cfgrtl.c revision 96263
1/* Control flow graph manipulation code for GNU compiler.
2   Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3   1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 2, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING.  If not, write to the Free
19Software Foundation, 59 Temple Place - Suite 330, Boston, MA
2002111-1307, USA.  */
21
22/* This file contains low level functions to manipulate the CFG and analyze it
23   that are aware of the RTL intermediate language.
24
25   Available functionality:
26     - CFG-aware instruction chain manipulation
27	 delete_insn, delete_insn_chain
28     - Basic block manipulation
29	 create_basic_block, flow_delete_block, split_block,
30	 merge_blocks_nomove
31     - Infrastructure to determine quickly basic block for insn
32	 compute_bb_for_insn, update_bb_for_insn, set_block_for_insn,
33     - Edge redirection with updating and optimizing of insn chain
34	 block_label, redirect_edge_and_branch,
35	 redirect_edge_and_branch_force, tidy_fallthru_edge, force_nonfallthru
36     - Edge splitting and commiting to edges
37	 split_edge, insert_insn_on_edge, commit_edge_insertions
38     - Dumping and debugging
39	 print_rtl_with_bb, dump_bb, debug_bb, debug_bb_n
40     - Consistency checking
41	 verify_flow_info
42     - CFG updating after constant propagation
43	 purge_dead_edges, purge_all_dead_edges   */
44
45#include "config.h"
46#include "system.h"
47#include "tree.h"
48#include "rtl.h"
49#include "hard-reg-set.h"
50#include "basic-block.h"
51#include "regs.h"
52#include "flags.h"
53#include "output.h"
54#include "function.h"
55#include "except.h"
56#include "toplev.h"
57#include "tm_p.h"
58#include "obstack.h"
59
60/* Stubs in case we don't have a return insn.  */
61#ifndef HAVE_return
62#define HAVE_return 0
63#define gen_return() NULL_RTX
64#endif
65
66/* The basic block structure for every insn, indexed by uid.  */
67varray_type basic_block_for_insn;
68
69/* The labels mentioned in non-jump rtl.  Valid during find_basic_blocks.  */
70/* ??? Should probably be using LABEL_NUSES instead.  It would take a
71   bit of surgery to be able to use or co-opt the routines in jump.  */
72rtx label_value_list;
73rtx tail_recursion_label_list;
74
75static int can_delete_note_p		PARAMS ((rtx));
76static int can_delete_label_p		PARAMS ((rtx));
77static void commit_one_edge_insertion	PARAMS ((edge));
78static bool try_redirect_by_replacing_jump PARAMS ((edge, basic_block));
79static rtx last_loop_beg_note		PARAMS ((rtx));
80static bool back_edge_of_syntactic_loop_p PARAMS ((basic_block, basic_block));
81static basic_block force_nonfallthru_and_redirect PARAMS ((edge, basic_block));
82
83/* Return true if NOTE is not one of the ones that must be kept paired,
84   so that we may simply delete it.  */
85
86static int
87can_delete_note_p (note)
88     rtx note;
89{
90  return (NOTE_LINE_NUMBER (note) == NOTE_INSN_DELETED
91	  || NOTE_LINE_NUMBER (note) == NOTE_INSN_BASIC_BLOCK);
92}
93
94/* True if a given label can be deleted.  */
95
96static int
97can_delete_label_p (label)
98     rtx label;
99{
100  return (!LABEL_PRESERVE_P (label)
101	  /* User declared labels must be preserved.  */
102	  && LABEL_NAME (label) == 0
103	  && !in_expr_list_p (forced_labels, label)
104	  && !in_expr_list_p (label_value_list, label));
105}
106
107/* Delete INSN by patching it out.  Return the next insn.  */
108
109rtx
110delete_insn (insn)
111     rtx insn;
112{
113  rtx next = NEXT_INSN (insn);
114  rtx note;
115  bool really_delete = true;
116
117  if (GET_CODE (insn) == CODE_LABEL)
118    {
119      /* Some labels can't be directly removed from the INSN chain, as they
120         might be references via variables, constant pool etc.
121         Convert them to the special NOTE_INSN_DELETED_LABEL note.  */
122      if (! can_delete_label_p (insn))
123	{
124	  const char *name = LABEL_NAME (insn);
125
126	  really_delete = false;
127	  PUT_CODE (insn, NOTE);
128	  NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED_LABEL;
129	  NOTE_SOURCE_FILE (insn) = name;
130	}
131
132      remove_node_from_expr_list (insn, &nonlocal_goto_handler_labels);
133    }
134
135  if (really_delete)
136    {
137      /* If this insn has already been deleted, something is very wrong.  */
138      if (INSN_DELETED_P (insn))
139	abort ();
140      remove_insn (insn);
141      INSN_DELETED_P (insn) = 1;
142    }
143
144  /* If deleting a jump, decrement the use count of the label.  Deleting
145     the label itself should happen in the normal course of block merging.  */
146  if (GET_CODE (insn) == JUMP_INSN
147      && JUMP_LABEL (insn)
148      && GET_CODE (JUMP_LABEL (insn)) == CODE_LABEL)
149    LABEL_NUSES (JUMP_LABEL (insn))--;
150
151  /* Also if deleting an insn that references a label.  */
152  else if ((note = find_reg_note (insn, REG_LABEL, NULL_RTX)) != NULL_RTX
153	   && GET_CODE (XEXP (note, 0)) == CODE_LABEL)
154    LABEL_NUSES (XEXP (note, 0))--;
155
156  if (GET_CODE (insn) == JUMP_INSN
157      && (GET_CODE (PATTERN (insn)) == ADDR_VEC
158	  || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC))
159    {
160      rtx pat = PATTERN (insn);
161      int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
162      int len = XVECLEN (pat, diff_vec_p);
163      int i;
164
165      for (i = 0; i < len; i++)
166	{
167	  rtx label = XEXP (XVECEXP (pat, diff_vec_p, i), 0);
168
169	  /* When deleting code in bulk (e.g. removing many unreachable
170	     blocks) we can delete a label that's a target of the vector
171	     before deleting the vector itself.  */
172	  if (GET_CODE (label) != NOTE)
173	    LABEL_NUSES (label)--;
174	}
175    }
176
177  return next;
178}
179
180/* Unlink a chain of insns between START and FINISH, leaving notes
181   that must be paired.  */
182
183void
184delete_insn_chain (start, finish)
185     rtx start, finish;
186{
187  rtx next;
188
189  /* Unchain the insns one by one.  It would be quicker to delete all of these
190     with a single unchaining, rather than one at a time, but we need to keep
191     the NOTE's.  */
192  while (1)
193    {
194      next = NEXT_INSN (start);
195      if (GET_CODE (start) == NOTE && !can_delete_note_p (start))
196	;
197      else
198	next = delete_insn (start);
199
200      if (start == finish)
201	break;
202      start = next;
203    }
204}
205
206/* Create a new basic block consisting of the instructions between HEAD and END
207   inclusive.  This function is designed to allow fast BB construction - reuses
208   the note and basic block struct in BB_NOTE, if any and do not grow
209   BASIC_BLOCK chain and should be used directly only by CFG construction code.
210   END can be NULL in to create new empty basic block before HEAD.  Both END
211   and HEAD can be NULL to create basic block at the end of INSN chain.  */
212
213basic_block
214create_basic_block_structure (index, head, end, bb_note)
215     int index;
216     rtx head, end, bb_note;
217{
218  basic_block bb;
219
220  if (bb_note
221      && ! RTX_INTEGRATED_P (bb_note)
222      && (bb = NOTE_BASIC_BLOCK (bb_note)) != NULL
223      && bb->aux == NULL)
224    {
225      /* If we found an existing note, thread it back onto the chain.  */
226
227      rtx after;
228
229      if (GET_CODE (head) == CODE_LABEL)
230	after = head;
231      else
232	{
233	  after = PREV_INSN (head);
234	  head = bb_note;
235	}
236
237      if (after != bb_note && NEXT_INSN (after) != bb_note)
238	reorder_insns (bb_note, bb_note, after);
239    }
240  else
241    {
242      /* Otherwise we must create a note and a basic block structure.  */
243
244      bb = alloc_block ();
245
246      if (!head && !end)
247	head = end = bb_note
248	  = emit_note_after (NOTE_INSN_BASIC_BLOCK, get_last_insn ());
249      else if (GET_CODE (head) == CODE_LABEL && end)
250	{
251	  bb_note = emit_note_after (NOTE_INSN_BASIC_BLOCK, head);
252	  if (head == end)
253	    end = bb_note;
254	}
255      else
256	{
257	  bb_note = emit_note_before (NOTE_INSN_BASIC_BLOCK, head);
258	  head = bb_note;
259	  if (!end)
260	    end = head;
261	}
262
263      NOTE_BASIC_BLOCK (bb_note) = bb;
264    }
265
266  /* Always include the bb note in the block.  */
267  if (NEXT_INSN (end) == bb_note)
268    end = bb_note;
269
270  bb->head = head;
271  bb->end = end;
272  bb->index = index;
273  BASIC_BLOCK (index) = bb;
274  if (basic_block_for_insn)
275    update_bb_for_insn (bb);
276
277  /* Tag the block so that we know it has been used when considering
278     other basic block notes.  */
279  bb->aux = bb;
280
281  return bb;
282}
283
284/* Create new basic block consisting of instructions in between HEAD and END
285   and place it to the BB chain at position INDEX.  END can be NULL in to
286   create new empty basic block before HEAD.  Both END and HEAD can be NULL to
287   create basic block at the end of INSN chain.  */
288
289basic_block
290create_basic_block (index, head, end)
291     int index;
292     rtx head, end;
293{
294  basic_block bb;
295  int i;
296
297  /* Place the new block just after the block being split.  */
298  VARRAY_GROW (basic_block_info, ++n_basic_blocks);
299
300  /* Some parts of the compiler expect blocks to be number in
301     sequential order so insert the new block immediately after the
302     block being split..  */
303  for (i = n_basic_blocks - 1; i > index; --i)
304    {
305      basic_block tmp = BASIC_BLOCK (i - 1);
306
307      BASIC_BLOCK (i) = tmp;
308      tmp->index = i;
309    }
310
311  bb = create_basic_block_structure (index, head, end, NULL);
312  bb->aux = NULL;
313  return bb;
314}
315
316/* Delete the insns in a (non-live) block.  We physically delete every
317   non-deleted-note insn, and update the flow graph appropriately.
318
319   Return nonzero if we deleted an exception handler.  */
320
321/* ??? Preserving all such notes strikes me as wrong.  It would be nice
322   to post-process the stream to remove empty blocks, loops, ranges, etc.  */
323
324int
325flow_delete_block_noexpunge (b)
326     basic_block b;
327{
328  int deleted_handler = 0;
329  rtx insn, end, tmp;
330
331  /* If the head of this block is a CODE_LABEL, then it might be the
332     label for an exception handler which can't be reached.
333
334     We need to remove the label from the exception_handler_label list
335     and remove the associated NOTE_INSN_EH_REGION_BEG and
336     NOTE_INSN_EH_REGION_END notes.  */
337
338  insn = b->head;
339
340  never_reached_warning (insn, b->end);
341
342  if (GET_CODE (insn) == CODE_LABEL)
343    maybe_remove_eh_handler (insn);
344
345  /* Include any jump table following the basic block.  */
346  end = b->end;
347  if (GET_CODE (end) == JUMP_INSN
348      && (tmp = JUMP_LABEL (end)) != NULL_RTX
349      && (tmp = NEXT_INSN (tmp)) != NULL_RTX
350      && GET_CODE (tmp) == JUMP_INSN
351      && (GET_CODE (PATTERN (tmp)) == ADDR_VEC
352	  || GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC))
353    end = tmp;
354
355  /* Include any barrier that may follow the basic block.  */
356  tmp = next_nonnote_insn (end);
357  if (tmp && GET_CODE (tmp) == BARRIER)
358    end = tmp;
359
360  /* Selectively delete the entire chain.  */
361  b->head = NULL;
362  delete_insn_chain (insn, end);
363
364  /* Remove the edges into and out of this block.  Note that there may
365     indeed be edges in, if we are removing an unreachable loop.  */
366  while (b->pred != NULL)
367    remove_edge (b->pred);
368  while (b->succ != NULL)
369    remove_edge (b->succ);
370
371  b->pred = NULL;
372  b->succ = NULL;
373
374  return deleted_handler;
375}
376
377int
378flow_delete_block (b)
379     basic_block b;
380{
381  int deleted_handler = flow_delete_block_noexpunge (b);
382
383  /* Remove the basic block from the array, and compact behind it.  */
384  expunge_block (b);
385
386  return deleted_handler;
387}
388
389/* Records the basic block struct in BB_FOR_INSN, for every instruction
390   indexed by INSN_UID.  MAX is the size of the array.  */
391
392void
393compute_bb_for_insn (max)
394     int max;
395{
396  int i;
397
398  if (basic_block_for_insn)
399    VARRAY_FREE (basic_block_for_insn);
400
401  VARRAY_BB_INIT (basic_block_for_insn, max, "basic_block_for_insn");
402
403  for (i = 0; i < n_basic_blocks; ++i)
404    {
405      basic_block bb = BASIC_BLOCK (i);
406      rtx end = bb->end;
407      rtx insn;
408
409      for (insn = bb->head; ; insn = NEXT_INSN (insn))
410	{
411	  if (INSN_UID (insn) < max)
412	    VARRAY_BB (basic_block_for_insn, INSN_UID (insn)) = bb;
413
414	  if (insn == end)
415	    break;
416	}
417    }
418}
419
420/* Release the basic_block_for_insn array.  */
421
422void
423free_bb_for_insn ()
424{
425  if (basic_block_for_insn)
426    VARRAY_FREE (basic_block_for_insn);
427
428  basic_block_for_insn = 0;
429}
430
431/* Update insns block within BB.  */
432
433void
434update_bb_for_insn (bb)
435     basic_block bb;
436{
437  rtx insn;
438
439  if (! basic_block_for_insn)
440    return;
441
442  for (insn = bb->head; ; insn = NEXT_INSN (insn))
443    {
444      set_block_for_insn (insn, bb);
445      if (insn == bb->end)
446	break;
447    }
448}
449
450/* Record INSN's block as BB.  */
451
452void
453set_block_for_insn (insn, bb)
454     rtx insn;
455     basic_block bb;
456{
457  size_t uid = INSN_UID (insn);
458
459  if (uid >= basic_block_for_insn->num_elements)
460    {
461      /* Add one-eighth the size so we don't keep calling xrealloc.  */
462      size_t new_size = uid + (uid + 7) / 8;
463
464      VARRAY_GROW (basic_block_for_insn, new_size);
465    }
466
467  VARRAY_BB (basic_block_for_insn, uid) = bb;
468}
469
470/* Split a block BB after insn INSN creating a new fallthru edge.
471   Return the new edge.  Note that to keep other parts of the compiler happy,
472   this function renumbers all the basic blocks so that the new
473   one has a number one greater than the block split.  */
474
475edge
476split_block (bb, insn)
477     basic_block bb;
478     rtx insn;
479{
480  basic_block new_bb;
481  edge new_edge;
482  edge e;
483
484  /* There is no point splitting the block after its end.  */
485  if (bb->end == insn)
486    return 0;
487
488  /* Create the new basic block.  */
489  new_bb = create_basic_block (bb->index + 1, NEXT_INSN (insn), bb->end);
490  new_bb->count = bb->count;
491  new_bb->frequency = bb->frequency;
492  new_bb->loop_depth = bb->loop_depth;
493  bb->end = insn;
494
495  /* Redirect the outgoing edges.  */
496  new_bb->succ = bb->succ;
497  bb->succ = NULL;
498  for (e = new_bb->succ; e; e = e->succ_next)
499    e->src = new_bb;
500
501  new_edge = make_single_succ_edge (bb, new_bb, EDGE_FALLTHRU);
502
503  if (bb->global_live_at_start)
504    {
505      new_bb->global_live_at_start = OBSTACK_ALLOC_REG_SET (&flow_obstack);
506      new_bb->global_live_at_end = OBSTACK_ALLOC_REG_SET (&flow_obstack);
507      COPY_REG_SET (new_bb->global_live_at_end, bb->global_live_at_end);
508
509      /* We now have to calculate which registers are live at the end
510	 of the split basic block and at the start of the new basic
511	 block.  Start with those registers that are known to be live
512	 at the end of the original basic block and get
513	 propagate_block to determine which registers are live.  */
514      COPY_REG_SET (new_bb->global_live_at_start, bb->global_live_at_end);
515      propagate_block (new_bb, new_bb->global_live_at_start, NULL, NULL, 0);
516      COPY_REG_SET (bb->global_live_at_end,
517		    new_bb->global_live_at_start);
518    }
519
520  return new_edge;
521}
522
523/* Blocks A and B are to be merged into a single block A.  The insns
524   are already contiguous, hence `nomove'.  */
525
526void
527merge_blocks_nomove (a, b)
528     basic_block a, b;
529{
530  rtx b_head = b->head, b_end = b->end, a_end = a->end;
531  rtx del_first = NULL_RTX, del_last = NULL_RTX;
532  int b_empty = 0;
533  edge e;
534
535  /* If there was a CODE_LABEL beginning B, delete it.  */
536  if (GET_CODE (b_head) == CODE_LABEL)
537    {
538      /* Detect basic blocks with nothing but a label.  This can happen
539	 in particular at the end of a function.  */
540      if (b_head == b_end)
541	b_empty = 1;
542
543      del_first = del_last = b_head;
544      b_head = NEXT_INSN (b_head);
545    }
546
547  /* Delete the basic block note and handle blocks containing just that
548     note.  */
549  if (NOTE_INSN_BASIC_BLOCK_P (b_head))
550    {
551      if (b_head == b_end)
552	b_empty = 1;
553      if (! del_last)
554	del_first = b_head;
555
556      del_last = b_head;
557      b_head = NEXT_INSN (b_head);
558    }
559
560  /* If there was a jump out of A, delete it.  */
561  if (GET_CODE (a_end) == JUMP_INSN)
562    {
563      rtx prev;
564
565      for (prev = PREV_INSN (a_end); ; prev = PREV_INSN (prev))
566	if (GET_CODE (prev) != NOTE
567	    || NOTE_LINE_NUMBER (prev) == NOTE_INSN_BASIC_BLOCK
568	    || prev == a->head)
569	  break;
570
571      del_first = a_end;
572
573#ifdef HAVE_cc0
574      /* If this was a conditional jump, we need to also delete
575	 the insn that set cc0.  */
576      if (only_sets_cc0_p (prev))
577	{
578	  rtx tmp = prev;
579
580	  prev = prev_nonnote_insn (prev);
581	  if (!prev)
582	    prev = a->head;
583	  del_first = tmp;
584	}
585#endif
586
587      a_end = PREV_INSN (del_first);
588    }
589  else if (GET_CODE (NEXT_INSN (a_end)) == BARRIER)
590    del_first = NEXT_INSN (a_end);
591
592  /* Normally there should only be one successor of A and that is B, but
593     partway though the merge of blocks for conditional_execution we'll
594     be merging a TEST block with THEN and ELSE successors.  Free the
595     whole lot of them and hope the caller knows what they're doing.  */
596  while (a->succ)
597    remove_edge (a->succ);
598
599  /* Adjust the edges out of B for the new owner.  */
600  for (e = b->succ; e; e = e->succ_next)
601    e->src = a;
602  a->succ = b->succ;
603
604  /* B hasn't quite yet ceased to exist.  Attempt to prevent mishap.  */
605  b->pred = b->succ = NULL;
606  a->global_live_at_end = b->global_live_at_end;
607
608  expunge_block (b);
609
610  /* Delete everything marked above as well as crap that might be
611     hanging out between the two blocks.  */
612  delete_insn_chain (del_first, del_last);
613
614  /* Reassociate the insns of B with A.  */
615  if (!b_empty)
616    {
617      if (basic_block_for_insn)
618	{
619	  rtx x;
620
621	  for (x = a_end; x != b_end; x = NEXT_INSN (x))
622	    set_block_for_insn (x, a);
623
624	  set_block_for_insn (b_end, a);
625	}
626
627      a_end = b_end;
628    }
629
630  a->end = a_end;
631}
632
633/* Return the label in the head of basic block BLOCK.  Create one if it doesn't
634   exist.  */
635
636rtx
637block_label (block)
638     basic_block block;
639{
640  if (block == EXIT_BLOCK_PTR)
641    return NULL_RTX;
642
643  if (GET_CODE (block->head) != CODE_LABEL)
644    {
645      block->head = emit_label_before (gen_label_rtx (), block->head);
646      if (basic_block_for_insn)
647	set_block_for_insn (block->head, block);
648    }
649
650  return block->head;
651}
652
653/* Attempt to perform edge redirection by replacing possibly complex jump
654   instruction by unconditional jump or removing jump completely.  This can
655   apply only if all edges now point to the same block.  The parameters and
656   return values are equivalent to redirect_edge_and_branch.  */
657
658static bool
659try_redirect_by_replacing_jump (e, target)
660     edge e;
661     basic_block target;
662{
663  basic_block src = e->src;
664  rtx insn = src->end, kill_from;
665  edge tmp;
666  rtx set;
667  int fallthru = 0;
668
669  /* Verify that all targets will be TARGET.  */
670  for (tmp = src->succ; tmp; tmp = tmp->succ_next)
671    if (tmp->dest != target && tmp != e)
672      break;
673
674  if (tmp || !onlyjump_p (insn))
675    return false;
676
677  /* Avoid removing branch with side effects.  */
678  set = single_set (insn);
679  if (!set || side_effects_p (set))
680    return false;
681
682  /* In case we zap a conditional jump, we'll need to kill
683     the cc0 setter too.  */
684  kill_from = insn;
685#ifdef HAVE_cc0
686  if (reg_mentioned_p (cc0_rtx, PATTERN (insn)))
687    kill_from = PREV_INSN (insn);
688#endif
689
690  /* See if we can create the fallthru edge.  */
691  if (can_fallthru (src, target))
692    {
693      if (rtl_dump_file)
694	fprintf (rtl_dump_file, "Removing jump %i.\n", INSN_UID (insn));
695      fallthru = 1;
696
697      /* Selectively unlink whole insn chain.  */
698      delete_insn_chain (kill_from, PREV_INSN (target->head));
699    }
700
701  /* If this already is simplejump, redirect it.  */
702  else if (simplejump_p (insn))
703    {
704      if (e->dest == target)
705	return false;
706      if (rtl_dump_file)
707	fprintf (rtl_dump_file, "Redirecting jump %i from %i to %i.\n",
708		 INSN_UID (insn), e->dest->index, target->index);
709      if (!redirect_jump (insn, block_label (target), 0))
710	{
711	  if (target == EXIT_BLOCK_PTR)
712	    return false;
713	  abort ();
714	}
715    }
716
717  /* Cannot do anything for target exit block.  */
718  else if (target == EXIT_BLOCK_PTR)
719    return false;
720
721  /* Or replace possibly complicated jump insn by simple jump insn.  */
722  else
723    {
724      rtx target_label = block_label (target);
725      rtx barrier, tmp;
726
727      emit_jump_insn_after (gen_jump (target_label), insn);
728      JUMP_LABEL (src->end) = target_label;
729      LABEL_NUSES (target_label)++;
730      if (rtl_dump_file)
731	fprintf (rtl_dump_file, "Replacing insn %i by jump %i\n",
732		 INSN_UID (insn), INSN_UID (src->end));
733
734
735      delete_insn_chain (kill_from, insn);
736
737      /* Recognize a tablejump that we are converting to a
738	 simple jump and remove its associated CODE_LABEL
739	 and ADDR_VEC or ADDR_DIFF_VEC.  */
740      if ((tmp = JUMP_LABEL (insn)) != NULL_RTX
741	  && (tmp = NEXT_INSN (tmp)) != NULL_RTX
742	  && GET_CODE (tmp) == JUMP_INSN
743	  && (GET_CODE (PATTERN (tmp)) == ADDR_VEC
744	      || GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC))
745	{
746	  delete_insn_chain (JUMP_LABEL (insn), tmp);
747	}
748
749      barrier = next_nonnote_insn (src->end);
750      if (!barrier || GET_CODE (barrier) != BARRIER)
751	emit_barrier_after (src->end);
752    }
753
754  /* Keep only one edge out and set proper flags.  */
755  while (src->succ->succ_next)
756    remove_edge (src->succ);
757  e = src->succ;
758  if (fallthru)
759    e->flags = EDGE_FALLTHRU;
760  else
761    e->flags = 0;
762
763  e->probability = REG_BR_PROB_BASE;
764  e->count = src->count;
765
766  /* We don't want a block to end on a line-number note since that has
767     the potential of changing the code between -g and not -g.  */
768  while (GET_CODE (e->src->end) == NOTE
769	 && NOTE_LINE_NUMBER (e->src->end) >= 0)
770    delete_insn (e->src->end);
771
772  if (e->dest != target)
773    redirect_edge_succ (e, target);
774
775  return true;
776}
777
778/* Return last loop_beg note appearing after INSN, before start of next
779   basic block.  Return INSN if there are no such notes.
780
781   When emitting jump to redirect an fallthru edge, it should always appear
782   after the LOOP_BEG notes, as loop optimizer expect loop to either start by
783   fallthru edge or jump following the LOOP_BEG note jumping to the loop exit
784   test.  */
785
786static rtx
787last_loop_beg_note (insn)
788     rtx insn;
789{
790  rtx last = insn;
791
792  for (insn = NEXT_INSN (insn); insn && GET_CODE (insn) == NOTE
793       && NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK;
794       insn = NEXT_INSN (insn))
795    if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
796      last = insn;
797
798  return last;
799}
800
801/* Attempt to change code to redirect edge E to TARGET.  Don't do that on
802   expense of adding new instructions or reordering basic blocks.
803
804   Function can be also called with edge destination equivalent to the TARGET.
805   Then it should try the simplifications and do nothing if none is possible.
806
807   Return true if transformation succeeded.  We still return false in case E
808   already destinated TARGET and we didn't managed to simplify instruction
809   stream.  */
810
811bool
812redirect_edge_and_branch (e, target)
813     edge e;
814     basic_block target;
815{
816  rtx tmp;
817  rtx old_label = e->dest->head;
818  basic_block src = e->src;
819  rtx insn = src->end;
820
821  if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
822    return false;
823
824  if (try_redirect_by_replacing_jump (e, target))
825    return true;
826
827  /* Do this fast path late, as we want above code to simplify for cases
828     where called on single edge leaving basic block containing nontrivial
829     jump insn.  */
830  else if (e->dest == target)
831    return false;
832
833  /* We can only redirect non-fallthru edges of jump insn.  */
834  if (e->flags & EDGE_FALLTHRU)
835    return false;
836  else if (GET_CODE (insn) != JUMP_INSN)
837    return false;
838
839  /* Recognize a tablejump and adjust all matching cases.  */
840  if ((tmp = JUMP_LABEL (insn)) != NULL_RTX
841      && (tmp = NEXT_INSN (tmp)) != NULL_RTX
842      && GET_CODE (tmp) == JUMP_INSN
843      && (GET_CODE (PATTERN (tmp)) == ADDR_VEC
844	  || GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC))
845    {
846      rtvec vec;
847      int j;
848      rtx new_label = block_label (target);
849
850      if (target == EXIT_BLOCK_PTR)
851	return false;
852      if (GET_CODE (PATTERN (tmp)) == ADDR_VEC)
853	vec = XVEC (PATTERN (tmp), 0);
854      else
855	vec = XVEC (PATTERN (tmp), 1);
856
857      for (j = GET_NUM_ELEM (vec) - 1; j >= 0; --j)
858	if (XEXP (RTVEC_ELT (vec, j), 0) == old_label)
859	  {
860	    RTVEC_ELT (vec, j) = gen_rtx_LABEL_REF (Pmode, new_label);
861	    --LABEL_NUSES (old_label);
862	    ++LABEL_NUSES (new_label);
863	  }
864
865      /* Handle casesi dispatch insns */
866      if ((tmp = single_set (insn)) != NULL
867	  && SET_DEST (tmp) == pc_rtx
868	  && GET_CODE (SET_SRC (tmp)) == IF_THEN_ELSE
869	  && GET_CODE (XEXP (SET_SRC (tmp), 2)) == LABEL_REF
870	  && XEXP (XEXP (SET_SRC (tmp), 2), 0) == old_label)
871	{
872	  XEXP (SET_SRC (tmp), 2) = gen_rtx_LABEL_REF (VOIDmode,
873						       new_label);
874	  --LABEL_NUSES (old_label);
875	  ++LABEL_NUSES (new_label);
876	}
877    }
878  else
879    {
880      /* ?? We may play the games with moving the named labels from
881	 one basic block to the other in case only one computed_jump is
882	 available.  */
883      if (computed_jump_p (insn)
884	  /* A return instruction can't be redirected.  */
885	  || returnjump_p (insn))
886	return false;
887
888      /* If the insn doesn't go where we think, we're confused.  */
889      if (JUMP_LABEL (insn) != old_label)
890	abort ();
891
892      /* If the substitution doesn't succeed, die.  This can happen
893	 if the back end emitted unrecognizable instructions or if
894	 target is exit block on some arches.  */
895      if (!redirect_jump (insn, block_label (target), 0))
896	{
897	  if (target == EXIT_BLOCK_PTR)
898	    return false;
899	  abort ();
900	}
901    }
902
903  if (rtl_dump_file)
904    fprintf (rtl_dump_file, "Edge %i->%i redirected to %i\n",
905	     e->src->index, e->dest->index, target->index);
906
907  if (e->dest != target)
908    redirect_edge_succ_nodup (e, target);
909
910  return true;
911}
912
913/* Like force_nonfallthru below, but additionally performs redirection
914   Used by redirect_edge_and_branch_force.  */
915
916static basic_block
917force_nonfallthru_and_redirect (e, target)
918     edge e;
919     basic_block target;
920{
921  basic_block jump_block, new_bb = NULL;
922  rtx note;
923  edge new_edge;
924
925  if (e->flags & EDGE_ABNORMAL)
926    abort ();
927  else if (!(e->flags & EDGE_FALLTHRU))
928    abort ();
929  else if (e->src == ENTRY_BLOCK_PTR)
930    {
931      /* We can't redirect the entry block.  Create an empty block at the
932         start of the function which we use to add the new jump.  */
933      edge *pe1;
934      basic_block bb = create_basic_block (0, e->dest->head, NULL);
935
936      /* Change the existing edge's source to be the new block, and add
937	 a new edge from the entry block to the new block.  */
938      e->src = bb;
939      bb->count = e->count;
940      bb->frequency = EDGE_FREQUENCY (e);
941      bb->loop_depth = 0;
942      for (pe1 = &ENTRY_BLOCK_PTR->succ; *pe1; pe1 = &(*pe1)->succ_next)
943	if (*pe1 == e)
944	  {
945	    *pe1 = e->succ_next;
946	    break;
947	  }
948      e->succ_next = 0;
949      bb->succ = e;
950      make_single_succ_edge (ENTRY_BLOCK_PTR, bb, EDGE_FALLTHRU);
951    }
952
953  if (e->src->succ->succ_next)
954    {
955      /* Create the new structures.  */
956      note = last_loop_beg_note (e->src->end);
957      jump_block
958	= create_basic_block (e->src->index + 1, NEXT_INSN (note), NULL);
959      jump_block->count = e->count;
960      jump_block->frequency = EDGE_FREQUENCY (e);
961      jump_block->loop_depth = target->loop_depth;
962
963      if (target->global_live_at_start)
964	{
965	  jump_block->global_live_at_start
966	    = OBSTACK_ALLOC_REG_SET (&flow_obstack);
967	  jump_block->global_live_at_end
968	    = OBSTACK_ALLOC_REG_SET (&flow_obstack);
969	  COPY_REG_SET (jump_block->global_live_at_start,
970			target->global_live_at_start);
971	  COPY_REG_SET (jump_block->global_live_at_end,
972			target->global_live_at_start);
973	}
974
975      /* Wire edge in.  */
976      new_edge = make_edge (e->src, jump_block, EDGE_FALLTHRU);
977      new_edge->probability = e->probability;
978      new_edge->count = e->count;
979
980      /* Redirect old edge.  */
981      redirect_edge_pred (e, jump_block);
982      e->probability = REG_BR_PROB_BASE;
983
984      new_bb = jump_block;
985    }
986  else
987    jump_block = e->src;
988
989  e->flags &= ~EDGE_FALLTHRU;
990  if (target == EXIT_BLOCK_PTR)
991    {
992      if (HAVE_return)
993	emit_jump_insn_after (gen_return (), jump_block->end);
994      else
995	abort ();
996    }
997  else
998    {
999      rtx label = block_label (target);
1000      emit_jump_insn_after (gen_jump (label), jump_block->end);
1001      JUMP_LABEL (jump_block->end) = label;
1002      LABEL_NUSES (label)++;
1003    }
1004
1005  emit_barrier_after (jump_block->end);
1006  redirect_edge_succ_nodup (e, target);
1007
1008  return new_bb;
1009}
1010
1011/* Edge E is assumed to be fallthru edge.  Emit needed jump instruction
1012   (and possibly create new basic block) to make edge non-fallthru.
1013   Return newly created BB or NULL if none.  */
1014
1015basic_block
1016force_nonfallthru (e)
1017     edge e;
1018{
1019  return force_nonfallthru_and_redirect (e, e->dest);
1020}
1021
1022/* Redirect edge even at the expense of creating new jump insn or
1023   basic block.  Return new basic block if created, NULL otherwise.
1024   Abort if conversion is impossible.  */
1025
1026basic_block
1027redirect_edge_and_branch_force (e, target)
1028     edge e;
1029     basic_block target;
1030{
1031  if (redirect_edge_and_branch (e, target)
1032      || e->dest == target)
1033    return NULL;
1034
1035  /* In case the edge redirection failed, try to force it to be non-fallthru
1036     and redirect newly created simplejump.  */
1037  return force_nonfallthru_and_redirect (e, target);
1038}
1039
1040/* The given edge should potentially be a fallthru edge.  If that is in
1041   fact true, delete the jump and barriers that are in the way.  */
1042
1043void
1044tidy_fallthru_edge (e, b, c)
1045     edge e;
1046     basic_block b, c;
1047{
1048  rtx q;
1049
1050  /* ??? In a late-running flow pass, other folks may have deleted basic
1051     blocks by nopping out blocks, leaving multiple BARRIERs between here
1052     and the target label. They ought to be chastized and fixed.
1053
1054     We can also wind up with a sequence of undeletable labels between
1055     one block and the next.
1056
1057     So search through a sequence of barriers, labels, and notes for
1058     the head of block C and assert that we really do fall through.  */
1059
1060  if (next_real_insn (b->end) != next_real_insn (PREV_INSN (c->head)))
1061    return;
1062
1063  /* Remove what will soon cease being the jump insn from the source block.
1064     If block B consisted only of this single jump, turn it into a deleted
1065     note.  */
1066  q = b->end;
1067  if (GET_CODE (q) == JUMP_INSN
1068      && onlyjump_p (q)
1069      && (any_uncondjump_p (q)
1070	  || (b->succ == e && e->succ_next == NULL)))
1071    {
1072#ifdef HAVE_cc0
1073      /* If this was a conditional jump, we need to also delete
1074	 the insn that set cc0.  */
1075      if (any_condjump_p (q) && only_sets_cc0_p (PREV_INSN (q)))
1076	q = PREV_INSN (q);
1077#endif
1078
1079      q = PREV_INSN (q);
1080
1081      /* We don't want a block to end on a line-number note since that has
1082	 the potential of changing the code between -g and not -g.  */
1083      while (GET_CODE (q) == NOTE && NOTE_LINE_NUMBER (q) >= 0)
1084	q = PREV_INSN (q);
1085    }
1086
1087  /* Selectively unlink the sequence.  */
1088  if (q != PREV_INSN (c->head))
1089    delete_insn_chain (NEXT_INSN (q), PREV_INSN (c->head));
1090
1091  e->flags |= EDGE_FALLTHRU;
1092}
1093
1094/* Fix up edges that now fall through, or rather should now fall through
1095   but previously required a jump around now deleted blocks.  Simplify
1096   the search by only examining blocks numerically adjacent, since this
1097   is how find_basic_blocks created them.  */
1098
1099void
1100tidy_fallthru_edges ()
1101{
1102  int i;
1103
1104  for (i = 1; i < n_basic_blocks; i++)
1105    {
1106      basic_block b = BASIC_BLOCK (i - 1);
1107      basic_block c = BASIC_BLOCK (i);
1108      edge s;
1109
1110      /* We care about simple conditional or unconditional jumps with
1111	 a single successor.
1112
1113	 If we had a conditional branch to the next instruction when
1114	 find_basic_blocks was called, then there will only be one
1115	 out edge for the block which ended with the conditional
1116	 branch (since we do not create duplicate edges).
1117
1118	 Furthermore, the edge will be marked as a fallthru because we
1119	 merge the flags for the duplicate edges.  So we do not want to
1120	 check that the edge is not a FALLTHRU edge.  */
1121
1122      if ((s = b->succ) != NULL
1123	  && ! (s->flags & EDGE_COMPLEX)
1124	  && s->succ_next == NULL
1125	  && s->dest == c
1126	  /* If the jump insn has side effects, we can't tidy the edge.  */
1127	  && (GET_CODE (b->end) != JUMP_INSN
1128	      || onlyjump_p (b->end)))
1129	tidy_fallthru_edge (s, b, c);
1130    }
1131}
1132
1133/* Helper function for split_edge.  Return true in case edge BB2 to BB1
1134   is back edge of syntactic loop.  */
1135
1136static bool
1137back_edge_of_syntactic_loop_p (bb1, bb2)
1138	basic_block bb1, bb2;
1139{
1140  rtx insn;
1141  int count = 0;
1142
1143  if (bb1->index > bb2->index)
1144    return false;
1145  else if (bb1->index == bb2->index)
1146    return true;
1147
1148  for (insn = bb1->end; insn != bb2->head && count >= 0;
1149       insn = NEXT_INSN (insn))
1150    if (GET_CODE (insn) == NOTE)
1151      {
1152	if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
1153	  count++;
1154	else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
1155	  count--;
1156      }
1157
1158  return count >= 0;
1159}
1160
1161/* Split a (typically critical) edge.  Return the new block.
1162   Abort on abnormal edges.
1163
1164   ??? The code generally expects to be called on critical edges.
1165   The case of a block ending in an unconditional jump to a
1166   block with multiple predecessors is not handled optimally.  */
1167
1168basic_block
1169split_edge (edge_in)
1170     edge edge_in;
1171{
1172  basic_block bb;
1173  edge edge_out;
1174  rtx before;
1175
1176  /* Abnormal edges cannot be split.  */
1177  if ((edge_in->flags & EDGE_ABNORMAL) != 0)
1178    abort ();
1179
1180  /* We are going to place the new block in front of edge destination.
1181     Avoid existence of fallthru predecessors.  */
1182  if ((edge_in->flags & EDGE_FALLTHRU) == 0)
1183    {
1184      edge e;
1185
1186      for (e = edge_in->dest->pred; e; e = e->pred_next)
1187	if (e->flags & EDGE_FALLTHRU)
1188	  break;
1189
1190      if (e)
1191	force_nonfallthru (e);
1192    }
1193
1194  /* Create the basic block note.
1195
1196     Where we place the note can have a noticeable impact on the generated
1197     code.  Consider this cfg:
1198
1199		        E
1200			|
1201			0
1202		       / \
1203		   +->1-->2--->E
1204                   |  |
1205		   +--+
1206
1207      If we need to insert an insn on the edge from block 0 to block 1,
1208      we want to ensure the instructions we insert are outside of any
1209      loop notes that physically sit between block 0 and block 1.  Otherwise
1210      we confuse the loop optimizer into thinking the loop is a phony.  */
1211
1212  if (edge_in->dest != EXIT_BLOCK_PTR
1213      && PREV_INSN (edge_in->dest->head)
1214      && GET_CODE (PREV_INSN (edge_in->dest->head)) == NOTE
1215      && (NOTE_LINE_NUMBER (PREV_INSN (edge_in->dest->head))
1216	  == NOTE_INSN_LOOP_BEG)
1217      && !back_edge_of_syntactic_loop_p (edge_in->dest, edge_in->src))
1218    before = PREV_INSN (edge_in->dest->head);
1219  else if (edge_in->dest != EXIT_BLOCK_PTR)
1220    before = edge_in->dest->head;
1221  else
1222    before = NULL_RTX;
1223
1224  bb = create_basic_block (edge_in->dest == EXIT_BLOCK_PTR ? n_basic_blocks
1225			   : edge_in->dest->index, before, NULL);
1226  bb->count = edge_in->count;
1227  bb->frequency = EDGE_FREQUENCY (edge_in);
1228  bb->loop_depth = edge_in->dest->loop_depth;
1229
1230  /* ??? This info is likely going to be out of date very soon.  */
1231  if (edge_in->dest->global_live_at_start)
1232    {
1233      bb->global_live_at_start = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1234      bb->global_live_at_end = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1235      COPY_REG_SET (bb->global_live_at_start,
1236		    edge_in->dest->global_live_at_start);
1237      COPY_REG_SET (bb->global_live_at_end,
1238		    edge_in->dest->global_live_at_start);
1239    }
1240
1241  edge_out = make_single_succ_edge (bb, edge_in->dest, EDGE_FALLTHRU);
1242
1243  /* For non-fallthry edges, we must adjust the predecessor's
1244     jump instruction to target our new block.  */
1245  if ((edge_in->flags & EDGE_FALLTHRU) == 0)
1246    {
1247      if (!redirect_edge_and_branch (edge_in, bb))
1248	abort ();
1249    }
1250  else
1251    redirect_edge_succ (edge_in, bb);
1252
1253  return bb;
1254}
1255
1256/* Queue instructions for insertion on an edge between two basic blocks.
1257   The new instructions and basic blocks (if any) will not appear in the
1258   CFG until commit_edge_insertions is called.  */
1259
1260void
1261insert_insn_on_edge (pattern, e)
1262     rtx pattern;
1263     edge e;
1264{
1265  /* We cannot insert instructions on an abnormal critical edge.
1266     It will be easier to find the culprit if we die now.  */
1267  if ((e->flags & EDGE_ABNORMAL) && EDGE_CRITICAL_P (e))
1268    abort ();
1269
1270  if (e->insns == NULL_RTX)
1271    start_sequence ();
1272  else
1273    push_to_sequence (e->insns);
1274
1275  emit_insn (pattern);
1276
1277  e->insns = get_insns ();
1278  end_sequence ();
1279}
1280
1281/* Update the CFG for the instructions queued on edge E.  */
1282
1283static void
1284commit_one_edge_insertion (e)
1285     edge e;
1286{
1287  rtx before = NULL_RTX, after = NULL_RTX, insns, tmp, last;
1288  basic_block bb;
1289
1290  /* Pull the insns off the edge now since the edge might go away.  */
1291  insns = e->insns;
1292  e->insns = NULL_RTX;
1293
1294  /* Figure out where to put these things.  If the destination has
1295     one predecessor, insert there.  Except for the exit block.  */
1296  if (e->dest->pred->pred_next == NULL
1297      && e->dest != EXIT_BLOCK_PTR)
1298    {
1299      bb = e->dest;
1300
1301      /* Get the location correct wrt a code label, and "nice" wrt
1302	 a basic block note, and before everything else.  */
1303      tmp = bb->head;
1304      if (GET_CODE (tmp) == CODE_LABEL)
1305	tmp = NEXT_INSN (tmp);
1306      if (NOTE_INSN_BASIC_BLOCK_P (tmp))
1307	tmp = NEXT_INSN (tmp);
1308      if (tmp == bb->head)
1309	before = tmp;
1310      else
1311	after = PREV_INSN (tmp);
1312    }
1313
1314  /* If the source has one successor and the edge is not abnormal,
1315     insert there.  Except for the entry block.  */
1316  else if ((e->flags & EDGE_ABNORMAL) == 0
1317	   && e->src->succ->succ_next == NULL
1318	   && e->src != ENTRY_BLOCK_PTR)
1319    {
1320      bb = e->src;
1321
1322      /* It is possible to have a non-simple jump here.  Consider a target
1323	 where some forms of unconditional jumps clobber a register.  This
1324	 happens on the fr30 for example.
1325
1326	 We know this block has a single successor, so we can just emit
1327	 the queued insns before the jump.  */
1328      if (GET_CODE (bb->end) == JUMP_INSN)
1329	for (before = bb->end;
1330	     GET_CODE (PREV_INSN (before)) == NOTE
1331	     && NOTE_LINE_NUMBER (PREV_INSN (before)) == NOTE_INSN_LOOP_BEG;
1332	     before = PREV_INSN (before))
1333	  ;
1334      else
1335	{
1336	  /* We'd better be fallthru, or we've lost track of what's what.  */
1337	  if ((e->flags & EDGE_FALLTHRU) == 0)
1338	    abort ();
1339
1340	  after = bb->end;
1341	}
1342    }
1343
1344  /* Otherwise we must split the edge.  */
1345  else
1346    {
1347      bb = split_edge (e);
1348      after = bb->end;
1349    }
1350
1351  /* Now that we've found the spot, do the insertion.  */
1352
1353  if (before)
1354    {
1355      emit_insns_before (insns, before);
1356      last = prev_nonnote_insn (before);
1357    }
1358  else
1359    last = emit_insns_after (insns, after);
1360
1361  if (returnjump_p (last))
1362    {
1363      /* ??? Remove all outgoing edges from BB and add one for EXIT.
1364         This is not currently a problem because this only happens
1365	 for the (single) epilogue, which already has a fallthru edge
1366	 to EXIT.  */
1367
1368      e = bb->succ;
1369      if (e->dest != EXIT_BLOCK_PTR
1370	  || e->succ_next != NULL
1371	  || (e->flags & EDGE_FALLTHRU) == 0)
1372	abort ();
1373
1374      e->flags &= ~EDGE_FALLTHRU;
1375      emit_barrier_after (last);
1376
1377      if (before)
1378	delete_insn (before);
1379    }
1380  else if (GET_CODE (last) == JUMP_INSN)
1381    abort ();
1382
1383  find_sub_basic_blocks (bb);
1384}
1385
1386/* Update the CFG for all queued instructions.  */
1387
1388void
1389commit_edge_insertions ()
1390{
1391  int i;
1392  basic_block bb;
1393
1394#ifdef ENABLE_CHECKING
1395  verify_flow_info ();
1396#endif
1397
1398  i = -1;
1399  bb = ENTRY_BLOCK_PTR;
1400  while (1)
1401    {
1402      edge e, next;
1403
1404      for (e = bb->succ; e; e = next)
1405	{
1406	  next = e->succ_next;
1407	  if (e->insns)
1408	    commit_one_edge_insertion (e);
1409	}
1410
1411      if (++i >= n_basic_blocks)
1412	break;
1413      bb = BASIC_BLOCK (i);
1414    }
1415}
1416
1417/* Print out one basic block with live information at start and end.  */
1418
1419void
1420dump_bb (bb, outf)
1421     basic_block bb;
1422     FILE *outf;
1423{
1424  rtx insn;
1425  rtx last;
1426  edge e;
1427
1428  fprintf (outf, ";; Basic block %d, loop depth %d, count ",
1429	   bb->index, bb->loop_depth);
1430  fprintf (outf, HOST_WIDEST_INT_PRINT_DEC, (HOST_WIDEST_INT) bb->count);
1431  putc ('\n', outf);
1432
1433  fputs (";; Predecessors: ", outf);
1434  for (e = bb->pred; e; e = e->pred_next)
1435    dump_edge_info (outf, e, 0);
1436  putc ('\n', outf);
1437
1438  fputs (";; Registers live at start:", outf);
1439  dump_regset (bb->global_live_at_start, outf);
1440  putc ('\n', outf);
1441
1442  for (insn = bb->head, last = NEXT_INSN (bb->end); insn != last;
1443       insn = NEXT_INSN (insn))
1444    print_rtl_single (outf, insn);
1445
1446  fputs (";; Registers live at end:", outf);
1447  dump_regset (bb->global_live_at_end, outf);
1448  putc ('\n', outf);
1449
1450  fputs (";; Successors: ", outf);
1451  for (e = bb->succ; e; e = e->succ_next)
1452    dump_edge_info (outf, e, 1);
1453  putc ('\n', outf);
1454}
1455
1456void
1457debug_bb (bb)
1458     basic_block bb;
1459{
1460  dump_bb (bb, stderr);
1461}
1462
1463void
1464debug_bb_n (n)
1465     int n;
1466{
1467  dump_bb (BASIC_BLOCK (n), stderr);
1468}
1469
1470/* Like print_rtl, but also print out live information for the start of each
1471   basic block.  */
1472
1473void
1474print_rtl_with_bb (outf, rtx_first)
1475     FILE *outf;
1476     rtx rtx_first;
1477{
1478  rtx tmp_rtx;
1479
1480  if (rtx_first == 0)
1481    fprintf (outf, "(nil)\n");
1482  else
1483    {
1484      int i;
1485      enum bb_state { NOT_IN_BB, IN_ONE_BB, IN_MULTIPLE_BB };
1486      int max_uid = get_max_uid ();
1487      basic_block *start
1488	= (basic_block *) xcalloc (max_uid, sizeof (basic_block));
1489      basic_block *end
1490	= (basic_block *) xcalloc (max_uid, sizeof (basic_block));
1491      enum bb_state *in_bb_p
1492	= (enum bb_state *) xcalloc (max_uid, sizeof (enum bb_state));
1493
1494      for (i = n_basic_blocks - 1; i >= 0; i--)
1495	{
1496	  basic_block bb = BASIC_BLOCK (i);
1497	  rtx x;
1498
1499	  start[INSN_UID (bb->head)] = bb;
1500	  end[INSN_UID (bb->end)] = bb;
1501	  for (x = bb->head; x != NULL_RTX; x = NEXT_INSN (x))
1502	    {
1503	      enum bb_state state = IN_MULTIPLE_BB;
1504
1505	      if (in_bb_p[INSN_UID (x)] == NOT_IN_BB)
1506		state = IN_ONE_BB;
1507	      in_bb_p[INSN_UID (x)] = state;
1508
1509	      if (x == bb->end)
1510		break;
1511	    }
1512	}
1513
1514      for (tmp_rtx = rtx_first; NULL != tmp_rtx; tmp_rtx = NEXT_INSN (tmp_rtx))
1515	{
1516	  int did_output;
1517	  basic_block bb;
1518
1519	  if ((bb = start[INSN_UID (tmp_rtx)]) != NULL)
1520	    {
1521	      fprintf (outf, ";; Start of basic block %d, registers live:",
1522		       bb->index);
1523	      dump_regset (bb->global_live_at_start, outf);
1524	      putc ('\n', outf);
1525	    }
1526
1527	  if (in_bb_p[INSN_UID (tmp_rtx)] == NOT_IN_BB
1528	      && GET_CODE (tmp_rtx) != NOTE
1529	      && GET_CODE (tmp_rtx) != BARRIER)
1530	    fprintf (outf, ";; Insn is not within a basic block\n");
1531	  else if (in_bb_p[INSN_UID (tmp_rtx)] == IN_MULTIPLE_BB)
1532	    fprintf (outf, ";; Insn is in multiple basic blocks\n");
1533
1534	  did_output = print_rtl_single (outf, tmp_rtx);
1535
1536	  if ((bb = end[INSN_UID (tmp_rtx)]) != NULL)
1537	    {
1538	      fprintf (outf, ";; End of basic block %d, registers live:\n",
1539		       bb->index);
1540	      dump_regset (bb->global_live_at_end, outf);
1541	      putc ('\n', outf);
1542	    }
1543
1544	  if (did_output)
1545	    putc ('\n', outf);
1546	}
1547
1548      free (start);
1549      free (end);
1550      free (in_bb_p);
1551    }
1552
1553  if (current_function_epilogue_delay_list != 0)
1554    {
1555      fprintf (outf, "\n;; Insns in epilogue delay list:\n\n");
1556      for (tmp_rtx = current_function_epilogue_delay_list; tmp_rtx != 0;
1557	   tmp_rtx = XEXP (tmp_rtx, 1))
1558	print_rtl_single (outf, XEXP (tmp_rtx, 0));
1559    }
1560}
1561
1562void
1563update_br_prob_note (bb)
1564     basic_block bb;
1565{
1566  rtx note;
1567  if (GET_CODE (bb->end) != JUMP_INSN)
1568    return;
1569  note = find_reg_note (bb->end, REG_BR_PROB, NULL_RTX);
1570  if (!note || INTVAL (XEXP (note, 0)) == BRANCH_EDGE (bb)->probability)
1571    return;
1572  XEXP (note, 0) = GEN_INT (BRANCH_EDGE (bb)->probability);
1573}
1574
1575/* Verify the CFG consistency.  This function check some CFG invariants and
1576   aborts when something is wrong.  Hope that this function will help to
1577   convert many optimization passes to preserve CFG consistent.
1578
1579   Currently it does following checks:
1580
1581   - test head/end pointers
1582   - overlapping of basic blocks
1583   - edge list correctness
1584   - headers of basic blocks (the NOTE_INSN_BASIC_BLOCK note)
1585   - tails of basic blocks (ensure that boundary is necessary)
1586   - scans body of the basic block for JUMP_INSN, CODE_LABEL
1587     and NOTE_INSN_BASIC_BLOCK
1588   - check that all insns are in the basic blocks
1589     (except the switch handling code, barriers and notes)
1590   - check that all returns are followed by barriers
1591
1592   In future it can be extended check a lot of other stuff as well
1593   (reachability of basic blocks, life information, etc. etc.).  */
1594
1595void
1596verify_flow_info ()
1597{
1598  const int max_uid = get_max_uid ();
1599  const rtx rtx_first = get_insns ();
1600  rtx last_head = get_last_insn ();
1601  basic_block *bb_info, *last_visited;
1602  size_t *edge_checksum;
1603  rtx x;
1604  int i, last_bb_num_seen, num_bb_notes, err = 0;
1605
1606  bb_info = (basic_block *) xcalloc (max_uid, sizeof (basic_block));
1607  last_visited = (basic_block *) xcalloc (n_basic_blocks + 2,
1608					  sizeof (basic_block));
1609  edge_checksum = (size_t *) xcalloc (n_basic_blocks + 2, sizeof (size_t));
1610
1611  for (i = n_basic_blocks - 1; i >= 0; i--)
1612    {
1613      basic_block bb = BASIC_BLOCK (i);
1614      rtx head = bb->head;
1615      rtx end = bb->end;
1616
1617      /* Verify the end of the basic block is in the INSN chain.  */
1618      for (x = last_head; x != NULL_RTX; x = PREV_INSN (x))
1619	if (x == end)
1620	  break;
1621
1622      if (!x)
1623	{
1624	  error ("end insn %d for block %d not found in the insn stream",
1625		 INSN_UID (end), bb->index);
1626	  err = 1;
1627	}
1628
1629      /* Work backwards from the end to the head of the basic block
1630	 to verify the head is in the RTL chain.  */
1631      for (; x != NULL_RTX; x = PREV_INSN (x))
1632	{
1633	  /* While walking over the insn chain, verify insns appear
1634	     in only one basic block and initialize the BB_INFO array
1635	     used by other passes.  */
1636	  if (bb_info[INSN_UID (x)] != NULL)
1637	    {
1638	      error ("insn %d is in multiple basic blocks (%d and %d)",
1639		     INSN_UID (x), bb->index, bb_info[INSN_UID (x)]->index);
1640	      err = 1;
1641	    }
1642
1643	  bb_info[INSN_UID (x)] = bb;
1644
1645	  if (x == head)
1646	    break;
1647	}
1648      if (!x)
1649	{
1650	  error ("head insn %d for block %d not found in the insn stream",
1651		 INSN_UID (head), bb->index);
1652	  err = 1;
1653	}
1654
1655      last_head = x;
1656    }
1657
1658  /* Now check the basic blocks (boundaries etc.) */
1659  for (i = n_basic_blocks - 1; i >= 0; i--)
1660    {
1661      basic_block bb = BASIC_BLOCK (i);
1662      int has_fallthru = 0;
1663      edge e;
1664
1665      for (e = bb->succ; e; e = e->succ_next)
1666	{
1667	  if (last_visited [e->dest->index + 2] == bb)
1668	    {
1669	      error ("verify_flow_info: Duplicate edge %i->%i",
1670		     e->src->index, e->dest->index);
1671	      err = 1;
1672	    }
1673
1674	  last_visited [e->dest->index + 2] = bb;
1675
1676	  if (e->flags & EDGE_FALLTHRU)
1677	    has_fallthru = 1;
1678
1679	  if ((e->flags & EDGE_FALLTHRU)
1680	      && e->src != ENTRY_BLOCK_PTR
1681	      && e->dest != EXIT_BLOCK_PTR)
1682	    {
1683	      rtx insn;
1684
1685	      if (e->src->index + 1 != e->dest->index)
1686		{
1687		  error
1688		    ("verify_flow_info: Incorrect blocks for fallthru %i->%i",
1689		     e->src->index, e->dest->index);
1690		  err = 1;
1691		}
1692	      else
1693		for (insn = NEXT_INSN (e->src->end); insn != e->dest->head;
1694		     insn = NEXT_INSN (insn))
1695		  if (GET_CODE (insn) == BARRIER
1696#ifndef CASE_DROPS_THROUGH
1697		      || INSN_P (insn)
1698#else
1699		      || (INSN_P (insn) && ! JUMP_TABLE_DATA_P (insn))
1700#endif
1701		      )
1702		    {
1703		      error ("verify_flow_info: Incorrect fallthru %i->%i",
1704			     e->src->index, e->dest->index);
1705		      fatal_insn ("wrong insn in the fallthru edge", insn);
1706		      err = 1;
1707		    }
1708	    }
1709
1710	  if (e->src != bb)
1711	    {
1712	      error ("verify_flow_info: Basic block %d succ edge is corrupted",
1713		     bb->index);
1714	      fprintf (stderr, "Predecessor: ");
1715	      dump_edge_info (stderr, e, 0);
1716	      fprintf (stderr, "\nSuccessor: ");
1717	      dump_edge_info (stderr, e, 1);
1718	      fprintf (stderr, "\n");
1719	      err = 1;
1720	    }
1721
1722	  edge_checksum[e->dest->index + 2] += (size_t) e;
1723	}
1724
1725      if (!has_fallthru)
1726	{
1727	  rtx insn;
1728
1729	  /* Ensure existence of barrier in BB with no fallthru edges.  */
1730	  for (insn = bb->end; !insn || GET_CODE (insn) != BARRIER;
1731	       insn = NEXT_INSN (insn))
1732	    if (!insn
1733		|| (GET_CODE (insn) == NOTE
1734		    && NOTE_LINE_NUMBER (insn) == NOTE_INSN_BASIC_BLOCK))
1735		{
1736		  error ("missing barrier after block %i", bb->index);
1737		  err = 1;
1738		  break;
1739		}
1740	}
1741
1742      for (e = bb->pred; e; e = e->pred_next)
1743	{
1744	  if (e->dest != bb)
1745	    {
1746	      error ("basic block %d pred edge is corrupted", bb->index);
1747	      fputs ("Predecessor: ", stderr);
1748	      dump_edge_info (stderr, e, 0);
1749	      fputs ("\nSuccessor: ", stderr);
1750	      dump_edge_info (stderr, e, 1);
1751	      fputc ('\n', stderr);
1752	      err = 1;
1753	    }
1754	  edge_checksum[e->dest->index + 2] -= (size_t) e;
1755	}
1756
1757      for (x = bb->head; x != NEXT_INSN (bb->end); x = NEXT_INSN (x))
1758	if (basic_block_for_insn && BLOCK_FOR_INSN (x) != bb)
1759	  {
1760	    debug_rtx (x);
1761	    if (! BLOCK_FOR_INSN (x))
1762	      error
1763		("insn %d inside basic block %d but block_for_insn is NULL",
1764		 INSN_UID (x), bb->index);
1765	    else
1766	      error
1767		("insn %d inside basic block %d but block_for_insn is %i",
1768		 INSN_UID (x), bb->index, BLOCK_FOR_INSN (x)->index);
1769
1770	    err = 1;
1771	  }
1772
1773      /* OK pointers are correct.  Now check the header of basic
1774         block.  It ought to contain optional CODE_LABEL followed
1775	 by NOTE_BASIC_BLOCK.  */
1776      x = bb->head;
1777      if (GET_CODE (x) == CODE_LABEL)
1778	{
1779	  if (bb->end == x)
1780	    {
1781	      error ("NOTE_INSN_BASIC_BLOCK is missing for block %d",
1782		     bb->index);
1783	      err = 1;
1784	    }
1785
1786	  x = NEXT_INSN (x);
1787	}
1788
1789      if (!NOTE_INSN_BASIC_BLOCK_P (x) || NOTE_BASIC_BLOCK (x) != bb)
1790	{
1791	  error ("NOTE_INSN_BASIC_BLOCK is missing for block %d",
1792		 bb->index);
1793	  err = 1;
1794	}
1795
1796      if (bb->end == x)
1797	/* Do checks for empty blocks her. e */
1798	;
1799      else
1800	for (x = NEXT_INSN (x); x; x = NEXT_INSN (x))
1801	  {
1802	    if (NOTE_INSN_BASIC_BLOCK_P (x))
1803	      {
1804		error ("NOTE_INSN_BASIC_BLOCK %d in middle of basic block %d",
1805		       INSN_UID (x), bb->index);
1806		err = 1;
1807	      }
1808
1809	    if (x == bb->end)
1810	      break;
1811
1812	    if (GET_CODE (x) == JUMP_INSN
1813		|| GET_CODE (x) == CODE_LABEL
1814		|| GET_CODE (x) == BARRIER)
1815	      {
1816		error ("in basic block %d:", bb->index);
1817		fatal_insn ("flow control insn inside a basic block", x);
1818	      }
1819	  }
1820    }
1821
1822  /* Complete edge checksumming for ENTRY and EXIT.  */
1823  {
1824    edge e;
1825
1826    for (e = ENTRY_BLOCK_PTR->succ; e ; e = e->succ_next)
1827      edge_checksum[e->dest->index + 2] += (size_t) e;
1828
1829    for (e = EXIT_BLOCK_PTR->pred; e ; e = e->pred_next)
1830      edge_checksum[e->dest->index + 2] -= (size_t) e;
1831  }
1832
1833  for (i = -2; i < n_basic_blocks; ++i)
1834    if (edge_checksum[i + 2])
1835      {
1836	error ("basic block %i edge lists are corrupted", i);
1837	err = 1;
1838      }
1839
1840  last_bb_num_seen = -1;
1841  num_bb_notes = 0;
1842  for (x = rtx_first; x; x = NEXT_INSN (x))
1843    {
1844      if (NOTE_INSN_BASIC_BLOCK_P (x))
1845	{
1846	  basic_block bb = NOTE_BASIC_BLOCK (x);
1847
1848	  num_bb_notes++;
1849	  if (bb->index != last_bb_num_seen + 1)
1850	    internal_error ("basic blocks not numbered consecutively");
1851
1852	  last_bb_num_seen = bb->index;
1853	}
1854
1855      if (!bb_info[INSN_UID (x)])
1856	{
1857	  switch (GET_CODE (x))
1858	    {
1859	    case BARRIER:
1860	    case NOTE:
1861	      break;
1862
1863	    case CODE_LABEL:
1864	      /* An addr_vec is placed outside any block block.  */
1865	      if (NEXT_INSN (x)
1866		  && GET_CODE (NEXT_INSN (x)) == JUMP_INSN
1867		  && (GET_CODE (PATTERN (NEXT_INSN (x))) == ADDR_DIFF_VEC
1868		      || GET_CODE (PATTERN (NEXT_INSN (x))) == ADDR_VEC))
1869		x = NEXT_INSN (x);
1870
1871	      /* But in any case, non-deletable labels can appear anywhere.  */
1872	      break;
1873
1874	    default:
1875	      fatal_insn ("insn outside basic block", x);
1876	    }
1877	}
1878
1879      if (INSN_P (x)
1880	  && GET_CODE (x) == JUMP_INSN
1881	  && returnjump_p (x) && ! condjump_p (x)
1882	  && ! (NEXT_INSN (x) && GET_CODE (NEXT_INSN (x)) == BARRIER))
1883	    fatal_insn ("return not followed by barrier", x);
1884    }
1885
1886  if (num_bb_notes != n_basic_blocks)
1887    internal_error
1888      ("number of bb notes in insn chain (%d) != n_basic_blocks (%d)",
1889       num_bb_notes, n_basic_blocks);
1890
1891  if (err)
1892    internal_error ("verify_flow_info failed");
1893
1894  /* Clean up.  */
1895  free (bb_info);
1896  free (last_visited);
1897  free (edge_checksum);
1898}
1899
1900/* Assume that the preceding pass has possibly eliminated jump instructions
1901   or converted the unconditional jumps.  Eliminate the edges from CFG.
1902   Return true if any edges are eliminated.  */
1903
1904bool
1905purge_dead_edges (bb)
1906     basic_block bb;
1907{
1908  edge e, next;
1909  rtx insn = bb->end, note;
1910  bool purged = false;
1911
1912  /* If this instruction cannot trap, remove REG_EH_REGION notes.  */
1913  if (GET_CODE (insn) == INSN
1914      && (note = find_reg_note (insn, REG_EH_REGION, NULL)))
1915    {
1916      rtx eqnote;
1917
1918      if (! may_trap_p (PATTERN (insn))
1919	  || ((eqnote = find_reg_equal_equiv_note (insn))
1920	      && ! may_trap_p (XEXP (eqnote, 0))))
1921	remove_note (insn, note);
1922    }
1923
1924  /* Cleanup abnormal edges caused by throwing insns that have been
1925     eliminated.  */
1926  if (! can_throw_internal (bb->end))
1927    for (e = bb->succ; e; e = next)
1928      {
1929	next = e->succ_next;
1930	if (e->flags & EDGE_EH)
1931	  {
1932	    remove_edge (e);
1933	    purged = true;
1934	  }
1935      }
1936
1937  if (GET_CODE (insn) == JUMP_INSN)
1938    {
1939      rtx note;
1940      edge b,f;
1941
1942      /* We do care only about conditional jumps and simplejumps.  */
1943      if (!any_condjump_p (insn)
1944	  && !returnjump_p (insn)
1945	  && !simplejump_p (insn))
1946	return false;
1947
1948      for (e = bb->succ; e; e = next)
1949	{
1950	  next = e->succ_next;
1951
1952	  /* Avoid abnormal flags to leak from computed jumps turned
1953	     into simplejumps.  */
1954
1955	  e->flags &= ~EDGE_ABNORMAL;
1956
1957	  /* Check purposes we can have edge.  */
1958	  if ((e->flags & EDGE_FALLTHRU)
1959	      && any_condjump_p (insn))
1960	    continue;
1961	  else if (e->dest != EXIT_BLOCK_PTR
1962		   && e->dest->head == JUMP_LABEL (insn))
1963	    continue;
1964	  else if (e->dest == EXIT_BLOCK_PTR
1965		   && returnjump_p (insn))
1966	    continue;
1967
1968	  purged = true;
1969	  remove_edge (e);
1970	}
1971
1972      if (!bb->succ || !purged)
1973	return false;
1974
1975      if (rtl_dump_file)
1976	fprintf (rtl_dump_file, "Purged edges from bb %i\n", bb->index);
1977
1978      if (!optimize)
1979	return purged;
1980
1981      /* Redistribute probabilities.  */
1982      if (!bb->succ->succ_next)
1983	{
1984	  bb->succ->probability = REG_BR_PROB_BASE;
1985	  bb->succ->count = bb->count;
1986        }
1987      else
1988	{
1989	  note = find_reg_note (insn, REG_BR_PROB, NULL);
1990	  if (!note)
1991	    return purged;
1992
1993	  b = BRANCH_EDGE (bb);
1994	  f = FALLTHRU_EDGE (bb);
1995	  b->probability = INTVAL (XEXP (note, 0));
1996	  f->probability = REG_BR_PROB_BASE - b->probability;
1997	  b->count = bb->count * b->probability / REG_BR_PROB_BASE;
1998	  f->count = bb->count * f->probability / REG_BR_PROB_BASE;
1999	}
2000
2001      return purged;
2002    }
2003
2004  /* If we don't see a jump insn, we don't know exactly why the block would
2005     have been broken at this point.  Look for a simple, non-fallthru edge,
2006     as these are only created by conditional branches.  If we find such an
2007     edge we know that there used to be a jump here and can then safely
2008     remove all non-fallthru edges.  */
2009  for (e = bb->succ; e && (e->flags & (EDGE_COMPLEX | EDGE_FALLTHRU));
2010       e = e->succ_next)
2011    ;
2012
2013  if (!e)
2014    return purged;
2015
2016  for (e = bb->succ; e; e = next)
2017    {
2018      next = e->succ_next;
2019      if (!(e->flags & EDGE_FALLTHRU))
2020	remove_edge (e), purged = true;
2021    }
2022
2023  if (!bb->succ || bb->succ->succ_next)
2024    abort ();
2025
2026  bb->succ->probability = REG_BR_PROB_BASE;
2027  bb->succ->count = bb->count;
2028
2029  if (rtl_dump_file)
2030    fprintf (rtl_dump_file, "Purged non-fallthru edges from bb %i\n",
2031	     bb->index);
2032  return purged;
2033}
2034
2035/* Search all basic blocks for potentially dead edges and purge them.  Return
2036   true if some edge has been eliminated.  */
2037
2038bool
2039purge_all_dead_edges (update_life_p)
2040     int update_life_p;
2041{
2042  int i, purged = false;
2043  sbitmap blocks = 0;
2044
2045  if (update_life_p)
2046    {
2047      blocks = sbitmap_alloc (n_basic_blocks);
2048      sbitmap_zero (blocks);
2049    }
2050
2051  for (i = 0; i < n_basic_blocks; i++)
2052    {
2053      bool purged_here = purge_dead_edges (BASIC_BLOCK (i));
2054
2055      purged |= purged_here;
2056      if (purged_here && update_life_p)
2057	SET_BIT (blocks, i);
2058    }
2059
2060  if (update_life_p && purged)
2061    update_life_info (blocks, UPDATE_LIFE_GLOBAL,
2062		      PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
2063		      | PROP_KILL_DEAD_CODE);
2064
2065  if (update_life_p)
2066    sbitmap_free (blocks);
2067  return purged;
2068}
2069