)
741
742/* If we have to extend pointers (only when TARGET_ARCH64 and not
743   TARGET_PTR64), we want to do it unsigned.   This macro does nothing
744   if ptr_mode and Pmode are the same.  */
745#define POINTERS_EXTEND_UNSIGNED 1
746
747/* A macro to update MODE and UNSIGNEDP when an object whose type
748   is TYPE and which has the specified mode and signedness is to be
749   stored in a register.  This macro is only called when TYPE is a
750   scalar type.  */
751#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
752if (TARGET_ARCH64				\
753    && GET_MODE_CLASS (MODE) == MODE_INT	\
754    && GET_MODE_SIZE (MODE) < UNITS_PER_WORD)	\
755  (MODE) = DImode;
756
757/* Define this macro if the promotion described by PROMOTE_MODE
758   should also be done for outgoing function arguments.  */
759/* This is only needed for TARGET_ARCH64, but since PROMOTE_MODE is a no-op
760   for TARGET_ARCH32 this is ok.  Otherwise we'd need to add a runtime test
761   for this value.  */
762#define PROMOTE_FUNCTION_ARGS
763
764/* Define this macro if the promotion described by PROMOTE_MODE
765   should also be done for the return value of functions.
766   If this macro is defined, FUNCTION_VALUE must perform the same
767   promotions done by PROMOTE_MODE.  */
768/* This is only needed for TARGET_ARCH64, but since PROMOTE_MODE is a no-op
769   for TARGET_ARCH32 this is ok.  Otherwise we'd need to add a runtime test
770   for this value.  */
771#define PROMOTE_FUNCTION_RETURN
772
773/* Define this macro if the promotion described by PROMOTE_MODE
774   should _only_ be performed for outgoing function arguments or
775   function return values, as specified by PROMOTE_FUNCTION_ARGS
776   and PROMOTE_FUNCTION_RETURN, respectively.  */
777/* This is only needed for TARGET_ARCH64, but since PROMOTE_MODE is a no-op
778   for TARGET_ARCH32 this is ok.  Otherwise we'd need to add a runtime test
779   for this value.  For TARGET_ARCH64 we need it, as we don't have instructions
780   for arithmetic operations which do zero/sign extension at the same time,
781   so without this we end up with a srl/sra after every assignment to an
782   user variable,  which means very very bad code.  */
783#define PROMOTE_FOR_CALL_ONLY
784
785/* Allocation boundary (in *bits*) for storing arguments in argument list.  */
786#define PARM_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
787
788/* Boundary (in *bits*) on which stack pointer should be aligned.  */
789/* FIXME, this is wrong when TARGET_ARCH64 and TARGET_STACK_BIAS, because
790   then sp+2047 is 128-bit aligned so sp is really only byte-aligned.  */
791#define STACK_BOUNDARY (TARGET_ARCH64 ? 128 : 64)
792/* Temporary hack until the FIXME above is fixed.  This macro is used
793   only in pad_to_arg_alignment in function.c; see the comment there
794   for details about what it does.  */
795#define SPARC_STACK_BOUNDARY_HACK (TARGET_ARCH64 && TARGET_STACK_BIAS)
796
797/* ALIGN FRAMES on double word boundaries */
798
799#define SPARC_STACK_ALIGN(LOC) \
800  (TARGET_ARCH64 ? (((LOC)+15) & ~15) : (((LOC)+7) & ~7))
801
802/* Allocation boundary (in *bits*) for the code of a function.  */
803#define FUNCTION_BOUNDARY 32
804
805/* Alignment of field after `int : 0' in a structure.  */
806#define EMPTY_FIELD_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
807
808/* Every structure's size must be a multiple of this.  */
809#define STRUCTURE_SIZE_BOUNDARY 8
810
811/* A bit-field declared as `int' forces `int' alignment for the struct.  */
812#define PCC_BITFIELD_TYPE_MATTERS 1
813
814/* No data type wants to be aligned rounder than this.  */
815#define BIGGEST_ALIGNMENT (TARGET_ARCH64 ? 128 : 64)
816
817/* The best alignment to use in cases where we have a choice.  */
818#define FASTEST_ALIGNMENT 64
819
820/* Define this macro as an expression for the alignment of a structure
821   (given by STRUCT as a tree node) if the alignment computed in the
822   usual way is COMPUTED and the alignment explicitly specified was
823   SPECIFIED.
824
825   The default is to use SPECIFIED if it is larger; otherwise, use
826   the smaller of COMPUTED and `BIGGEST_ALIGNMENT' */
827#define ROUND_TYPE_ALIGN(STRUCT, COMPUTED, SPECIFIED)	\
828 (TARGET_FASTER_STRUCTS ?				\
829  ((TREE_CODE (STRUCT) == RECORD_TYPE			\
830    || TREE_CODE (STRUCT) == UNION_TYPE                 \
831    || TREE_CODE (STRUCT) == QUAL_UNION_TYPE)           \
832   && TYPE_FIELDS (STRUCT) != 0                         \
833     ? MAX (MAX ((COMPUTED), (SPECIFIED)), BIGGEST_ALIGNMENT) \
834     : MAX ((COMPUTED), (SPECIFIED)))			\
835   :  MAX ((COMPUTED), (SPECIFIED)))
836
837/* Make strings word-aligned so strcpy from constants will be faster.  */
838#define CONSTANT_ALIGNMENT(EXP, ALIGN)  \
839  ((TREE_CODE (EXP) == STRING_CST	\
840    && (ALIGN) < FASTEST_ALIGNMENT)	\
841   ? FASTEST_ALIGNMENT : (ALIGN))
842
843/* Make arrays of chars word-aligned for the same reasons.  */
844#define DATA_ALIGNMENT(TYPE, ALIGN)		\
845  (TREE_CODE (TYPE) == ARRAY_TYPE		\
846   && TYPE_MODE (TREE_TYPE (TYPE)) == QImode	\
847   && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
848
849/* Set this nonzero if move instructions will actually fail to work
850   when given unaligned data.  */
851#define STRICT_ALIGNMENT 1
852
853/* Things that must be doubleword aligned cannot go in the text section,
854   because the linker fails to align the text section enough!
855   Put them in the data section.  This macro is only used in this file.  */
856#define MAX_TEXT_ALIGN 32
857
858/* This forces all variables and constants to the data section when PIC.
859   This is because the SunOS 4 shared library scheme thinks everything in
860   text is a function, and patches the address to point to a loader stub.  */
861/* This is defined to zero for every system which doesn't use the a.out object
862   file format.  */
863#ifndef SUNOS4_SHARED_LIBRARIES
864#define SUNOS4_SHARED_LIBRARIES 0
865#endif
866
867/* Standard register usage.  */
868
869/* Number of actual hardware registers.
870   The hardware registers are assigned numbers for the compiler
871   from 0 to just below FIRST_PSEUDO_REGISTER.
872   All registers that the compiler knows about must be given numbers,
873   even those that are not normally considered general registers.
874
875   SPARC has 32 integer registers and 32 floating point registers.
876   64 bit SPARC has 32 additional fp regs, but the odd numbered ones are not
877   accessible.  We still account for them to simplify register computations
878   (eg: in CLASS_MAX_NREGS).  There are also 4 fp condition code registers, so
879   32+32+32+4 == 100.
880   Register 100 is used as the integer condition code register.
881   Register 101 is used as the soft frame pointer register.  */
882
883#define FIRST_PSEUDO_REGISTER 102
884
885#define SPARC_FIRST_FP_REG     32
886/* Additional V9 fp regs.  */
887#define SPARC_FIRST_V9_FP_REG  64
888#define SPARC_LAST_V9_FP_REG   95
889/* V9 %fcc[0123].  V8 uses (figuratively) %fcc0.  */
890#define SPARC_FIRST_V9_FCC_REG 96
891#define SPARC_LAST_V9_FCC_REG  99
892/* V8 fcc reg.  */
893#define SPARC_FCC_REG 96
894/* Integer CC reg.  We don't distinguish %icc from %xcc.  */
895#define SPARC_ICC_REG 100
896
897/* Nonzero if REGNO is an fp reg.  */
898#define SPARC_FP_REG_P(REGNO) \
899((REGNO) >= SPARC_FIRST_FP_REG && (REGNO) <= SPARC_LAST_V9_FP_REG)
900
901/* Argument passing regs.  */
902#define SPARC_OUTGOING_INT_ARG_FIRST 8
903#define SPARC_INCOMING_INT_ARG_FIRST (TARGET_FLAT ? 8 : 24)
904#define SPARC_FP_ARG_FIRST           32
905
906/* 1 for registers that have pervasive standard uses
907   and are not available for the register allocator.
908
909   On non-v9 systems:
910   g1 is free to use as temporary.
911   g2-g4 are reserved for applications.  Gcc normally uses them as
912   temporaries, but this can be disabled via the -mno-app-regs option.
913   g5 through g7 are reserved for the operating system.
914
915   On v9 systems:
916   g1,g5 are free to use as temporaries, and are free to use between calls
917   if the call is to an external function via the PLT.
918   g4 is free to use as a temporary in the non-embedded case.
919   g4 is reserved in the embedded case.
920   g2-g3 are reserved for applications.  Gcc normally uses them as
921   temporaries, but this can be disabled via the -mno-app-regs option.
922   g6-g7 are reserved for the operating system (or application in
923   embedded case).
924   ??? Register 1 is used as a temporary by the 64 bit sethi pattern, so must
925   currently be a fixed register until this pattern is rewritten.
926   Register 1 is also used when restoring call-preserved registers in large
927   stack frames.
928
929   Registers fixed in arch32 and not arch64 (or vice-versa) are marked in
930   CONDITIONAL_REGISTER_USAGE in order to properly handle -ffixed-.
931*/
932
933#define FIXED_REGISTERS  \
934 {1, 0, 2, 2, 2, 2, 1, 1,	\
935  0, 0, 0, 0, 0, 0, 1, 0,	\
936  0, 0, 0, 0, 0, 0, 0, 0,	\
937  0, 0, 0, 0, 0, 0, 1, 1,	\
938				\
939  0, 0, 0, 0, 0, 0, 0, 0,	\
940  0, 0, 0, 0, 0, 0, 0, 0,	\
941  0, 0, 0, 0, 0, 0, 0, 0,	\
942  0, 0, 0, 0, 0, 0, 0, 0,	\
943				\
944  0, 0, 0, 0, 0, 0, 0, 0,	\
945  0, 0, 0, 0, 0, 0, 0, 0,	\
946  0, 0, 0, 0, 0, 0, 0, 0,	\
947  0, 0, 0, 0, 0, 0, 0, 0,	\
948				\
949  0, 0, 0, 0, 0, 1}
950
951/* 1 for registers not available across function calls.
952   These must include the FIXED_REGISTERS and also any
953   registers that can be used without being saved.
954   The latter must include the registers where values are returned
955   and the register where structure-value addresses are passed.
956   Aside from that, you can include as many other registers as you like.  */
957
958#define CALL_USED_REGISTERS  \
959 {1, 1, 1, 1, 1, 1, 1, 1,	\
960  1, 1, 1, 1, 1, 1, 1, 1,	\
961  0, 0, 0, 0, 0, 0, 0, 0,	\
962  0, 0, 0, 0, 0, 0, 1, 1,	\
963				\
964  1, 1, 1, 1, 1, 1, 1, 1,	\
965  1, 1, 1, 1, 1, 1, 1, 1,	\
966  1, 1, 1, 1, 1, 1, 1, 1,	\
967  1, 1, 1, 1, 1, 1, 1, 1,	\
968				\
969  1, 1, 1, 1, 1, 1, 1, 1,	\
970  1, 1, 1, 1, 1, 1, 1, 1,	\
971  1, 1, 1, 1, 1, 1, 1, 1,	\
972  1, 1, 1, 1, 1, 1, 1, 1,	\
973				\
974  1, 1, 1, 1, 1, 1}
975
976/* If !TARGET_FPU, then make the fp registers and fp cc regs fixed so that
977   they won't be allocated.  */
978
979#define CONDITIONAL_REGISTER_USAGE				\
980do								\
981  {								\
982    if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)		\
983      {								\
984	fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1;		\
985	call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1;		\
986      }								\
987    /* If the user has passed -f{fixed,call-{used,saved}}-g5 */	\
988    /* then honor it.  */					\
989    if (TARGET_ARCH32 && fixed_regs[5])				\
990      fixed_regs[5] = 1;					\
991    else if (TARGET_ARCH64 && fixed_regs[5] == 2)		\
992      fixed_regs[5] = 0;					\
993    if (! TARGET_V9)						\
994      {								\
995	int regno;						\
996	for (regno = SPARC_FIRST_V9_FP_REG;			\
997	     regno <= SPARC_LAST_V9_FP_REG;			\
998	     regno++)						\
999	  fixed_regs[regno] = 1;				\
1000	/* %fcc0 is used by v8 and v9.  */			\
1001	for (regno = SPARC_FIRST_V9_FCC_REG + 1;		\
1002	     regno <= SPARC_LAST_V9_FCC_REG;			\
1003	     regno++)						\
1004	  fixed_regs[regno] = 1;				\
1005      }								\
1006    if (! TARGET_FPU)						\
1007      {								\
1008	int regno;						\
1009	for (regno = 32; regno < SPARC_LAST_V9_FCC_REG; regno++) \
1010	  fixed_regs[regno] = 1;				\
1011      }								\
1012    /* If the user has passed -f{fixed,call-{used,saved}}-g2 */	\
1013    /* then honor it.  Likewise with g3 and g4.  */		\
1014    if (fixed_regs[2] == 2)					\
1015      fixed_regs[2] = ! TARGET_APP_REGS;			\
1016    if (fixed_regs[3] == 2)					\
1017      fixed_regs[3] = ! TARGET_APP_REGS;			\
1018    if (TARGET_ARCH32 && fixed_regs[4] == 2)			\
1019      fixed_regs[4] = ! TARGET_APP_REGS;			\
1020    else if (TARGET_CM_EMBMEDANY)				\
1021      fixed_regs[4] = 1;					\
1022    else if (fixed_regs[4] == 2)				\
1023      fixed_regs[4] = 0;					\
1024    if (TARGET_FLAT)						\
1025      {								\
1026	int regno;						\
1027	/* Let the compiler believe the frame pointer is still	\
1028	   %fp, but output it as %i7.  */			\
1029	fixed_regs[31] = 1;					\
1030	reg_names[HARD_FRAME_POINTER_REGNUM] = "%i7";		\
1031	/* Disable leaf functions */				\
1032	memset (sparc_leaf_regs, 0, FIRST_PSEUDO_REGISTER);	\
1033	/* Make LEAF_REG_REMAP a noop.  */			\
1034	for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)	\
1035	  leaf_reg_remap [regno] = regno;			\
1036      }								\
1037  }								\
1038while (0)
1039
1040/* Return number of consecutive hard regs needed starting at reg REGNO
1041   to hold something of mode MODE.
1042   This is ordinarily the length in words of a value of mode MODE
1043   but can be less for certain modes in special long registers.
1044
1045   On SPARC, ordinary registers hold 32 bits worth;
1046   this means both integer and floating point registers.
1047   On v9, integer regs hold 64 bits worth; floating point regs hold
1048   32 bits worth (this includes the new fp regs as even the odd ones are
1049   included in the hard register count).  */
1050
1051#define HARD_REGNO_NREGS(REGNO, MODE) \
1052  (TARGET_ARCH64							\
1053   ? ((REGNO) < 32 || (REGNO) == FRAME_POINTER_REGNUM			\
1054      ? (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD	\
1055      : (GET_MODE_SIZE (MODE) + 3) / 4)					\
1056   : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1057
1058/* Due to the ARCH64 discrepancy above we must override this next
1059   macro too.  */
1060#define REGMODE_NATURAL_SIZE(MODE) \
1061  ((TARGET_ARCH64 && FLOAT_MODE_P (MODE)) ? 4 : UNITS_PER_WORD)
1062
1063/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
1064   See sparc.c for how we initialize this.  */
1065extern const int *hard_regno_mode_classes;
1066extern int sparc_mode_class[];
1067
1068/* ??? Because of the funny way we pass parameters we should allow certain
1069   ??? types of float/complex values to be in integer registers during
1070   ??? RTL generation.  This only matters on arch32.  */
1071#define HARD_REGNO_MODE_OK(REGNO, MODE) \
1072  ((hard_regno_mode_classes[REGNO] & sparc_mode_class[MODE]) != 0)
1073
1074/* Value is 1 if it is a good idea to tie two pseudo registers
1075   when one has mode MODE1 and one has mode MODE2.
1076   If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1077   for any hard reg, then this must be 0 for correct output.
1078
1079   For V9: SFmode can't be combined with other float modes, because they can't
1080   be allocated to the %d registers.  Also, DFmode won't fit in odd %f
1081   registers, but SFmode will.  */
1082#define MODES_TIEABLE_P(MODE1, MODE2) \
1083  ((MODE1) == (MODE2)						\
1084   || (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2)		\
1085       && (! TARGET_V9						\
1086	   || (GET_MODE_CLASS (MODE1) != MODE_FLOAT		\
1087	       || (MODE1 != SFmode && MODE2 != SFmode)))))
1088
1089/* Specify the registers used for certain standard purposes.
1090   The values of these macros are register numbers.  */
1091
1092/* SPARC pc isn't overloaded on a register that the compiler knows about.  */
1093/* #define PC_REGNUM  */
1094
1095/* Register to use for pushing function arguments.  */
1096#define STACK_POINTER_REGNUM 14
1097
1098/* The stack bias (amount by which the hardware register is offset by).  */
1099#define SPARC_STACK_BIAS ((TARGET_ARCH64 && TARGET_STACK_BIAS) ? 2047 : 0)
1100
1101/* Actual top-of-stack address is 92/176 greater than the contents of the
1102   stack pointer register for !v9/v9.  That is:
1103   - !v9: 64 bytes for the in and local registers, 4 bytes for structure return
1104     address, and 6*4 bytes for the 6 register parameters.
1105   - v9: 128 bytes for the in and local registers + 6*8 bytes for the integer
1106     parameter regs.  */
1107#define STACK_POINTER_OFFSET (FIRST_PARM_OFFSET(0) + SPARC_STACK_BIAS)
1108
1109/* Base register for access to local variables of the function.  */
1110#define HARD_FRAME_POINTER_REGNUM 30
1111
1112/* The soft frame pointer does not have the stack bias applied.  */
1113#define FRAME_POINTER_REGNUM 101
1114
1115/* Given the stack bias, the stack pointer isn't actually aligned.  */
1116#define INIT_EXPANDERS							 \
1117  do {									 \
1118    if (cfun && cfun->emit->regno_pointer_align && SPARC_STACK_BIAS)	 \
1119      {									 \
1120	REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = BITS_PER_UNIT;	 \
1121	REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT; \
1122      }									 \
1123  } while (0)
1124
1125/* Value should be nonzero if functions must have frame pointers.
1126   Zero means the frame pointer need not be set up (and parms
1127   may be accessed via the stack pointer) in functions that seem suitable.
1128   This is computed in `reload', in reload1.c.
1129   Used in flow.c, global.c, and reload1.c.
1130
1131   Being a non-leaf function does not mean a frame pointer is needed in the
1132   flat window model.  However, the debugger won't be able to backtrace through
1133   us with out it.  */
1134#define FRAME_POINTER_REQUIRED				\
1135  (TARGET_FLAT						\
1136   ? (current_function_calls_alloca			\
1137      || !leaf_function_p ())				\
1138   : ! (leaf_function_p () && only_leaf_regs_used ()))
1139
1140/* Base register for access to arguments of the function.  */
1141#define ARG_POINTER_REGNUM FRAME_POINTER_REGNUM
1142
1143/* Register in which static-chain is passed to a function.  This must
1144   not be a register used by the prologue.  */
1145#define STATIC_CHAIN_REGNUM (TARGET_ARCH64 ? 5 : 2)
1146
1147/* Register which holds offset table for position-independent
1148   data references.  */
1149
1150#define PIC_OFFSET_TABLE_REGNUM (flag_pic ? 23 : INVALID_REGNUM)
1151
1152/* Pick a default value we can notice from override_options:
1153   !v9: Default is on.
1154   v9: Default is off.  */
1155
1156#define DEFAULT_PCC_STRUCT_RETURN -1
1157
1158/* SPARC ABI says that quad-precision floats and all structures are returned
1159   in memory.
1160   For v9: unions <= 32 bytes in size are returned in int regs,
1161   structures up to 32 bytes are returned in int and fp regs.  */
1162
1163#define RETURN_IN_MEMORY(TYPE)				\
1164(TARGET_ARCH32						\
1165 ? (TYPE_MODE (TYPE) == BLKmode				\
1166    || TYPE_MODE (TYPE) == TFmode)			\
1167 : (TYPE_MODE (TYPE) == BLKmode				\
1168    && (unsigned HOST_WIDE_INT) int_size_in_bytes (TYPE) > 32))
1169
1170/* Functions which return large structures get the address
1171   to place the wanted value at offset 64 from the frame.
1172   Must reserve 64 bytes for the in and local registers.
1173   v9: Functions which return large structures get the address to place the
1174   wanted value from an invisible first argument.  */
1175/* Used only in other #defines in this file.  */
1176#define STRUCT_VALUE_OFFSET 64
1177
1178#define STRUCT_VALUE \
1179  (TARGET_ARCH64					\
1180   ? 0							\
1181   : gen_rtx_MEM (Pmode, plus_constant (stack_pointer_rtx, \
1182					STRUCT_VALUE_OFFSET)))
1183
1184#define STRUCT_VALUE_INCOMING \
1185  (TARGET_ARCH64						\
1186   ? 0								\
1187   : gen_rtx_MEM (Pmode, plus_constant (frame_pointer_rtx,	\
1188					STRUCT_VALUE_OFFSET)))
1189
1190/* Define the classes of registers for register constraints in the
1191   machine description.  Also define ranges of constants.
1192
1193   One of the classes must always be named ALL_REGS and include all hard regs.
1194   If there is more than one class, another class must be named NO_REGS
1195   and contain no registers.
1196
1197   The name GENERAL_REGS must be the name of a class (or an alias for
1198   another name such as ALL_REGS).  This is the class of registers
1199   that is allowed by "g" or "r" in a register constraint.
1200   Also, registers outside this class are allocated only when
1201   instructions express preferences for them.
1202
1203   The classes must be numbered in nondecreasing order; that is,
1204   a larger-numbered class must never be contained completely
1205   in a smaller-numbered class.
1206
1207   For any two classes, it is very desirable that there be another
1208   class that represents their union.  */
1209
1210/* The SPARC has various kinds of registers: general, floating point,
1211   and condition codes [well, it has others as well, but none that we
1212   care directly about].
1213
1214   For v9 we must distinguish between the upper and lower floating point
1215   registers because the upper ones can't hold SFmode values.
1216   HARD_REGNO_MODE_OK won't help here because reload assumes that register(s)
1217   satisfying a group need for a class will also satisfy a single need for
1218   that class.  EXTRA_FP_REGS is a bit of a misnomer as it covers all 64 fp
1219   regs.
1220
1221   It is important that one class contains all the general and all the standard
1222   fp regs.  Otherwise find_reg() won't properly allocate int regs for moves,
1223   because reg_class_record() will bias the selection in favor of fp regs,
1224   because reg_class_subunion[GENERAL_REGS][FP_REGS] will yield FP_REGS,
1225   because FP_REGS > GENERAL_REGS.
1226
1227   It is also important that one class contain all the general and all the
1228   fp regs.  Otherwise when spilling a DFmode reg, it may be from EXTRA_FP_REGS
1229   but find_reloads() may use class GENERAL_OR_FP_REGS. This will cause
1230   allocate_reload_reg() to bypass it causing an abort because the compiler
1231   thinks it doesn't have a spill reg when in fact it does.
1232
1233   v9 also has 4 floating point condition code registers.  Since we don't
1234   have a class that is the union of FPCC_REGS with either of the others,
1235   it is important that it appear first.  Otherwise the compiler will die
1236   trying to compile _fixunsdfsi because fix_truncdfsi2 won't match its
1237   constraints.
1238
1239   It is important that SPARC_ICC_REG have class NO_REGS.  Otherwise combine
1240   may try to use it to hold an SImode value.  See register_operand.
1241   ??? Should %fcc[0123] be handled similarly?
1242*/
1243
1244enum reg_class { NO_REGS, FPCC_REGS, I64_REGS, GENERAL_REGS, FP_REGS,
1245		 EXTRA_FP_REGS, GENERAL_OR_FP_REGS, GENERAL_OR_EXTRA_FP_REGS,
1246		 ALL_REGS, LIM_REG_CLASSES };
1247
1248#define N_REG_CLASSES (int) LIM_REG_CLASSES
1249
1250/* Give names of register classes as strings for dump file.  */
1251
1252#define REG_CLASS_NAMES \
1253  { "NO_REGS", "FPCC_REGS", "I64_REGS", "GENERAL_REGS", "FP_REGS",	\
1254     "EXTRA_FP_REGS", "GENERAL_OR_FP_REGS", "GENERAL_OR_EXTRA_FP_REGS",	\
1255     "ALL_REGS" }
1256
1257/* Define which registers fit in which classes.
1258   This is an initializer for a vector of HARD_REG_SET
1259   of length N_REG_CLASSES.  */
1260
1261#define REG_CLASS_CONTENTS				\
1262  {{0, 0, 0, 0},	/* NO_REGS */			\
1263   {0, 0, 0, 0xf},	/* FPCC_REGS */			\
1264   {0xffff, 0, 0, 0},	/* I64_REGS */			\
1265   {-1, 0, 0, 0x20},	/* GENERAL_REGS */		\
1266   {0, -1, 0, 0},	/* FP_REGS */			\
1267   {0, -1, -1, 0},	/* EXTRA_FP_REGS */		\
1268   {-1, -1, 0, 0x20},	/* GENERAL_OR_FP_REGS */	\
1269   {-1, -1, -1, 0x20},	/* GENERAL_OR_EXTRA_FP_REGS */	\
1270   {-1, -1, -1, 0x3f}}	/* ALL_REGS */
1271
1272/* Defines invalid mode changes.  Borrowed from pa64-regs.h.
1273
1274   SImode loads to floating-point registers are not zero-extended.
1275   The definition for LOAD_EXTEND_OP specifies that integer loads
1276   narrower than BITS_PER_WORD will be zero-extended.  As a result,
1277   we inhibit changes from SImode unless they are to a mode that is
1278   identical in size.  */
1279
1280#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS)		\
1281  (TARGET_ARCH64						\
1282   && (FROM) == SImode						\
1283   && GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO)		\
1284   ? reg_classes_intersect_p (CLASS, FP_REGS) : 0)
1285
1286/* The same information, inverted:
1287   Return the class number of the smallest class containing
1288   reg number REGNO.  This could be a conditional expression
1289   or could index an array.  */
1290
1291extern enum reg_class sparc_regno_reg_class[FIRST_PSEUDO_REGISTER];
1292
1293#define REGNO_REG_CLASS(REGNO) sparc_regno_reg_class[(REGNO)]
1294
1295/* This is the order in which to allocate registers normally.
1296
1297   We put %f0-%f7 last among the float registers, so as to make it more
1298   likely that a pseudo-register which dies in the float return register
1299   area will get allocated to the float return register, thus saving a move
1300   instruction at the end of the function.
1301
1302   Similarly for integer return value registers.
1303
1304   We know in this case that we will not end up with a leaf function.
1305
1306   The register allocator is given the global and out registers first
1307   because these registers are call clobbered and thus less useful to
1308   global register allocation.
1309
1310   Next we list the local and in registers.  They are not call clobbered
1311   and thus very useful for global register allocation.  We list the input
1312   registers before the locals so that it is more likely the incoming
1313   arguments received in those registers can just stay there and not be
1314   reloaded.  */
1315
1316#define REG_ALLOC_ORDER \
1317{ 1, 2, 3, 4, 5, 6, 7,			/* %g1-%g7 */	\
1318  13, 12, 11, 10, 9, 8, 		/* %o5-%o0 */	\
1319  15,					/* %o7 */	\
1320  16, 17, 18, 19, 20, 21, 22, 23,	/* %l0-%l7 */ 	\
1321  29, 28, 27, 26, 25, 24, 31,		/* %i5-%i0,%i7 */\
1322  40, 41, 42, 43, 44, 45, 46, 47,	/* %f8-%f15 */  \
1323  48, 49, 50, 51, 52, 53, 54, 55,	/* %f16-%f23 */ \
1324  56, 57, 58, 59, 60, 61, 62, 63,	/* %f24-%f31 */ \
1325  64, 65, 66, 67, 68, 69, 70, 71,	/* %f32-%f39 */ \
1326  72, 73, 74, 75, 76, 77, 78, 79,	/* %f40-%f47 */ \
1327  80, 81, 82, 83, 84, 85, 86, 87,	/* %f48-%f55 */ \
1328  88, 89, 90, 91, 92, 93, 94, 95,	/* %f56-%f63 */ \
1329  39, 38, 37, 36, 35, 34, 33, 32,	/* %f7-%f0 */   \
1330  96, 97, 98, 99,			/* %fcc0-3 */   \
1331  100, 0, 14, 30, 101}			/* %icc, %g0, %o6, %i6, %sfp */
1332
1333/* This is the order in which to allocate registers for
1334   leaf functions.  If all registers can fit in the global and
1335   output registers, then we have the possibility of having a leaf
1336   function.
1337
1338   The macro actually mentioned the input registers first,
1339   because they get renumbered into the output registers once
1340   we know really do have a leaf function.
1341
1342   To be more precise, this register allocation order is used
1343   when %o7 is found to not be clobbered right before register
1344   allocation.  Normally, the reason %o7 would be clobbered is
1345   due to a call which could not be transformed into a sibling
1346   call.
1347
1348   As a consequence, it is possible to use the leaf register
1349   allocation order and not end up with a leaf function.  We will
1350   not get suboptimal register allocation in that case because by
1351   definition of being potentially leaf, there were no function
1352   calls.  Therefore, allocation order within the local register
1353   window is not critical like it is when we do have function calls.  */
1354
1355#define REG_LEAF_ALLOC_ORDER \
1356{ 1, 2, 3, 4, 5, 6, 7, 			/* %g1-%g7 */	\
1357  29, 28, 27, 26, 25, 24,		/* %i5-%i0 */	\
1358  15,					/* %o7 */	\
1359  13, 12, 11, 10, 9, 8,			/* %o5-%o0 */	\
1360  16, 17, 18, 19, 20, 21, 22, 23,	/* %l0-%l7 */	\
1361  40, 41, 42, 43, 44, 45, 46, 47,	/* %f8-%f15 */	\
1362  48, 49, 50, 51, 52, 53, 54, 55,	/* %f16-%f23 */	\
1363  56, 57, 58, 59, 60, 61, 62, 63,	/* %f24-%f31 */	\
1364  64, 65, 66, 67, 68, 69, 70, 71,	/* %f32-%f39 */	\
1365  72, 73, 74, 75, 76, 77, 78, 79,	/* %f40-%f47 */	\
1366  80, 81, 82, 83, 84, 85, 86, 87,	/* %f48-%f55 */	\
1367  88, 89, 90, 91, 92, 93, 94, 95,	/* %f56-%f63 */	\
1368  39, 38, 37, 36, 35, 34, 33, 32,	/* %f7-%f0 */	\
1369  96, 97, 98, 99,			/* %fcc0-3 */	\
1370  100, 0, 14, 30, 31, 101}		/* %icc, %g0, %o6, %i6, %i7, %sfp */
1371
1372#define ORDER_REGS_FOR_LOCAL_ALLOC order_regs_for_local_alloc ()
1373
1374extern char sparc_leaf_regs[];
1375#define LEAF_REGISTERS sparc_leaf_regs
1376
1377extern char leaf_reg_remap[];
1378#define LEAF_REG_REMAP(REGNO) (leaf_reg_remap[REGNO])
1379
1380/* The class value for index registers, and the one for base regs.  */
1381#define INDEX_REG_CLASS GENERAL_REGS
1382#define BASE_REG_CLASS GENERAL_REGS
1383
1384/* Local macro to handle the two v9 classes of FP regs.  */
1385#define FP_REG_CLASS_P(CLASS) ((CLASS) == FP_REGS || (CLASS) == EXTRA_FP_REGS)
1386
1387/* Get reg_class from a letter such as appears in the machine description.
1388   In the not-v9 case, coerce v9's 'e' class to 'f', so we can use 'e' in the
1389   .md file for v8 and v9.
1390   'd' and 'b' are used for single and double precision VIS operations,
1391   if TARGET_VIS.
1392   'h' is used for V8+ 64 bit global and out registers.  */
1393
1394#define REG_CLASS_FROM_LETTER(C)		\
1395(TARGET_V9					\
1396 ? ((C) == 'f' ? FP_REGS			\
1397    : (C) == 'e' ? EXTRA_FP_REGS 		\
1398    : (C) == 'c' ? FPCC_REGS			\
1399    : ((C) == 'd' && TARGET_VIS) ? FP_REGS\
1400    : ((C) == 'b' && TARGET_VIS) ? EXTRA_FP_REGS\
1401    : ((C) == 'h' && TARGET_V8PLUS) ? I64_REGS\
1402    : NO_REGS)					\
1403 : ((C) == 'f' ? FP_REGS			\
1404    : (C) == 'e' ? FP_REGS			\
1405    : (C) == 'c' ? FPCC_REGS			\
1406    : NO_REGS))
1407
1408/* The letters I, J, K, L and M in a register constraint string
1409   can be used to stand for particular ranges of immediate operands.
1410   This macro defines what the ranges are.
1411   C is the letter, and VALUE is a constant value.
1412   Return 1 if VALUE is in the range specified by C.
1413
1414   `I' is used for the range of constants an insn can actually contain.
1415   `J' is used for the range which is just zero (since that is R0).
1416   `K' is used for constants which can be loaded with a single sethi insn.
1417   `L' is used for the range of constants supported by the movcc insns.
1418   `M' is used for the range of constants supported by the movrcc insns.
1419   `N' is like K, but for constants wider than 32 bits.
1420   `O' is used for the range which is just 4096.  */
1421
1422#define SPARC_SIMM10_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x200 < 0x400)
1423#define SPARC_SIMM11_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x400 < 0x800)
1424#define SPARC_SIMM13_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x1000 < 0x2000)
1425/* 10 and 11 bit immediates are only used for a few specific insns.
1426   SMALL_INT is used throughout the port so we continue to use it.  */
1427#define SMALL_INT(X) (SPARC_SIMM13_P (INTVAL (X)))
1428/* 13 bit immediate, considering only the low 32 bits */
1429#define SMALL_INT32(X) (SPARC_SIMM13_P (trunc_int_for_mode \
1430					(INTVAL (X), SImode)))
1431#define SPARC_SETHI_P(X) \
1432  (((unsigned HOST_WIDE_INT) (X) \
1433    & ((unsigned HOST_WIDE_INT) 0x3ff - GET_MODE_MASK (SImode) - 1)) == 0)
1434#define SPARC_SETHI32_P(X) \
1435  (SPARC_SETHI_P ((unsigned HOST_WIDE_INT) (X) & GET_MODE_MASK (SImode)))
1436
1437#define CONST_OK_FOR_LETTER_P(VALUE, C)  \
1438  ((C) == 'I' ? SPARC_SIMM13_P (VALUE)			\
1439   : (C) == 'J' ? (VALUE) == 0				\
1440   : (C) == 'K' ? SPARC_SETHI32_P (VALUE)		\
1441   : (C) == 'L' ? SPARC_SIMM11_P (VALUE)		\
1442   : (C) == 'M' ? SPARC_SIMM10_P (VALUE)		\
1443   : (C) == 'N' ? SPARC_SETHI_P (VALUE)			\
1444   : (C) == 'O' ? (VALUE) == 4096			\
1445   : 0)
1446
1447/* Similar, but for floating constants, and defining letters G and H.
1448   Here VALUE is the CONST_DOUBLE rtx itself.  */
1449
1450#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C)	\
1451  ((C) == 'G' ? fp_zero_operand (VALUE, GET_MODE (VALUE))	\
1452   : (C) == 'H' ? arith_double_operand (VALUE, DImode)		\
1453   : (C) == 'O' ? arith_double_4096_operand (VALUE, DImode)	\
1454   : 0)
1455
1456/* Given an rtx X being reloaded into a reg required to be
1457   in class CLASS, return the class of reg to actually use.
1458   In general this is just CLASS; but on some machines
1459   in some cases it is preferable to use a more restrictive class.  */
1460/* - We can't load constants into FP registers.
1461   - We can't load FP constants into integer registers when soft-float,
1462     because there is no soft-float pattern with a r/F constraint.
1463   - We can't load FP constants into integer registers for TFmode unless
1464     it is 0.0L, because there is no movtf pattern with a r/F constraint.
1465   - Try and reload integer constants (symbolic or otherwise) back into
1466     registers directly, rather than having them dumped to memory.  */
1467
1468#define PREFERRED_RELOAD_CLASS(X,CLASS)			\
1469  (CONSTANT_P (X)					\
1470   ? ((FP_REG_CLASS_P (CLASS)				\
1471       || (CLASS) == GENERAL_OR_FP_REGS			\
1472       || (CLASS) == GENERAL_OR_EXTRA_FP_REGS		\
1473       || (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT	\
1474	   && ! TARGET_FPU)				\
1475       || (GET_MODE (X) == TFmode			\
1476	   && ! fp_zero_operand (X, TFmode)))		\
1477      ? NO_REGS						\
1478      : (!FP_REG_CLASS_P (CLASS)			\
1479         && GET_MODE_CLASS (GET_MODE (X)) == MODE_INT)	\
1480      ? GENERAL_REGS					\
1481      : (CLASS))					\
1482   : (CLASS))
1483
1484/* Return the register class of a scratch register needed to load IN into
1485   a register of class CLASS in MODE.
1486
1487   We need a temporary when loading/storing a HImode/QImode value
1488   between memory and the FPU registers.  This can happen when combine puts
1489   a paradoxical subreg in a float/fix conversion insn.
1490
1491   We need a temporary when loading/storing a DFmode value between
1492   unaligned memory and the upper FPU registers.  */
1493
1494#define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, IN)		\
1495  ((FP_REG_CLASS_P (CLASS)					\
1496    && ((MODE) == HImode || (MODE) == QImode)			\
1497    && (GET_CODE (IN) == MEM					\
1498        || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG)	\
1499            && true_regnum (IN) == -1)))			\
1500   ? GENERAL_REGS						\
1501   : ((CLASS) == EXTRA_FP_REGS && (MODE) == DFmode		\
1502      && GET_CODE (IN) == MEM && TARGET_ARCH32			\
1503      && ! mem_min_alignment ((IN), 8))				\
1504     ? FP_REGS							\
1505     : (((TARGET_CM_MEDANY					\
1506	  && symbolic_operand ((IN), (MODE)))			\
1507	 || (TARGET_CM_EMBMEDANY				\
1508	     && text_segment_operand ((IN), (MODE))))		\
1509	&& !flag_pic)						\
1510       ? GENERAL_REGS						\
1511       : NO_REGS)
1512
1513#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, IN)		\
1514  ((FP_REG_CLASS_P (CLASS)					\
1515     && ((MODE) == HImode || (MODE) == QImode)			\
1516     && (GET_CODE (IN) == MEM					\
1517         || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG)	\
1518             && true_regnum (IN) == -1)))			\
1519   ? GENERAL_REGS						\
1520   : ((CLASS) == EXTRA_FP_REGS && (MODE) == DFmode		\
1521      && GET_CODE (IN) == MEM && TARGET_ARCH32			\
1522      && ! mem_min_alignment ((IN), 8))				\
1523     ? FP_REGS							\
1524     : (((TARGET_CM_MEDANY					\
1525	  && symbolic_operand ((IN), (MODE)))			\
1526	 || (TARGET_CM_EMBMEDANY				\
1527	     && text_segment_operand ((IN), (MODE))))		\
1528	&& !flag_pic)						\
1529       ? GENERAL_REGS						\
1530       : NO_REGS)
1531
1532/* On SPARC it is not possible to directly move data between
1533   GENERAL_REGS and FP_REGS.  */
1534#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1535  (FP_REG_CLASS_P (CLASS1) != FP_REG_CLASS_P (CLASS2))
1536
1537/* Return the stack location to use for secondary memory needed reloads.
1538   We want to use the reserved location just below the frame pointer.
1539   However, we must ensure that there is a frame, so use assign_stack_local
1540   if the frame size is zero.  */
1541#define SECONDARY_MEMORY_NEEDED_RTX(MODE) \
1542  (get_frame_size () == 0						\
1543   ? assign_stack_local (MODE, GET_MODE_SIZE (MODE), 0)			\
1544   : gen_rtx_MEM (MODE, plus_constant (frame_pointer_rtx,		\
1545				       STARTING_FRAME_OFFSET)))
1546
1547/* Get_secondary_mem widens its argument to BITS_PER_WORD which loses on v9
1548   because the movsi and movsf patterns don't handle r/f moves.
1549   For v8 we copy the default definition.  */
1550#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1551  (TARGET_ARCH64						\
1552   ? (GET_MODE_BITSIZE (MODE) < 32				\
1553      ? mode_for_size (32, GET_MODE_CLASS (MODE), 0)		\
1554      : MODE)							\
1555   : (GET_MODE_BITSIZE (MODE) < BITS_PER_WORD			\
1556      ? mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0)	\
1557      : MODE))
1558
1559/* Return the maximum number of consecutive registers
1560   needed to represent mode MODE in a register of class CLASS.  */
1561/* On SPARC, this is the size of MODE in words.  */
1562#define CLASS_MAX_NREGS(CLASS, MODE)	\
1563  (FP_REG_CLASS_P (CLASS) ? (GET_MODE_SIZE (MODE) + 3) / 4 \
1564   : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1565
1566/* Stack layout; function entry, exit and calling.  */
1567
1568/* Define the number of register that can hold parameters.
1569   This macro is only used in other macro definitions below and in sparc.c.
1570   MODE is the mode of the argument.
1571   !v9: All args are passed in %o0-%o5.
1572   v9: %o0-%o5 and %f0-%f31 are cumulatively used to pass values.
1573   See the description in sparc.c.  */
1574#define NPARM_REGS(MODE) \
1575(TARGET_ARCH64 \
1576 ? (GET_MODE_CLASS (MODE) == MODE_FLOAT ? 32 : 6) \
1577 : 6)
1578
1579/* Define this if pushing a word on the stack
1580   makes the stack pointer a smaller address.  */
1581#define STACK_GROWS_DOWNWARD
1582
1583/* Define this if the nominal address of the stack frame
1584   is at the high-address end of the local variables;
1585   that is, each additional local variable allocated
1586   goes at a more negative offset in the frame.  */
1587#define FRAME_GROWS_DOWNWARD
1588
1589/* Offset within stack frame to start allocating local variables at.
1590   If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1591   first local allocated.  Otherwise, it is the offset to the BEGINNING
1592   of the first local allocated.  */
1593/* This allows space for one TFmode floating point value.  */
1594#define STARTING_FRAME_OFFSET \
1595  (TARGET_ARCH64 ? -16 \
1596   : (-SPARC_STACK_ALIGN (LONG_DOUBLE_TYPE_SIZE / BITS_PER_UNIT)))
1597
1598/* If we generate an insn to push BYTES bytes,
1599   this says how many the stack pointer really advances by.
1600   On SPARC, don't define this because there are no push insns.  */
1601/*  #define PUSH_ROUNDING(BYTES) */
1602
1603/* Offset of first parameter from the argument pointer register value.
1604   !v9: This is 64 for the ins and locals, plus 4 for the struct-return reg
1605   even if this function isn't going to use it.
1606   v9: This is 128 for the ins and locals.  */
1607#define FIRST_PARM_OFFSET(FNDECL) \
1608  (TARGET_ARCH64 ? 16 * UNITS_PER_WORD : STRUCT_VALUE_OFFSET + UNITS_PER_WORD)
1609
1610/* Offset from the argument pointer register value to the CFA.
1611   This is different from FIRST_PARM_OFFSET because the register window
1612   comes between the CFA and the arguments.  */
1613#define ARG_POINTER_CFA_OFFSET(FNDECL)  0
1614
1615/* When a parameter is passed in a register, stack space is still
1616   allocated for it.
1617   !v9: All 6 possible integer registers have backing store allocated.
1618   v9: Only space for the arguments passed is allocated.  */
1619/* ??? Ideally, we'd use zero here (as the minimum), but zero has special
1620   meaning to the backend.  Further, we need to be able to detect if a
1621   varargs/unprototyped function is called, as they may want to spill more
1622   registers than we've provided space.  Ugly, ugly.  So for now we retain
1623   all 6 slots even for v9.  */
1624#define REG_PARM_STACK_SPACE(DECL) (6 * UNITS_PER_WORD)
1625
1626/* Definitions for register elimination.  */
1627/* ??? In TARGET_FLAT mode we needn't have a hard frame pointer.  */
1628
1629#define ELIMINABLE_REGS \
1630  {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1631   { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM} }
1632
1633/* The way this is structured, we can't eliminate SFP in favor of SP
1634   if the frame pointer is required: we want to use the SFP->HFP elimination
1635   in that case.  But the test in update_eliminables doesn't know we are
1636   assuming below that we only do the former elimination.  */
1637#define CAN_ELIMINATE(FROM, TO) \
1638  ((TO) == HARD_FRAME_POINTER_REGNUM || !FRAME_POINTER_REQUIRED)
1639
1640#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1641  do {								\
1642    (OFFSET) = 0;						\
1643    if ((TO) == STACK_POINTER_REGNUM)				\
1644      {								\
1645	/* Note, we always pretend that this is a leaf function	\
1646	   because if it's not, there's no point in trying to	\
1647	   eliminate the frame pointer.  If it is a leaf	\
1648	   function, we guessed right!  */			\
1649	if (TARGET_FLAT)					\
1650	  (OFFSET) =						\
1651	    sparc_flat_compute_frame_size (get_frame_size ());	\
1652	else							\
1653	  (OFFSET) = compute_frame_size (get_frame_size (), 1);	\
1654      }								\
1655    (OFFSET) += SPARC_STACK_BIAS;				\
1656  } while (0)
1657
1658/* Keep the stack pointer constant throughout the function.
1659   This is both an optimization and a necessity: longjmp
1660   doesn't behave itself when the stack pointer moves within
1661   the function!  */
1662#define ACCUMULATE_OUTGOING_ARGS 1
1663
1664/* Value is the number of bytes of arguments automatically
1665   popped when returning from a subroutine call.
1666   FUNDECL is the declaration node of the function (as a tree),
1667   FUNTYPE is the data type of the function (as a tree),
1668   or for a library call it is an identifier node for the subroutine name.
1669   SIZE is the number of bytes of arguments passed on the stack.  */
1670
1671#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1672
1673/* Some subroutine macros specific to this machine.
1674   When !TARGET_FPU, put float return values in the general registers,
1675   since we don't have any fp registers.  */
1676#define BASE_RETURN_VALUE_REG(MODE)					\
1677  (TARGET_ARCH64							\
1678   ? (TARGET_FPU && FLOAT_MODE_P (MODE) ? 32 : 8)			\
1679   : (TARGET_FPU && FLOAT_MODE_P (MODE) && (MODE) != TFmode ? 32 : 8))
1680
1681#define BASE_OUTGOING_VALUE_REG(MODE)				\
1682  (TARGET_ARCH64						\
1683   ? (TARGET_FPU && FLOAT_MODE_P (MODE) ? 32			\
1684      : TARGET_FLAT ? 8 : 24)					\
1685   : (TARGET_FPU && FLOAT_MODE_P (MODE) && (MODE) != TFmode ? 32\
1686      : (TARGET_FLAT ? 8 : 24)))
1687
1688#define BASE_PASSING_ARG_REG(MODE)				\
1689  (TARGET_ARCH64						\
1690   ? (TARGET_FPU && FLOAT_MODE_P (MODE) ? 32 : 8)		\
1691   : 8)
1692
1693/* ??? FIXME -- seems wrong for v9 structure passing...  */
1694#define BASE_INCOMING_ARG_REG(MODE)				\
1695  (TARGET_ARCH64						\
1696   ? (TARGET_FPU && FLOAT_MODE_P (MODE) ? 32			\
1697      : TARGET_FLAT ? 8 : 24)					\
1698   : (TARGET_FLAT ? 8 : 24))
1699
1700/* Define this macro if the target machine has "register windows".  This
1701   C expression returns the register number as seen by the called function
1702   corresponding to register number OUT as seen by the calling function.
1703   Return OUT if register number OUT is not an outbound register.  */
1704
1705#define INCOMING_REGNO(OUT) \
1706 ((TARGET_FLAT || (OUT) < 8 || (OUT) > 15) ? (OUT) : (OUT) + 16)
1707
1708/* Define this macro if the target machine has "register windows".  This
1709   C expression returns the register number as seen by the calling function
1710   corresponding to register number IN as seen by the called function.
1711   Return IN if register number IN is not an inbound register.  */
1712
1713#define OUTGOING_REGNO(IN) \
1714 ((TARGET_FLAT || (IN) < 24 || (IN) > 31) ? (IN) : (IN) - 16)
1715
1716/* Define this macro if the target machine has register windows.  This
1717   C expression returns true if the register is call-saved but is in the
1718   register window.  */
1719
1720#define LOCAL_REGNO(REGNO) \
1721  (TARGET_FLAT ? 0 : (REGNO) >= 16 && (REGNO) <= 31)
1722
1723/* Define how to find the value returned by a function.
1724   VALTYPE is the data type of the value (as a tree).
1725   If the precise function being called is known, FUNC is its FUNCTION_DECL;
1726   otherwise, FUNC is 0.  */
1727
1728/* On SPARC the value is found in the first "output" register.  */
1729
1730#define FUNCTION_VALUE(VALTYPE, FUNC) \
1731  function_value ((VALTYPE), TYPE_MODE (VALTYPE), 1)
1732
1733/* But the called function leaves it in the first "input" register.  */
1734
1735#define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) \
1736  function_value ((VALTYPE), TYPE_MODE (VALTYPE), 0)
1737
1738/* Define how to find the value returned by a library function
1739   assuming the value has mode MODE.  */
1740
1741#define LIBCALL_VALUE(MODE) \
1742  function_value (NULL_TREE, (MODE), 1)
1743
1744/* 1 if N is a possible register number for a function value
1745   as seen by the caller.
1746   On SPARC, the first "output" reg is used for integer values,
1747   and the first floating point register is used for floating point values.  */
1748
1749#define FUNCTION_VALUE_REGNO_P(N) ((N) == 8 || (N) == 32)
1750
1751/* Define the size of space to allocate for the return value of an
1752   untyped_call.  */
1753
1754#define APPLY_RESULT_SIZE 16
1755
1756/* 1 if N is a possible register number for function argument passing.
1757   On SPARC, these are the "output" registers.  v9 also uses %f0-%f31.  */
1758
1759#define FUNCTION_ARG_REGNO_P(N) \
1760(TARGET_ARCH64 \
1761 ? (((N) >= 8 && (N) <= 13) || ((N) >= 32 && (N) <= 63)) \
1762 : ((N) >= 8 && (N) <= 13))
1763
1764/* Define a data type for recording info about an argument list
1765   during the scan of that argument list.  This data type should
1766   hold all necessary information about the function itself
1767   and about the args processed so far, enough to enable macros
1768   such as FUNCTION_ARG to determine where the next arg should go.
1769
1770   On SPARC (!v9), this is a single integer, which is a number of words
1771   of arguments scanned so far (including the invisible argument,
1772   if any, which holds the structure-value-address).
1773   Thus 7 or more means all following args should go on the stack.
1774
1775   For v9, we also need to know whether a prototype is present.  */
1776
1777struct sparc_args {
1778  int words;       /* number of words passed so far */
1779  int prototype_p; /* nonzero if a prototype is present */
1780  int libcall_p;   /* nonzero if a library call */
1781};
1782#define CUMULATIVE_ARGS struct sparc_args
1783
1784/* Initialize a variable CUM of type CUMULATIVE_ARGS
1785   for a call to a function whose data type is FNTYPE.
1786   For a library call, FNTYPE is 0.  */
1787
1788#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1789init_cumulative_args (& (CUM), (FNTYPE), (LIBNAME), (FNDECL));
1790
1791/* Update the data in CUM to advance over an argument
1792   of mode MODE and data type TYPE.
1793   TYPE is null for libcalls where that information may not be available.  */
1794
1795#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1796function_arg_advance (& (CUM), (MODE), (TYPE), (NAMED))
1797
1798/* Nonzero if we do not know how to pass TYPE solely in registers.  */
1799
1800#define MUST_PASS_IN_STACK(MODE,TYPE)			\
1801  ((TYPE) != 0						\
1802   && (TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST	\
1803       || TREE_ADDRESSABLE (TYPE)))
1804
1805/* Determine where to put an argument to a function.
1806   Value is zero to push the argument on the stack,
1807   or a hard register in which to store the argument.
1808
1809   MODE is the argument's machine mode.
1810   TYPE is the data type of the argument (as a tree).
1811    This is null for libcalls where that information may
1812    not be available.
1813   CUM is a variable of type CUMULATIVE_ARGS which gives info about
1814    the preceding args and about the function being called.
1815   NAMED is nonzero if this argument is a named parameter
1816    (otherwise it is an extra parameter matching an ellipsis).  */
1817
1818#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1819function_arg (& (CUM), (MODE), (TYPE), (NAMED), 0)
1820
1821/* Define where a function finds its arguments.
1822   This is different from FUNCTION_ARG because of register windows.  */
1823
1824#define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
1825function_arg (& (CUM), (MODE), (TYPE), (NAMED), 1)
1826
1827/* For an arg passed partly in registers and partly in memory,
1828   this is the number of registers used.
1829   For args passed entirely in registers or entirely in memory, zero.  */
1830
1831#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1832function_arg_partial_nregs (& (CUM), (MODE), (TYPE), (NAMED))
1833
1834/* A C expression that indicates when an argument must be passed by reference.
1835   If nonzero for an argument, a copy of that argument is made in memory and a
1836   pointer to the argument is passed instead of the argument itself.
1837   The pointer is passed in whatever way is appropriate for passing a pointer
1838   to that type.  */
1839
1840#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1841function_arg_pass_by_reference (& (CUM), (MODE), (TYPE), (NAMED))
1842
1843/* If defined, a C expression which determines whether, and in which direction,
1844   to pad out an argument with extra space.  The value should be of type
1845   `enum direction': either `upward' to pad above the argument,
1846   `downward' to pad below, or `none' to inhibit padding.  */
1847
1848#define FUNCTION_ARG_PADDING(MODE, TYPE) \
1849function_arg_padding ((MODE), (TYPE))
1850
1851/* If defined, a C expression that gives the alignment boundary, in bits,
1852   of an argument with the specified mode and type.  If it is not defined,
1853   PARM_BOUNDARY is used for all arguments.
1854   For sparc64, objects requiring 16 byte alignment are passed that way.  */
1855
1856#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1857((TARGET_ARCH64					\
1858  && (GET_MODE_ALIGNMENT (MODE) == 128		\
1859      || ((TYPE) && TYPE_ALIGN (TYPE) == 128)))	\
1860 ? 128 : PARM_BOUNDARY)
1861
1862/* Define the information needed to generate branch and scc insns.  This is
1863   stored from the compare operation.  Note that we can't use "rtx" here
1864   since it hasn't been defined!  */
1865
1866extern GTY(()) rtx sparc_compare_op0;
1867extern GTY(()) rtx sparc_compare_op1;
1868
1869
1870/* Generate the special assembly code needed to tell the assembler whatever
1871   it might need to know about the return value of a function.
1872
1873   For SPARC assemblers, we need to output a .proc pseudo-op which conveys
1874   information to the assembler relating to peephole optimization (done in
1875   the assembler).  */
1876
1877#define ASM_DECLARE_RESULT(FILE, RESULT) \
1878  fprintf ((FILE), "\t.proc\t0%lo\n", sparc_type_code (TREE_TYPE (RESULT)))
1879
1880/* Output the special assembly code needed to tell the assembler some
1881   register is used as global register variable.
1882
1883   SPARC 64bit psABI declares registers %g2 and %g3 as application
1884   registers and %g6 and %g7 as OS registers.  Any object using them
1885   should declare (for %g2/%g3 has to, for %g6/%g7 can) that it uses them
1886   and how they are used (scratch or some global variable).
1887   Linker will then refuse to link together objects which use those
1888   registers incompatibly.
1889
1890   Unless the registers are used for scratch, two different global
1891   registers cannot be declared to the same name, so in the unlikely
1892   case of a global register variable occupying more than one register
1893   we prefix the second and following registers with .gnu.part1. etc.  */
1894
1895extern char sparc_hard_reg_printed[8];
1896
1897#ifdef HAVE_AS_REGISTER_PSEUDO_OP
1898#define ASM_DECLARE_REGISTER_GLOBAL(FILE, DECL, REGNO, NAME)		\
1899do {									\
1900  if (TARGET_ARCH64)							\
1901    {									\
1902      int end = HARD_REGNO_NREGS ((REGNO), DECL_MODE (decl)) + (REGNO); \
1903      int reg;								\
1904      for (reg = (REGNO); reg < 8 && reg < end; reg++)			\
1905	if ((reg & ~1) == 2 || (reg & ~1) == 6)				\
1906	  {								\
1907	    if (reg == (REGNO))						\
1908	      fprintf ((FILE), "\t.register\t%%g%d, %s\n", reg, (NAME)); \
1909	    else							\
1910	      fprintf ((FILE), "\t.register\t%%g%d, .gnu.part%d.%s\n",	\
1911		       reg, reg - (REGNO), (NAME));			\
1912	    sparc_hard_reg_printed[reg] = 1;				\
1913	  }								\
1914    }									\
1915} while (0)
1916#endif
1917
1918
1919/* Emit rtl for profiling.  */
1920#define PROFILE_HOOK(LABEL)   sparc_profile_hook (LABEL)
1921
1922/* All the work done in PROFILE_HOOK, but still required.  */
1923#define FUNCTION_PROFILER(FILE, LABELNO) do { } while (0)
1924
1925/* Set the name of the mcount function for the system.  */
1926#define MCOUNT_FUNCTION "*mcount"
1927
1928/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1929   the stack pointer does not matter.  The value is tested only in
1930   functions that have frame pointers.
1931   No definition is equivalent to always zero.  */
1932
1933#define EXIT_IGNORE_STACK	\
1934 (get_frame_size () != 0	\
1935  || current_function_calls_alloca || current_function_outgoing_args_size)
1936
1937#define DELAY_SLOTS_FOR_EPILOGUE \
1938  (TARGET_FLAT ? sparc_flat_epilogue_delay_slots () : 1)
1939#define ELIGIBLE_FOR_EPILOGUE_DELAY(trial, slots_filled) \
1940  (TARGET_FLAT ? sparc_flat_eligible_for_epilogue_delay (trial, slots_filled) \
1941   : eligible_for_epilogue_delay (trial, slots_filled))
1942
1943/* Define registers used by the epilogue and return instruction.  */
1944#define EPILOGUE_USES(REGNO) \
1945  (!TARGET_FLAT && REGNO == 31)
1946
1947/* Length in units of the trampoline for entering a nested function.  */
1948
1949#define TRAMPOLINE_SIZE (TARGET_ARCH64 ? 32 : 16)
1950
1951#define TRAMPOLINE_ALIGNMENT 128 /* 16 bytes */
1952
1953/* Emit RTL insns to initialize the variable parts of a trampoline.
1954   FNADDR is an RTX for the address of the function's pure code.
1955   CXT is an RTX for the static chain value for the function.  */
1956
1957#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1958    if (TARGET_ARCH64)						\
1959      sparc64_initialize_trampoline (TRAMP, FNADDR, CXT);	\
1960    else							\
1961      sparc_initialize_trampoline (TRAMP, FNADDR, CXT)
1962
1963/* Generate necessary RTL for __builtin_saveregs().  */
1964
1965#define EXPAND_BUILTIN_SAVEREGS() sparc_builtin_saveregs ()
1966
1967/* Implement `va_start' for varargs and stdarg.  */
1968#define EXPAND_BUILTIN_VA_START(valist, nextarg) \
1969  sparc_va_start (valist, nextarg)
1970
1971/* Implement `va_arg'.  */
1972#define EXPAND_BUILTIN_VA_ARG(valist, type) \
1973  sparc_va_arg (valist, type)
1974
1975/* Define this macro if the location where a function argument is passed
1976   depends on whether or not it is a named argument.
1977
1978   This macro controls how the NAMED argument to FUNCTION_ARG
1979   is set for varargs and stdarg functions.  With this macro defined,
1980   the NAMED argument is always true for named arguments, and false for
1981   unnamed arguments.  If this is not defined, but SETUP_INCOMING_VARARGS
1982   is defined, then all arguments are treated as named.  Otherwise, all named
1983   arguments except the last are treated as named.
1984   For the v9 we want NAMED to mean what it says it means.  */
1985
1986#define STRICT_ARGUMENT_NAMING TARGET_V9
1987
1988/* Generate RTL to flush the register windows so as to make arbitrary frames
1989   available.  */
1990#define SETUP_FRAME_ADDRESSES()		\
1991  emit_insn (gen_flush_register_windows ())
1992
1993/* Given an rtx for the address of a frame,
1994   return an rtx for the address of the word in the frame
1995   that holds the dynamic chain--the previous frame's address.
1996   ??? -mflat support? */
1997#define DYNAMIC_CHAIN_ADDRESS(frame)	\
1998  plus_constant (frame, 14 * UNITS_PER_WORD + SPARC_STACK_BIAS)
1999
2000/* The return address isn't on the stack, it is in a register, so we can't
2001   access it from the current frame pointer.  We can access it from the
2002   previous frame pointer though by reading a value from the register window
2003   save area.  */
2004#define RETURN_ADDR_IN_PREVIOUS_FRAME
2005
2006/* This is the offset of the return address to the true next instruction to be
2007   executed for the current function.  */
2008#define RETURN_ADDR_OFFSET \
2009  (8 + 4 * (! TARGET_ARCH64 && current_function_returns_struct))
2010
2011/* The current return address is in %i7.  The return address of anything
2012   farther back is in the register window save area at [%fp+60].  */
2013/* ??? This ignores the fact that the actual return address is +8 for normal
2014   returns, and +12 for structure returns.  */
2015#define RETURN_ADDR_RTX(count, frame)		\
2016  ((count == -1)				\
2017   ? gen_rtx_REG (Pmode, 31)			\
2018   : gen_rtx_MEM (Pmode,			\
2019		  memory_address (Pmode, plus_constant (frame, \
2020							15 * UNITS_PER_WORD \
2021							+ SPARC_STACK_BIAS))))
2022
2023/* Before the prologue, the return address is %o7 + 8.  OK, sometimes it's
2024   +12, but always using +8 is close enough for frame unwind purposes.
2025   Actually, just using %o7 is close enough for unwinding, but %o7+8
2026   is something you can return to.  */
2027#define INCOMING_RETURN_ADDR_RTX \
2028  plus_constant (gen_rtx_REG (word_mode, 15), 8)
2029#define DWARF_FRAME_RETURN_COLUMN	DWARF_FRAME_REGNUM (15)
2030
2031/* The offset from the incoming value of %sp to the top of the stack frame
2032   for the current function.  On sparc64, we have to account for the stack
2033   bias if present.  */
2034#define INCOMING_FRAME_SP_OFFSET SPARC_STACK_BIAS
2035
2036/* Describe how we implement __builtin_eh_return.  */
2037#define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 24 : INVALID_REGNUM)
2038#define EH_RETURN_STACKADJ_RTX	gen_rtx_REG (Pmode, 1)	/* %g1 */
2039#define EH_RETURN_HANDLER_RTX	gen_rtx_REG (Pmode, 31)	/* %i7 */
2040
2041/* Select a format to encode pointers in exception handling data.  CODE
2042   is 0 for data, 1 for code labels, 2 for function pointers.  GLOBAL is
2043   true if the symbol may be affected by dynamic relocations.
2044
2045   If assembler and linker properly support .uaword %r_disp32(foo),
2046   then use PC relative 32-bit relocations instead of absolute relocs
2047   for shared libraries.  On sparc64, use pc relative 32-bit relocs even
2048   for binaries, to save memory.
2049
2050   binutils 2.12 would emit a R_SPARC_DISP32 dynamic relocation if the
2051   symbol %r_disp32() is against was not local, but .hidden.  In that
2052   case, we have to use DW_EH_PE_absptr for pic personality.  */
2053#ifdef HAVE_AS_SPARC_UA_PCREL
2054#ifdef HAVE_AS_SPARC_UA_PCREL_HIDDEN
2055#define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL)			\
2056  (flag_pic								\
2057   ? (GLOBAL ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4\
2058   : ((TARGET_ARCH64 && ! GLOBAL)					\
2059      ? (DW_EH_PE_pcrel | DW_EH_PE_sdata4)				\
2060      : DW_EH_PE_absptr))
2061#else
2062#define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL)			\
2063  (flag_pic								\
2064   ? (GLOBAL ? DW_EH_PE_absptr : (DW_EH_PE_pcrel | DW_EH_PE_sdata4))	\
2065   : ((TARGET_ARCH64 && ! GLOBAL)					\
2066      ? (DW_EH_PE_pcrel | DW_EH_PE_sdata4)				\
2067      : DW_EH_PE_absptr))
2068#endif
2069
2070/* Emit a PC-relative relocation.  */
2071#define ASM_OUTPUT_DWARF_PCREL(FILE, SIZE, LABEL)	\
2072  do {							\
2073    fputs (integer_asm_op (SIZE, FALSE), FILE);		\
2074    fprintf (FILE, "%%r_disp%d(", SIZE * 8);		\
2075    assemble_name (FILE, LABEL);			\
2076    fputc (')', FILE);					\
2077  } while (0)
2078#endif
2079
2080/* Addressing modes, and classification of registers for them.  */
2081
2082/* Macros to check register numbers against specific register classes.  */
2083
2084/* These assume that REGNO is a hard or pseudo reg number.
2085   They give nonzero only if REGNO is a hard reg of the suitable class
2086   or a pseudo reg currently allocated to a suitable hard reg.
2087   Since they use reg_renumber, they are safe only once reg_renumber
2088   has been allocated, which happens in local-alloc.c.  */
2089
2090#define REGNO_OK_FOR_INDEX_P(REGNO) \
2091((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < (unsigned)32	\
2092 || (REGNO) == FRAME_POINTER_REGNUM				\
2093 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)
2094
2095#define REGNO_OK_FOR_BASE_P(REGNO)  REGNO_OK_FOR_INDEX_P (REGNO)
2096
2097#define REGNO_OK_FOR_FP_P(REGNO) \
2098  (((unsigned) (REGNO) - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)) \
2099   || ((unsigned) reg_renumber[REGNO] - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)))
2100#define REGNO_OK_FOR_CCFP_P(REGNO) \
2101 (TARGET_V9 \
2102  && (((unsigned) (REGNO) - 96 < (unsigned)4) \
2103      || ((unsigned) reg_renumber[REGNO] - 96 < (unsigned)4)))
2104
2105/* Now macros that check whether X is a register and also,
2106   strictly, whether it is in a specified class.
2107
2108   These macros are specific to the SPARC, and may be used only
2109   in code for printing assembler insns and in conditions for
2110   define_optimization.  */
2111
2112/* 1 if X is an fp register.  */
2113
2114#define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
2115
2116/* Is X, a REG, an in or global register?  i.e. is regno 0..7 or 24..31 */
2117#define IN_OR_GLOBAL_P(X) (REGNO (X) < 8 || (REGNO (X) >= 24 && REGNO (X) <= 31))
2118
2119/* Maximum number of registers that can appear in a valid memory address.  */
2120
2121#define MAX_REGS_PER_ADDRESS 2
2122
2123/* Recognize any constant value that is a valid address.
2124   When PIC, we do not accept an address that would require a scratch reg
2125   to load into a register.  */
2126
2127#define CONSTANT_ADDRESS_P(X) constant_address_p (X)
2128
2129/* Define this, so that when PIC, reload won't try to reload invalid
2130   addresses which require two reload registers.  */
2131
2132#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
2133
2134/* Nonzero if the constant value X is a legitimate general operand.
2135   Anything can be made to work except floating point constants.
2136   If TARGET_VIS, 0.0 can be made to work as well.  */
2137
2138#define LEGITIMATE_CONSTANT_P(X) legitimate_constant_p (X)
2139
2140/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
2141   and check its validity for a certain class.
2142   We have two alternate definitions for each of them.
2143   The usual definition accepts all pseudo regs; the other rejects
2144   them unless they have been allocated suitable hard regs.
2145   The symbol REG_OK_STRICT causes the latter definition to be used.
2146
2147   Most source files want to accept pseudo regs in the hope that
2148   they will get allocated to the class that the insn wants them to be in.
2149   Source files for reload pass need to be strict.
2150   After reload, it makes no difference, since pseudo regs have
2151   been eliminated by then.  */
2152
2153/* Optional extra constraints for this machine.
2154
2155   'Q' handles floating point constants which can be moved into
2156       an integer register with a single sethi instruction.
2157
2158   'R' handles floating point constants which can be moved into
2159       an integer register with a single mov instruction.
2160
2161   'S' handles floating point constants which can be moved into
2162       an integer register using a high/lo_sum sequence.
2163
2164   'T' handles memory addresses where the alignment is known to
2165       be at least 8 bytes.
2166
2167   `U' handles all pseudo registers or a hard even numbered
2168       integer register, needed for ldd/std instructions.
2169
2170   'W' handles the memory operand when moving operands in/out
2171       of 'e' constraint floating point registers.  */
2172
2173#ifndef REG_OK_STRICT
2174
2175/* Nonzero if X is a hard reg that can be used as an index
2176   or if it is a pseudo reg.  */
2177#define REG_OK_FOR_INDEX_P(X) \
2178  (REGNO (X) < 32				\
2179   || REGNO (X) == FRAME_POINTER_REGNUM		\
2180   || REGNO (X) >= FIRST_PSEUDO_REGISTER)
2181
2182/* Nonzero if X is a hard reg that can be used as a base reg
2183   or if it is a pseudo reg.  */
2184#define REG_OK_FOR_BASE_P(X)  REG_OK_FOR_INDEX_P (X)
2185
2186/* 'T', 'U' are for aligned memory loads which aren't needed for arch64.
2187   'W' is like 'T' but is assumed true on arch64.
2188
2189   Remember to accept pseudo-registers for memory constraints if reload is
2190   in progress.  */
2191
2192#define EXTRA_CONSTRAINT(OP, C) \
2193	sparc_extra_constraint_check(OP, C, 0)
2194
2195#else
2196
2197/* Nonzero if X is a hard reg that can be used as an index.  */
2198#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
2199/* Nonzero if X is a hard reg that can be used as a base reg.  */
2200#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
2201
2202#define EXTRA_CONSTRAINT(OP, C) \
2203	sparc_extra_constraint_check(OP, C, 1)
2204
2205#endif
2206
2207/* Should gcc use [%reg+%lo(xx)+offset] addresses?  */
2208
2209#ifdef HAVE_AS_OFFSETABLE_LO10
2210#define USE_AS_OFFSETABLE_LO10 1
2211#else
2212#define USE_AS_OFFSETABLE_LO10 0
2213#endif
2214
2215/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
2216   that is a valid memory address for an instruction.
2217   The MODE argument is the machine mode for the MEM expression
2218   that wants to use this address.
2219
2220   On SPARC, the actual legitimate addresses must be REG+REG or REG+SMALLINT
2221   ordinarily.  This changes a bit when generating PIC.
2222
2223   If you change this, execute "rm explow.o recog.o reload.o".  */
2224
2225#define SYMBOLIC_CONST(X) symbolic_operand (X, VOIDmode)
2226
2227#define RTX_OK_FOR_BASE_P(X)						\
2228  ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X))			\
2229  || (GET_CODE (X) == SUBREG						\
2230      && GET_CODE (SUBREG_REG (X)) == REG				\
2231      && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
2232
2233#define RTX_OK_FOR_INDEX_P(X)						\
2234  ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X))			\
2235  || (GET_CODE (X) == SUBREG						\
2236      && GET_CODE (SUBREG_REG (X)) == REG				\
2237      && REG_OK_FOR_INDEX_P (SUBREG_REG (X))))
2238
2239#define RTX_OK_FOR_OFFSET_P(X)						\
2240  (GET_CODE (X) == CONST_INT && INTVAL (X) >= -0x1000 && INTVAL (X) < 0x1000 - 8)
2241
2242#define RTX_OK_FOR_OLO10_P(X)						\
2243  (GET_CODE (X) == CONST_INT && INTVAL (X) >= -0x1000 && INTVAL (X) < 0xc00 - 8)
2244
2245#ifdef REG_OK_STRICT
2246#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)		\
2247{							\
2248  if (legitimate_address_p (MODE, X, 1))		\
2249    goto ADDR;						\
2250}
2251#else
2252#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)		\
2253{							\
2254  if (legitimate_address_p (MODE, X, 0))		\
2255    goto ADDR;						\
2256}
2257#endif
2258
2259/* Go to LABEL if ADDR (a legitimate address expression)
2260   has an effect that depends on the machine mode it is used for.
2261
2262   In PIC mode,
2263
2264      (mem:HI [%l7+a])
2265
2266   is not equivalent to
2267
2268      (mem:QI [%l7+a]) (mem:QI [%l7+a+1])
2269
2270   because [%l7+a+1] is interpreted as the address of (a+1).  */
2271
2272#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL)	\
2273{							\
2274  if (flag_pic == 1)					\
2275    {							\
2276      if (GET_CODE (ADDR) == PLUS)			\
2277	{						\
2278	  rtx op0 = XEXP (ADDR, 0);			\
2279	  rtx op1 = XEXP (ADDR, 1);			\
2280	  if (op0 == pic_offset_table_rtx		\
2281	      && SYMBOLIC_CONST (op1))			\
2282	    goto LABEL;					\
2283	}						\
2284    }							\
2285}
2286
2287/* Try machine-dependent ways of modifying an illegitimate address
2288   to be legitimate.  If we find one, return the new, valid address.
2289   This macro is used in only one place: `memory_address' in explow.c.
2290
2291   OLDX is the address as it was before break_out_memory_refs was called.
2292   In some cases it is useful to look at this to decide what needs to be done.
2293
2294   MODE and WIN are passed so that this macro can use
2295   GO_IF_LEGITIMATE_ADDRESS.
2296
2297   It is always safe for this macro to do nothing.  It exists to recognize
2298   opportunities to optimize the output.  */
2299
2300/* On SPARC, change REG+N into REG+REG, and REG+(X*Y) into REG+REG.  */
2301#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN)	\
2302{						\
2303  (X) = legitimize_address (X, OLDX, MODE);	\
2304  if (memory_address_p (MODE, X))		\
2305    goto WIN;					\
2306}
2307
2308/* Try a machine-dependent way of reloading an illegitimate address
2309   operand.  If we find one, push the reload and jump to WIN.  This
2310   macro is used in only one place: `find_reloads_address' in reload.c.
2311
2312   For SPARC 32, we wish to handle addresses by splitting them into
2313   HIGH+LO_SUM pairs, retaining the LO_SUM in the memory reference.
2314   This cuts the number of extra insns by one.
2315
2316   Do nothing when generating PIC code and the address is a
2317   symbolic operand or requires a scratch register.  */
2318
2319#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN)     \
2320do {                                                                    \
2321  /* Decompose SImode constants into hi+lo_sum.  We do have to 		\
2322     rerecognize what we produce, so be careful.  */			\
2323  if (CONSTANT_P (X)							\
2324      && (MODE != TFmode || TARGET_ARCH64)				\
2325      && GET_MODE (X) == SImode						\
2326      && GET_CODE (X) != LO_SUM && GET_CODE (X) != HIGH			\
2327      && ! (flag_pic							\
2328	    && (symbolic_operand (X, Pmode)				\
2329		|| pic_address_needs_scratch (X)))			\
2330      && sparc_cmodel <= CM_MEDLOW)					\
2331    {									\
2332      X = gen_rtx_LO_SUM (GET_MODE (X),					\
2333			  gen_rtx_HIGH (GET_MODE (X), X), X);		\
2334      push_reload (XEXP (X, 0), NULL_RTX, &XEXP (X, 0), NULL,		\
2335                   BASE_REG_CLASS, GET_MODE (X), VOIDmode, 0, 0,	\
2336                   OPNUM, TYPE);					\
2337      goto WIN;								\
2338    }									\
2339  /* ??? 64-bit reloads.  */						\
2340} while (0)
2341
2342/* Specify the machine mode that this machine uses
2343   for the index in the tablejump instruction.  */
2344/* If we ever implement any of the full models (such as CM_FULLANY),
2345   this has to be DImode in that case */
2346#ifdef HAVE_GAS_SUBSECTION_ORDERING
2347#define CASE_VECTOR_MODE \
2348(! TARGET_PTR64 ? SImode : flag_pic ? SImode : TARGET_CM_MEDLOW ? SImode : DImode)
2349#else
2350/* If assembler does not have working .subsection -1, we use DImode for pic, as otherwise
2351   we have to sign extend which slows things down.  */
2352#define CASE_VECTOR_MODE \
2353(! TARGET_PTR64 ? SImode : flag_pic ? DImode : TARGET_CM_MEDLOW ? SImode : DImode)
2354#endif
2355
2356/* Define as C expression which evaluates to nonzero if the tablejump
2357   instruction expects the table to contain offsets from the address of the
2358   table.
2359   Do not define this if the table should contain absolute addresses.  */
2360/* #define CASE_VECTOR_PC_RELATIVE 1 */
2361
2362/* Define this as 1 if `char' should by default be signed; else as 0.  */
2363#define DEFAULT_SIGNED_CHAR 1
2364
2365/* Max number of bytes we can move from memory to memory
2366   in one reasonably fast instruction.  */
2367#define MOVE_MAX 8
2368
2369#if 0 /* Sun 4 has matherr, so this is no good.  */
2370/* This is the value of the error code EDOM for this machine,
2371   used by the sqrt instruction.  */
2372#define TARGET_EDOM 33
2373
2374/* This is how to refer to the variable errno.  */
2375#define GEN_ERRNO_RTX \
2376  gen_rtx_MEM (SImode, gen_rtx_SYMBOL_REF (Pmode, "errno"))
2377#endif /* 0 */
2378
2379/* Define if operations between registers always perform the operation
2380   on the full register even if a narrower mode is specified.  */
2381#define WORD_REGISTER_OPERATIONS
2382
2383/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2384   will either zero-extend or sign-extend.  The value of this macro should
2385   be the code that says which one of the two operations is implicitly
2386   done, NIL if none.  */
2387#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
2388
2389/* Nonzero if access to memory by bytes is slow and undesirable.
2390   For RISC chips, it means that access to memory by bytes is no
2391   better than access by words when possible, so grab a whole word
2392   and maybe make use of that.  */
2393#define SLOW_BYTE_ACCESS 1
2394
2395/* When a prototype says `char' or `short', really pass an `int'.  */
2396#define PROMOTE_PROTOTYPES (TARGET_ARCH32)
2397
2398/* Define this to be nonzero if shift instructions ignore all but the low-order
2399   few bits.  */
2400#define SHIFT_COUNT_TRUNCATED 1
2401
2402/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2403   is done just by pretending it is already truncated.  */
2404#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2405
2406/* Specify the machine mode used for addresses.  */
2407#define Pmode (TARGET_ARCH64 ? DImode : SImode)
2408
2409/* Generate calls to memcpy, memcmp and memset.  */
2410#define TARGET_MEM_FUNCTIONS
2411
2412/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2413   return the mode to be used for the comparison.  For floating-point,
2414   CCFP[E]mode is used.  CC_NOOVmode should be used when the first operand
2415   is a PLUS, MINUS, NEG, or ASHIFT.  CCmode should be used when no special
2416   processing is needed.  */
2417#define SELECT_CC_MODE(OP,X,Y)  select_cc_mode ((OP), (X), (Y))
2418
2419/* Return nonzero if MODE implies a floating point inequality can be
2420   reversed.  For SPARC this is always true because we have a full
2421   compliment of ordered and unordered comparisons, but until generic
2422   code knows how to reverse it correctly we keep the old definition.  */
2423#define REVERSIBLE_CC_MODE(MODE) ((MODE) != CCFPEmode && (MODE) != CCFPmode)
2424
2425/* A function address in a call instruction for indexing purposes.  */
2426#define FUNCTION_MODE Pmode
2427
2428/* Define this if addresses of constant functions
2429   shouldn't be put through pseudo regs where they can be cse'd.
2430   Desirable on machines where ordinary constants are expensive
2431   but a CALL with constant address is cheap.  */
2432#define NO_FUNCTION_CSE
2433
2434/* alloca should avoid clobbering the old register save area.  */
2435#define SETJMP_VIA_SAVE_AREA
2436
2437/* The _Q_* comparison libcalls return booleans.  */
2438#define FLOAT_LIB_COMPARE_RETURNS_BOOL(MODE, COMPARISON) ((MODE) == TFmode)
2439
2440/* Assume by default that the _Qp_* 64-bit libcalls are implemented such
2441   that the inputs are fully consumed before the output memory is clobbered.  */
2442
2443#define TARGET_BUGGY_QP_LIB	0
2444
2445/* Assume by default that we do not have the Solaris-specific conversion
2446   routines nor 64-bit integer multiply and divide routines.  */
2447
2448#define SUN_CONVERSION_LIBFUNCS 	0
2449#define DITF_CONVERSION_LIBFUNCS	0
2450#define SUN_INTEGER_MULTIPLY_64 	0
2451
2452/* Compute extra cost of moving data between one register class
2453   and another.  */
2454#define GENERAL_OR_I64(C) ((C) == GENERAL_REGS || (C) == I64_REGS)
2455#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2)		\
2456  (((FP_REG_CLASS_P (CLASS1) && GENERAL_OR_I64 (CLASS2)) \
2457    || (GENERAL_OR_I64 (CLASS1) && FP_REG_CLASS_P (CLASS2)) \
2458    || (CLASS1) == FPCC_REGS || (CLASS2) == FPCC_REGS)		\
2459   ? ((sparc_cpu == PROCESSOR_ULTRASPARC \
2460       || sparc_cpu == PROCESSOR_ULTRASPARC3) ? 12 : 6) : 2)
2461
2462/* Provide the cost of a branch.  For pre-v9 processors we use
2463   a value of 3 to take into account the potential annulling of
2464   the delay slot (which ends up being a bubble in the pipeline slot)
2465   plus a cycle to take into consideration the instruction cache
2466   effects.
2467
2468   On v9 and later, which have branch prediction facilities, we set
2469   it to the depth of the pipeline as that is the cost of a
2470   mispredicted branch.  */
2471
2472#define BRANCH_COST \
2473	((sparc_cpu == PROCESSOR_V9 \
2474	  || sparc_cpu == PROCESSOR_ULTRASPARC) \
2475	 ? 7 \
2476         : (sparc_cpu == PROCESSOR_ULTRASPARC3 \
2477            ? 9 : 3))
2478
2479#define PREFETCH_BLOCK \
2480	((sparc_cpu == PROCESSOR_ULTRASPARC \
2481          || sparc_cpu == PROCESSOR_ULTRASPARC3) \
2482         ? 64 : 32)
2483
2484#define SIMULTANEOUS_PREFETCHES \
2485	((sparc_cpu == PROCESSOR_ULTRASPARC) \
2486         ? 2 \
2487         : (sparc_cpu == PROCESSOR_ULTRASPARC3 \
2488            ? 8 : 3))
2489
2490/* Control the assembler format that we output.  */
2491
2492/* A C string constant describing how to begin a comment in the target
2493   assembler language.  The compiler assumes that the comment will end at
2494   the end of the line.  */
2495
2496#define ASM_COMMENT_START "!"
2497
2498/* Output to assembler file text saying following lines
2499   may contain character constants, extra white space, comments, etc.  */
2500
2501#define ASM_APP_ON ""
2502
2503/* Output to assembler file text saying following lines
2504   no longer contain unusual constructs.  */
2505
2506#define ASM_APP_OFF ""
2507
2508/* ??? Try to make the style consistent here (_OP?).  */
2509
2510#define ASM_FLOAT	".single"
2511#define ASM_DOUBLE	".double"
2512#define ASM_LONGDOUBLE	".xxx"		/* ??? Not known (or used yet).  */
2513
2514/* How to refer to registers in assembler output.
2515   This sequence is indexed by compiler's hard-register-number (see above).  */
2516
2517#define REGISTER_NAMES \
2518{"%g0", "%g1", "%g2", "%g3", "%g4", "%g5", "%g6", "%g7",		\
2519 "%o0", "%o1", "%o2", "%o3", "%o4", "%o5", "%sp", "%o7",		\
2520 "%l0", "%l1", "%l2", "%l3", "%l4", "%l5", "%l6", "%l7",		\
2521 "%i0", "%i1", "%i2", "%i3", "%i4", "%i5", "%fp", "%i7",		\
2522 "%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7",		\
2523 "%f8", "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15",		\
2524 "%f16", "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23",	\
2525 "%f24", "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31",	\
2526 "%f32", "%f33", "%f34", "%f35", "%f36", "%f37", "%f38", "%f39",	\
2527 "%f40", "%f41", "%f42", "%f43", "%f44", "%f45", "%f46", "%f47",	\
2528 "%f48", "%f49", "%f50", "%f51", "%f52", "%f53", "%f54", "%f55",	\
2529 "%f56", "%f57", "%f58", "%f59", "%f60", "%f61", "%f62", "%f63",	\
2530 "%fcc0", "%fcc1", "%fcc2", "%fcc3", "%icc", "%sfp" }
2531
2532/* Define additional names for use in asm clobbers and asm declarations.  */
2533
2534#define ADDITIONAL_REGISTER_NAMES \
2535{{"ccr", SPARC_ICC_REG}, {"cc", SPARC_ICC_REG}}
2536
2537/* On Sun 4, this limit is 2048.  We use 1000 to be safe, since the length
2538   can run past this up to a continuation point.  Once we used 1500, but
2539   a single entry in C++ can run more than 500 bytes, due to the length of
2540   mangled symbol names.  dbxout.c should really be fixed to do
2541   continuations when they are actually needed instead of trying to
2542   guess...  */
2543#define DBX_CONTIN_LENGTH 1000
2544
2545/* This is how to output a command to make the user-level label named NAME
2546   defined for reference from other files.  */
2547
2548/* Globalizing directive for a label.  */
2549#define GLOBAL_ASM_OP "\t.global "
2550
2551/* The prefix to add to user-visible assembler symbols.  */
2552
2553#define USER_LABEL_PREFIX "_"
2554
2555/* This is how to store into the string LABEL
2556   the symbol_ref name of an internal numbered label where
2557   PREFIX is the class of label and NUM is the number within the class.
2558   This is suitable for output with `assemble_name'.  */
2559
2560#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM)	\
2561  sprintf ((LABEL), "*%s%ld", (PREFIX), (long)(NUM))
2562
2563/* This is how we hook in and defer the case-vector until the end of
2564   the function.  */
2565#define ASM_OUTPUT_ADDR_VEC(LAB,VEC) \
2566  sparc_defer_case_vector ((LAB),(VEC), 0)
2567
2568#define ASM_OUTPUT_ADDR_DIFF_VEC(LAB,VEC) \
2569  sparc_defer_case_vector ((LAB),(VEC), 1)
2570
2571/* This is how to output an element of a case-vector that is absolute.  */
2572
2573#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)  \
2574do {									\
2575  char label[30];							\
2576  ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE);			\
2577  if (CASE_VECTOR_MODE == SImode)					\
2578    fprintf (FILE, "\t.word\t");					\
2579  else									\
2580    fprintf (FILE, "\t.xword\t");					\
2581  assemble_name (FILE, label);						\
2582  fputc ('\n', FILE);							\
2583} while (0)
2584
2585/* This is how to output an element of a case-vector that is relative.
2586   (SPARC uses such vectors only when generating PIC.)  */
2587
2588#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL)		\
2589do {									\
2590  char label[30];							\
2591  ASM_GENERATE_INTERNAL_LABEL (label, "L", (VALUE));			\
2592  if (CASE_VECTOR_MODE == SImode)					\
2593    fprintf (FILE, "\t.word\t");					\
2594  else									\
2595    fprintf (FILE, "\t.xword\t");					\
2596  assemble_name (FILE, label);						\
2597  ASM_GENERATE_INTERNAL_LABEL (label, "L", (REL));			\
2598  fputc ('-', FILE);							\
2599  assemble_name (FILE, label);						\
2600  fputc ('\n', FILE);							\
2601} while (0)
2602
2603/* This is what to output before and after case-vector (both
2604   relative and absolute).  If .subsection -1 works, we put case-vectors
2605   at the beginning of the current section.  */
2606
2607#ifdef HAVE_GAS_SUBSECTION_ORDERING
2608
2609#define ASM_OUTPUT_ADDR_VEC_START(FILE)					\
2610  fprintf(FILE, "\t.subsection\t-1\n")
2611
2612#define ASM_OUTPUT_ADDR_VEC_END(FILE)					\
2613  fprintf(FILE, "\t.previous\n")
2614
2615#endif
2616
2617/* This is how to output an assembler line
2618   that says to advance the location counter
2619   to a multiple of 2**LOG bytes.  */
2620
2621#define ASM_OUTPUT_ALIGN(FILE,LOG)	\
2622  if ((LOG) != 0)			\
2623    fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
2624
2625/* This is how to output an assembler line that says to advance
2626   the location counter to a multiple of 2**LOG bytes using the
2627   "nop" instruction as padding.  */
2628#define ASM_OUTPUT_ALIGN_WITH_NOP(FILE,LOG)   \
2629  if ((LOG) != 0)                             \
2630    fprintf (FILE, "\t.align %d,0x1000000\n", (1<<(LOG)))
2631
2632#define ASM_OUTPUT_SKIP(FILE,SIZE)  \
2633  fprintf (FILE, "\t.skip "HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
2634
2635/* This says how to output an assembler line
2636   to define a global common symbol.  */
2637
2638#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED)  \
2639( fputs ("\t.common ", (FILE)),		\
2640  assemble_name ((FILE), (NAME)),		\
2641  fprintf ((FILE), ","HOST_WIDE_INT_PRINT_UNSIGNED",\"bss\"\n", (SIZE)))
2642
2643/* This says how to output an assembler line to define a local common
2644   symbol.  */
2645
2646#define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGNED)		\
2647( fputs ("\t.reserve ", (FILE)),					\
2648  assemble_name ((FILE), (NAME)),					\
2649  fprintf ((FILE), ","HOST_WIDE_INT_PRINT_UNSIGNED",\"bss\",%u\n",	\
2650	   (SIZE), ((ALIGNED) / BITS_PER_UNIT)))
2651
2652/* A C statement (sans semicolon) to output to the stdio stream
2653   FILE the assembler definition of uninitialized global DECL named
2654   NAME whose size is SIZE bytes and alignment is ALIGN bytes.
2655   Try to use asm_output_aligned_bss to implement this macro.  */
2656
2657#define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN)	\
2658  do {								\
2659    ASM_OUTPUT_ALIGNED_LOCAL (FILE, NAME, SIZE, ALIGN);		\
2660  } while (0)
2661
2662#define IDENT_ASM_OP "\t.ident\t"
2663
2664/* Output #ident as a .ident.  */
2665
2666#define ASM_OUTPUT_IDENT(FILE, NAME) \
2667  fprintf (FILE, "%s\"%s\"\n", IDENT_ASM_OP, NAME);
2668
2669/* Emit a dtp-relative reference to a TLS variable.  */
2670
2671#ifdef HAVE_AS_TLS
2672#define ASM_OUTPUT_DWARF_DTPREL(FILE, SIZE, X) \
2673  sparc_output_dwarf_dtprel (FILE, SIZE, X)
2674#endif
2675
2676#define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
2677  ((CHAR) == '#' || (CHAR) == '*' || (CHAR) == '^'		\
2678   || (CHAR) == '(' || (CHAR) == '_' || (CHAR) == '&')
2679
2680/* Print operand X (an rtx) in assembler syntax to file FILE.
2681   CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2682   For `%' followed by punctuation, CODE is the punctuation and X is null.  */
2683
2684#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2685
2686/* Print a memory address as an operand to reference that memory location.  */
2687
2688#define PRINT_OPERAND_ADDRESS(FILE, ADDR)  \
2689{ register rtx base, index = 0;					\
2690  int offset = 0;						\
2691  register rtx addr = ADDR;					\
2692  if (GET_CODE (addr) == REG)					\
2693    fputs (reg_names[REGNO (addr)], FILE);			\
2694  else if (GET_CODE (addr) == PLUS)				\
2695    {								\
2696      if (GET_CODE (XEXP (addr, 0)) == CONST_INT)		\
2697	offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1);\
2698      else if (GET_CODE (XEXP (addr, 1)) == CONST_INT)		\
2699	offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0);\
2700      else							\
2701	base = XEXP (addr, 0), index = XEXP (addr, 1);		\
2702      if (GET_CODE (base) == LO_SUM)				\
2703	{							\
2704	  if (! USE_AS_OFFSETABLE_LO10				\
2705	      || TARGET_ARCH32					\
2706	      || TARGET_CM_MEDMID)				\
2707	    abort ();						\
2708	  output_operand (XEXP (base, 0), 0);			\
2709	  fputs ("+%lo(", FILE);				\
2710	  output_address (XEXP (base, 1));			\
2711	  fprintf (FILE, ")+%d", offset);			\
2712	}							\
2713      else							\
2714	{							\
2715	  fputs (reg_names[REGNO (base)], FILE);		\
2716	  if (index == 0)					\
2717	    fprintf (FILE, "%+d", offset);			\
2718	  else if (GET_CODE (index) == REG)			\
2719	    fprintf (FILE, "+%s", reg_names[REGNO (index)]);	\
2720	  else if (GET_CODE (index) == SYMBOL_REF		\
2721		   || GET_CODE (index) == CONST)		\
2722	    fputc ('+', FILE), output_addr_const (FILE, index);	\
2723	  else abort ();					\
2724	}							\
2725    }								\
2726  else if (GET_CODE (addr) == MINUS				\
2727	   && GET_CODE (XEXP (addr, 1)) == LABEL_REF)		\
2728    {								\
2729      output_addr_const (FILE, XEXP (addr, 0));			\
2730      fputs ("-(", FILE);					\
2731      output_addr_const (FILE, XEXP (addr, 1));			\
2732      fputs ("-.)", FILE);					\
2733    }								\
2734  else if (GET_CODE (addr) == LO_SUM)				\
2735    {								\
2736      output_operand (XEXP (addr, 0), 0);			\
2737      if (TARGET_CM_MEDMID)					\
2738        fputs ("+%l44(", FILE);					\
2739      else							\
2740        fputs ("+%lo(", FILE);					\
2741      output_address (XEXP (addr, 1));				\
2742      fputc (')', FILE);					\
2743    }								\
2744  else if (flag_pic && GET_CODE (addr) == CONST			\
2745	   && GET_CODE (XEXP (addr, 0)) == MINUS		\
2746	   && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST	\
2747	   && GET_CODE (XEXP (XEXP (XEXP (addr, 0), 1), 0)) == MINUS	\
2748	   && XEXP (XEXP (XEXP (XEXP (addr, 0), 1), 0), 1) == pc_rtx)	\
2749    {								\
2750      addr = XEXP (addr, 0);					\
2751      output_addr_const (FILE, XEXP (addr, 0));			\
2752      /* Group the args of the second CONST in parenthesis.  */	\
2753      fputs ("-(", FILE);					\
2754      /* Skip past the second CONST--it does nothing for us.  */\
2755      output_addr_const (FILE, XEXP (XEXP (addr, 1), 0));	\
2756      /* Close the parenthesis.  */				\
2757      fputc (')', FILE);					\
2758    }								\
2759  else								\
2760    {								\
2761      output_addr_const (FILE, addr);				\
2762    }								\
2763}
2764
2765#ifdef HAVE_AS_TLS
2766#define TARGET_TLS 1
2767#else
2768#define TARGET_TLS 0
2769#endif
2770#define TARGET_SUN_TLS TARGET_TLS
2771#define TARGET_GNU_TLS 0
2772
2773/* Define the codes that are matched by predicates in sparc.c.  */
2774
2775#define PREDICATE_CODES							\
2776{"reg_or_0_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}},		\
2777{"const1_operand", {CONST_INT}},					\
2778{"fp_zero_operand", {CONST_DOUBLE}},					\
2779{"fp_register_operand", {SUBREG, REG}},					\
2780{"intreg_operand", {SUBREG, REG}},					\
2781{"fcc_reg_operand", {REG}},						\
2782{"fcc0_reg_operand", {REG}},						\
2783{"icc_or_fcc_reg_operand", {REG}},					\
2784{"restore_operand", {REG}},						\
2785{"call_operand", {MEM}},						\
2786{"call_operand_address", {SYMBOL_REF, LABEL_REF, CONST, CONST_DOUBLE,	\
2787	ADDRESSOF, SUBREG, REG, PLUS, LO_SUM, CONST_INT}},		\
2788{"symbolic_operand", {SYMBOL_REF, LABEL_REF, CONST}},			\
2789{"symbolic_memory_operand", {SUBREG, MEM}},				\
2790{"label_ref_operand", {LABEL_REF}},					\
2791{"sp64_medium_pic_operand", {CONST}},					\
2792{"data_segment_operand", {SYMBOL_REF, PLUS, CONST}},			\
2793{"text_segment_operand", {LABEL_REF, SYMBOL_REF, PLUS, CONST}},		\
2794{"reg_or_nonsymb_mem_operand", {SUBREG, REG, MEM}},			\
2795{"splittable_symbolic_memory_operand", {MEM}},				\
2796{"splittable_immediate_memory_operand", {MEM}},				\
2797{"eq_or_neq", {EQ, NE}},						\
2798{"normal_comp_operator", {GE, GT, LE, LT, GTU, LEU}},			\
2799{"noov_compare_op", {NE, EQ, GE, GT, LE, LT, GEU, GTU, LEU, LTU}},	\
2800{"noov_compare64_op", {NE, EQ, GE, GT, LE, LT, GEU, GTU, LEU, LTU}},	\
2801{"v9_regcmp_op", {EQ, NE, GE, LT, LE, GT}},				\
2802{"extend_op", {SIGN_EXTEND, ZERO_EXTEND}},				\
2803{"cc_arithop", {AND, IOR, XOR}},					\
2804{"cc_arithopn", {AND, IOR}},						\
2805{"arith_operand", {SUBREG, REG, CONST_INT}},				\
2806{"arith_add_operand", {SUBREG, REG, CONST_INT}},			\
2807{"arith11_operand", {SUBREG, REG, CONST_INT}},				\
2808{"arith10_operand", {SUBREG, REG, CONST_INT}},				\
2809{"arith_double_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}},	\
2810{"arith_double_add_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}},	\
2811{"arith11_double_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}},	\
2812{"arith10_double_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}},	\
2813{"small_int", {CONST_INT}},						\
2814{"small_int_or_double", {CONST_INT, CONST_DOUBLE}},			\
2815{"uns_small_int", {CONST_INT}},						\
2816{"uns_arith_operand", {SUBREG, REG, CONST_INT}},			\
2817{"clobbered_register", {REG}},						\
2818{"input_operand", {SUBREG, REG, CONST_INT, MEM, CONST}},		\
2819{"compare_operand", {SUBREG, REG, ZERO_EXTRACT}},			\
2820{"const64_operand", {CONST_INT, CONST_DOUBLE}},				\
2821{"const64_high_operand", {CONST_INT, CONST_DOUBLE}},			\
2822{"tgd_symbolic_operand", {SYMBOL_REF}},					\
2823{"tld_symbolic_operand", {SYMBOL_REF}},					\
2824{"tie_symbolic_operand", {SYMBOL_REF}},					\
2825{"tle_symbolic_operand", {SYMBOL_REF}},
2826
2827/* The number of Pmode words for the setjmp buffer.  */
2828#define JMP_BUF_SIZE 12
2829
2830#define DONT_ACCESS_GBLS_AFTER_EPILOGUE (flag_pic)
2831