vm_phys.c revision 217916
1279377Simp/*-
2279377Simp * Copyright (c) 2002-2006 Rice University
3279377Simp * Copyright (c) 2007 Alan L. Cox <alc@cs.rice.edu>
4279377Simp * All rights reserved.
5279377Simp *
6279377Simp * This software was developed for the FreeBSD Project by Alan L. Cox,
7279377Simp * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
8279377Simp *
9279377Simp * Redistribution and use in source and binary forms, with or without
10279377Simp * modification, are permitted provided that the following conditions
11279377Simp * are met:
12279377Simp * 1. Redistributions of source code must retain the above copyright
13279377Simp *    notice, this list of conditions and the following disclaimer.
14279377Simp * 2. Redistributions in binary form must reproduce the above copyright
15279377Simp *    notice, this list of conditions and the following disclaimer in the
16279377Simp *    documentation and/or other materials provided with the distribution.
17279377Simp *
18279377Simp * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19279377Simp * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20279377Simp * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21279377Simp * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT
22279377Simp * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
23279377Simp * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
24279377Simp * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
25279377Simp * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
26279377Simp * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27279377Simp * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
28279377Simp * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29279377Simp * POSSIBILITY OF SUCH DAMAGE.
30279377Simp */
31279377Simp
32279377Simp#include <sys/cdefs.h>
33279377Simp__FBSDID("$FreeBSD: head/sys/vm/vm_phys.c 217916 2011-01-27 00:34:12Z mdf $");
34279377Simp
35279377Simp#include "opt_ddb.h"
36279377Simp
37279377Simp#include <sys/param.h>
38279377Simp#include <sys/systm.h>
39279377Simp#include <sys/lock.h>
40279377Simp#include <sys/kernel.h>
41279377Simp#include <sys/malloc.h>
42279377Simp#include <sys/mutex.h>
43279377Simp#include <sys/queue.h>
44279377Simp#include <sys/sbuf.h>
45279377Simp#include <sys/sysctl.h>
46279377Simp#include <sys/vmmeter.h>
47279377Simp#include <sys/vnode.h>
48279377Simp
49279377Simp#include <ddb/ddb.h>
50279377Simp
51279377Simp#include <vm/vm.h>
52279377Simp#include <vm/vm_param.h>
53279377Simp#include <vm/vm_kern.h>
54279377Simp#include <vm/vm_object.h>
55279377Simp#include <vm/vm_page.h>
56279377Simp#include <vm/vm_phys.h>
57279377Simp#include <vm/vm_reserv.h>
58279377Simp
59279377Simp/*
60279377Simp * VM_FREELIST_DEFAULT is split into VM_NDOMAIN lists, one for each
61 * domain.  These extra lists are stored at the end of the regular
62 * free lists starting with VM_NFREELIST.
63 */
64#define VM_RAW_NFREELIST	(VM_NFREELIST + VM_NDOMAIN - 1)
65
66struct vm_freelist {
67	struct pglist pl;
68	int lcnt;
69};
70
71struct vm_phys_seg {
72	vm_paddr_t	start;
73	vm_paddr_t	end;
74	vm_page_t	first_page;
75	int		domain;
76	struct vm_freelist (*free_queues)[VM_NFREEPOOL][VM_NFREEORDER];
77};
78
79struct mem_affinity *mem_affinity;
80
81static struct vm_phys_seg vm_phys_segs[VM_PHYSSEG_MAX];
82
83static int vm_phys_nsegs;
84
85static struct vm_freelist
86    vm_phys_free_queues[VM_RAW_NFREELIST][VM_NFREEPOOL][VM_NFREEORDER];
87static struct vm_freelist
88(*vm_phys_lookup_lists[VM_NDOMAIN][VM_RAW_NFREELIST])[VM_NFREEPOOL][VM_NFREEORDER];
89
90static int vm_nfreelists = VM_FREELIST_DEFAULT + 1;
91
92static int cnt_prezero;
93SYSCTL_INT(_vm_stats_misc, OID_AUTO, cnt_prezero, CTLFLAG_RD,
94    &cnt_prezero, 0, "The number of physical pages prezeroed at idle time");
95
96static int sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS);
97SYSCTL_OID(_vm, OID_AUTO, phys_free, CTLTYPE_STRING | CTLFLAG_RD,
98    NULL, 0, sysctl_vm_phys_free, "A", "Phys Free Info");
99
100static int sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS);
101SYSCTL_OID(_vm, OID_AUTO, phys_segs, CTLTYPE_STRING | CTLFLAG_RD,
102    NULL, 0, sysctl_vm_phys_segs, "A", "Phys Seg Info");
103
104#if VM_NDOMAIN > 1
105static int sysctl_vm_phys_lookup_lists(SYSCTL_HANDLER_ARGS);
106SYSCTL_OID(_vm, OID_AUTO, phys_lookup_lists, CTLTYPE_STRING | CTLFLAG_RD,
107    NULL, 0, sysctl_vm_phys_lookup_lists, "A", "Phys Lookup Lists");
108#endif
109
110static void _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind,
111    int domain);
112static void vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind);
113static int vm_phys_paddr_to_segind(vm_paddr_t pa);
114static void vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl,
115    int order);
116
117/*
118 * Outputs the state of the physical memory allocator, specifically,
119 * the amount of physical memory in each free list.
120 */
121static int
122sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS)
123{
124	struct sbuf sbuf;
125	struct vm_freelist *fl;
126	int error, flind, oind, pind;
127
128	error = sysctl_wire_old_buffer(req, 0);
129	if (error != 0)
130		return (error);
131	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
132	for (flind = 0; flind < vm_nfreelists; flind++) {
133		sbuf_printf(&sbuf, "\nFREE LIST %d:\n"
134		    "\n  ORDER (SIZE)  |  NUMBER"
135		    "\n              ", flind);
136		for (pind = 0; pind < VM_NFREEPOOL; pind++)
137			sbuf_printf(&sbuf, "  |  POOL %d", pind);
138		sbuf_printf(&sbuf, "\n--            ");
139		for (pind = 0; pind < VM_NFREEPOOL; pind++)
140			sbuf_printf(&sbuf, "-- --      ");
141		sbuf_printf(&sbuf, "--\n");
142		for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
143			sbuf_printf(&sbuf, "  %2d (%6dK)", oind,
144			    1 << (PAGE_SHIFT - 10 + oind));
145			for (pind = 0; pind < VM_NFREEPOOL; pind++) {
146				fl = vm_phys_free_queues[flind][pind];
147				sbuf_printf(&sbuf, "  |  %6d", fl[oind].lcnt);
148			}
149			sbuf_printf(&sbuf, "\n");
150		}
151	}
152	error = sbuf_finish(&sbuf);
153	sbuf_delete(&sbuf);
154	return (error);
155}
156
157/*
158 * Outputs the set of physical memory segments.
159 */
160static int
161sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS)
162{
163	struct sbuf sbuf;
164	struct vm_phys_seg *seg;
165	int error, segind;
166
167	error = sysctl_wire_old_buffer(req, 0);
168	if (error != 0)
169		return (error);
170	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
171	for (segind = 0; segind < vm_phys_nsegs; segind++) {
172		sbuf_printf(&sbuf, "\nSEGMENT %d:\n\n", segind);
173		seg = &vm_phys_segs[segind];
174		sbuf_printf(&sbuf, "start:     %#jx\n",
175		    (uintmax_t)seg->start);
176		sbuf_printf(&sbuf, "end:       %#jx\n",
177		    (uintmax_t)seg->end);
178		sbuf_printf(&sbuf, "domain:    %d\n", seg->domain);
179		sbuf_printf(&sbuf, "free list: %p\n", seg->free_queues);
180	}
181	error = sbuf_finish(&sbuf);
182	sbuf_delete(&sbuf);
183	return (error);
184}
185
186#if VM_NDOMAIN > 1
187/*
188 * Outputs the set of free list lookup lists.
189 */
190static int
191sysctl_vm_phys_lookup_lists(SYSCTL_HANDLER_ARGS)
192{
193	struct sbuf sbuf;
194	int domain, error, flind, ndomains;
195
196	error = sysctl_wire_old_buffer(req, 0);
197	if (error != 0)
198		return (error);
199	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
200	ndomains = vm_nfreelists - VM_NFREELIST + 1;
201	for (domain = 0; domain < ndomains; domain++) {
202		sbuf_printf(&sbuf, "\nDOMAIN %d:\n\n", domain);
203		for (flind = 0; flind < vm_nfreelists; flind++)
204			sbuf_printf(&sbuf, "  [%d]:\t%p\n", flind,
205			    vm_phys_lookup_lists[domain][flind]);
206	}
207	error = sbuf_finish(&sbuf);
208	sbuf_delete(&sbuf);
209	return (error);
210}
211#endif
212
213/*
214 * Create a physical memory segment.
215 */
216static void
217_vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind, int domain)
218{
219	struct vm_phys_seg *seg;
220#ifdef VM_PHYSSEG_SPARSE
221	long pages;
222	int segind;
223
224	pages = 0;
225	for (segind = 0; segind < vm_phys_nsegs; segind++) {
226		seg = &vm_phys_segs[segind];
227		pages += atop(seg->end - seg->start);
228	}
229#endif
230	KASSERT(vm_phys_nsegs < VM_PHYSSEG_MAX,
231	    ("vm_phys_create_seg: increase VM_PHYSSEG_MAX"));
232	seg = &vm_phys_segs[vm_phys_nsegs++];
233	seg->start = start;
234	seg->end = end;
235	seg->domain = domain;
236#ifdef VM_PHYSSEG_SPARSE
237	seg->first_page = &vm_page_array[pages];
238#else
239	seg->first_page = PHYS_TO_VM_PAGE(start);
240#endif
241#if VM_NDOMAIN > 1
242	if (flind == VM_FREELIST_DEFAULT && domain != 0) {
243		flind = VM_NFREELIST + (domain - 1);
244		if (flind >= vm_nfreelists)
245			vm_nfreelists = flind + 1;
246	}
247#endif
248	seg->free_queues = &vm_phys_free_queues[flind];
249}
250
251static void
252vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind)
253{
254	int i;
255
256	if (mem_affinity == NULL) {
257		_vm_phys_create_seg(start, end, flind, 0);
258		return;
259	}
260
261	for (i = 0;; i++) {
262		if (mem_affinity[i].end == 0)
263			panic("Reached end of affinity info");
264		if (mem_affinity[i].end <= start)
265			continue;
266		if (mem_affinity[i].start > start)
267			panic("No affinity info for start %jx",
268			    (uintmax_t)start);
269		if (mem_affinity[i].end >= end) {
270			_vm_phys_create_seg(start, end, flind,
271			    mem_affinity[i].domain);
272			break;
273		}
274		_vm_phys_create_seg(start, mem_affinity[i].end, flind,
275		    mem_affinity[i].domain);
276		start = mem_affinity[i].end;
277	}
278}
279
280/*
281 * Initialize the physical memory allocator.
282 */
283void
284vm_phys_init(void)
285{
286	struct vm_freelist *fl;
287	int flind, i, oind, pind;
288#if VM_NDOMAIN > 1
289	int ndomains, j;
290#endif
291
292	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
293#ifdef	VM_FREELIST_ISADMA
294		if (phys_avail[i] < 16777216) {
295			if (phys_avail[i + 1] > 16777216) {
296				vm_phys_create_seg(phys_avail[i], 16777216,
297				    VM_FREELIST_ISADMA);
298				vm_phys_create_seg(16777216, phys_avail[i + 1],
299				    VM_FREELIST_DEFAULT);
300			} else {
301				vm_phys_create_seg(phys_avail[i],
302				    phys_avail[i + 1], VM_FREELIST_ISADMA);
303			}
304			if (VM_FREELIST_ISADMA >= vm_nfreelists)
305				vm_nfreelists = VM_FREELIST_ISADMA + 1;
306		} else
307#endif
308#ifdef	VM_FREELIST_HIGHMEM
309		if (phys_avail[i + 1] > VM_HIGHMEM_ADDRESS) {
310			if (phys_avail[i] < VM_HIGHMEM_ADDRESS) {
311				vm_phys_create_seg(phys_avail[i],
312				    VM_HIGHMEM_ADDRESS, VM_FREELIST_DEFAULT);
313				vm_phys_create_seg(VM_HIGHMEM_ADDRESS,
314				    phys_avail[i + 1], VM_FREELIST_HIGHMEM);
315			} else {
316				vm_phys_create_seg(phys_avail[i],
317				    phys_avail[i + 1], VM_FREELIST_HIGHMEM);
318			}
319			if (VM_FREELIST_HIGHMEM >= vm_nfreelists)
320				vm_nfreelists = VM_FREELIST_HIGHMEM + 1;
321		} else
322#endif
323		vm_phys_create_seg(phys_avail[i], phys_avail[i + 1],
324		    VM_FREELIST_DEFAULT);
325	}
326	for (flind = 0; flind < vm_nfreelists; flind++) {
327		for (pind = 0; pind < VM_NFREEPOOL; pind++) {
328			fl = vm_phys_free_queues[flind][pind];
329			for (oind = 0; oind < VM_NFREEORDER; oind++)
330				TAILQ_INIT(&fl[oind].pl);
331		}
332	}
333#if VM_NDOMAIN > 1
334	/*
335	 * Build a free list lookup list for each domain.  All of the
336	 * memory domain lists are inserted at the VM_FREELIST_DEFAULT
337	 * index in a round-robin order starting with the current
338	 * domain.
339	 */
340	ndomains = vm_nfreelists - VM_NFREELIST + 1;
341	for (flind = 0; flind < VM_FREELIST_DEFAULT; flind++)
342		for (i = 0; i < ndomains; i++)
343			vm_phys_lookup_lists[i][flind] =
344			    &vm_phys_free_queues[flind];
345	for (i = 0; i < ndomains; i++)
346		for (j = 0; j < ndomains; j++) {
347			flind = (i + j) % ndomains;
348			if (flind == 0)
349				flind = VM_FREELIST_DEFAULT;
350			else
351				flind += VM_NFREELIST - 1;
352			vm_phys_lookup_lists[i][VM_FREELIST_DEFAULT + j] =
353			    &vm_phys_free_queues[flind];
354		}
355	for (flind = VM_FREELIST_DEFAULT + 1; flind < VM_NFREELIST;
356	     flind++)
357		for (i = 0; i < ndomains; i++)
358			vm_phys_lookup_lists[i][flind + ndomains - 1] =
359			    &vm_phys_free_queues[flind];
360#else
361	for (flind = 0; flind < vm_nfreelists; flind++)
362		vm_phys_lookup_lists[0][flind] = &vm_phys_free_queues[flind];
363#endif
364}
365
366/*
367 * Split a contiguous, power of two-sized set of physical pages.
368 */
369static __inline void
370vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, int order)
371{
372	vm_page_t m_buddy;
373
374	while (oind > order) {
375		oind--;
376		m_buddy = &m[1 << oind];
377		KASSERT(m_buddy->order == VM_NFREEORDER,
378		    ("vm_phys_split_pages: page %p has unexpected order %d",
379		    m_buddy, m_buddy->order));
380		m_buddy->order = oind;
381		TAILQ_INSERT_HEAD(&fl[oind].pl, m_buddy, pageq);
382		fl[oind].lcnt++;
383        }
384}
385
386/*
387 * Initialize a physical page and add it to the free lists.
388 */
389void
390vm_phys_add_page(vm_paddr_t pa)
391{
392	vm_page_t m;
393
394	cnt.v_page_count++;
395	m = vm_phys_paddr_to_vm_page(pa);
396	m->phys_addr = pa;
397	m->queue = PQ_NONE;
398	m->segind = vm_phys_paddr_to_segind(pa);
399	m->flags = PG_FREE;
400	KASSERT(m->order == VM_NFREEORDER,
401	    ("vm_phys_add_page: page %p has unexpected order %d",
402	    m, m->order));
403	m->pool = VM_FREEPOOL_DEFAULT;
404	pmap_page_init(m);
405	mtx_lock(&vm_page_queue_free_mtx);
406	cnt.v_free_count++;
407	vm_phys_free_pages(m, 0);
408	mtx_unlock(&vm_page_queue_free_mtx);
409}
410
411/*
412 * Allocate a contiguous, power of two-sized set of physical pages
413 * from the free lists.
414 *
415 * The free page queues must be locked.
416 */
417vm_page_t
418vm_phys_alloc_pages(int pool, int order)
419{
420	vm_page_t m;
421	int flind;
422
423	for (flind = 0; flind < vm_nfreelists; flind++) {
424		m = vm_phys_alloc_freelist_pages(flind, pool, order);
425		if (m != NULL)
426			return (m);
427	}
428	return (NULL);
429}
430
431/*
432 * Find and dequeue a free page on the given free list, with the
433 * specified pool and order
434 */
435vm_page_t
436vm_phys_alloc_freelist_pages(int flind, int pool, int order)
437{
438	struct vm_freelist *fl;
439	struct vm_freelist *alt;
440	int domain, oind, pind;
441	vm_page_t m;
442
443	KASSERT(flind < VM_NFREELIST,
444	    ("vm_phys_alloc_freelist_pages: freelist %d is out of range", flind));
445	KASSERT(pool < VM_NFREEPOOL,
446	    ("vm_phys_alloc_freelist_pages: pool %d is out of range", pool));
447	KASSERT(order < VM_NFREEORDER,
448	    ("vm_phys_alloc_freelist_pages: order %d is out of range", order));
449
450#if VM_NDOMAIN > 1
451	domain = PCPU_GET(domain);
452#else
453	domain = 0;
454#endif
455	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
456	fl = (*vm_phys_lookup_lists[domain][flind])[pool];
457	for (oind = order; oind < VM_NFREEORDER; oind++) {
458		m = TAILQ_FIRST(&fl[oind].pl);
459		if (m != NULL) {
460			TAILQ_REMOVE(&fl[oind].pl, m, pageq);
461			fl[oind].lcnt--;
462			m->order = VM_NFREEORDER;
463			vm_phys_split_pages(m, oind, fl, order);
464			return (m);
465		}
466	}
467
468	/*
469	 * The given pool was empty.  Find the largest
470	 * contiguous, power-of-two-sized set of pages in any
471	 * pool.  Transfer these pages to the given pool, and
472	 * use them to satisfy the allocation.
473	 */
474	for (oind = VM_NFREEORDER - 1; oind >= order; oind--) {
475		for (pind = 0; pind < VM_NFREEPOOL; pind++) {
476			alt = (*vm_phys_lookup_lists[domain][flind])[pind];
477			m = TAILQ_FIRST(&alt[oind].pl);
478			if (m != NULL) {
479				TAILQ_REMOVE(&alt[oind].pl, m, pageq);
480				alt[oind].lcnt--;
481				m->order = VM_NFREEORDER;
482				vm_phys_set_pool(pool, m, oind);
483				vm_phys_split_pages(m, oind, fl, order);
484				return (m);
485			}
486		}
487	}
488	return (NULL);
489}
490
491/*
492 * Allocate physical memory from phys_avail[].
493 */
494vm_paddr_t
495vm_phys_bootstrap_alloc(vm_size_t size, unsigned long alignment)
496{
497	vm_paddr_t pa;
498	int i;
499
500	size = round_page(size);
501	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
502		if (phys_avail[i + 1] - phys_avail[i] < size)
503			continue;
504		pa = phys_avail[i];
505		phys_avail[i] += size;
506		return (pa);
507	}
508	panic("vm_phys_bootstrap_alloc");
509}
510
511/*
512 * Find the vm_page corresponding to the given physical address.
513 */
514vm_page_t
515vm_phys_paddr_to_vm_page(vm_paddr_t pa)
516{
517	struct vm_phys_seg *seg;
518	int segind;
519
520	for (segind = 0; segind < vm_phys_nsegs; segind++) {
521		seg = &vm_phys_segs[segind];
522		if (pa >= seg->start && pa < seg->end)
523			return (&seg->first_page[atop(pa - seg->start)]);
524	}
525	return (NULL);
526}
527
528/*
529 * Find the segment containing the given physical address.
530 */
531static int
532vm_phys_paddr_to_segind(vm_paddr_t pa)
533{
534	struct vm_phys_seg *seg;
535	int segind;
536
537	for (segind = 0; segind < vm_phys_nsegs; segind++) {
538		seg = &vm_phys_segs[segind];
539		if (pa >= seg->start && pa < seg->end)
540			return (segind);
541	}
542	panic("vm_phys_paddr_to_segind: paddr %#jx is not in any segment" ,
543	    (uintmax_t)pa);
544}
545
546/*
547 * Free a contiguous, power of two-sized set of physical pages.
548 *
549 * The free page queues must be locked.
550 */
551void
552vm_phys_free_pages(vm_page_t m, int order)
553{
554	struct vm_freelist *fl;
555	struct vm_phys_seg *seg;
556	vm_paddr_t pa, pa_buddy;
557	vm_page_t m_buddy;
558
559	KASSERT(m->order == VM_NFREEORDER,
560	    ("vm_phys_free_pages: page %p has unexpected order %d",
561	    m, m->order));
562	KASSERT(m->pool < VM_NFREEPOOL,
563	    ("vm_phys_free_pages: page %p has unexpected pool %d",
564	    m, m->pool));
565	KASSERT(order < VM_NFREEORDER,
566	    ("vm_phys_free_pages: order %d is out of range", order));
567	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
568	pa = VM_PAGE_TO_PHYS(m);
569	seg = &vm_phys_segs[m->segind];
570	while (order < VM_NFREEORDER - 1) {
571		pa_buddy = pa ^ (1 << (PAGE_SHIFT + order));
572		if (pa_buddy < seg->start ||
573		    pa_buddy >= seg->end)
574			break;
575		m_buddy = &seg->first_page[atop(pa_buddy - seg->start)];
576		if (m_buddy->order != order)
577			break;
578		fl = (*seg->free_queues)[m_buddy->pool];
579		TAILQ_REMOVE(&fl[m_buddy->order].pl, m_buddy, pageq);
580		fl[m_buddy->order].lcnt--;
581		m_buddy->order = VM_NFREEORDER;
582		if (m_buddy->pool != m->pool)
583			vm_phys_set_pool(m->pool, m_buddy, order);
584		order++;
585		pa &= ~((1 << (PAGE_SHIFT + order)) - 1);
586		m = &seg->first_page[atop(pa - seg->start)];
587	}
588	m->order = order;
589	fl = (*seg->free_queues)[m->pool];
590	TAILQ_INSERT_TAIL(&fl[order].pl, m, pageq);
591	fl[order].lcnt++;
592}
593
594/*
595 * Set the pool for a contiguous, power of two-sized set of physical pages.
596 */
597void
598vm_phys_set_pool(int pool, vm_page_t m, int order)
599{
600	vm_page_t m_tmp;
601
602	for (m_tmp = m; m_tmp < &m[1 << order]; m_tmp++)
603		m_tmp->pool = pool;
604}
605
606/*
607 * Search for the given physical page "m" in the free lists.  If the search
608 * succeeds, remove "m" from the free lists and return TRUE.  Otherwise, return
609 * FALSE, indicating that "m" is not in the free lists.
610 *
611 * The free page queues must be locked.
612 */
613boolean_t
614vm_phys_unfree_page(vm_page_t m)
615{
616	struct vm_freelist *fl;
617	struct vm_phys_seg *seg;
618	vm_paddr_t pa, pa_half;
619	vm_page_t m_set, m_tmp;
620	int order;
621
622	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
623
624	/*
625	 * First, find the contiguous, power of two-sized set of free
626	 * physical pages containing the given physical page "m" and
627	 * assign it to "m_set".
628	 */
629	seg = &vm_phys_segs[m->segind];
630	for (m_set = m, order = 0; m_set->order == VM_NFREEORDER &&
631	    order < VM_NFREEORDER - 1; ) {
632		order++;
633		pa = m->phys_addr & (~(vm_paddr_t)0 << (PAGE_SHIFT + order));
634		if (pa >= seg->start)
635			m_set = &seg->first_page[atop(pa - seg->start)];
636		else
637			return (FALSE);
638	}
639	if (m_set->order < order)
640		return (FALSE);
641	if (m_set->order == VM_NFREEORDER)
642		return (FALSE);
643	KASSERT(m_set->order < VM_NFREEORDER,
644	    ("vm_phys_unfree_page: page %p has unexpected order %d",
645	    m_set, m_set->order));
646
647	/*
648	 * Next, remove "m_set" from the free lists.  Finally, extract
649	 * "m" from "m_set" using an iterative algorithm: While "m_set"
650	 * is larger than a page, shrink "m_set" by returning the half
651	 * of "m_set" that does not contain "m" to the free lists.
652	 */
653	fl = (*seg->free_queues)[m_set->pool];
654	order = m_set->order;
655	TAILQ_REMOVE(&fl[order].pl, m_set, pageq);
656	fl[order].lcnt--;
657	m_set->order = VM_NFREEORDER;
658	while (order > 0) {
659		order--;
660		pa_half = m_set->phys_addr ^ (1 << (PAGE_SHIFT + order));
661		if (m->phys_addr < pa_half)
662			m_tmp = &seg->first_page[atop(pa_half - seg->start)];
663		else {
664			m_tmp = m_set;
665			m_set = &seg->first_page[atop(pa_half - seg->start)];
666		}
667		m_tmp->order = order;
668		TAILQ_INSERT_HEAD(&fl[order].pl, m_tmp, pageq);
669		fl[order].lcnt++;
670	}
671	KASSERT(m_set == m, ("vm_phys_unfree_page: fatal inconsistency"));
672	return (TRUE);
673}
674
675/*
676 * Try to zero one physical page.  Used by an idle priority thread.
677 */
678boolean_t
679vm_phys_zero_pages_idle(void)
680{
681	static struct vm_freelist *fl = vm_phys_free_queues[0][0];
682	static int flind, oind, pind;
683	vm_page_t m, m_tmp;
684
685	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
686	for (;;) {
687		TAILQ_FOREACH_REVERSE(m, &fl[oind].pl, pglist, pageq) {
688			for (m_tmp = m; m_tmp < &m[1 << oind]; m_tmp++) {
689				if ((m_tmp->flags & (PG_CACHED | PG_ZERO)) == 0) {
690					vm_phys_unfree_page(m_tmp);
691					cnt.v_free_count--;
692					mtx_unlock(&vm_page_queue_free_mtx);
693					pmap_zero_page_idle(m_tmp);
694					m_tmp->flags |= PG_ZERO;
695					mtx_lock(&vm_page_queue_free_mtx);
696					cnt.v_free_count++;
697					vm_phys_free_pages(m_tmp, 0);
698					vm_page_zero_count++;
699					cnt_prezero++;
700					return (TRUE);
701				}
702			}
703		}
704		oind++;
705		if (oind == VM_NFREEORDER) {
706			oind = 0;
707			pind++;
708			if (pind == VM_NFREEPOOL) {
709				pind = 0;
710				flind++;
711				if (flind == vm_nfreelists)
712					flind = 0;
713			}
714			fl = vm_phys_free_queues[flind][pind];
715		}
716	}
717}
718
719/*
720 * Allocate a contiguous set of physical pages of the given size
721 * "npages" from the free lists.  All of the physical pages must be at
722 * or above the given physical address "low" and below the given
723 * physical address "high".  The given value "alignment" determines the
724 * alignment of the first physical page in the set.  If the given value
725 * "boundary" is non-zero, then the set of physical pages cannot cross
726 * any physical address boundary that is a multiple of that value.  Both
727 * "alignment" and "boundary" must be a power of two.
728 */
729vm_page_t
730vm_phys_alloc_contig(unsigned long npages, vm_paddr_t low, vm_paddr_t high,
731    unsigned long alignment, unsigned long boundary)
732{
733	struct vm_freelist *fl;
734	struct vm_phys_seg *seg;
735	struct vnode *vp;
736	vm_paddr_t pa, pa_last, size;
737	vm_page_t deferred_vdrop_list, m, m_ret;
738	int domain, flind, i, oind, order, pind;
739
740#if VM_NDOMAIN > 1
741	domain = PCPU_GET(domain);
742#else
743	domain = 0;
744#endif
745	size = npages << PAGE_SHIFT;
746	KASSERT(size != 0,
747	    ("vm_phys_alloc_contig: size must not be 0"));
748	KASSERT((alignment & (alignment - 1)) == 0,
749	    ("vm_phys_alloc_contig: alignment must be a power of 2"));
750	KASSERT((boundary & (boundary - 1)) == 0,
751	    ("vm_phys_alloc_contig: boundary must be a power of 2"));
752	deferred_vdrop_list = NULL;
753	/* Compute the queue that is the best fit for npages. */
754	for (order = 0; (1 << order) < npages; order++);
755	mtx_lock(&vm_page_queue_free_mtx);
756#if VM_NRESERVLEVEL > 0
757retry:
758#endif
759	for (flind = 0; flind < vm_nfreelists; flind++) {
760		for (oind = min(order, VM_NFREEORDER - 1); oind < VM_NFREEORDER; oind++) {
761			for (pind = 0; pind < VM_NFREEPOOL; pind++) {
762				fl = (*vm_phys_lookup_lists[domain][flind])
763				    [pind];
764				TAILQ_FOREACH(m_ret, &fl[oind].pl, pageq) {
765					/*
766					 * A free list may contain physical pages
767					 * from one or more segments.
768					 */
769					seg = &vm_phys_segs[m_ret->segind];
770					if (seg->start > high ||
771					    low >= seg->end)
772						continue;
773
774					/*
775					 * Is the size of this allocation request
776					 * larger than the largest block size?
777					 */
778					if (order >= VM_NFREEORDER) {
779						/*
780						 * Determine if a sufficient number
781						 * of subsequent blocks to satisfy
782						 * the allocation request are free.
783						 */
784						pa = VM_PAGE_TO_PHYS(m_ret);
785						pa_last = pa + size;
786						for (;;) {
787							pa += 1 << (PAGE_SHIFT + VM_NFREEORDER - 1);
788							if (pa >= pa_last)
789								break;
790							if (pa < seg->start ||
791							    pa >= seg->end)
792								break;
793							m = &seg->first_page[atop(pa - seg->start)];
794							if (m->order != VM_NFREEORDER - 1)
795								break;
796						}
797						/* If not, continue to the next block. */
798						if (pa < pa_last)
799							continue;
800					}
801
802					/*
803					 * Determine if the blocks are within the given range,
804					 * satisfy the given alignment, and do not cross the
805					 * given boundary.
806					 */
807					pa = VM_PAGE_TO_PHYS(m_ret);
808					if (pa >= low &&
809					    pa + size <= high &&
810					    (pa & (alignment - 1)) == 0 &&
811					    ((pa ^ (pa + size - 1)) & ~(boundary - 1)) == 0)
812						goto done;
813				}
814			}
815		}
816	}
817#if VM_NRESERVLEVEL > 0
818	if (vm_reserv_reclaim_contig(size, low, high, alignment, boundary))
819		goto retry;
820#endif
821	mtx_unlock(&vm_page_queue_free_mtx);
822	return (NULL);
823done:
824	for (m = m_ret; m < &m_ret[npages]; m = &m[1 << oind]) {
825		fl = (*seg->free_queues)[m->pool];
826		TAILQ_REMOVE(&fl[m->order].pl, m, pageq);
827		fl[m->order].lcnt--;
828		m->order = VM_NFREEORDER;
829	}
830	if (m_ret->pool != VM_FREEPOOL_DEFAULT)
831		vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m_ret, oind);
832	fl = (*seg->free_queues)[m_ret->pool];
833	vm_phys_split_pages(m_ret, oind, fl, order);
834	for (i = 0; i < npages; i++) {
835		m = &m_ret[i];
836		vp = vm_page_alloc_init(m);
837		if (vp != NULL) {
838			/*
839			 * Enqueue the vnode for deferred vdrop().
840			 *
841			 * Unmanaged pages don't use "pageq", so it
842			 * can be safely abused to construct a short-
843			 * lived queue of vnodes.
844			 */
845			m->pageq.tqe_prev = (void *)vp;
846			m->pageq.tqe_next = deferred_vdrop_list;
847			deferred_vdrop_list = m;
848		}
849	}
850	for (; i < roundup2(npages, 1 << imin(oind, order)); i++) {
851		m = &m_ret[i];
852		KASSERT(m->order == VM_NFREEORDER,
853		    ("vm_phys_alloc_contig: page %p has unexpected order %d",
854		    m, m->order));
855		vm_phys_free_pages(m, 0);
856	}
857	mtx_unlock(&vm_page_queue_free_mtx);
858	while (deferred_vdrop_list != NULL) {
859		vdrop((struct vnode *)deferred_vdrop_list->pageq.tqe_prev);
860		deferred_vdrop_list = deferred_vdrop_list->pageq.tqe_next;
861	}
862	return (m_ret);
863}
864
865#ifdef DDB
866/*
867 * Show the number of physical pages in each of the free lists.
868 */
869DB_SHOW_COMMAND(freepages, db_show_freepages)
870{
871	struct vm_freelist *fl;
872	int flind, oind, pind;
873
874	for (flind = 0; flind < vm_nfreelists; flind++) {
875		db_printf("FREE LIST %d:\n"
876		    "\n  ORDER (SIZE)  |  NUMBER"
877		    "\n              ", flind);
878		for (pind = 0; pind < VM_NFREEPOOL; pind++)
879			db_printf("  |  POOL %d", pind);
880		db_printf("\n--            ");
881		for (pind = 0; pind < VM_NFREEPOOL; pind++)
882			db_printf("-- --      ");
883		db_printf("--\n");
884		for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
885			db_printf("  %2.2d (%6.6dK)", oind,
886			    1 << (PAGE_SHIFT - 10 + oind));
887			for (pind = 0; pind < VM_NFREEPOOL; pind++) {
888				fl = vm_phys_free_queues[flind][pind];
889				db_printf("  |  %6.6d", fl[oind].lcnt);
890			}
891			db_printf("\n");
892		}
893		db_printf("\n");
894	}
895}
896#endif
897